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Abstract

We report new ALMA observations of the CO(3-2) line emission from the  ´ M2.1 0.3 1010 molecular gas
reservoir in the central galaxy of the Phoenix cluster. The cold molecular gas is fueling a vigorous starburst at a rate
of – 

-M500 800 yr 1 and powerful black hole activity in the forms of both intense quasar radiation and radio jets.
The radio jets have inflated huge bubbles filled with relativistic plasma into the hot, X-ray atmospheres
surrounding the host galaxy. The ALMA observations show that extended filaments of molecular gas, each

–10 20 kpc long with a mass of several billion solar masses, are located along the peripheries of the radio bubbles.
The smooth velocity gradients and narrow line widths along each filament reveal massive, ordered molecular gas
flows around each bubble, which are inconsistent with gravitational free-fall. The molecular clouds have been lifted
directly by the radio bubbles, or formed via thermal instabilities induced in low-entropy gas lifted in the updraft of
the bubbles. These new data provide compelling evidence for close coupling between the radio bubbles and the
cold gas, which is essential to explain the self-regulation of feedback. The very feedback mechanism that heats hot
atmospheres and suppresses star formation may also paradoxically stimulate production of the cold gas required to
sustain feedback in massive galaxies.
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1. Introduction

The energy output by active galactic nuclei (AGN) has long
been recognized as sufficient to unbind the interstellar medium
from even the most massive host galaxies (Silk & Rees 1998).
Recent observations of ionized and molecular gas outflows
driven by intense radiation or radio jet activity from the central
AGN show that this energy can be efficiently coupled to the
surrounding interstellar gas (e.g., Morganti et al. 2005, 2015;
Nesvadba et al. 2006; Feruglio et al. 2010; Alatalo et al. 2011;
Dasyra & Combes 2011; Rupke & Veilleux 2011). Chandra
X-ray observations of the hot atmospheres surrounding giant
elliptical galaxies and central cluster galaxies have also
revealed huge cavities where the hot gas has been displaced
by expanding radio bubbles inflated by radio jets (Fabian et al.
2000, 2006; McNamara et al. 2000). Known as AGN feedback,
these energetic outbursts are therefore observed to couple
effectively to the cold and warm interstellar gas and the hot gas
atmospheres surrounding massive galaxies. AGN feedback is
an essential mechanism in galaxy formation that powers gas
outflows to truncate massive galaxy growth. This process is
thought to produce the observed evolution of galaxies from
gas-rich, star-forming systems to “red and dead” ellipticals and

imprint the observed coevolution of massive galaxies and
supermassive black holes (SMBHs; Magorrian et al. 1998;
Bower et al. 2006; Croton et al. 2006).
However, the details of how a SMBH can regulate the growth

of its host environment over many orders of magnitude in spatial
scale are still poorly understood. In the most massive galaxies at
the centers of cool core galaxy clusters, the radiative cooling time
of the hot gas atmosphere can fall below a Gyr and heat input
from the AGN must be distributed throughout the central100 kpc
to prevent the formation of a cooling flow (e.g., Edge et al. 1992;
Peres et al. 1998; Voigt & Fabian 2004). Without this energy
input, gas would cool unimpeded from the cluster atmosphere
and produce at least an order of magnitude more molecular gas
and star formation than is observed in central cluster galaxies
(Johnstone et al. 1987; Edge 2001; Salomé & Combes 2003).
Radio jets powered by the central AGN inflate buoyant radio
bubbles and drive shocks and sound waves into the intracluster
medium to produce distributed heating throughout the cluster
core (for reviews see McNamara & Nulsen 2007, 2012;
Fabian 2012). X-ray studies of large samples of galaxy groups
and clusters show that this energy input is sufficient to replace the
majority of the radiative losses from the cluster gas on large
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scales (Bîrzan et al. 2004; Dunn & Fabian 2006; Rafferty
et al. 2006). The heating rate supplied by the AGN is also
observed to be closely correlated with the cooling rate of the
cluster atmosphere, which implies a highly effective feedback
loop operating over this huge range of spatial scales. A small
percentage of the most rapidly cooling cluster gas does cool to
low temperatures and likely feeds the observed cold molecular
gas reservoirs and star formation in the central galaxy. Although
the level of gas cooling falls far below the predictions of cooling
flows, prompt accretion of this residual component is likely
required to link the large scale cooling rate to the energy output of
the AGN in an efficient feedback loop.

