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Abstract—The ability to detect and distinguish interactions in
the workplace can shed light over productivity, team work and on
employees’ use of space. Questionnaires and direct observations
have often been used as mechanisms to identify office based
interactions, however, these are either very time consuming, yield
coarse grained information or do not scale to large numbers of
people. Technology has been recently employed to cut costs and
improve output, however precise interaction dynamics gathering
often requires individuals to wear custom hardware.

In this paper, we present an extensive evaluation of Bluetooth
Low Energy (BLE) as a technology to monitor people proximity
in the workplace. We examine the key parameters that affect
the accuracy of the detected contacts and their impact on power
consumption. We study how this system can be implemented on
popular wearable devices (i.e., Android Wear and Tizen) and
the resulting limitations. Through a real world deployment in
a commercial organisation with 25 participants we evaluate the
performances of a BLE-based proximity detection technique.

Our results show the suitability of BLE for workplace inter-
action detection and give guidance to vendors and Operating
System (OS) developers on the impact of the restrictions regard-
ing the use of BLE on commodity wearables.

I. INTRODUCTION

Interactions in the workforce play an important role in
team performance and productivity [1], [2]. For example,
informal inter-team interactions have been shown to be an
important trait of successful teams [3]. Work interactions can
also influence the design of physical spaces [4] or help in
developing an understanding of disease spreading [5], [6].
Researchers have relied on surveys and observations for years
to gather data about these phenomena. However, the cost of
observations is high as they usually involve long hours of
monitoring. They might also not scale to many participants
and can therefore only be applied to phenomena restricted
temporally. Surveys instead scale better but offer a much
coarser grained view as people might forget to report [7].

Usually two contrasting needs are faced when trying to
capture such interactions automatically: (1) the need to collect
accurate and reliable data and (2) the need to have large
deployments to get a clearer picture of human behaviour.
Existing solutions usually tend to tackle more one problem
or the other. Bluetooth-based systems for example can rely
on widespread adoption but are usually power hungry and do
not offer fine grained data [8], [9], [10], [6]. On the other
hand, systems based on custom built devices can provide

fine granularity but require dedicated hardware which hinder
adoption [11], [12], [13]. The recent interest in wearable
devices [14] has brought us to question if those devices are
able to fulfill both needs. In particular we directed our attention
towards Bluetooth Low Energy (BLE) which is included in all
current wearables. We envision an interaction sensing system
that can be easily installed on a wearable device like a smart
watch thus extending its functionality to interaction sensing
and offering widespread adoption. However, before this can
become a reality there are fundamental questions which need
answers. Namely: How accurate could BLE proximity detec-
tion be? What could be the expected lifetime of this system
on an off-the-shelf device? How can it be employed for social
interaction sensing and space occupancy monitoring?

In this work, we analyse the potential of BLE to monitor
people proximity as first step towards a social interaction
sensing system. The objective is to asses its capabilities, first
by analysing its parameters and their impact on both accuracy
and power consumption, and then, from a practical perspective,
with a large user study in a real workplace.

Current hardware, available in modern wearables and smart
watches, offers the key functionality for proximity detection:
the ability to detect nearby devices and be detected by them
by alternating between transmitting and scanning. While the
manufactures have recently updated device firmwares and
software stacks to support this kind of behaviour there are still
several limitations that prevent an accurate study of all the key
factors involved in proximity monitoring. In particular, mobile
operating systems do not allow the application developer to
freely control all the BLE parameters. Thus, we build and use
a custom made wearable prototype in which we are in control
of all parameters. This allows us to study in detail the interplay
of all the BLE parameters and their impact on power con-
sumption. Using our prototype we collected proximity traces
in a commercial organisation with 25 participants to extend
our analysis to a real world scenario and to not limit ourself
only to lab experiments. We were then able, through data
post-processing, to investigate the achievable performances
if our system were to run on off-the-shelf wearable devices
and understand their strengths and weaknesses. This led us
to the important conclusion that large scale proximity studies
are viable, even at the accuracy level required by domain
scientists, with off-the-shelf devices.
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To the best of our knowledge, this is the first study of
BLE radios on a wearable platform for proximity monitoring
which provides useful insights for social interaction sensing
applications. This paper also offers guidance to OS developers
and manufacturers on the impact of the limitations of their
APIs and informs application developers on the flexibility of
off-the-shelf wearables. Our contributions are:

• a detailed analysis of BLE parameters that play a central
role in proximity detection;

• the first analysis of BLE capabilities and limitations on
commercial wearable devices (Android Wear and Tizen);

• an extensive experimental validation with lab experiments
and a longitudinal user study with 25 participants in an
office environment. We confirm the BLE suitability for
accurate proximity monitoring with 97% accuracy at 10
seconds granularity. Ground truth observation for around
19 hours was performed to support our evaluation.

