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Abstract 

In this study, the influence of water absorption on the Mode I interlaminar fracture 

toughness of flax and basalt fibre reinforced vinyl ester hybrid composites is presented. Three 

types of composite laminates namely, flax fibre reinforced vinyl ester (FVE), flax fibre 

hybridised basalt unstitched (FBVEu) and flax hybridised basalt stitched (FBVEs), fabricated 

by vacuum infusion technique are investigated. Double cantilever beam (DCB) tests were 

performed to evaluate the Mode I critical energy release rate (GIC) and the crack length (R-

curve) by using three different data reduction methods. It was found from the experimental 

results that the Mode I fracture toughness initiation and propagation of water immersed FVE 

composites were decreased by an average of 27% and 10% respectively, compared to the dry 

specimens, whereas the fracture toughness propagation of water immersed FBVEu and FBVEs 

composites were improved by approximately 15% and 17% compared to dry specimens. The 

fractured surface and delamination of different composites were evaluated by using scanning 

electron microscopy (SEM) and x-ray computed micro-tomography (µCT). The results showed 

that basalt fibre hybridisation has positive effects on durability and the moisture resistance of 

natural fibre composites. 
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1. Introduction 

Recent developments in natural fibre reinforced composites (NFRCs) have led to 

renewed interest in semi-structural and structural applications especially in the automotive and 

construction sectors as an alternative material to synthetic fibre composites. The reasons for 

this shift to the use of natural fibre composites are due to increased global awareness and new 

environmental legislation requiring manufacturers to adapt sustainable materials (1). 

Furthermore, due to increased consumer awareness and the need for lightweight components 

in order to reduce overall CO2 emissions, the automotive industry is leading the way in using 

natural fibre composites and bio-composites. The hybrid composites developed by using flax 

and basalt fibres not only provide weight savings but also offer more environmentally friendly 

composites which can further be applied in the marine and construction industries (2). 

In a recent extensive review relating to the use of natural plant fibres for structural 

applications, it has been highlighted that there have been several research works conducted 

focusing on the development of NFRCs for structural applications (3). The review concluded 

that natural (bast) fibres have superior mechanical properties due to their chemical and 

structural composition which contains high cellulose and aspect ratio with low micro-fibril 

angles. Thus, natural fibres can be most appropriate to be used as reinforcements in the 

composite industries as these natural fibres provide the best potential integration of light weight 

and low cost, with high specific strength and modulus (4). However, NFRCs have low-

durability and inherently absorb high moisture which can reduce their properties and thus affect 

the long-term performance. For example, increased moisture content in natural fibres causes 

swelling and  alters  their dimensions because of the poor adhesion/compatibility between the 

hydrophobic matrix and hydrophilic natural fibres (5,6). Previous studies have reported the 

effect of water absorption on the properties of NFRCs, such as hemp (7), jute (8) and flax (9). 

These reports have shown that increased moisture uptake of natural bast fibres is due to high 

cellulose and voids content, and the mechanical properties such as tensile and flexural strength 

would be significantly lowered as a consequence of weak interfacial adhesion between fibre 

and matrix.  

Delamination is one of the most prevalent failure mechanisms in composite laminates. It 

usually occurs due to dynamic loadings, such as low-velocity impact when the structure is 

subjected to cyclic or static loading conditions (10). Sufficient ability to absorb fracture energy 

is an important requirement for structure design, which is dependent on the fibre and matrix 

properties. Because of this, the use of natural fibres in the form of non-woven mats and short 
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fibres is limited in non-structural applications (11). However, in order to obtain high 

performance composites in terms of stiffness and strength, it is important to use long 

continuous unidirectional fibres or woven non-crimp fabrics (12). 

Many research works have been carried out on the hybrid system in composites materials 

(13–18) which contain two or more different types of natural and synthetic fibres in a similar 

matrix. Due to their unique attributes of achieving tailored material performance, hybrid 

composite systems have recently received significant attention. Common reinforcements used 

in hybrid systems include carbon and glass fibres as well as other nanoparticles. In recent years, 

basalt fibre has been one of the popular reinforcements used to hybridise natural fibre 

composites. The main reason for this include, but are not limited to basalt fibre being originated 

from nature and has less environmental damage compared to non-renewable reinforcements 

such as carbon and glass fibres. In addition, this fibre has high chemical stability as well as 

resistance to high temperature, and it is produced from commonly occurring rock (19). Fiore 

et al. (14) showed that the addition of two external layers of basalt fibre enhanced the 

mechanical properties of flexural and tensile compared to glass fibre reinforced composites 

without hybridisation. 

From the studies reported in the literature, very limited work has been documented in the 

analysis of fracture toughness behaviour of natural fibre composites. In addition, there are no 

reported works on the effect of water absorption on the fracture toughness of NFRCs. Also, 

very few studies have been undertaken to improve the fracture toughness of NFRCs by 

chemical treatment (20,21) and fibre or matrix hybridisation (22–24). Li et al. (20) have 

conducted the fracture toughness test to investigate the effects of fibre surface treatment of 

sisal fibre reinforced vinyl ester composites. They found that the permanganate and silane 

treated systems improved the fracture toughness in comparison to the untreated systems with 

critical strain energy release rate (GIC) of 1682.2 J/m2 to 1488.3 J/m2 and 1158.7 J/m2, 

respectively. However, Silva et al. (21) reported that the alkaline treatment contributed to lower 

the fracture toughness of the sisal fibre reinforced polyurethane composites. This behaviour 

was attributed as a result of improved interfacial adhesion between fibre and the matrix which 

affected debonding and fibre pull-out which reduced the fracture energy absorption. Hence, the 

use of thermoplastic matrix material such as polypropylene and polyurethane leads to a 

decrease of mechanical properties caused by a weak bond to natural fibres, and  they also have 

lower mechanical properties compared to thermosets (12). Wong et al. (23), for example, noted 

that the interlaminar fracture toughness (GIC) of flax fibre reinforced hyperbranched polymers 