Observations of ionized and molecular gas at the centers of
clusters have revealed cool gas filaments extending radially from
the galaxy center toward radio bubbles inflated by the jet (Fabian
et al. 2003; Hatch et al. 2006; Salomé et al. 2006, 2008; Lim
et al. 2008). In the Perseus cluster, the velocity structure of the
Hα-emitting filaments, which are coincident with detections of
CO emission from the IRAM 30 m telescope, traces streamlines
underneath a buoyantly rising radio bubble (Salomé et al. 2006,
2011). ALMA observations of molecular gas at the centers of
clusters (David et al. 2014; McNamara et al. 2014; Russell et al.
2014, 2016; Tremblay et al. 2016; Vantyghem et al. 2016) have
shown cold gas filaments extending along the trajectories of radio
bubbles. The molecular clouds have either been lifted directly by
the bubbles or cooled in situ from warmer, thermally unstable gas
lifted in their wakes. The velocities of the molecular clouds are
remarkably slow compared to the stellar velocity dispersion in
these massive galaxies and lie well below the galaxy’s escape
velocity. The molecular gas will likely fall back toward the
galaxy center and fuel both star formation and future AGN
activity.

Here, we present new ALMA observations of the CO(3-2)
emission from the molecular gas in the central galaxy of the
Phoenix cluster. Discovered with the South Pole Telescope, the
Phoenix cluster (SPT-CLJ2344-4243), at redshift z=0.596, is
the most luminous X-ray cluster known (Williamson
et al. 2011; McDonald et al. 2012), and the

– 
-M500 800 yr 1 starburst hosted by its central galaxy is

among the largest found in any galaxy below redshift 1. The
star formation is observed in bright filaments stretching beyond
100 kpc, sustained by a 20 billion solar mass reservoir of
molecular gas (McDonald et al. 2013a, 2014). The stellar mass
of the massive central galaxy is ´ M3 1012 (McDonald et al.
2012, 2013a), and it hosts an unusual central SMBH that is
powering both intense radiation and relativistic jets. Observa-
tions show these to be distinct modes of AGN feedback. The
black hole may be in the process of transitioning from a
radiatively powerful quasar to a radio galaxy (e.g., Churazov
et al. 2005; Hlavacek-Larrondo et al. 2013; Russell et al. 2013)
whose mechanical power output of ~ -10 erg s46 1 is among
the largest measured (e.g., Hlavacek-Larrondo et al. 2015;
McDonald et al. 2015). Therefore, the Phoenix cluster hosts an
extreme example of this common mechanism in galaxy
evolution. Both the powerful black hole activity and the
vigorous starburst are fueled by the massive cold molecular gas
reservoir, whose structure can now be resolved with ALMA to
understand how these processes are regulated.

We assume a standard ΛCDM cosmology with
= - -H 70 km s Mpc0

1 1 , W = 0.27M and W =L 0.73. At the
redshift of the Phoenix cluster z=0.596 (Ruel et al. 2014;
McDonald et al. 2015), 1 arcsec corresponds to 6.75 kpc.

2. Data Reduction

The brightest cluster galaxy (BCG) in the Phoenix cluster was
observed by ALMA on 2014 June 15 and 16 (Cycle 2, ID
2013.1.01302.S; PI McDonald) simultaneously covering the
CO(3-2) line at 216.66 GHz and the sub-mm continuum
emission in three additional basebands at 219.5, 230.5, and
232.5 GHz. The single pointing observations were centered on
the nucleus with a field of view of 28.5 arcsec. The total time on
source was 58.5 minute split into nine ~6 minute observations
and interspersed with observations of the phase calibrator J2357-
5311. This bright quasar was also observed for bandpass and flux
calibration. The observations utilized 35 antennas with baselines
of –20 650 m. The frequency division correlator mode was used
for the spectral line observation with a1.875 GHz bandwidth and
frequency resolution of 7812 kHz. The velocity channels were
binned to a resolution of -12 km s 1 for the subsequent analysis.
Based on optical spectroscopy of the central galaxy, we use a
velocity center at a redshift z=0.596, which also corresponds to
the velocity center of the molecular emission peak. We note that
optical IFU observations have revealed a very dynamic
environment in the ionized gas and bulk motions could produce
a systematic offset in the gas velocities with respect to the
gravitational potential of the BCG (McDonald et al. 2014).
The observations were calibrated in CASA version 4.3.1

(McMullin et al. 2007) using the ALMA pipeline reduction
scripts. Continuum-subtracted data cubes were generated using
CLEAN and UVCONTSUB. Additional self-calibration did not
produce significant improvement in the image quality.
Different weightings were explored to determine the optimum
for imaging. Natural weighting detected the extended filaments
at the highest signal-to-noise, but no major differences could be
discerned between the various weightings due to the good uv
coverage. The final data cube used natural weighting and had a
synthesized beam of ´0.60 0.56 arcsec with P.A. = - 37 .9.
The rms noise in the line-free channels was -0.3 mJy beam 1 at
CO(3-2) for -12 km s 1 channels. An image of the continuum
emission with an rms noise of -0.019 mJy beam 1 was
generated by combining spectral channels from all four
basebands that were free of line emission. The continuum
image was produced using natural weighting and the
synthesized beam was ´0.59 0.53 arcsec with P.A.= - 48 .7.