• a discussion on the restrictions imposed by OS developers
on the use of BLE for proximity detection.

II. MOTIVATION AND RELATED WORK

Accurate human proximity detection has the potential to
influence many different disciplines (e.g., social science, ar-
chitecture and health). Proximity detection often depends on
the phenomena under observation: in certain cases only short
events with a very small distance between the participants are
relevant (e.g., when certain virus spreading is considered), in
others, only prolonged interactions that would give individuals
a chance to have meaningful conversations are pertinent.

The specific scenario considered for this paper is the one
that takes into consideration office based social interactions.
In such setting, serendipitous interactions, where, say, a user
glances from an office doorway, might be meaningful and
indicative of productivity [3], [15]. This is, of course, in
addition to prolonged and repeated interactions.

The detection of fairly long lived interaction (of the order of
several tens of seconds) has been accomplished by technology
reasonably successfully. Bluetooth Classic has often been at
the basis of these platforms mainly due to its availability on
consumer devices, which makes it extremely suitable to large
deployments [8], [6], [16]. However, several works [9], [10]
have tried to improve the temporal and spatial granularity of
traces collected with Bluetooth Classic. In fact, Bluetooth’s
main drawbacks reside in the high power consumption and
low granularity of the traces. Usually, it is sampled every few
minutes [8], [16] to avoid draining the battery too quickly and
the range of transmission is around 10m [6].

Other technologies have also been proposed, for instance,
RFID [17], Zigbee radio [18], infrared sensors [12] and hybrid
approaches with radio and ultrasound sensors [13]. These
devices offer better performance (e.g. temporal granularity
from 20s to 2s with still reasonable battery consumption) but
are not suitable for wide scale and long term adoption because
they rely on dedicated hardware which needs to be deployed

just for the purpose of the study. In fact, problems have been
reported with the usability of these devices [7].

Few works have used specifically BLE to collect data
about human behaviour. Townsend et al. tested 4 different
smartphones to asses if they could detect each other using
BLE [19]. Boonstra et al. deployed an Android and iOS
app to 14 participants for a period of one working week to
collect data about social contacts [20]. However, the authors
offered a limited evaluation of their system by using only two
meetings during the study period to validate their methodology
and they did not collect participants’ locations, which is a
valuable piece of information when studying social dynamics.
Other works instead have used simple wearable BLE tags,
capable of transmitting only, to study mobility patterns of
large gatherings [21], [22]. Radhakrishnan et al. have recently
analysed BLE characteristics on Android mobile phones for
indoor localisation [23]. They implemented a BLE-like duty
cycling on top of the Android BLE stack which already
performs duty cycling in accordance to the BLE specification.
Here we offer instead an analysis of the low level BLE
parameters (as defined in the standard) to understand if BLE
can be employed to collect fine grained and accurate encounter
traces. We then analyse if the approach could be adopted on
commercial wearable devices to free proximity-based systems
from the need for custom devices, which is usually one of
the limiting factors of long term studies. Additionally, the
availability of our prototype allowed us to test the impact of
these parameters on a large scale deployment.

III. PROXIMITY SENSING WITH BLE

We now discuss the different BLE parameters and we
present a detailed analysis of their impact on proximity de-
tection accuracy and energy consumption using our prototype.

A. BLE Modes of Operation

BLE provides two modes of communication: connection
based and broadcast based [24]. The first one requires two
devices to establish a connection before exchanging data. This
is not suitable for proximity sensing as it can introduce delays
and is also restricted to only two devices.

The broadcast mode instead allows a Broadcaster to send
data to several Observers simultaneously without establishing
a connection. The Broadcaster periodically sends data (maxi-
mum of two 31-byte packets) on three predefined BLE adver-
tisement channels (37, 38 and 39). To adjust the transmission
frequency, the BLE specification defines a parameter called
Advertising Interval. It is the time between the start of two
consecutive advertisements. On the other hand, the Observer
listens on an advertising channel for the duration of the Scan
Window at every Scan Interval. At each Scan Window, it
listens on a different advertisement channel, until all three
are used and then repeats. When the current scan channel
is aligned with the current advertising channel of another
device, the Observer receives the advertisement packet from
the Broadcaster and thus detects its presence.