(HBP) with poly(L-lactic acid) (PLLA) was significantly increased when modified and blended 
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together. Moreover, the toughness properties were improved due to better wetting of the fibres 

by these matrices. From a review of this literature, it can be concluded that of central 

importance in using natural fibre composites in structural applications is the measurement of 

their fracture toughness behaviour.  

Amongst the several textile methods of inserting through-thickness fibre reinforcements, 

stitching, knitting and weaving are the methods used to improve the interlaminar fracture 

toughness. It is likely that the most common of these techniques is stitching because of its 

versatility and convenience (25–27). By using stitching through-thickness reinforcement, the 

fracture toughness of the composites has been improved as a result of providing a more 

integrated composite structure (30). However, it has been observed in the previous studies that 

stitching can cause in-plain fibre damage and create resin-rich regions which can lead to a 

reduction of  the flexural, compressive and tensile properties (30,31). Indeed, it is difficult to 

predict the influence of stitching on the in-plane mechanical properties owing to many factors, 

such as the type of the composite laminates, fabrication techniques and also the important 

parameters of stitching (stitch density, pattern, span, yarn diameter, type of thread) (32). More 

recent published work by Ravandi et al. (33) examined the effects of stitching through-

thickness reinforcement using natural fibres on Mode I interlaminar fracture toughness of flax 

fibre/epoxy composites. It was found that the interlaminar fracture toughness of woven flax 

composites was significantly higher than glass fibre composites. Moreover, flax yarn stitches 

exhibited improved fracture toughness of the laminates compared to cotton thread stitches.  

The work reported in this paper is aimed at characterising the Mode I interlaminar 

fracture toughness of flax fibre and flax/basalt reinforced vinyl ester composites. To the best 

of our knowledge, there are no reported works on the influence of water absorption relating to 

fracture toughness behaviour of flax fibre and basalt fibre hybridised composites. Herein, for 

the first time this report presents a detail investigation into the effects of water absorption 

behaviour and its impacts on the interlaminar fracture toughness of hybrid and stitched 

composites laminates. The findings from this study will help designers and manufacturers 

towards using natural fibre composites in structural and semi-structural components in terms 

of understanding their mechanical properties, as new composite based products emerge. 

Double cantilever beam (DCB) tests were carried out under Mode I loading to determine the 

crack growth resistance curves (R-curves) and the critical energy release rate values for both 

initiation (GIC init.) and propagation toughness (GIC prop.). The fracture mechanisms of the surface 
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and the delamination of composites were characterised by using scanning electron microscopy  

(SEM) and X-ray computed micro-tomography (µCT). 

2. Experimental procedure  

2.1 Materials 

The matrix material used in this study was based on commercially available vinyl ester, trade 

name: Scott-Bader Crystic VE676-03, obtained from Scott-Bader. Accelerator was added at 

2% by weight along with Triganox 239 at 2% by weight as the catalyst. Woven flax and 

woven basalt fibres were used as the reinforcements (+/- 45 °) biaxial stitched non-crimp 

fabrics of 600 g/m2 in weight, supplied by Net Composites Ltd. A PTFE layer of 20 μm thick 

was used to simulate a crack in the middle of reinforced panels. Table 1 presents the chemical 

and structural composition of different natural fibres commonly used as reinforcements in 

composites. 

2.2 Fabrication of composite laminates 

The flax and flax/basalt hybrid laminates were fabricated by the vacuum infusion 

technique. This technique is beneficial to produce composites with high volume fraction of 

fibres and it enables a better strength-to-weight ratio with less void content (4). The resin-

infused laminates were prepared using a balanced layup with the reinforcement of flax and 

basalt fibres, as illustrated in Fig. 1. The process started with the dry pack of layers which were 

placed on top of a glass plate which had previously been treated with a release agent 

(Multishield). This pack was then covered with a layer of nylon peel ply release and a diffusion 

mesh was added to the top of the peel ply to help shorten the infusion time. The tape rectangle 

was then covered with a vacuum bag, the inlet pipe capped off and a vacuum of -29” Hg 

applied. Once the resin had been mixed with accelerator and catalyst, the inlet pipe was 

submerged in a container of resin and the pipe was uncapped, allowing the resin to be infused 

into the layup. Once set, the composite laminates were left to cure for 24 hours at ambient 

temperature followed by demoulding and post curing in an oven at 80 °C for 3 hours.  

Three types of composite laminates were prepared namely, flax fibre reinforced vinyl 

ester (FVE), flax fibre hybridised basalt reinforced vinyl ester unstitched (FBVEu) and flax 

fibre hybridised basalt reinforced vinyl ester stitched (FBVEs). FBVEs panels were to have 

three straight lines at 2 mm intervals using machine stitching by cotton thread across their 
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widths, starting at a distance of approximately 5 mm from the crack tip of the Teflon layer (see 

Fig. 2). The latter was inserted along the central axis of each panel in order to simulate a starter 

crack of the delamination and reduce friction between the top and bottom of cantilever beam. 