3. Results

3.1. Molecular Gas Morphology

The CO(3-2) molecular line emission peaks at the galaxy
center, offset by ~0.3 arcsec to the W of the radio nucleus
(Figure 1 left). The central molecular gas peak extends along a
NE to SW axis across the nucleus. Two filaments extend
–3 4 arcsec ( –20 27 kpc) to the NW and SE of the central
emission peak. The emission also extends for several arcsec as
a broader structure to the S of the nucleus. Figure 1 (right)
shows the continuum-subtracted total CO(3-2) spectral line
profile extracted from a  ´ 6 6 region centered on the nucleus
and covering all extended emission. The line profile is very
broad, covering ~ -1000 km s 1 , and consists of multiple
velocity components. The total spectrum was fitted with three
Gaussian components using the package MPFIT (Markwardt
2009). The brightest velocity component is centered on the
galaxy’s systemic velocity and has the largest FWHM of

 -450 80 km s 1 . At least two additional velocity components
are redshifted to  -310 20 km s 1 and  -620 30 km s 1 and
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have significantly lower FWHMs of~ -250 km s 1 . The best fit
results, corrected for primary beam response and instrumental
broadening, are shown in Table 1.

The most luminous redshifted component covering the
velocities from ∼0 to ~ -480 km s 1 corresponds to the most

extended emission (Figure 2). The remaining molecular gas at
> -500 km s 1 and < -0 km s 1 lies within 1.5 arcsec of the
nucleus. Figure 2 clearly shows that this velocity component
traces the most extended emission from the NW and SE
filaments and the third filament to the S. The filament widths

Figure 1. Left: Phoenix CO(3-2) integrated intensity map for velocities −430 to+ -600 km s 1 covering both the central gas peak and the extended filaments. Contour
levels are s2 , s4 , s6 , s8 , s10 , s15 etc., where s = -0.067 Jy beam km s 1 . The ALMA beam is shown lower left and the continuum point source location is shown
by the black cross. Right: Phoenix CO(3-2) spectrum for a  ´ 6 6 region centered on the nucleus. The best fit model is shown by the solid black line and individual
Gaussian components are shown by the dashed lines (see Table 1).

Table 1
Fit Parameters for the Total CO(3-2) Spectrum Shown in Figure 1 Corrected for Primary Beam Response

Region c2/dof Component Integrated Intensity Peak FWHM Velocity Shift
(Jy km s−1) (mJy) (km s−1) (km s−1)

Total 198/141 1 5.3±1.0 11.0±1.0 450±80 20±50
2 2.3±1.0 8.5±3.0 260±70 310±20
3 1.3±0.4 4.9±0.6 250±60 630±30

Figure 2. Left: CO(3-2) integrated intensity map for velocities 0 to+ -480 km s 1 covering the extended filaments. Contour levels are at s2 , s4 , s6 , s8 , s10 , s15 , s20
etc., where s = -0.042 Jy beam km s 1 . The ALMA beam is shown in the lower left corner ( ´0.60 0.56 arcsec). The X-ray cavities are shown by the dashed white
contours, which correspond to the negative residuals after a smooth model was subtracted from the X-ray surface brightness (McDonald et al. 2015). Right: HST
image combining the F475W (blue), F625W (green) and F814W (red) filters (McDonald et al. 2013a). Both images cover the same field of view.
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are unresolved and may consist of many individual strands
(Fabian et al. 2008). Each filament coincides with regions of
bright ionized gas emission, dust, and filamentary star
formation previously detected in optical and UV observations
(Figure 2 right; McDonald et al. 2013a, 2014).