(a) Electronics front and back
view. Scale in centimeters.

(b) Prototype enclosed in 3D
printed box attached to wristband.

Fig. 1: Prototype wearable platform.

The key for proximity detection lies in the fact that each
device should alternate between the two roles: when a device
is in Broadcaster role, it transmits an advertisement that can
be detected by other devices and when it is in Observer role,
it can detect other devices by listening for advertisements.

Although BLE is supported by most wearables, including
smartwatches, OSs running on these devices prevent complete
access to all BLE parameters. In order to analyse the effect
of BLE parameters on sensing accuracy, we developed a
prototype that allows us to freely control every parameter.

B. Wearable Platform Prototype

Our prototype is based on the Nordic’s nRF51822 BLE
SoC that includes a 32bit ARM-M0 CPU and a 2.4GHz radio
transceiver. We use a developer board from Mbienlab Inc. that
contains the main SoC along with the associated circuitry, a
Freescale MMA8452Q 3-Axis Accelerometer, an RGB LED, a
push-button switch and a vibrator motor. The entire prototype
is powered by a 100mAh 3.7V lithium battery that can be
recharged through a micro USB interface. We attach an SD
card to log nearby BLE devices. For each device we log the
MAC address, the Received Signal Strength (RSS) and the
channel on which the packet has been received (37, 38, 39).
Figure 1a shows the current prototype. We designed a 3D
printed box (3x4x1.5cm) to contain the device and we used
velcro straps to wear the device on the wrist (Figure 1b).

We use the S110 SoftDevice BLE stack by Nordic [25] for
the Broadcaster role and to run the Observer role concurrently
we use an open source library [26]. This library uses the
Concurrent Multi-protocol Timeslot API to give access to the
radio resource concurrently with the SoftDevice.

C. BLE Parameters

The parameters that characterise a BLE-based proximity
sensing system are: Advertising Time (time to send a packet
on three channels), Advertising Interval (time between each
packet), Scan Interval (time between scans), Scan Window
(duration of each scan) and Transmission Power (transmit
power for each packet).

Advertising Time, Advertising Interval, Scan Interval and
Scan Window affect how quickly a specific device can de-
tect other devices in the vicinity and is detected by them.
Intuitively, it is necessary to advertise more frequently than
scanning in order to ensure that at least one advertisement
will be captured during a scan and the Scan Window should
be long enough to capture at least one advertisement on one
channel. These parameters are inter-dependent and dictate the
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Fig. 2: Average number of received packets changing the
Advertising Interval and the number of transmitting devices.

actual packet reception rate achieved by a device. It is not
possible to achieve a higher rate and thus higher temporal
granularity by simply advertising more frequently because it
is also necessary to scan frequently and for longer periods. The
Transmission Power is the only parameter available to control
the maximum distance at which a contact can be detected: it
allows to change the range at which other devices can still
correctly receive a packet.

In the following analysis we excluded Advertising Time
and Transmission Power because they do not have a sig-
nificant impact on the accuracy of the system and on the
energy consumption. In particular, these parameters cannot
be optimised for power consumption because they are often
determined by other factors: the amount of data that needs to
be transmitted for the Advertising Time (e.g. it may include
diagnostic and identification information) and the target range
for the Transmission Power (i.e. maximum distance between
two individuals that one wants to consider in proximity). We
now systematically inspect the remaining parameters.
Advertising Interval: it controls how frequently advertise-
ments are transmitted and thus it affects how quickly a device
can be detected by other nearby devices. Assuming that an
Observer device is scanning continuously, the time between
the reception of two advertisements should, on average, be
equal to the Advertising Interval under ideal conditions. How-
ever, packet loss due to collisions and environmental factors
can affect how frequently advertisement packets are received.
We, therefore, devise an experiment to understand the effect
of Advertising Interval and the number of transmitting devices
on the number of received packets. We configure one device
to scan continuously and every 5 minutes we add 5 devices
transmitting with a fixed interval, up to a total of 35 devices.
The experiment was repeated for 7 different intervals.