The average of fibre volume fraction of FVE, FBVEu and FBVEs was around 31%, 33% and 

34% respectively. The void content was approximately 3%. The physical and mechanical 

properties of reinforcing materials are summarised in Table 2. All specimens of composite 

materials were cut according to the requirements of each test, based on the geometry and 

dimension. The water jet method was used for cutting the specimens from the panels and then 

dried instantly at 50 °C for 24 hours to remove any surface moisture absorbed. 

2.3 Water absorption tests 

The effect of water absorption on Mode I interlaminar fracture toughness of FVE, FBVEu 

and FBVEs were investigated in accordance with BS EN ISO: 1999 to calculate the moisture 

uptake percentage and the diffusion coefficient of different composites. Five specimens of each 

sample type were placed in a desiccator for 48 hours and then weighed to the nearest 0.1 mg. 

This process was repeated until a constant mass was reached. The specimens were immersed 

in a container of de-ionised water at room temperature of 23±1 °C for different time durations. 

After 24 hours from immersion, the specimens were taken out from the container of de-ionised 

water. Then the surface was dried with absorbent paper, re-measured and then put it back into 

the container immediately. The immersion time was continued for 42 days to ensure that it was 

enough to reach the equilibrium moisture content. The specimens were weighed at intervals of 

24 hours up to 1008 hours exposure.  

Water absorption percentage was calculated according to the following formula: 

𝑀(%) =
𝑀𝑡−𝑀0

𝑀0  
× 100                                                                                                                                                     [1] 

Where M(%), is the moisture uptake in percentage; Mt is the weight of the water immersed 

specimens  at a given time; M0 is the initial weight of the sample at dry condition. 

The diffusion coefficient (D) was calculated using the following equation: 

𝐷 =  
𝑑2

𝜋2 × 𝑡70
                                                                                                                [2] 

where d is sample thickness (mm) and t70 is time taken to reach 70% of saturation (s).  
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The diffusion coefficient (D) is defined as the slope of the normalised mass uptake against 

square root of time √t and has the form: 

𝐷 =  𝜋 ( 
𝑘ℎ

4𝑀𝑚
)

2

                                                                                                            [3] 

where, k is the initial slope of a plot of M(t) versus t1/2, Mm is the maximum weight gain and h 

is the thickness of the composite (39,40). 

2.4 Mode I interlaminar fracture toughness testing 

The fracture toughness tests were conducted on a Zwick/Roell Z250 universal testing 

machine fitted with 5 kN capacity load cell as per ASTM D5528 (41), as a specific standard 

for calculating GIC in woven fabric composites which does not yet exist (42). Mode I 

interlaminar fracture toughness (GIC) was measured using the double cantilever beam (DCB) 

method. The specimen geometry and dimensions are shown in Fig. 3. In Mode I, each specimen 

has two piano hinges with 25 mm of steel bonded on both sides (top and bottom) of the 

specimen end with mixed epoxy and hardener resin glue of 50%. Before bonding the hinges, 

surfaces of both sides were cleaned with acetone and sanded with sandpaper. When the surfaces 

were dry the hinges were bonded by using a C-clamp to attach them in place for 48 hours. One 

side edge of each specimen was painted with white lacquer to assist optical crack length 

measurement. The crack initiation and growth was monitored using a digital camera with 3x 

magnifying lens. The load and displacement were recorded from the machine by testXpert 

software. The tests were carried out at a constant crosshead speed of 5 mm/min in order to 

produce a stable crack growth. The test set up and the tool used to monitor the images during 

the test is shown in Fig.4.  For each composite type, five specimens were tested to determine 

the average values of the initiation (GIC init.) and propagation toughness (GIC prop.).  

In Mode I, the DCB test was used to obtain the critical energy release rate, GIC, based on 

the theory of linear elastic fracture mechanics (LEFM) by using three data reduction methods 

(43). In the modified beam theory (MBT), rotation may occur at the crack tip because the beam 

is not perfectly fixed. Thus, the strain energy release rate GIC is calculated as follows: 

𝐺I𝑐 =
3𝑃𝛿 

2𝑏(𝑎+|∆|)
                                                                                                               [4] 

where Ρ is the applied load (N), δ the load point displacement (mm) and a the delamination 

length (mm), and b is the specimen width (mm). The crack length correction factor, ∆ is 

obtained by plotting the cube root of compliance, C
1/3

as a function of delamination length a. 

The compliance, C is the ratio of the load point displacement to the applied load (δ /P). In 
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addition, the compliance calibration (CC) was the second method for DCB to measure the 

corrected energy release rate GIC as shown: 

𝐺I𝑐 =
𝑛𝑃𝛿 

2𝑏𝑎
                                                                                                                      [5]       

where a is the delamination length and n is the linear slope of least-square fit of log (C) versus 

log (a). With the modified compliance calibration (MCC) method, the normalised value of the 

delamination length is used which is equal to a/h, where h is the thickness of the beam. The 

graph of the delamination length normalised as a function of the cube root of compliance, C
1/3

, 

is plotted using visually observed delamination of the initiation values and all the propagation 

values. The slope of this line is denoted as n. The interlaminar fracture toughness for the MCC 

is calculated using the equation below: 

𝐺I𝑐 =
3𝛲2𝐶

2
3⁄

2𝑛𝑏ℎ
                                                                                                                 [6] 

2.5 Scanning electron microscopy (SEM) 

The fractured surfaces of the dry and wet samples after the DCB tests were examined in 

order to study the effect of moisture absorption in delamination behaviour of the composite 

specimens using a SEM JSM 6100 at room temperature. After adhering to SEM stubs, a thin 

layer of gold/palladium is applied to the specimens prior to SEM examination. The 

micrographs of the delamination provide important information on how the specimens fail in 

relation to fibre-matrix adhesion and resulting failure mechanisms. 

