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We have developed and explored an external automatic tuning/matching (eATM) robot that can be
attached to commercial and/or home-built magic angle spinning (MAS) or static nuclear magnetic
resonance (NMR) probeheads. Complete synchronization and automation with Bruker and Tecmag spec-
trometers is ensured via transistor-transistor-logic (TTL) signals. The eATM robot enables an automated
‘‘on-the-fly” re-calibration of the radio frequency (rf) carrier frequency, which is beneficial whenever tun-
ing/matching of the resonance circuit is required, e.g. variable temperature (VT) NMR, spin-echo mapping
(variable offset cumulative spectroscopy, VOCS) and/or in situ NMR experiments of batteries. This allows
a significant increase in efficiency for NMR experiments outside regular working hours (e.g. overnight)
and, furthermore, enables measurements of quadrupolar nuclei which would not be possible in
reasonable timeframes due to excessively large spectral widths. Additionally, different tuning/matching
capacitor (and/or coil) settings for desired frequencies (e.g. 7Li and 31P at 117 and 122 MHz, respectively,
at 7.05 T) can be saved and made directly accessible before automatic tuning/matching, thus enabling
automated measurements of multiple nuclei for one sample with no manual adjustment required by
the user. We have applied this new eATM approach in static and MAS spin-echo mapping NMR experi-
ments in different magnetic fields on four energy storage materials, namely: (1) paramagnetic 7Li and
31P MAS NMR (without manual recalibration) of the Li-ion battery cathode material LiFePO4; (2) param-
agnetic 17O VT-NMR of the solid oxide fuel cell cathode material La2NiO4+d; (3) broadband 93Nb static
NMR of the Li-ion battery material BNb2O5; and (4) broadband static 127I NMR of a potential Li–air battery
product LiIO3. In each case, insight into local atomic structure and dynamics arises primarily from the
highly broadened (1–25 MHz) NMR lineshapes that the eATM robot is uniquely suited to collect. These
new developments in automation of NMR experiments are likely to advance the application of in and
ex situ NMR investigations to an ever-increasing range of energy storage materials and systems.
� 2016 The Authors. Published by Elsevier Inc. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

The development of solid-state materials for energy storage and
conversion (e.g. in batteries, supercapacitors, and fuel cells) relies
on understanding fundamental relationships between structure
and bulk properties such as electronic and ionic conductivity
[1–5]. As a direct probe of the environments of atomic nuclei,
solid-state nuclear magnetic resonance (NMR) can report on local
structure and dynamics [6–8] with relevance to understanding
electronic and structural phase transitions [9–12] and ionic diffu-
sion [13–16] on a wide range of time scales.

Among the major challenges in acquiring and interpreting
solid-state NMR spectra of functional energy materials are the
presence of extremely large anisotropic interactions that cannot
be effectively averaged by standard techniques such as magic-
angle spinning (MAS) or specialized pulse programs [17,18].
Although these interactions provide important electronic and
structural details about the system of interest, they also give rise
to broad powder patterns that exceed the NMR probe bandwidth
(ca. 1 MHz), prohibiting the excitation of the entire spectrum in a
single experiment. Acquisition of the overall lineshape thus, in
the simplest approach, requires measurements at different radio
frequency (rf) carrier frequencies, with frequent and time-
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consuming manual readjustment (tuning and matching) of the rf
circuit [19]. Extreme broadening effects may arise for several rea-
sons, which we highlight in turn:

� Paramagnetic interactions. Systems containing unpaired elec-
trons are subject to hyperfine interactions such as the isotropic
Fermi contact shift and the anisotropic electron–nuclear dipolar
coupling interaction, leading to large shifts and broadened line-
shapes [20]. These shifts are typically on the order of several
thousand ppm, although shifted resonances of nearly
10,000 ppm are not unknown [21,22]. Nonetheless, large para-
magnetic shifts and anisotropic broadening values provide
important structural information, as they can often be rational-
ized on the basis of spin-transfer (bond) pathways [23].

� Quadrupolar coupling interactions. The coupling of the local elec-
tric field gradient (EFG) with the nuclear electric quadrupole
moment can lead to exceptionally broad static powder patterns
(ca. 10 MHz). Particularly problematic quadrupolar nuclei
include 35/37Cl, 47/49Ti, 59Co, 69/71Ga, 79/81Br, 87Sr, 91Zr, 93Nb,
115In, and 127I, with several others (e.g. 177/179Hf, 181Ta) consid-
ered of limited utility due to extreme broadening [18,24–26].
However, broad quadrupolar lineshapes are highly characteris-
tic and correlate sensitively with local geometry.

� Large NMR shift ranges of heavier spin-½ nuclei. The NMR spectra
of heavier spin-½ nuclides span a wide chemical (and also
Knight) shift range [27,28]. Chemical shift ranges (and chemical
shift anisotropies, CSAs) of 1000–5000 ppm that are exception-
ally responsive to the chemical environment have been
reported for 109Ag, 113Cd, 117/119Sn, 125Te, 183W, 195Pt, 199Hg,
and 207Pb [18,28–30].