Figure 2 shows that the number of transmitting devices
affects the number of received packets, especially at high rates
(advertising interval of 20ms and 50ms). At these rates, every
time another set of devices were added, the average number of
received packets dropped resulting in around 10 packets per
second when 35 devices were transmitting at the same time.
On the other hand, at lower rates (10Hz and downwards) the
number of received packets remains constant even when the
number of devices increases. We, therefore, choose 100ms as
the lower bound advertising interval. This experiment shows
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Fig. 3: Average number of received packets changing the
Advertising Interval, the Scan Interval and the Scan Window.

that small advertising intervals do not necessarily lead to
high reception rates (considering constant the scan rate and
window) especially with high density of devices. Moreover, it
can be detrimental for the battery lifetime as packets lost due
to collisions represent wasted energy.
Scan Interval and Window: in the previous paragraph, the
Observer was scanning continuously, but as we will show in
Section III-D, continuous scanning has a significant impact on
battery life. Therefore it is necessary to duty cycle the scan
operation using the Scan Interval and Window parameters. To
study the effect of these parameters on the receive rate we
run several experiments where one device transmits at one
of the Advertising Intervals tested in the previous paragraph
and a second device performs scans with a particular Scan
Interval and Window. For each Advertising Interval, we use
the values in these sets, {100ms, 200ms, 250ms and 500ms},
{6ms, 10ms, 15ms, and 20ms}, respectively for Scan Interval
and Scan Window, combining them in each possible way.

Figure 3 shows the results of these experiments. It demon-
strates: (1) the interplay between Broadcaster and Observer
parameters, and (2) how Scan Interval and Window can be
combined to obtain specific receive rates. These results show
that it is not possible to consider the Broadcaster and Observer
roles in isolation when designing a proximity-based system.
For example, an average receive rate of 1 packet per second
can be achieved with three different combinations of the three
parameters (red circles in Figure 3). We will show how this
can be used to optimise the power consumption of the system
in Section III-D. Due to space constraints we do not report
results for the other Advertising Intervals analysed in Figure 2,
however, they follow the same trend.

D. Parameters’ Impact on Power Consumption

We have seen that a specific receive rate can be achieved
with different combinations of the parameters. Thus, it is
important to consider the effect of each parameter on power
consumption to select the combination that provides the de-
sired receive rate and the least power consumption.

To study the impact on power consumption we configured
our device in Broadcaster only mode first and then in Observer
only mode, with different combinations of the three parameters
and we measured the average power.

Figure 4 shows the results of these experiments. Even at the
same rates, the Observer role has a greater impact on power
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Fig. 4: Average power consumption in isolation by Broadcaster
and Observer roles for different combinations of Advertising
and Scan Interval (x-axis) and Scan Window (last three
colours).

consumption as compared to the Broadcaster role. Therefore,
to achieve a certain desired receive rate, it is better to scan
with a low frequency and for short periods and transmit more
frequently in order to have a lower impact on the power
consumption. However, as explained in the previous section,
high transmission rates can lead to collisions if the density of
devices is high: this must be kept in consideration when de-
signing a proximity-based system for crowded environments.

As described above, Advertising Time and Transmission
Power cannot be optimised for power consumption and their
impact on battery lifetime is minimal. In fact, advertising 3
or 31 bytes every 100ms increases the power consumption of
0.18mW. Instead, advertising at the highest (4dBm) and at the
lowest (-20dBm) power level increases the consumption of
about 0.37mW (14 bytes every 100ms). This shows that the
impact of these parameters on battery lifetime is much less
significant than the other parameters.

IV. PROXIMITY SENSING ON COMMERCIAL DEVICES

After the study of BLE parameters using our prototype,
we now analyse to what extent the same parameters can
be exploited on commercial wearables. These devices are
equipped with a BLE chip used for communication with the
user’s phone and being always co-located with (worn by) the
user they offer a great advantage for proximity sensing. The
platforms we used for our analysis are Android Wear 5.0 [27]
and Tizen Wearable 2.3.1 [28]. While it was already possible
to implement the Observer role, the Broadcaster role has been
enabled in recent releases (e.g., September 2015 for Tizen).

The actual devices we used for our experiments are a
Samsung Gear S2 [29] for Tizen and a Samsung Gear
Live [30] for Android Wear. We developed an application
for each device that allowed us to change the parameters and
start/stop the advertising and scan operations. Both devices are
able to transmit and scan in background and when they are
connected to a phone, so they can still receive notifications
from the paired phone as during normal operation. In all
the experiments, both watches were connected to an Android
phone.