2.6 X-ray computed micro-tomography (µCT)  

The nature of the damage evolution in a composite structure is a complex phenomenon 

that includes delamination, matrix cracking, fibre pull-out and breakage. To effectively analyse 

these defects, high quality instruments are required (44,45). X-ray computed micro-

tomography (µCT) measurements were performed using a Nikon (Xtec) XTH225 to obtain 

fracture damage characterisation through the thickness of the laminates. µCT methods were 

used to reconstruct the three-dimensional structure of the samples from a large number of X-

ray projection images. VGStudio MAX was used to extract images and the X-ray source 

powered at 110 kV – 110 uA.  
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3. Results and discussion 

The experimental results obtained from this study are divided into three parts. The first 

part evaluates the sorption behaviour and the diffusion coefficient of flax and basalt fibres 

hybrid composites along with stitched composite specimens. The second part investigates the 

effect of water absorption on the interlaminar fracture toughness of FVE, FBVEu and FBVEs 

composite laminates by using Mode I (DCB) tests. In the last part, the fracture damage 

mechanisms at the surface and delamination of these composite specimens are examined using 

SEM and micro CT scan. 

3.1 Sorption behaviour 

Fig. 5 shows the moisture absorption curves of three different composites (FVE, FBVEu 

and FBVEs), where each data point represents the mean value of each specimen type. The 

percentage of weight gain as a function of square root of time immersed in de-ionised water at 

room temperature of 23±1 °C for 1008 hrs (42 days) as shown in Fig. 5 exhibits that for all the 

composite specimens, the moisture uptake at the beginning is linear and rapidly increases then 

slows down for a prolonged time until saturation reaches a plateau around 900 hrs (5 weeks). 

The moisture uptake results show Fickian behaviour at room temperature. The maximum 

weight gain percentages of FVE, FBVEs and FBVEu composite specimens were 5.38%, 3.70% 

and 3.57%, respectively. Both types of FBVEu and FBVEs samples showed similar water 

absorption behaviours due to same balanced layup technique used, except for the small amount 

of stitched fibre. It is noted that stitching of natural fibres through-thickness reinforcement 

would cause an increase of a small percentage of water absorption which might affect the 

stitching performance and mechanical properties. The saturation moisture uptake of FVE 

composites without hybridisation were much more than FBVEu composites by approximately 

50%. This indicates that flax fibre absorbed moisture quickly which caused swelling of the 

fibre due to high cellulose of a hydrophilic nature (46). As a result, fibre swelling can cause 

micro-cracking in the brittle thermosetting polymer matrix composites. It is well established 

that the mechanical properties of water immersed natural fibre reinforced composites are 

reduced with increasing ageing time due to weak fibre-matrix interface created by the water 

ingress process. This can further promote the swelling of fibres as well as plasticisation of 

matrices which in turn results in the reduction of strength and stiffness for water immersed 

specimens compared to dry specimens. 
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Moreover, moisture penetration occurred into the composite interface because of the 

diffusion of water molecules inside the micro gaps between polymer chains (7). For basalt 

hybridisation of FBVEu composites, the basalt fibre has helped to prevent water penetrating 

into the fibre-matrix interface as it has better water repellence behaviour compare to FVE 

specimens (17). 

The diffusion coefficient is a kinetic parameter which describes the capability of solvent 

molecules to move through the polymer segments. Table 3 illustrates the diffusion coefficients 

of FVE, FBVEs and FBVEu composites immersed in de-ionised water. It is observed that the 

maximum moisture content and the diffusion coefficient values decrease with hybridised 

FBVE composites compared to non-hybridisation composites of FVE by 50% and 44%, 

respectively. This is attributed to the external basalt layers in FBVE composite specimens 

which protect the internal layers from degradation during ageing environmental exposure. On 

the other hand, FVE composites shrink, expand and debond between the fibre and matrix which 

creates voids acting as water reservoirs and thus raising the saturation level. Similar 

observations have been recently reported for flax (10 layers) and flax/basalt (6 flax layers in 

the middle, 4 basalt layers as external skins, 2 each side) laminates (18). Their results 

highlighted that the percentage of water uptake for flax fibre composite is higher than 

flax/basalt composite, and both reached saturation level after 4 weeks of ageing as similarly 

reported (17). 

3.2 Effect of moisture absorption on Mode I interlaminar fracture toughness 

Crosshead-load and displacement curves  P  for both dry and water-aged samples of 

FVE, FBVEu and FBVEs composite specimens were obtained from the DCB test. The plotted 

curves for different specimens can be classified into three stages as shown in Fig. 6. Firstly, 

the linearity of the load to the displacement of all samples occurred when the load was 128 N. 