The filaments are draped around the rims of two large X-ray
cavities (Figure 2, left) detected in deep Chandra X-ray
observations (McDonald et al. 2015). These cavities are each
–9 15 kpc across and centered at a radius of~17 kpc; they were
created as radio bubbles inflated by the AGN displaced the
cluster gas. The SE and S filaments encase the inner half of the
southern X-ray cavity, which is larger and has the greater
cavity power of the two. The NW filament lies along the W
edge of the northern X-ray cavity, but no significant counter-
part is detected along the E edge. The filaments may form part
of a patchy, thin shell surrounding the inner half of each
bubble. This molecular shell would be brightest at the largest

projected distance around the bubble, which could explain the
remarkable coincidence between the filaments and the bubble
edges, and the limited amount of molecular gas projected
across either bubble.
The total CO(3-2) intensity of  -8.9 1.5 Jy km s 1 is

almost a factor of 2 greater than the integrated intensity
measured by the SMA of  -5.3 1.4 Jy km s 1 (McDonald
et al. 2014). The SMA observation was taken at very
low elevation, is only modestly significant, and likely
affected by a substantial continuum subtraction uncertainty,
making it particularly difficult to calibrate. The measured
FWHM of ~ -400 km s 1 from the SMA observation is also
significantly less than determined the FWHM of
~  -670 20 km s 1 for a single component spectral fit to
the ALMA total spectrum. This discrepancy in the total
CO(3-2) flux could therefore be due to uncertainty in the
SMA continuum subtraction.

Figure 3. Velocity line center for each component. Spectral fitting reveals that the molecular gas structure has two distinct velocity components. The first component
(left) traces the filaments and has a narrow FWHM –~ -100 200 km s 1 and smooth velocity gradients along their lengths. The second component (right) corresponds to
the central gas peak and has a much higher FWHM –~ -300 550 km s 1 , lower velocities, and a gradient E-W across the nucleus. The contours correspond to
Figure 1 (left).

Figure 4. Same as Figure 3 but showing the FWHM of each velocity component.
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3.2. Velocity Structure

The velocity structure of the molecular gas was mapped by
extracting spectra in synthesized beam-sized regions each
centered on each spatial pixel in the ALMA cube. The
extracted spectra were fitted with MPFIT using one, two, or
three Gaussian components. We required at least s3 signifi-
cance for the detection of an emission line in each region based
on 1000 Monte Carlo simulations of the spectrum. Figures 3
and 4 show the maps of the line center and FWHM that were
generated for each best-fit velocity component. These maps
show two distinct components in the molecular gas: the
extended filaments characterized by smooth velocity gradients
and narrow FWHM –= -100 200 km s 1 and a compact central
gas peak with much broader FWHM –= -300 550 km s 1 .

All three extended filaments have ordered velocity gradients
along their lengths and low FWHM < -250 km s 1 decreasing
to< -150 km s 1 at the largest radii in the NW and S filaments.
The smooth velocity gradients and narrow FWHM over the
length of each extended structure reveal a steady, ordered flow
of molecular gas around and beneath the radio bubbles. The
velocities at the furthest extent of each filament are similar at
~ -250 km s 1 and increase toward the galaxy nucleus with the
highest velocities at the smallest radii. In the SE filament, the
velocity increases with decreasing radius to ~ -600 km s 1 to
the E of the nucleus. The steady velocity gradient suggests that
the SE filament forms a continuous structure to the galaxy
center. The velocity gradient along the NW filament, from
+ -280 km s 1 at 2.3 arcsec radius (16 kpc) to -0 km s 1 at the
nucleus, also indicates a separate, continuous structure. The S
filament is fainter, shorter, and wider and has a shallower
velocity gradient. The FWHM is below -100 km s 1 at
2.5 arcsec radius (17 kpc), but quickly broadens to
> -200 km s 1 with decreasing radius, indicating that the S
filament is disrupted toward the galaxy center. The SE and NW
filaments meet in projection at the nucleus. The velocity
differential is large across the nucleus at +600 to -0 km s 1

with no evidence for disruption at this resolution and no
significant increase in FWHM of the velocity components for
each filament. Collisions between the gas clouds in these two
ordered filaments may produce a sharp transition in velocity to
the second observed velocity component.

The central compact molecular gas peak forms a separate
velocity structure from the extended filaments with a much
higher FWHM –= -300 550 km s 1 and an E-W velocity
gradient from +120 to - -80 km s 1 across the nucleus
(Figure 3). The velocity gradient across the nucleus appears
to lie perpendicular to the velocity gradients along the NW and
SE filaments. The FWHM peaks along the projected intersec-
tion of the two filaments. The increase in FWHM could
indicate variation in the orientation of the filaments at the
galaxy center; however, although it could be a contributing
effect, this would require a reversal of the velocity gradient in a
similar length of filament oriented along the line of sight at the
galaxy center. It is more likely that the FWHM is intrinsically
higher in the central molecular gas peak. The E-W velocity
gradient centered on the nucleus is consistent with ordered
motion or rotation about the AGN within a radius of~1 arcsec
(7 kpc), but higher spatial resolution observations are required
to determine if this corresponds to a disk.