� Variable temperature (VT-NMR) measurements. The tuning and
matching of the probe must be optimized at each temperature
in a typical VT-NMR experiment [31–33]. Martin and Zilm
[34] ascribe this effect to significant temperature-dependent
changes in sample conduction and/or magnetic properties,
problems that are also more pronounced for materials that
undergo a phase transition over the VT range.

� Presence of multiple NMR-active nuclei. Energy storage and con-
version materials often contain several NMR-active isotopes.
In these systems, a nuclei-switching technique to record mult-
inuclear spectra could be desirable. Examples of previous (man-
ually re-tuned) multinuclear NMR studies potentially validating
this approach include 7Li and 31P NMR (m0 = 117 MHz and
122 MHz at 7.05 T) of the Li-ion battery cathode materials
LiMPO4 (M = Fe, Mn, Co, Ni) [35,36] and the Li solid electrolyte
Li4SiO4–Li3PO4 [37]; 23Na, 51V, and 27Al NMR (m0 = 79.3 MHz,
78.9 MHz, and 78.2 MHz at 7.05 T) of sodium metavanadates
[38,39] and glass ceramics [40,41]; and 207Pb and 127I NMR
(m0 = 62.8 MHz and 60.0 MHz at 7.05 T) of the superionic con-
ductor PbI2 [42] and of hybrid halide perovskite materials, e.g.
(CH3NH3)PbI3 [43].

Several specialized techniques have been developed for over-
coming these problems and acquiring NMR signals with spectral
widths >250 kHz, together referred to as ‘‘ultra-wideline NMR
spectroscopy” [18]. By far the simplest approach is to sweep the
rf carrier frequency, in so-called ‘‘frequency-sweep” measurements
(also referred to as variable-offset cumulative spectroscopy, VOCS,
or spin-echo mapping) [19,44–47]. Alternatively, the use of adia-
batic or chirped rf pulses, such as wideline, uniform rate, smooth
truncation (WURST) pulses or short high-power adiabatic pulses
(SHAP), leads to larger excitation bandwidths at a single carrier fre-
quency, relative to typical high-power rectangular pulses [48–51].
The utility of the adiabatic pulse approach has been extended
through sequences such as QCPMG (quadrupolar Carr–Purcell–Mei
boom–Gill) echo trains [52–54] and DANTE (Delays Alternating
with Nutation for Tailored Excitation) schemes [55–57] to further
enhance sensitivity and selectivity in paramagnetic, quadrupolar
and large CSA systems. Slow-turning methods, such as the STEA-
MER (Slow Turning Echo Amplitude Modulation and Echo Reduc-
tion) [58] and STREAQI (Slow Turning Reveals Enormous
Anisotropic Quadrupolar Interactions) [59] sequences, also resolve
broad quadrupolar parameters at a single carrier frequency,
although they are often limited in their practical application by
requirements of off-magic angle or right-angle spinning. Finally,
various hardware-based solutions are available: solenoid micro-
coils (and magic-angle coil spinning) to access very high rf field
amplitudes [60,61]; the use of weak pulsed field gradients in
solution-state NMR for broadband decoupling [62,63]; and mag-
netic field (rather than rf frequency) sweep experiments, using
0.5–1.0 T superconducting sweep coils [64,65] as well as high-
field resistive magnets [66].

In this study, we report on the development and application of
an external automatic tuning/matching (eATM) robot to repeatedly
and accurately recalibrate the resonance circuit without manual
intervention, e.g. during time-consuming experiments requiring
collection of many individual sub-spectra. This eATM device has
been developed through an ongoing collaboration between the
Grey group at the University of Cambridge (UK) and NMR Service
GmbH (Erfurt, Germany), and is now commercially available from
the latter [67]. The focus of the present work is the initial applica-
tion of the eATM prototype to enhance the throughput of solid-
state NMR studies of various energy storage systems, as tested
through our joint effort. We show that use of the eATM robot sig-
nificantly boosts the overall collection efficiency of broadband,
wideline and VT-NMR experiments, allowing overnight acquisition
without direct supervision, and with only minor changes to exist-
ing protocols and pulse programs. Rather than replacing existing
ultra-wideline NMR schemes, the eATM system accommodates
and extends these approaches, as we demonstrate with a com-
bined eATM and WURST-QCPMG experiment.

The eATM robot is physically attached to the tuning/matching
rods of the NMR probe and can therefore interface with a broad
range of probeheads and NMR spectrometers under static as well
as MAS conditions. Previously, a similar device optimized for
magnetic resonance imaging (MRI) applications reported by
Hwang et al. employed a double-acting hydraulic system [68].
Here, our focus is on acquiring broadband (>1 MHz) NMR spectra
of solid-state materials, and an electric motor assembly is
instead used to drive the rotation of the tuning/matching rods.
Koczor et al. [69] have also recently reported an external
remotely-controlled tuning/matching device, which still however
requires manual readjustment; in the present work, the eATM
system dynamically recalibrates the rf circuit prior to each
experiment, with no user input, in response to the forward
(fwd) and reflected (rfd) power of a low-power continuous wave
(cw) rf pulse.