For FVE and FBVEu specimens linearity stopped at load 175 N and 141 N respectively, after 

recorded displacement of 2 mm showing much resistance to deformation before the initiation 

of crack. In this elastic deformation stage (I), there is no visual damage or any crack initiation 

as depicted in Fig. 7 (I). Secondly, the curves showed an increased nonlinear behaviour in load 

with increased displacement. The crack initiation for FVE, FBVEu and FBVEs dry composites 

were visually observed at load 211.97 N, 187.24 N and 171.37 N respectively. When the crack 

first visibly initiated from the white lacquer of the crack tip zone, the load and displacement 

were recorded after crack initiation, as shown in Fig. 7 (II). The load required to initiate crack 
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is lower for the water immersed specimens compared to their dry counterparts. For example, 

the load required to initiate crack of FVE wet specimens was 30% lower than that of dry FVE 

specimens. For flax basalt hybrid specimens, the load required for water immersed specimens 

was 15% lower than that of dry specimens. The lower load for crack initiation for wet 

specimens is attributed to weak fibre- matrix interface due to moisture ingress (7). It is worth 

noting that the load required to initiate crack for flax basalt hybrid specimens was much higher 

than that of flax alone without basalt hybrid specimens. This improvement is attributed to 

higher stiffness and better dimensional stability at wet conditions of basalt fibre as well as their 

water repellence behaviour. It can be seen that aged samples show less resistance to crack 

initiation that unaged samples. Thirdly, a maximum load plateau occurs before complete failure 

and the crack propagates as shown ductile behaviour materials. All sample types exhibited that 

a stable crack propagation occurred with constant crosshead rate except stitched composites. It 

was observed that extensive fibre bridging occurred during the crack propagation with a slight 

deviation in the path of the crack, as clearly illustrated in Fig. 7 (III). This implies that 

imitations of these cracks created load reduction and then lead to delamination failure and fibre 

breakage. In the case of stitched, both dry and wet composites have the lowest displacement. 

The crack propagation is unstable beyond the peak load. This is because the existence of stitch 

threads create voids when needle inserts the through-thickness reinforcement, and then 

decreases the stiffness of the composite due to damage caused to woven fibres (26).  

3.2.1 Delamination crack growth resistance curve 

The experimental resistance curves (R-curve) which presents the relationship between 

the Mode I strain energy release rate (GIC) and the delamination length (a), were obtained to 

determine the initiation and propagation of a crack length in both dry and wet specimens. 

Referring to the results of other research works carried out on Mode I (DCB) tests (47, 48), 

three different data reduction methods of MBT, CC and MCC were employed based on the 

standard to determine the interlaminar fracture toughness. Each of the samples exhibited 

similar properties using different methods where this validates the reliability of the data 

obtained from the experimental results in this study. Fig. 8 shows the crack growth resistance 

curves for three groups of samples: a) FVE, b) FBVEu and c) FBVEs. 

Considering the FVE samples as shown in Fig. 8 (a), an increase of GIC can be seen in 

the crack zone between 52 mm to 62 mm and then it changes to less steep with steady-state 

between 62 mm to 74 mm. All three methods are very close to each other and some points for 
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CC and MCC coincide. The crack length grew up to 24 mm and 20 mm of FVE dry and wet 

respectively, with reasonable constant speed in stable state. In wet conditions, the fracture 

toughness decreased with crack propagation up to 70 mm. It can be noted that less resistance 

to crack propagation was shown by FVE wet composites compared with the dry ones. This is 

because of the high percentage of cellulose and hemicellulose consisting of flax fibres that are 

susceptible to absorbing more water into their hydrophilic properties, which causes weak fibre 

matrix interface bonding (49). For these FBVEu specimens in Fig. 8 (b), the GIC values for the 

dry composites increased almost in a linear form of crack length from 50 mm to 62 mm. 

However, there are different behaviours for those water-aged samples, especially in the region 

between 52 mm and 54 mm: curves are steeper and then decrease after 54 mm. The data 

reduction methods CC and MCC are equal together in dry composites between 53 mm and 62 

mm, while those of the MBT run parallel to them. The crack lengths of FBVEu dry composites 

were higher than wet laminates with approximately 12 mm and 9 mm respectively. However, 

the characteristic behaviour for the interlaminar fracture toughness GIC values are different due 

to more water ingress into the flax fibres in the middle of the starter crack before the crack tip 

zone that could affect the fracture toughness initiation for their properties rather than the 

propagation. The results presented demonstrate that hygrothermal conditioning has a 

significant effect on the delamination and crack growth. 

In the case of stitched composites of FBVEs as shown in Fig. 8 (c), these results imply 

that the stitched composites have the lowest crack length with only 5mm because of the barrier 

against further crack propagation of stitched yarn, unlike the unstitched sample FBVEu. The 

curves of CC and MCC are almost linear and parallel to the slopes but MBT curves are quite 

apart from them for both dry and wet samples. Once the crack growth has been initiated on 

FBVEs laminates, the fracture toughness then increases until the stitched zone as shown 

between 52 mm to 55 mm. It was found that stitching has significantly decreased the fracture 

toughness propagation due to the arrest of crack propagation in the stitched zone, in comparison 

to the unstitched. This observation can be explained by placing stitch thread that decreases the 

stiffness of the composite due to damage caused to fibres and resins when a needle punches in 

the laminates, as shown in Fig. 9. Hence, the presence of stitching through-thickness 

reinforcement caused high stress concentrations and created resin-rich pockets (50).  
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3.2.2 Fracture energy  

The average values from Mode I strain energy release rates for GIC init. and GIC prop. are 

shown in Fig. 10 using different reduction MBT, CC and MCC methods of FVE, FBVEu and 