The strong velocity gradients in the molecular gas are
comparable to those observed for the warm ionized gas

(McDonald et al. 2014). The ionized gas, traced by the [O III]
λ4959, 5007 doublet, shows a relatively smooth gradient from
+ -700 km s 1 to the SE of the nucleus decreasing to
- -400 km s 1 to the NW. The velocity is ~ -0 km s 1 at the
peak of the [O II] emission around the nucleus. The low
velocities of+200 to- -200 km s 1 at the center correspond to
the bright central peak and are consistent with the gas velocities
around the nucleus in the molecular gas. The high velocities in
the ionized gas to the SE and NW are comparable to the bright,
innermost regions of the SE and NW filaments. Although the
ionized gas velocities appear to decrease at larger radii, which
corresponds to the outer regions of the filaments, the emission
is faint and extends beyond the field of view (McDonald
et al. 2014).
The fraction of the total CO(3-2) flux in each filament was

estimated by using the velocity structure to separate the
filaments from the compact central emission peak. Using a
spectrum extracted from a region covering the central peak, we
determined the integrated flux in each filament based on the
best-fit model for their distinct velocity structures. This was
added to the flux determined from conservative regions
covering only the extended structure of each filament. The
low-velocity structure at large radius in each filament could not
easily be spectrally separated from the low velocities of the gas
across the nucleus. Therefore, it was not possible to use a
purely spectral or purely spatial separation of the extended and
compact structures. From this hybrid technique, we estimate
that the SE filament contains ~25% of the total flux and the
NW filament contains ~15%. The extent of the S filament is
particularly uncertain. Based on the assumption that all the
emission to the S of the nucleus with a FWHM below

-250 km s 1 is associated with the S filament, it would then
contain –~10% 15% of the total flux.
In summary, roughly half of the total flux lies in three

extended filaments, which have ordered velocity gradients
along their lengths and low FWHM < -250 km s 1 . The
velocities at the furthest extent of each filament are similar at
~ -250 km s 1 and increase toward the galaxy nucleus, with the
highest velocities at the smallest radii. The central compact
emission peak forms a separate velocity structure with a much
higher FWHM –= -300 550 km s 1 and a velocity gradient
lying perpendicular to the filaments from+120 to- -80 km s 1

across the nucleus. The velocity structure is consistent with
ordered motion around the nucleus, but higher spatial
resolution observations would be required to determine if this
is a disk.

3.3. Molecular Gas Mass

By assuming a CO-to-H2 conversion factor XCO and a line
ratio CO(3-2)/CO(1-0) ∼0.8 (Edge 2001; Russell et al. 2016),
the total molecular gas mass can be inferred from the integrated
CO intensity:

( )


n

= ´
+
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-
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,

1
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4
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1
L

2

where DL is the luminosity distance, z is the redshift of the
BCG, and nDSCO is the integrated CO(1-0) intensity.
However, the molecular gas mass is particularly sensitive to
the CO-to-H2 conversion factor, which is quite uncertain and
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not expected or observed to be universal (see Bolatto
et al. 2013 for a review). Previous studies of BCGs in cool
core clusters (Edge 2001; Salomé & Combes 2003; McNamara
et al. 2014; Russell et al. 2014) have used the Galactic value

( )= ´ - - -X 2 10 cm K km sCO
20 2 1 1 (Solomon et al. 1987;

Solomon & Vanden Bout 2005). However, in intense starburst
galaxies and ULIRGs such as the BCG in the Phoenix cluster,
the molecular gas exists at higher densities and temperatures,
producing an extended warm gas phase with a much
higher column density than a quiescent system. Under these
conditions, the CO emission is more luminous and XCO

should be lowered (e.g., Downes et al. 1993; Iono et al. 2007;
Aravena et al. 2016). The high star-formation density of


- -M5 yr kpc1 2 within the central 10 kpc (McDonald

et al. 2014), warm dust temperature of 87 K and large
FWHM in the galaxy center suggest that a lower XCO is
appropriate for the central molecular gas structure and
potentially also for the filaments. Therefore, we assume

( )= ´ - - -X 0.4 10 cm K km sCO
20 2 1 1 (Downes & Solomon

1998), but note that Chandra observations measure subsolar
metallicity of Z0.5 in the surrounding ICM. Low metal
abundance likely will boost XCO over our assumed value,
unless the cool gas in the filaments has an increased metallicity
over the ambient medium (e.g., Panagoulia et al. 2013).