In this contribution, we describe the initial set-up and practical
operation of the eATM robot from a user’s point of view, its fre-
quency sweep and recalibration capabilities (Section 4.1), report
its use in four proof-of-concept studies of various energy storage
and conversion materials (Sections 4.2–4.5), and discuss its appli-
cations and future developments (Sections 4.6 and 5). The materi-
als have been chosen to highlight the difficulty in acquiring NMR
spectra of systems that are paramagnetic, or contain lineshapes
significantly influenced by first- and second-order quadrupolar
coupling, in particular under static conditions. In an initial section,
we first discuss the technological relevance of these materials as
well as open questions regarding structure and dynamics that are
amenable to solid-state NMR methods (Section 2).
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2. Materials systems investigated

2.1. LiFePO4

The Li-ion battery cathode material LiFePO4 (LFP) is a well-
established model system for understanding Li-ion intercalation
reactions. In particular, recent studies of nanosized LFP electrodes
have established the fundamental role of metastable kinetic inter-
mediates in enabling high-rate battery operation [70–72]. The for-
mation of these intermediates on charging and discharging can in
principle be followed with both 7Li and 31P NMR as two distinct
probes of the local structure, providing information complemen-
tary to X-ray diffraction and microscopy studies [73]. Moreover,
as 7Li and 31P possess similar Larmor frequencies (117 and
122 MHz, respectively, at 7.05 T), LFP presents an ideal system
for testing fully automated nuclei switching. As with other
transition-metal phosphates, the 7Li and 31P NMR shifts are domi-
nated by large paramagnetic interactions—which can be explicitly
quantified through bond pathway decomposition analysis [23]—
and thus high-power adiabatic pulses and/or VOCS-like techniques
[19] are typically required to map out the broadband 7Li and 31P
spectra and extract relevant NMR parameters.
2.2. La2NiO4+d

Solid oxide fuel cells (SOFCs) are solid-state electrochemical
conversion devices that traditionally operate at or above 800 �C.
An outstanding goal in current SOFC research is to enable function-
ality at much lower temperatures through the development of
materials that show good oxide-ion conduction below 600 �C.
Mixed ionic–electronic conductors (MIECs) in particular help to
overcome slow oxygen reduction kinetics in electrode operation
at lower temperatures.

The perovskite-derived MIEC La2NiO4+d demonstrates remark-
ably high oxide-ion conductivity and acceptable electronic conduc-
tivity at intermediate temperatures, and is recognized as an
important candidate cathode material for next-generation SOFCs
[74]. The large oxygen excess (d) in La2NiO4+d arises from non-
stoichiometric incorporation of interstitial oxygen; these interstitial
defects are highly mobile and a knock-on interstitialcy mechanism
has been proposed to account for the oxide-ion conduction [75].

In our group we have employed La2NiO4+d as a model system to
extend 17O MAS solid-state NMR spectroscopic techniques to para-
magnetic oxides. Paramagnetic 17O NMR in the solid-state is virtu-
ally unknown, but in a significant advance Kong et al. have shown
the utility of spin-echo mapping in acquiring 17O spectra for transi
tion-metal–containing coordination compounds [21]. A similar
broadband approach is required for La2NiO4+d, where 17O reso-
nances in both the diamagnetic (interstitial sites) and paramag-
netic (axial and equatorial sites) shift ranges are observed,
spanning a total of ca. 1 MHz (at 16.4 T) [76].

Many studies have employed 17O solid-state NMR experiments
at variable temperatures as a probe of thermally-activated local
dynamics in oxide-ion conductors, allowing for calculation of
exchange rates and relevant kinetic parameters [13,77]. For
La2NNiO4+d, an orthorhombic-to-tetragonal phase transition at
roughly 130 �C has been reported [78], well within the feasible
range of VT-NMR at reasonable MAS rates with standard, commer-
cial probes. Indeed, clear changes in lineshapes and intensity of the
17O VT-NMR spectra of La2NiO4+d occur as oxide-ion motional pro-
cesses become activated near 130 �C [76]. From a technical point of
view, however, spin-echo mapping experiments become tedious if
performed at many different temperatures; approaches to reduce
collection time and improve overall experimental efficiency are
welcome.
2.3. B-Nb2O5

Niobium oxides [79,80] and Nb-doped compounds [81,82] are
emerging in novel energy storage applications, especially for
high-power and high-rate applications. While many polymorphs
of Nb2O5 are known, B-Nb2O5 is a crystallographically interesting
model oxide compound due to the presence of a single niobium
site with distorted octahedral coordination [83,84]. The structure
is monoclinic with C2/c symmetry; it is composed of edge-
sharing octahedral dimers in a corner-sharing network that is
related to the titania polymorphs of rutile and TiO2(B). While
93Nb NMR would seem an ideal technique to study the local distor-
tions of the octahedral niobium site, the large quadrupolar cou-
pling constants associated with this nucleus necessitate the use
of more involved ultra-wideline experiments.
2.4. LiIO3