FBVEs dry and wet composite laminates. In all cases, the modified beam theory (MBT) has 

the lowest value for both initiation and propagation toughness. In Fig. 10 (a), the results showed 

that the interlaminar fracture toughness of GIC init. for FVE wet laminates were significantly 

decreased by approximately 26.77%; it can be noticed that there is less resistance to crack 

propagation at the onset of crack tip with water-aged samples. Similarly, the fracture energy of 

GIC init. for FBVEu wet composites was significantly decreased with an average of 23% 

compared to dry samples, as shown in Fig. 10 (b). The reason for that could be due to high 

moisture absorption by flax fibres in the delamination of Teflon inserted through the plies of 

the composites during water immersion, which leads to the weak fibre-matrix interface. The 

other factor that might affect the delamination resistance of GIC init. for FVE and FBVEu wet 

composites are poor interfacial bonding between matrix and fibre (20). With crack growth, the 

interlaminar fracture toughness of GIC prop. for FVE water-immersed specimens were decreased 

by an average of 10.30%, compared to FVE dry samples. However, the GIC prop. of FBVEu wet 

laminates had increased on average by 15.35%, compared to dry composite laminates, as 

shown in Fig.10 (b). An initial explanation could be attributed to the hybridisation of basalt 

layers that showed better resistance to crack propagation. The type of resin shows some positive 

effect on the water absorption. For example, vinyl ester composites have much resistance to 

water penetration (51). For stitched samples of FBVEs laminates, the fracture energy of GIC init. 

and GIC prop. for wet samples were increased by an average of 4.28% and 19.63% respectively. 

It was observed that even though basalt hybridisation improved the delamination strength but, 

because of the high crack closure load exerted by stitches, the interlaminar fracture properties 

are reduced (26). This study showed that the presence of stitches led to a notable reduction in 

the interlaminar fracture toughness of GIC init. and GIC prop. resulting in the points of initiation 

and propagation being close to each other, as represented in R-curves shown in Fig. 8 (c).  

The results of the interlaminar fracture toughness of initiation and propagation for dry 

and wet composite specimens using MBT, CC and MCC are summarised in data table in 

Fig.10. Fracture toughness of FVE dry composites is the highest at propagation with an average 

of 12093.12 J/m2, indicating that woven flax fibres play an important role as toughening 

material. For FBVEu wet laminates, the fracture toughness of GIC prop. was slightly higher than 

FVE wet composites with an average of 11232.68 J/m2 and 10846.98 J/m2 respectively. This 
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could be attributed to the basalt hybridisation that provides a better shield to the swelled flax 

fibres. In the case of FBVEu wet samples, it is observed that interlaminar fracture toughness 

initiation has more energy absorbed than FVE and FBVEs composites. This can be explained 

in terms of high amounts of water absorption in the delamination of the starter crack zone 

before the crack tip causes swelling fibres that fill the gaps between the fibre and polymer 

matrix and then could lead to increase the interlaminar fracture properties of GIC init. . This study 

showed that flax fibre without hybridised and stitched has higher interlaminar fracture 

toughness. Reported works on the effect of stitching on carbon and glass fibre composites 

suggest that stitching has contributed towards the improvement on crack arrest and load bearing 

capability (25, 26). With this concept, it was expected that FBVEs laminates should have 

greater load-bearing capability and higher fracture energy than that of FVE composites. 

However, this improvement was not observed on the stitched samples. The reasons could have 

been due to that fact that the stitch thread was strong to the extent of causing a permanent 

location of high stress concentration and resin-rich pockets (50). Hence, the initial and primary 

crack of the stitched specimen changed to secondary and longitudinal crack these primary-

oriented secondary cracks would have caused the final failure. As a result, the interlaminar 

fracture toughness of initiation and propagation for FBVEs dry and wet laminates had 

significantly decreased compared to FVE and FBVEu composites. The µCT evidence shown 

in Fig. 11 supports this observation. Clearly, the results of this study are in reasonable 

agreement with the weft-knitted glass fabrics shown in (52), indicating that interlaminar 

fracture toughness of woven flax composites (6 layers) was double than that of glass woven 

fabric composites (10 layers). 

3.3 Morphology study on the fractured surfaces  

In order to differentiate fractured surfaces between dry and water-immersed specimens, 

the delaminated surfaces were observed by using a scanning electron microscope (SEM). Fig. 

12 shows SEM micrographs of the fractured surfaces for dry composites laminates after Mode 

I (DCB) failure. It is evident that there is more fibre breakage and fracture surfaces in FVE 

composites resulting from the poor fibre-matrix interfacial bonding; the flax fibres tend to 

agglomerate into bundles and are then unequally dispersed through the matrix (see Figs. 12 a 

and b). Fibre pull-out and splitting deformed fibres from the matrix in FBVEu composites could 

be seen, and there are some broken fibres on the delaminated surfaces shown in Fig. 12 (c). 

Extensive in-plane fibre-bridging exists in the stitched zone after crack growth, high stress 

concentrations at the interface of FBVEs laminates which caused fibre-matrix debonding and 
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led to unstable crack propagation, are shown in Fig. 12 (f). This is evidence confirmed by x-

ray imaging of stitching through-thickness reinforcement causing localised in-plane fibre 

damage due to needle penetration of woven fabric (50). Therefore, the interlaminar fracture 

toughness of stitched laminates significantly drop compared to unstitched samples. Moreover, 

further fracture occurred for FBVEs composites and voids induced by fibre pull-out are clearly 

seen in Fig. 12 (e). At higher magnification (Fig. 12d) large in-plane fracture for fibre bundles 

of stitched composites can be seen, and a substantial amount of energy was absorbed by fibre 

breakage and fibre bridging mechanisms during delamination. These micro-scale results 

commonly occurred on Mode I (DCB) tests (33, 53).  