For the integrated CO(3-2) intensity of  -8.9 1.5 Jy km s 1 ,
the total molecular gas mass is  ´ M2.1 0.3 1010 . As
discussed in Section 3.1, the integrated intensity is almost a
factor of two higher than that found by the earlier SMA
observation (McDonald et al. 2014), which is likely due to
uncertainty in the continuum subtraction for the SMA result.
Note also that McDonald et al. (2014) assume a line ratio
CO(3-2)/CO(1-0) ∼0.5, which produces a similar molecular
gas mass despite the difference in integrated intensity.
The central molecular gas peak in the Phoenix cluster accounts
for ~50% of the total CO flux, and therefore has a molecular
gas mass of  ´ M1.0 0.2 1010 . The SE, NW, and S
filaments contain ~ ´ M0.5 1010 , ~ ´ M0.3 1010 and

~ ´ M0.3 1010 , respectively. The uncertainty on the XCO
factor increases the uncertainty on the molecular gas masses to
roughly a factor of a few. This estimate of the molecular gas
mass also appears low when compared with correlations with
the Hα luminosity (Salomé & Combes 2003) and the dust-to-
gas ratio of ∼20 (McDonald et al. 2012). However, our
conclusions are not qualitatively altered by the estimated
uncertainty.

3.4. AGN Continuum

An unresolved central continuum source was detected at R.
A. 23:44:43.902, decl. -42:43:12.53 with a flux of

2.5 0.1 mJy at 225.09 GHz. The position and flux are
consistent with the SMA continuum detection at 3 mJy
(McDonald et al. 2014).17 The ALMA continuum image does
not reveal any extended emission due to star formation. The
continuum source is coincident with radio and hard X-ray point
source emission. Low-frequency radio observations from the
SUMSS and ATCA archives suggest a synchrotron continuum
slope of nµ -S 1.35, and therefore we expect synchrotron

emission from the AGN of~0.04 mJy at 220 GHz (McDonald
et al. 2014). Thus, the observed point source flux is consistent
with a combination of synchrotron emission and dust emission
from the SMBH’s immediate environment.

4. Discussion

In the central galaxy of the Phoenix cluster, massive
molecular gas filaments form dense, cold rims around both of
the inner X-ray cavities, where hot gas has been displaced by
radio jet activity. These observations now clearly demonstrate
that the structure of the largest molecular gas reservoirs located
in the most massive galaxies is shaped by the expansion and
trajectory of the radio bubbles. Previous sub-mm observations
of brightest cluster galaxies have indicated tentative correla-
tions between X-ray cavity axes and the orientations of
molecular gas filaments, including ALMA observations of
Abell 1835 and PKS 0745-191 (McNamara et al. 2014; Russell
et al. 2016). IRAM observations of the nearby Perseus cluster
detected molecular gas coincident with regions of the complex
optical emission line nebula, including several filaments of
ionized gas that extend toward radio bubbles (Salomé et al.
2006, 2011; Lim et al. 2008). These observed direct
interactions between the cold gas—which fuels the starburst
and black hole activity—and the jet-blown bubbles are
essential to explain the observed close regulation of AGN
feedback.
The total molecular gas mass of  ´ M2.1 0.3 1010

(Section 3.3) in the central galaxy of the Phoenix cluster is
substantially higher than that typically found in early-type
galaxies (Young et al. 2011). BCGs situated in dense cluster
atmospheres with short radiative cooling times are known to
preferentially host cold molecular gas in excess of several

M109 (Edge 2001; Salomé & Combes 2003). The molecular
gas structures are observed to be coincident with bright optical
emission line nebulae and the most rapidly cooling X-ray gas
(Fabian et al. 2003; Salomé et al. 2006). In the Phoenix cluster,
the molecular filaments are similarly coincident with the
brightest, soft X-ray emission, ionized gas plumes, and dust
regions. The X-ray gas cooling rate measured with XMM-
Newton RGS of -