Similarly to what we did with our custom device in Sec-
tion III-C we now systematically inspect the parameters indi-
vidually to understand capabilities and limitations of BLE on



commercial devices. For completeness, we analysed the Ad-
vertising Time and Transmission Power parameters because,
even if they cannot be optimised for power consumption, their
control is important (e.g, diagnostic and transmission range).
Advertising Time: The only way to control this parameter
is to vary the number of bytes included in the advertising
packets. Both operating systems expose APIs to configure the
content of the BLE packet (i.e. device name, service and
manufacturer data, etc.). The only difference is that Tizen
offers the possibility to set the appearance of the device and
solicitation UUIDs while Android Wear does not.
Advertising Interval: This parameter can be adjusted on both
platforms in similar ways. Three values are allowed: (1) Low
Latency, (2) Balanced and (3) Low Power (called Low Energy
in Tizen). However, the resulting behaviour is different for the
two operating systems. In Tizen the three values correspond
to an Advertising Interval respectively of 150ms, 500ms and
1s. By contrast, the Android Wear watch, regardless of the
value set, starts advertising with a 30ms interval for about
150/180 seconds and then switches to an interval of 1280ms.
This shows that for the Android Wear platform the Advertising
Interval in practice cannot be controlled and the only usable
value is 1280ms.
Scan Interval and Window: For what concerns the Observer
role, the Tizen OS does not allow to set any parameter, it
only allows the developer to start and stop the scan operation.
Android Wear on the other hand does not permit to configure
the Scan Interval and Window individually but it allows to
choose among three global values for the scan operation:
(1) Low Latency, (2) Balanced and (3) Low Power. To test
the actual achievable receive rate with these three values we
configured one of our custom devices in Broadcaster only
mode with an Advertising Interval of 100ms and we let the
Android Wear watch scan. If the scan is configured in Low
Latency mode the watch scans continuously, achieving in this
case an average receive rate of around 9Hz. In Balanced mode
instead the average receive rate is halved (around 4Hz) and in
Low Power is one-tenth (around 1Hz).

Analysing the data collected when in Balanced mode we
notice that the watch performs a scan around 12 times in a
minute. Therefore we assume the Scan Interval is roughly 5s.
We also notice that the Scan Window is around 2s because
we observe received packets only during this period. In Low
Power mode we found a similar pattern (around 12 scans in a
minute so Scan Interval of about 5s) but with a smaller Scan
Window of 500ms. In Low Latency instead the packets are
uniformly distributed across the scan period.

As mentioned earlier, in Tizen it is not possible to select any
setting for the scan operation. Performing the same experiment
we did with the Android Watch (with a device transmitting at
10Hz) we discovered that for the Tizen watch the average
receive rate is around 1Hz and the Scan Interval and Window
are equal to the ones adopted by Android Wear in Low Power
mode (scan for 500ms every 5 seconds).
Transmission Power: Tizen does not provide any API to
control the transmit power therefore it is not possible to control

TABLE I: Summary of control possibilities on Android Wear
and Tizen. The asterisk character (‘*’) indicates that the APIs
offer the possibility to set different values but they have no
effect on the watch we tested.

Parameter Gear Live
(Android Wear)

Gear S2
(Tizen)

Advertising Time Yes Yes
Advertising Interval No* Yes

Scan Interval and Window Yes No
Transmission Power No* No

the transmission range. The transmit power level included in
the advertisement packets is 12dBm and the average RSS at
1 meter is around -78dBm.

By contrast, Android Wear offers an API that permits to
choose between four different values: High, Medium, Low and
Ultra Low. However, regardless of the value set, the watch
we tested uses the same power level and includes the value
-21dBm in the advertisement packets. This is also confirmed
by the fact that even setting a different value, there is no
substantial difference in the RSS we measured at 1 meter and
its average is always around -66dBm.

To summarize, we have observed that both systems do not
give complete freedom on the setting of the parameters, they
rather allow to choose between predefined values. Android
Wear offers APIs to control all the BLE parameters but only
two of them work on the watch we tested (Advertising Time
and Scan related parameters). On the other hand, Tizen offers
APIs only to modify Advertising Time and Advertising Inter-
val. Table I summarises the parameters that can be controlled
on the two platforms.

A. Power Consumption

In this section we analyse the impact of the different
adjustable parameters on the watches’ power consumption. All
the measurements have been taken with the watch connected
to an Android phone and with the screen off.

1) Android Wear: The Gear Live has a 3.7V, 300mAh
battery and the power consumption when idle with the screen
off is 10.29 mW. The only parameters that can be controlled
are the Advertising Time and the combination of Scan Interval
and Window.