Iodine finds use in various energy-related systems, such as the
I–/I3– redox couple used in dye-sensitized solar cells [85], lead
halide perovskite-based solar cells [43], and as an adduct in Li–
O2 batteries [86]. Recently, Liu et al. have shown that addition of
lithium iodide to aprotic Li–O2 batteries leads to highly reversible
cycling and negligible electrode passivation [86]. In this system,
iodine functions as a tunable redox mediator, and iodine oxyanions
are speculated to play an important role in the electrochemistry. As
127I NMR may provide valuable mechanistic insights into this and
other systems, we have chosen LiIO3 as a relevant model com-
pound to study the feasibility and utility of ultra-wideline (static)
127I NMR experiments.
3. Experimental section

3.1. Sample preparation

3.1.1. LiFePO4

Carbon-coated LiFePO4 was synthesized as previously described
[71,73] according to the solid-state reaction of Kobayashi et al.
[87]. In detail, 0.556 g lithium carbonate (Li2CO3, Sigma–Aldrich,
99.997%), 2.681 g iron(II) oxalate dihydrate (Fe(II)C2O4�2H2O,
Sigma–Aldrich, 99%), 1.714 g ammonium dihydrogen phosphate
(NH4H2PO4, Sigma–Aldrich, 99.999%), and 0.261 g Ketjen black
(EC-600JD AkzoNobel) were high energy ball-milled for 40 min to
obtain homogeneously mixed precursors. The precursors were
then pressed into a pellet and sintered at 600 �C for 6 h under an
atmosphere of flowing Ar.
3.1.2. La2NiO4+d

Samples of La2NiO4+d were prepared via the solid-state reaction
route described previously [88–90]. Stoichiometric amounts of
La2O3 (Alfa Aesar, REacton, 99.999%; pre-dried) and NiO (Aldrich,
99.999%) were mixed in a mortar and pestle, isostatically pressed,
sintered in air at 1300 �C for 6–12 h, and ground. Several interme-
diate sintering and grinding steps were repeated until phase purity
was attained, as determined by laboratory powder X-ray diffrac-
tion. Samples of 17O-enriched La2NiO4+d were prepared by heating
the as-synthesized powder (0.1–0.3 g) at 1000 �C under an atmo-
sphere of 70% 17O2 (Cambridge Isotope Labs, used as received) in
a sealed quartz tube for 24 h. Samples were slowly cooled
(1 �C min–1) from 1000 �C to ensure maximal uptake of 17O.
3.1.3. B-Nb2O5

B-Nb2O5 was prepared via thermal oxidation of NbO2 (Alfa
Aesar, 99.5+%) at 850 �C for 24 h in air. Rietveld refinement of the
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powder X-ray diffraction data [79] showed a minor (ca. 2%) con-
tamination from the high-temperature H-Nb2O5 polymorph.

3.1.4. LiIO3

LiIO3 (97%) was obtained from Sigma-Aldrich. Powder X-ray
diffraction did not show any impurities (Supporting Information,
Fig. S2) and the sample was used as received.

3.2. CASTEP calculations and simulations of NMR spectra

3.2.1. B-Nb2O5

First principles, periodic density functional theory (DFT) calcu-
lations of the NMR parameters of B-Nb2O5 were performed in the
plane-wave code CASTEP (v. 8.0) with ultrasoft pseudopotentials
generated ‘on-the-fly’ [91–94]. The magnetic shielding tensor
was calculated within the gauge-including projector-augmented
wave (GIPAW) approach while the quadrupolar parameters were
calculated directly from the principal components of the electric
field gradient at the nucleus. Electron exchange and correlation
were treated with the Perdew–Burke–Ernzerhof (PBE) functional
within the generalized gradient approximation (GGA) [95].
Calculations were performed with a plane-wave kinetic energy
cutoff of 600 eV and k-point sampling of the Brillouin zone with
a Monkhorst–Pack grid [96] finer than 2p � 0.06 Å–1. Convergence
of isotropic shielding and quadrupolar coupling was checked with
respect to both basis-set energy and k-point sampling. Extraction
of the Euler angles between the chemical shielding and electric
field gradient tensors was performed using MagresView [97].
LiNbO3, with an experimental isotropic shift of –1004 ppm [98],
was used to determine the reference shielding for 93Nb. Euler angle
and tensor conventions are given in Supporting Information,
Table S1.

3.2.2. LiIO3

A similar computational methodology was adopted as for
B-Nb2O5, with calculations performed using a plane-wave kinetic
energy cutoff of 700 eV and k-point sampling with a 8 � 8 � 8
Monkhorst–Pack grid [96]. Ultrasoft pseudopotentials were gener-
ated on-the-fly using the zeroth-order regular approximation
(ZORA) as implemented in CASTEP [99]. Euler angle and tensor
conventions are given in Supporting Information, Table S2. 127I
chemical shielding tensors were referenced to the 127I chemical
shift of NaI (226.71 ppm).