+ -M120 yr120
340 1 (Tozzi et al. 2015) is

consistent with the observed mass of molecular gas originating
in cooling of the hot atmosphere over roughly the buoyant rise
time of the inner and outer bubbles in the Phoenix cluster
( –50 120 Myr; see also McNamara et al. 2014, Russell et al.
2014). An alternative merger origin for such a substantial mass
of molecular gas would require multiple gas-rich donor
galaxies, which are rare at the centers of rich clusters (e.g.,
Young et al. 2011). It is more likely that the molecular gas
originated in gas cooling from the surrounding hot atmosphere.
The molecular gas clouds have either been subsequently

lifted into extended filaments by the expanding radio bubbles
or formed in filaments via thermal instabilities induced in
uplifted low-entropy X-ray gas. Radio jets have been observed
to drive significant outflows of molecular gas from galaxies
(Morganti et al. 2005; Dasyra & Combes 2012; Morganti
et al. 2015). For the Phoenix cluster, McDonald et al. (2015)
estimated the mechanical jet energy from the work done
displacing the hot gas against the surrounding pressure. By
measuring the size of the inner cavities and the local gas
pressure, the cavity enthalpy was estimated as
( – ) ´4.4 6.7 10 erg59 . A small percentage of this mechanical
energy could supply the observed kinetic energy of the

17 Note that the lower SMA continuum flux given in McDonald et al. (2014) is
a typographical error.

6

The Astrophysical Journal, 836:130 (9pp), 2017 February 10 Russell et al.



molecular filaments. However, the coupling mechanism
between dense, molecular clouds, and radio bubbles is
unclear—and this mechanism would have to be extremely
efficient to lift 50% of the cold gas into extended filaments.
Volume-filling X-ray gas would be much easier to lift.

Outflows of hot X-ray gas, enriched with metals by stellar
activity in the central galaxy, are observed in galaxy clusters as
plumes of high-metallicity gas lifted along the jet axis for tens
to hundreds of kpc (Simionescu et al. 2008; Kirkpatrick
et al. 2009). Low entropy X-ray gas should become thermally
unstable when lifted to a radius where its cooling time
approaches the infall time (Nulsen 1986; Pizzolato &
Soker 2005; McNamara et al. 2014, 2016). Theoretical models
further indicate that lifting low-entropy gas in the updraft of
rising radio bubbles stimulates condensation of molecular
clouds (Li & Bryan 2014; Brighenti et al. 2015; Voit
et al. 2016). Therefore, an infall time that is significantly
longer than the free-fall time will enhance thermal instabilities,
and promote the formation of molecular gas clouds in the
bubbles’ wakes (McNamara et al. 2016).

The inner radio bubbles in the Phoenix cluster displace
– ~ ´ M3 5 1010 and therefore, by Archimedes’ principle,

could lift the ´ M1.0 1010 of gas required to supply the
molecular gas in the filaments. The similarity in the molecular
gas velocity at large radius, and in the velocity gradients
beneath bubbles with apparently different dimensions, supports
this scenario where the molecular gas cools and decouples from
the hot atmosphere, then falls toward the galaxy center.
Although the velocity range covers ~ -1000 km s 1 at the
galaxy center, the molecular gas velocities at the outer tip of
each filament, separated by ~30 kpc, are consistent with
~ -250 km s 1. Such similar velocities suggest that this remote
molecular gas could be coupled to the hot atmosphere (Hitomi
Collaboration et al. 2016), which is moving relative to the
BCG. Bulk motion of the cluster gas could also explain the
bubble asymmetry. The smoothly increasing gas velocities with
decreasing radius along the NW and SE filaments indicate

massive gas flows underneath the radio bubbles. Although the
velocity structure cannot cleanly distinguish between inflow
and outflow, the remarkable similarity in the molecular gas
velocities at large radii suggests the molecular gas could be
decoupling from the hot atmosphere and the smoothly
increasing velocities toward the galaxy center suggest sub-
sequent infall.
The smooth velocity gradients along the SE and NW

filaments are shown clearly in Figure 5. Following Lim et al.
(2008), we assume a Hernquist model for the gravitational
potential of the central galaxy (Hernquist 1990) constrained by
parameters for the total galaxy mass M and effective radius Re.
The velocity acquired by a gas blob that free-falls in this
gravitational potential is given by

( ) ( ) ( )= +
+

-
+

⎛
⎝⎜

⎞
⎠⎟v r v r GM

r a r a
2

1 1
, 20

2

0

where a is the scale radius ( ~R a1.8153e ), ( )v r0 is the initial
velocity of the gas blob and r0 is its initial radius. McDonald
et al. (2012) (see also McDonald et al. 2013a) determine an
effective radius of ~17 kpc from HST imaging in five
photometric bands. Therefore, the scale radius is estimated
at 9.4 kpc.
The total galaxy mass was estimated from Chandra

observations, assuming hydrostatic equilibrium for the hot
X-ray atmosphere in the gravitational potential. We used
spectra extracted in concentric annuli (McDonald et al. 2015)
and the NFWMASS model (Nulsen et al. 2010) in XSPEC
(version 12.9.0; Arnaud 1996) to determine the best-fit NFW
profile parameters assuming a spherical, hydrostatic atmos-
phere. The best-fit scale radius = -