As expected, the Advertising Time has a limited impact on
power consumption. For example, the power difference when
transmitting 6 or 31 bytes is around 0.19mW which gives a
difference in lifetime of only 1.6 hours for a 300mAh battery.

Regarding the Scan Interval and Window, we tested the
three possible global values, Low Latency, Balanced and
Low Power. We observe a more substantial effect on power
consumption. Table II shows that when the Low Latency
mode is selected, which corresponds to the watch scanning
continuously, the power consumption is very high and in this
case the expected battery life would be only around 5 hours.
This would make impossible the deployment of a proximity-
based application in a workplace environment because it could
not cover the standard 8 hours of work. Similarly, the Balanced
mode would result in an expected battery lifetime of slightly
more than 8 hours. The only mode that would enable this kind



TABLE II: Power consumption of Scan and Advertising modes
for the two smartwatches. The packet used for the Tizen
experiments is 14 bytes long.

Mode Avgerage Power
Android Wear (mW)

Avgerage Power
Tizen (mW)

Scan Low Latency 227.25 -
Scan Balanced 124.32 -

Scan Low Power 82.18 -
Advertising Low Latency - 8.21

Advertising Balanced - 6.61
Advertising Low Power - 6.19

of deployment is the Low Power. In this mode, in fact the
watch has an estimated battery life of more than 13 hours but
during a typical working day the proximity detection system
would remain active for 8 hours only. This means that in the
remaining part of the day the power consumption will be lower
because the watch is not scanning and advertising periodically
and this should guarantee enough energy for normal usage.

2) Tizen Wearable: The Samsung Gear S2 (3.8V, 250mAh
battery) allows to control Advertising Time and Interval but
not the scan parameters and the Transmit Power. This watch
consumes 5.81mW when idle and with the screen turned off.

For the Advertising Time, we observe in this case a greater
impact on power consumption. Indeed advertising 31 bytes (in
Low Latency mode) will deteriorate the battery life of around
23 hours when compared to advertising just 6 bytes.

As opposed to Android Wear, Tizen OS permits the devel-
oper to select one of three different Advertising Intervals. In
this case, as it is possible to see in Table II, the average power
consumed, even at a relatively high transmission rate (i.e. Low
Latency), is limited and it is considerably lower than during
the scan operation, which for this watch is 55.56mW.

V. WORKPLACE DEPLOYMENT

We now evaluate the overall performance for proximity
sensing with a deployment in a workplace environment.

A. Experimental Method and Testbed
A proximity sensing system is characterised by many

parameters that affect the performances. As shown in the
previous sections, often these parameters are inter-dependent.
Therefore, to evaluate different parameters combinations in a
real environment multiple deployments would be necessary.

Our approach instead was to deploy our prototype, giving us
greater flexibility, and then test different combinations of the
parameters by post-processing the collected data. In particular,
we are interested in knowing how a proximity detection system
would work on wearable off-the-shelf devices.

Our testbed consists of an architecture company (Spacelab
Ltd.) which employs more than 35 people. The building
includes two floors with a staircase opening in the middle.
The employees do not have assigned desks and the working
style is very dynamic. We recruited 25 participants for a period
of four weeks. Before beginning with the deployment our
work has been approved by the University of Cambridge ethics
committee1. All the participants accepted to take part in the

1Our agreement with Spacelab does not include the publication of the
collected dataset.

study according to their will after being informed about the
purposes of the study. All collected data is anonymous and
has no reference to the single participants.
Wearable Devices: Each participant has been asked to wear,
on the wrist and only when inside the office, our wearable
prototype. We provided a charging station where all devices
were recharged during the night and where some spare devices
were stored as replacement in case of failures. Every night an
Android Phone collected all the data from the wearables and
uploaded it to our servers.