3.3. Solid-state NMR experiments

All NMR experiments were performed with the eATM robot
attached to the tuning/matching rods of various Bruker probes,
and the eATM controller interfaced with Bruker Avance III con-
soles. The pulse sequences were modified by insertion of a
transistor-transistor-logic (TTL) preamble to trigger the synchro-
nization of the auto tuning/matching algorithm (Fig. S1), using a
low-power cw pulse of 0.01 W, prior to the start of each data col-
lection. Bruker TopSpin 2.1 and 3.2 were used for raw data
processing.

3.3.1. 7Li and 31P MAS NMR of LiFePO4

Solid-state 7Li and 31P MAS NMR experiments were performed
on a 7.05 T Bruker Avance III 300 MHz spectrometer
(m0 = 116.6 MHz and 121.5 MHz for 7Li and 31P, respectively) using
a Bruker 2.5 mm HFX MAS probe at a spinning speed of 30 kHz.
Spin-echo mapping spectra were recorded at room temperature
using a rotor-synchronized Hahn echo pulse sequence of the form
(p/2)x–s–(p)y–s–acquire with a pulse length of 4.17 ls (p/2 pulse,
optimized using LiF and NH4H2PO4 secondary references) at an
inherent rf field strength of ca. 60 kHz, and recycle delays of
0.25 s and 50 ms for 7Li and 31P, respectively. For each nucleus, a
total of 11 sub-spectra were recorded in steps of 500 ppm
(58.3 kHz for 7Li and 60.7 kHz for 31P), from 116.35 to
116.93 MHz for 7Li and from 121.62 to 122.22 MHz for 31P. The
7Li and 31P chemical shifts were referenced to LiF at –1 ppm and
NH4H2PO4 at 1 ppm, respectively [100,101].

3.3.2. 17O MAS VT-NMR of La2NiO4+d

Solid-state 17O MAS NMR experiments were carried out on a
16.4 T Bruker Avance III 700 MHz spectrometer (m0 = 94.99 MHz
for 17O) using a Bruker 4 mm HXY MAS probe. Spin-echo mapping
experiments (step size of 1000 ppm, i.e. 95 kHz, with 12 or 13
recorded sub-spectra) were performed at a MAS frequency of
12.5 kHz using a rotor-synchronized Hahn echo pulse sequence
of the form (p/6)x–s–(p/3)y–s–acquire, with a pulse length of
2.43 ls (p/6 for liquid H2O) at an inherent rf field strength of ca.
34 kHz, and a recycle delay of 20 ms. Temperature calibration
was performed in a separate MAS experiment using the known
temperature dependence of the 207Pb resonance of Pb(NO3)2, with
an accuracy of ±5 �C [102,103]. The 17O VT-NMR spectra were col-
lected on 17O-enriched samples packed in ZrO2 rotors with ZrO2

caps. 17O chemical shifts were externally referenced to H2O at
0.0 ppm at room temperature.

3.3.3. 93Nb static NMR of B-Nb2O5

Solid-state 93Nb NMR experiments were collected on a 16.4 T
Bruker Avance III 700 MHz spectrometer (m0 = 171.3 MHz for
93Nb) using a Bruker 4 mm HXY probe. Static Hahn-echo mapping
experiments were recorded at room temperature from 167.8 to
174.8 MHz in 41 steps of ca. 1000 ppm (170 kHz). Given the effect
of strong quadrupolar coupling on nutation, the rf pulse was
directly optimized on the B-Nb2O5 sample, yielding an effective
p/2 pulse length of 1.0 ls. For each of the 41 spectra, 1664 scans,
temporally spaced by a 1 s recycle delay, were co-added and Four-
ier transformed. LiNbO3, with an isotropic shift of –1004 ppm, was
used as a secondary shift reference [98].

3.3.4. 127I static NMR of LiIO3

Solid-state 127I NMR experiments were carried out on a 16.4 T
Bruker Avance III 700 MHz spectrometer (m0 = 140.1 MHz for 127I)
using a Bruker 4 mm HXY MAS probe. Frequency-stepped static
spectra were acquired at room temperature using the WURST-
QCPMG broadband excitation scheme [51] employing an 8-step
phase cycle and a WURST-80 pulse length of 50 ls [49]. For each
slice, two spectra were taken with opposing WURST sweep direc-
tions to compensate for relaxation during the sweep. An experi-
mentally optimized rf field strength of 10.4 kHz was used, with a
frequency step of 0.75 MHz. Spikelet spacing in the QCPMG pulse
was 8196 Hz with an echo delay of 50 ls and a recycle delay of
0.5 s. The 127I spectra were referenced to NaI powder at 227 ppm
[104].
4. Results and discussion

4.1. The eATM system

The eATM system comprises a robot that is placed underneath
the probehead (already inside the bore of the magnet) and subse-
quently connected to an eATM controller (Fig. 1a and b). In addi-
tion to the eATM robot itself (Fig. 1c), the equipment includes
specially designed rods with adjustable clamping connectors (‘‘fin-
gertips”) that can be attached to the outside of the tuning/match-
ing rods of any commercial or homebuilt static or MAS probehead
(Fig. 1d). These height-adjustable rods connect to piezoelectric
engines inside the cover of the robot (Fig. 1c). After connecting