+r 200 kpcs 30
40 and the

normalization constant r =  ´ -M7 2 10 kpc0
6 3. There-

fore, we estimate a galaxy total mass of ~ ´ M2 1013 within a
radius of ~50 kpc. For the best-fit NFW profile, the cluster
mass within ~r 1.3 Mpc500 is =  ´M M7 4 10500

14 . This
is consistent with the mass determined from scaling relations

Figure 5. Left: integrated intensity map for velocities −430 to+ -600 km s 1 covering both the central gas peak and the extended filaments. Contours are s2 , s4 , s6 ,
s8 , s10 , s15 , s20 , s25 , and s30 , where s = -0.065 Jy beam km s 1 . The white box shows the extraction region for the position–velocity diagram. Right: position–
velocity diagram for the SE to NW axis along the two brightest filaments summed over roughly the width of the synthesized beam. Model velocity profiles are shown
by the dashed lines for gravitational free-fall with inclinations 8°, 16°, and 45°. For the SE filament, initial radii are 15, 15, and 21 kpc, respectively. For the NW
filament, initial radii are 11, 11, and 15 kpc, respectively. Inclinations < 15 are required to match the velocity gradient of both filaments.
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with YSZ (Williamson et al. 2011) and with YX (McDonald
et al. 2015).

The remaining free parameters for the Hernquist model are
the initial radius of the gas blob, the inclination of the trajectory
to the line of sight, and the initial velocity, where the clouds are
coupled to the hot atmosphere. As discussed in Section 3.2, the
outermost velocities in the filaments are similar and therefore
all models used -250 km s 1. The initial radius was selected to
match each model to the outermost region of the appropriate
filament. Figure 5 shows the PV diagram for the NW to SE axis
along the NW and SE filaments with free-fall models for
several inclination angles. The observed shallow velocity
gradients can only be matched by the lowest inclination angles
q < 15 , for which both filaments are oriented close to the
plane of the sky. Beyond the initial acceleration, the model
velocity gradient does not depend on the initial radius and
velocity. Although the inclination and the total mass are
degenerate, the total mass would have to be overestimated by at
least a factor of a few to allow inclination angles of> 20 . This
would also likely require the total stellar mass of ´ M3 1012

(McDonald et al. 2012, 2013a) to have been significantly
overestimated. Therefore, we suggest that such stringent
requirements for the orientations of all three filaments, and
similar results from ALMA observations of PKS 0745-191 and
Abell 1835 (McNamara et al. 2014; Russell et al. 2016),
demonstrate that the gas velocities are more likely to be
intrinsically low. Rather than require that the observed
filaments are all aligned in the plane of the sky, we suggest
that the filament velocities are inconsistent with gravitational
free-fall. In addition to the effect of inclination, the infalling gas
blobs are slowed, potentially by magnetic tension (Fabian
et al. 2008; Russell et al. 2016) or cloud-cloud collisions within
the central few kpc (Pizzolato & Soker 2005; Gaspari
et al. 2015).

5. Conclusions

Half of the  ´ M2.1 0.3 1010 molecular gas reservoir at
the center of the Phoenix cluster lies in extended filaments
draped around expanding radio bubbles inflated by relativistic
jets and powered by the SMBH. The filaments have smooth
velocity gradients along their lengths and narrow line widths
consistent with massive, ordered gas flows around the radio
bubbles. Although the velocity structure alone does not allow
us to distinguish cleanly between inflow or outflow, the
massive molecular gas flow is clearly shaped by the recent
radio-jet activity. The molecular gas may have been directly
lifted in the bubble wakes or formed in situ at large radius from
uplifted low entropy X-ray gas that became thermally unstable.
The gas velocities appear too low for the bulk of the cold gas to
escape the galaxy, and the gas will eventually fall back toward
the galaxy center to feed the central gas peak. The observed
close coupling between the radio bubbles and the cold gas is
essential to explain the self-regulation of feedback and
understand the stability of this mechanism in clusters over at
least half the age of the universe (Ma et al. 2013; McDonald
et al. 2013b; Hlavacek-Larrondo et al. 2015).
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