The devices were programmed with an Advertising Interval
and Scan Interval of 100ms and a Scan Window of 20ms.
The transmit power has been set at -8dBm. This configuration
allowed us to achieve an average receive rate of 2.15Hz
and a range of around 6 meters. This configuration was
selected because it represented the best compromise between
battery lifetime (around 20 hours to cover a working day) and
granularity of the collected data.
Static BLE beacons: Seventeen BLE static beacons were
deployed in the building with the purpose of giving coarse
grained (at the desk level) location information about the
participants. One beacon was placed on each desk or, if the
desk was too big, two beacons were used. The beacons were
configured to a beacon rate of 5Hz and -12dBm transmit
power. We highlight that the static beacons have been used
in this work for evaluation purposes, however our wearable
prototype could be used for proximity detection even when
those beacons are not available (e.g. outdoor).
Ground Truth: In order to collect ground truth data, one
researcher performed observations for three days during the
study. During each observation, the researcher followed a
person and annotated all the social interactions the person had.
Since we are interested in detecting fine grained proximity be-
tween people, the researcher recorded only those interactions
that happened in close proximity, i.e. up to a distance of 3
meters between people, and involved actual communication for
few seconds or more. For each interaction event the researcher
recorded the start time, the end time, the location inside the
office and the unique ID of the people involved. In total we
observed 18 different participants who have been chosen in
order to represent the teams in the company. This resulted
in 19 hours of observations during which we captured 401
interactions. On average an interaction is 1 minute and 13
seconds long and 70% of the interactions are shorter than 1
minute while only 5% are longer than 5 minutes. The largest
interaction captured involved a group of 5 people.

B. Proximity Detection Technique

For proximity detection we are interested in distinguishing
when two or more people are in close proximity to each other.
This means that we are not interested in measuring the actual
distance between them but only if they are close to each other
as during a normal conversation.

To achieve the goal, we adopt a supervised machine learning
approach where we feed a binary classifier with a set of exam-
ples labelled as “proximity” or “non-proximity”. To label the



positive examples (“proximity” label) we use the time intervals
when interactions have been reported during the ground truth
observations. We recall that the researcher was instructed to
record only interactions that involved close proximity between
the participants, assuming that social interaction events are
examples of close proximity. Instead, the negative examples
(“non-proximity” label) have been labelled using the static
beacons. From the logged data we compute the beacon with
the strongest signal strength (i.e. the closest one) at each point
in time and we co-locate the participant with that beacon. For
each pair of participants it will happen that for some time
periods they will be co-located with the same beacon (e.g.
when they are sitting at the same desk), and for other periods
they will be co-located with different beacons (e.g. when they
are at different locations in the building). We select those
periods where the two participants are at different locations
and we use them as “non-proximity” examples.

For each pair of individuals that have been observed we
extract from their devices the stream of data relative to the
other device. We then merge the two streams into one in order
to have more data for the classification, taking advantage of
the fact that the data collection is symmetric for both devices.
This stream of data is then split into non-overlapping windows
of different sizes (1, 5 and 10 seconds). For each window
we compute the following features: median RSSI, min RSSI
and max RSSI which, after several tests, are resulted to be
the ones that perform better. When two people are very far
from each other (e.g. in different floors of the building) the
two devices will not receive any packet and this will result
in missing values in the dataset. For us those missing values
are meaningful because they indicate that the two devices are
not in range at all and we do not want a machine learning
algorithm to ignore them. Therefore we replace them with the
value -110 which represents a very low RSS and it is below
the minimum detectable power by our device (-105dBm).

The resulting dataset presents a significant class imbalance
because for each pair of people we label the positive examples
from the interaction events, which represents a limited period
of the day (e.g. 30 minutes), but we derive the negative ex-
amples from the moments when they are at different locations
in the building and these could cover several hours of the
same day. Thus we over-sample the minority class generating
synthetic examples using the SMOTE technique [31] in order
to balance the two classes.

For the classification we adopted Decision Trees (C4.5) and
stratified 10-fold cross-validation. We tested other algorithms
but the results were only slightly different therefore we present
here only the results for the Decision Trees. The algorithms
have been taken from Weka version 3.7.13 [32].

C. Results

Before analysing the classification results we report the
metadata about the study. Given that each device records the
data on a new file every day, we use the number of correctly
recorded files as a measure of robustness of our prototype. In
total we expected to collect 500 files (20days * 25devices

TABLE III: Parameters configurations and expected battery
life for the two considered wearable platforms and for our
custom device when the Broadcaster and Observer role are
enabled at the same time.

Configuration
Name

Advertising
Interval

(ms)

Scan
Interval

(ms)

Scan
Window

(ms)

Average
Receive Rate

(Hz)

Expected
Battery Life

(Hours)
Custom Device 100 100 20 2.15 19.33
Android Wear

Low Power 1280 5000 500 0.08 13.74

Tizen
Low Latency 150 5000 500 0.62 14.95

Tizen
Balanced 500 5000 500 0.19 16.36

Tizen
Low Power 1000 5000 500 0.1 17.02

TABLE IV: True positive rate (TP), false positive rate (FP) and
area under ROC curve (AUC) for different windows when the
raw data is down-sampled uniformly. The configuration names
refer to Table III. The data from the custom device has not
been post-processed.