Fig. 1. (a) Schematic showing the interplay between the eATM system and NMR
spectrometer enabling static or MAS NMR experiments with measurement-
synchronized automatic tuning and/or matching. (b) Photos of the eATM robot
installed underneath 4.0 mm MAS probeheads at a 200 MHz (4.7 T) and a 700 MHz
(16.4 T) magnet. (c) Close-up photograph of the eATM robot during operation. (d)
Close-up of the connection between the length-adjustable brass rods and the
probehead made via clamping connectors (‘‘fingertips”), with various diameters for
different types of tuning/matching rods.
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the eATM rods to the probe, the robot is itself secured to a plastic
floor plate of the appropriate length to prevent self-rotation
(Fig. 1b). In this way, the system can fully interface with various
probe designs as well as magnets with differences in anti-
vibration leg setups and floor plate thicknesses.

The piezoelectric engines are furthermore connected to actua-
tors that are powered by the eATM controller, which makes use
of the fwd and rfd power of a low power cw tuning/matching pulse
for adjusting the rf carrier to a specific NMR frequency prior to the
actual NMR experiment (Fig. 1a). The fwd and rfd power is shunted
via a bidirectional coupler, which is incorporated into the rf circuit
between the NMR probehead and spectrometer. The eATM control
software determines the standing wave ratio (SWR) based on fwd
and rfd power at the desired NMR carrier frequency. An automatic
(‘‘on-the-fly”) recalibration of the rf circuit is then performed algo-
rithmically through robot-controlled changes of the tuning and/or
matching capacitors/coils of the probehead, with simultaneous
recalculation of the SWR. The loop is repeated until a SWR mini-
mum is reached, corresponding to optimal tuning/matching of
the rf circuit to the carrier frequency. The complete automatic tun-
ing/matching procedure (from initial trigger to start of the NMR
acquisition) typically requires less than 20 s. Full synchronization
of the eATM system and the NMR spectrometer is enabled with
TTL input and output signals for start and stop, respectively, via a
preamble in the applied pulse sequence that defines this synchro-
nization (Supporting Information, Fig. S1a). This preamble for auto-
matic tuning/matching can be readily implemented into any pulse
sequence for Bruker and Tecmag consoles and is possible for
others.

In the following, we will discuss four applications of the eATM
robot in static and MAS spin-echo mapping experiments of differ-
ent kinds of energy storage and conversion materials.

4.2. 7Li and 31P MAS NMR of LiFePO4

Using the eATM system, a single fully automated measurement
of 7Li and 31P MAS NMR of LiFePO4 has been performed (Fig. 2),
comprising 11 sub-spectra in carrier frequency steps of 500 ppm
for each nucleus. Given approximately 40 min per sub-spectrum,
the entire measurement requires ca. 15 h overnight, with no user
adjustment required.

As seen in Fig. 2c, this approach allows automatic collection of
signal over a broadband range of ca. 10 MHz. In practice, the first
sub-spectrum for each nucleus was collected by initially recalling
the nucleus-specific, pre-saved tuning/matching positions corre-
sponding to the appropriate base carrier frequency (as described
in Section 4.6), and then further optimizing the rf circuit by run-
ning the eATM autotune algorithm. Subsequent sub-spectra were
collected using a typical frequency sweep/VOCS method, as neces-
sitated by the highly broadened (2000–3000 ppm) spinning side-
band manifolds for both 7Li and 31P. The paramagnetic lineshapes
are in excellent agreement with previous reports [23,105,106],
showing that the eATM system enables more efficient acquisition
of spectra of several nuclei concurrently, without loss of broadband
spectral fidelity, allowing for accurate extraction of hyperfine shifts
and dipolar coupling parameters.

4.3. 17O high-temperature MAS NMR of La2NiO4+d

Spin-echo mapped 17O NMR spectra of La2NiO4+d at two differ-
ent sample temperatures, below (79 �C) and above (148 �C) the
reported orthorhombic-to-tetragonal phase transition, have been
measured (Fig. 3). While the temperatures have been set manually,
the collection of NMR spectra is automated via the eATM device.
Due to the limited excitation bandwidth of the Hahn echo
experiments, each broadband spectrum requires the acquisition
and summation of 12–13 sub-spectra with rf carrier frequency step
size of 1000 ppm (95 kHz) to reproduce the features of all
diamagnetic and paramagnetic oxygen environments accurately.
Temperature-dependent changes in the resonance circuit necessi-
tate a probe re-tuning step after heating to 148 �C, which has also
been automatically carried out by the eATM robot.