SEM micrographs of delaminated surfaces for water-aged samples are shown in Fig.  13. 

It can be clearly observed that exposure to moisture without hybridisation results in a decrease 

in the fracture toughness properties due to degradation and cavities of the fibre-matrix 

interface. The presence of water in the environment can create moisture-induced cavities and 

surface degradation as indicated on the fractured surfaces. This scenario can cause micro-

cracking and debonding in the composites and reduce the fracture toughness of the composites 

as a result of a weak fibre-matrix interface. Micro-cracking and debonding caused by large 

amounts of water ingress for FVE composites as illustrated in Figs. 13 (a) and (b). As expected, 

the addition of basalt fibre on flax as hybrid material, the water repellence property has been 

enhanced. As a result, a large toughness enhancement has arisen from FBVEu specimens. In 

flax/basalt hybrid specimens (FBVEu), a resistance to delamination has occurred on the surface 

without much matrix cracking at the fibre-matrix interface, especially in the crack propagation 

zone (see Fig. 13 c). Fracture and fibre breakage happened mostly at the fibre-matrix interface 

as revealed by the bare fibres and fibre imprints in the matrix. The delaminated surfaces 

indicate poor interfacial bonding (Fig. 13 d) and fibre matrix adhesion as a result of water 

molecules ingress is the primary mode of failure for water-immersed specimens. In the case of 

stitched samples, resin-rich pockets and matrix deformation are observed in Fig. 13 (e) as a 

result of needle-punching during the stitching procedure (54). Thus, high stress concentration 

around stitch fibres caused fibre damage and then reduced the fracture toughness initiation and 

propagation of FBVEs laminates. A large number of fragmented matrix are observed in this 

stitched sample which allowed fracture and pull-out of non-aligned fibres (Fig. 13 f). 

Furthermore, higher amounts of stitched fibres might cause in-plane fibre misalignment and 

resin-rich regions (26).  
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4. Conclusions 

Mode I interlaminar fracture toughness of FVE, FBVEu and FBVEs composites were 

examined using MBT, CC and MCC methods to quantify the effects of water absorption on 

fracture toughness behaviour. The experimental findings showed that the fracture toughness 

values for initiation and propagation of FVE wet composites without hybridisation were 

decreased compared to dry samples. However, the fracture toughness for propagation of 

FBVEu water-aged composites was increased, with decreased crack initiation because of the 

basalt hybridisation that provided a better shield to the swelled flax fibres. The reason for a 

decrease in the crack initiation is due to high moisture absorption by flax fibres leading to a 

weak fibre-matrix interface. The resistance curve (R-curve) of FVE and FBVEu wet 

composites showed that the crack growth length is shorter than the dry samples. The modified 

beam theory (MBT) has the lowest and most conservative value for both initiation and 

propagation toughness for all specimens.  

Dry and wet composites of FBVEs have the lowest crack length and  crack growth 

behaviour from stable propagation to stick-slip unstability. It was found that even though basalt 

hybridisation improved the delamination strength, because of high crack closure loads exerted 

by the stitches, the interlaminar fracture properties are reduced. Both FVE and FBVE 

composites showed saturation after 960 hours of ageing. Moisture absorption and the diffusion 

coefficient of hybrid composites show less absorption compared to over non-hybrid composites 

by approximately 50% and 44%, respectively. The fracture mechanisms showed energy 

dissipation through matrix deformation, fibre pull-out, fibre debonding, and fibre breakage. 

The analysed results of this study revealed that using basalt fibre as external layers onto flax 

reinforced composites can improve the interlaminar fracture toughness. This shows  that basalt 

fibre hybridisation can be used as an effective method to enhance the mechanical properties, 

durability  and the moisture resistance of natural fibre composites. 
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Fig. 1. Schematic illustration of the stacking sequence of flax and flax/basalt hybrid laminates using a 

balanced layup. 

Fig. 2. Schematic representation of the stitching pattern through-thickness reinforcement for DCB 

used in this study. 

Fig. 3. The geometry of the double cantilever beam (DCB) specimen for mode I (GIC) testing (all 

dimensions in mm). 

Fig. 4. Mode I double cantilever beam (DCB) test set up. 

Fig. 5. Water absorption as a function of time for DCB specimens of FVE, FBVEu and FBVEs 

composite laminates exposed to de-ionised water at room temperature. 

Fig. 6. Load vs. displacement curves of Mode I dry and wet samples for FVE, FBVEu and FBVEs 

specimens. 

Fig. 7. Series stages of FVE dry composites at mid-plane interface of DCB test a) Elastic deformation 

I, b) Crack initiation II, c) Crack propagation III. 

Fig. 8. Resistance curves (R-curve) of Mode I (DCB) test for both dry and wet samples of a) FVE, b) 

FBVEu and c) FBVEs composite specimens using MBT, CC and MCC methods. 

Fig. 9. Computed micro-tomography (µCT) images of FBVEs samples illustrating the reconstructed 

2D slice in x-z plane for a) Front and b) Back face. 

Fig. 10. Mode I strain energy release rates for initiation GIC and propagation GIC toughness obtained 

from DCB tests for both dry and wet samples of a) FVE, b) FBVEu and c) FBVEs composite 

specimens using MBT, CC and MCC. 