The main changes seen at high temperature (148 �C) are (1) the
disappearance of the diamagnetic, lower frequency resonance
(535 ppm) assigned to interstitial oxide defects and (2) a narrow-
ing of the resonance at 5400 ppm assigned to equatorial oxygen
sites within the perovskite layers. The former is associated with
the onset of interstitial motion that leads to a large decrease in
the signal intensity; the latter change is attributed to a less dis-
torted (more symmetrical) equatorial environment with a smaller
hyperfine shift dispersion, as expected in the high-temperature
tetragonal phase [76,107]. Further work is in progress to correlate
the low-temperature onset of interstitial oxide-ion dynamics in
La2NiO4+d with local structural displacements and distortions of
the other (paramagnetic) oxygen environments.

4.4. 93Nb static NMR of B-Nb2O5

Despite some favorable properties such as 100% natural abun-
dance and relatively high gyromagnetic ratio, solid-state 93Nb



Fig. 2. (a) 7Li MAS NMR spectrum of LiFePO4 at 7.05 T with a MAS speed of 30 kHz (black trace, offset), acquired with spin-echo mapping by summing 11 sub-spectra (colored
traces) with rf carrier frequency step size of 500 ppm (58.3 kHz). (b) 31P MAS NMR spectrum of LiFePO4 under same conditions (black trace, offset), acquired by summing 11
sub-spectra (colored traces) with rf carrier frequency step size of 500 ppm (60.7 kHz). (c) Overall broadband 7Li and 31P MAS NMR spectrum of LiFePO4 spanning > 5 MHz,
acquired in a single fully automated overnight measurement using the eATM system. (Sub-spectra are depicted as colored traces as in (a) and (b).)

Fig. 3. 17O MAS VT-NMR spectra of 17O-enriched La2NiO4+d, acquired using spin-echo mapping by summing 12–13 sub-spectra (colored traces) with rf carrier frequency step
size of 1000 ppm (95 kHz). Spectra were collected at sample temperatures below (79 �C) and above (148 �C) the orthorhombic–tetragonal phase transition of La2NiO4+d

(roughly 130 �C). Spectra were obtained at 16.4 T with a MAS rate xr of 12.5 kHz. Asterisks denote spinning sidebands.
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NMR studies are limited by the large nuclear quadrupolar coupling
constants of distorted niobium environments, which can exceed
100 MHz. Although obtaining acceptable signal-to-noise levels for
a single 93Nb spectrum requires only ca. 30 min, manually adjust-
ing the matching and tuning over the course of one day in order to
capture the entire quadrupolar lineshape is inefficient and often
impractical. Using the eATM device, we obtained the broadband
93Nb spectrum of B-Nb2O5 (Fig. 4), spanning a range of 6.97 MHz,
by summing 41 individual Hahn-echo sub-spectra automatically
acquired in 20 h. Fitting the features and discontinuities of the
broadband B-Nb2O5

93Nb NMR spectrum, aided by ab initio calcu-
lations, enabled the extraction of accurate magnetic shielding
and quadrupolar tensors (Supporting Information, Table S1). The
fit was performed within the Solid Lineshape Analysis (SOLA) pro-
gram in TopSpin. Initial parameter values were taken from DFT cal-
culations based on the reported X-ray structure [84]. Given the
relatively small CSA, in comparison to the quadrupolar coupling,
the relative orientation between these two tensors was fixed at
the DFT derived value, while the other parameters were varied to
achieve the best fit. Estimated errors are proportional to the sensi-
tivity of the fit to each parameter. These quadrupole tensor values
(CQ = 46(1) MHz, gQ = 0.62(3); cf. DFT values of –42.25 MHz/0.60
and –39.1 MHz/0.47 for the fixed and relaxed structures, respec-
tively) reflect the bonding and significant local distortions present
in the NbO6 octahedra of this second-order Jahn–Teller distorted d0

niobium(V) oxide.



Fig. 4. 93Nb static NMR spectrum of B-Nb2O5 at 16.4 T (m0 = 171.3 MHz). The overall
spectrum (black trace) is the summation of 41 individual sub-spectra (colored
traces). DFT calculations of NMR tensors and Euler angles were performed to guide
the fit (red trace, see main text), using quadrupole coupling parameters of CQ = 46
(1) MHz and gQ = 0.62(3) (Section 3.2.1; Supporting Information, Table S1). The
sub-spectra have been acquired via spin-echo mapping with an rf carrier frequency
step size of ca. 1000 ppm (170 kHz); the overall spectrum spans ca. 7 MHz.

Fig. 5. 127I static NMR spectrum of LiIO3, acquired using WURST-QCPMG. The
experimental spectrum (black) is a sum of 64 individual sub-spectra (32 slices). The
inset shows a simulation of the NMR spectrum using DFT-calculated NMR
parameters of CQ = 970.1 MHz and gQ = 0.0 (Section 3.2.2; Supporting Information,
Table S2).
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4.5. 127I static NMR of LiIO3

Despite the high natural abundance (100%) and relatively large
gyromagnetic ratio (c = 5.39 � 107 rad s–1 T–1) of the 127I nucleus,
both solution and solid-state 127I NMR studies are rare on account
of the extremely strong quadrupolar nature (I = 5/2, Q = –71 fm2) of
this nuclide [108]. Most previous solid-state NMR studies have
been performed on systems of simple metal iodides such as NaI,
PbI2, or alkaline earth metal iodides [42,109]. As systems such as
iodates (IO3