Fig. 11 X-ray µCT reconstructed cross section of FBVEs sample in y-z plane. 

Fig. 12. SEM micrographs of the fracture surfaces for dry composites showing (a) longitudinal 

breakage for FVE, (b) bundle of flax fibres, (c) fibre pull out and fibre fractured of FBVEu, (d) 

fractured breakage and cotton stitch thread of FBVEs, (e) fractured flax stitch and voids, (f) fibre 

bridging of FBVEs. 

Fig. 13. SEM micrographs of the fracture surfaces for wet composites showing (a) Moisture induced 

cavity for FVE composite, (b) surface degradation due to moisture presence of FVE, (c) delamination 

of FBVEu, (d) fibre breakage of FBVEu, (e) resin rich pocket with matrix cracking of FBVEs, (f) 

fractured fibre and matrix cracking of FBVEs. 
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Fig. 1. Schematic illustration of the stacking sequence of flax and flax/basalt hybrid laminates using a balanced layup. 
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 Fig. 2. Schematic representation of the stitching pattern through-thickness reinforcement for DCB used in this study. 
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Fig. 3. The geometry of the double cantilever beam (DCB) specimen for mode I (GIC) testing (all dimensions in mm). 
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Fig. 4. Mode I double cantilever beam (DCB) test set up. 
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Fig. 5. Water absorption as a function of time for DCB specimens of FVE, FBVEu and FBVEs composite 

laminates exposed to de-ionised water at room temperature. 
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Fig. 6. Load vs. displacement curves of Mode I dry and wet samples for FVE, FBVEu and FBVEs specimens. 
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Fig. 7. Series stages of FVE dry composites at mid-plane interface of DCB test a) Elastic deformation I, b) Crack 

initiation II, c) Crack propagation III. 
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Fig. 8. Resistance curves (R-curve) of Mode I (DCB) test for both dry and wet samples of a) FVE, b) FBVEu and 

c) FBVEs composite specimens using MBT, CC and MCC methods. 
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Fig. 9. Computed micro-tomography (µCT) images of FBVEs samples illustrating the 

reconstructed 2D slice in x-z plane for a) Front and b) Back face. 
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GIC init. (MBT) GIC init. (CC) GIC init. (MCC) GIC prop. (MBT) GIC prop. (CC) GIC prop. (MCC)

FBVEu dry 4236.64 4414.48 4640.97 9556.55 9849.43 9807.28

FBVEu wet 2821.70 3063.47 3781.00 10187.61 11049.38 11431.31
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Fig. 10. Mode I strain energy release rates for initiation GIC and propagation GIC toughness obtained from DCB 

tests for both dry and wet samples of a) FVE, b) FBVEu and c) FBVEs composite specimens using MBT, CC and 

MCC. 
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Fig. 11 X-ray µCT reconstructed cross section of FBVEs sample 

in y-z plane. 
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Fig. 12. SEM micrographs of the fracture surfaces for dry composites showing (a) longitudinal breakage for 

FVE, (b) bundle of flax fibres, (c) fibre pull out and fibre fractured of FBVEu, (d) fractured breakage and cotton 

stitch thread of FBVEs, (e) fractured flax stitch and voids, (f) fibre bridging of FBVEs. 
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Fig. 13. SEM micrographs of the fracture surfaces for wet composites showing (a) Moisture induced cavity for 

FVE composite, (b) surface degradation due to moisture presence of FVE, (c) delamination of FBVEu, (d) fibre 

breakage of FBVEu, (e) resin rich pocket with matrix cracking of FBVEs, (f) fractured fibre and matrix cracking 

of FBVEs. 
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Table 1 Chemical and structural composition of the natural (bast) fibres. 

Table 2 Comparative values of physical and mechanical properties of flax and basalt fibres. 

Table 3 Moisture uptake of FVE, FBVEu and FBVEs composite laminates immersed in de-ionised 

water at room temperature. 
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Table 1 Chemical and structural composition of the natural (bast) fibres. 

 

Table 2 Comparative values of physical and mechanical properties of flax and basalt fibres. 

      * For comparison 

Table 3 Moisture uptake of FVE, FBVEu and FBVEs composite laminates immersed in de-ionised 

water at room temperature. 

Type of 

sample 

Saturation 

moisture uptake 

Mm (%) 

Initial slope of 

plot (k) M(t) 

versus t1/2 

Diffusion 

coefficient, D, 

x10-3(m2/s) 

FVE 5.38 0.23 1.50776E-06 

FBVEs 3.70 0.14 1.04705E-06 

FBVEu 3.57 0.13 1.04705E-06 

 

 

Fibres Cellulose 

crystallinity (%) 

Cellulose 

content (wt.%) 

Aspect ratio 

(l/d) 

Micro-fibril angl 

(0)  

Source 

Flax 50-90 64-71  1750 5-10 (34) 

Hemp 50-90 70-74 900 2-6 (35) 

Jute 50-80 61-72 100 8 (3) 

Fibre type Density 

(g/cm3 ) 

Young’s 

modulus 

 (GPa) 

Tensile 

strength  

(MPa) 

Elongation at 

break 

 (%) 

Specific 

modulus 

(GPa/(g/cm3)) 

Reference 

 

Flax 1.5 27.6 345-1035 2.7-3.2 18.4 (6,36) 

Basalt 2.65 93-110 4150-

4800 

3.1 35-41 (37) 

E-glass* 2.50 70 2000-

3500 

2.5 28 (38)  