–) are expected to exhibit large quadrupole coupling
constants due to the lower symmetry about the iodine nucleus,
we have tested the applicability of the eATM in measuring very
broad, multiple frequency-stepped 127I spectra. Fig. 5 shows the
summed 127I solid-state NMR spectrum of LiIO3 using the
frequency-stepped WURST-QCPMG pulse sequence. Multiple
frequency-stepped slices spanning nearly 25 MHz can be automat-
ically acquired by the eATM robot without manual adjustment. To
compare to DFT results, the lineshape was simulated with the
QUEST software [110] to correctly account for the large quadrupo-
lar interaction. Simulation using DFT-calculated parameters of
CQ = 970.1 MHz and gQ = 0.0 (Supporting Information, Table S2)
qualitatively agrees with the ultra-wideline experiment, showing
an extremely broad second-order quadrupolar lineshape. In partic-
ular, the experimental spectrum exhibits discontinuities at 176
and 153 MHz, in excellent agreement with the relevant subsection
of the simulated broadband spectrum. A detailed 127I NMR study
reporting a complete fitting of the experimental spectrum is in pro-
gress [111]. Clearly, this investigation shows the utility of eATM
experiments in capturing and assigning lineshapes spanning tens
of MHz with broadband excitation schemes.
4.6. Discussion

Application of the eATM robot is advantageous whenever mul-
tiple (automatic) recalibrations of the rf circuit are required, e.g.
frequency-stepped [44,45,57] (VOCS [14,21,46,112] and/or spin-
echo mapping [113–116]) experiments, VT measurements, and/or
in situ NMR experiments, especially in cases where changes in sam-
ple properties can influence the optimal rf setting [73]. Besides
straightforward ‘‘on-the-fly” automatic tuning/matching to a
desired carrier frequency, the eATM system also permits saving
different carrier frequencies as tuning/matching servo positions.
Upon sending a position-specific TTL signal to the controller via
the pulse sequence preamble (Supporting Information,
Fig. S1b–e), the eATM servos are rotated to the saved values, which
is automatically followed by a further recalibration step to the
exact rf carrier. This functionality permits fully automated switch-
ing between nuclei, provided the pre-set carrier frequencies are
within the frequency range of the probe hardware, e.g. 7Li and
31P, where B0 = 7.05 T, at 116 and 122 MHz, respectively
(Section 4.2).

The flexibility of the system is demonstrated by its integration
with a variety of probe and magnet designs, spectrometer systems,
and in principle all pulse programs. Moreover, successful operation
is observed even for older probes with significant tuning/matching
hysteresis of the SWR. The efficiency of the eATM approach is
ensured by the speed of the recalibration step, which allows for
rapid collection of numerous sub-spectra. This is of particular rel-
evance in the field of energy storage materials, where many ex situ
samples (e.g. as a function of lithiation) may be studied in a single
experiment; for measurements spanning a wide spectral range,
without the eATM system the overnight magnet time would often
be wasted on a single carrier frequency. Finally, the eATM device
enables a range of experiments normally considered impractical,
such as spanning the entirety of extremely broadened quadrupolar
lineshapes, or searching for transitions in nuclear quadrupole res-
onance (NQR) spectroscopy where the resonance often lies at an
unknown position within a ca. 10 MHz range.

5. Conclusions

We have designed an external automated tuning/matching
(eATM) robot system and report on its applications to ultra-
wideline and broadband solid-state NMR experiments for a wide
variety of probes, consoles, pulse sequences and materials applica-
tions. The robot allows for rapid tuning/matching with a broad
(>25 MHz) tuning/matching range, permits more efficient
frequency-sweep experiments in off-peak hours (especially over-
night), and enables automatic multinuclear and VT NMR studies
not possible with other ultra-wideline techniques. Ongoing
research focuses on the implementation of other adiabatic pulse
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sequences analogous to those previously used in ultra-wideline
quadrupolar NMR [18] and broadband paramagnetic NMR [57],
as well as the combined use of pulsed field gradients (PFG) in per-
forming automated multinuclear diffusion studies. The alternative
use of the eATM robot for off-MAS or satellite transition magic
angle spinning (STMAS) NMR (by accurately adjusting the magic
angle rod) is in progress, as well as the development of automated
NQR or hybrid NMR–NQR studies [117]. Furthermore, the com-
bined application of (1) automated sample re-orientation in static
NMR experiments using a goniometer with (2) re-calibration of the
rf circuit via the eATM is likely to become a powerful approach to
study (A)BMS effects, which is particularly of interest for energy
storage materials [6,118]. Finally we note the potential of ‘‘upgrad-
ing” static in situ NMR probeheads with eATM, given the impor-
tance of compensating for changes in battery materials during
cycling that influence the optimal tuning/matching settings
[73,119]. We conclude that this contribution and future develop-
ments in eATM devices are highly promising for extending in situ
and ex situ solid-state NMR studies of energy materials.
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