Window
Size (s)

Custom
Device

Tizen Low
Latency

Tizen
Balanced

Tizen
Low Power

Android Wear
Low Power

TP/FP AUC TP/FP AUC TP/FP AUC TP/FP AUC TP/FP AUC

1 0.79
0.21 0.85 0.68

0.32 0.71 0.59
0.41 0.60 0.55

0.45 0.55 0.54
0.46 0.54

5 0.94
0.06 0.97 0.90

0.10 0.94 0.81
0.19 0.85 0.73

0.27 0.77 0.71
0.29 0.73

10 0.97
0.03 0.98 0.96

0.04 0.98 0.92
0.08 0.95 0.84

0.16 0.90 0.81
0.19 0.86

= 500files) but we actually collected 446 files (10.8% of
failures). These failures are due to different causes: device
failure, device out of battery, device forgotten at home or lost
(2 devices were lost due to problems with the plastic box). For
30% of the days (150) the devices worked properly but they
were not in use, they were charging at the charging station.
This could be due to the fact that the working style is very
dynamic and people do not have a fixed schedule but are often
outside to visit construction sites.

We now present the classification results we are able to
achieve using the raw data collected with our device and we
show the results that would have been achieved by the two
off the shelf wearable platforms. We do this through down-
sampling of the raw data to match the wearable devices’ rates.

Table III summarises the different configurations identified
for the two platforms and the configuration we used on our
device. It also reports the expected battery life achievable
by each device when the Broadcaster and Observer role
are enabled simultaneously. We decided not to include the
configurations Android Wear Low Latency and Android Wear
Balanced because, as observed in Section IV-A1, they present
an excessive power consumption for our target environment.

1) Custom Device: With our prototype we are able to
achieve an accuracy of 97% with a resolution of 10 seconds
(Table IV). At this resolution we detected 21284 proximity
contacts over the entire duration of the study. To make sure
our devices are able to capture social dynamics accurately,
we compare the devices’ data with participants observation
data and with other datasets publicly available collected with



Fig. 5: Relationship between total contacts duration recorded
by the observations and by our devices for each pair of
participants observed. The black dashed line represents the
equation y = x. The blue solid line represents the LOESS
polynomial fitting with 95% confidence intervals. The inset
plot is a magnification of the area highlighted by the light-
blue semi-transparent square.

a similar radio technology (i.e., RFID). This is particularly im-
portant given that we employed SMOTE to generate synthetic
examples to balance the two classes (Section V-B).

Looking at the data, we observe a very broad distribution:
most of the contacts are brief but also few long-lasting contacts
have been recorded. Similar results have been reported in
different contexts such as workplaces [33], conferences [34],
[17], [35] and high schools [36]. For each observation period
we computed the total duration of contacts between each pair
of participants that have been observed. Figure 5 reports on the
x-axis the total contact duration as recorded by our devices,
while on the y-axis as recorded during the observations (each
point represents a pair of participants). In total during the
observations we recorded contacts among 84 distinct pairs of
people and, due to failures, for 25 of these the aggregated
contact duration recorded by our devices was zero. Given that
the two data sources capture different aspects of interactions
(i.e., conversations vs proximity) and have different types of
biases it is impossible for the points to lie exactly on the ideal
line (black dashed line). However, we observe that most of the
points are below the ideal line as expected by a system that
collects proximity traces. In fact, our device captures longer
durations than the actual communication because it considers
as contact a situation when people are close to each other but
do not interact verbally. Moreover, we observe that the co-
presence can be used as proxy for communication as shown
by the trend highlighted by the blue line. This is also shown by
an highly significant positive correlation (R2 = 0.67, p-value
< 0.01 and R2 = 0.54, p-value < 0.01 when computed on the
logarithmic contact durations).

Additionally, we used open datasets available online from
previous works and we plot (Figure 6) the Probability Dis-
tribution Function of two datasets (HT09 and InVS) in com-
parison with our dataset (Our Data). The two datasets have
been collected with the Sociopatterns tags [17] and they are
discussed by Isella et al. (HT09, conference) [37] and by Gnois
et al. (InVS, workspace) [33]. As it is possible to see from
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Fig. 6: Probability Distribution Function of contact durations
from our study and from two other studies that employed RFID
tags: a conference (HT09) [37] and a workplace (InVS) [33].

Figure 6, the data collected during our study has a very similar
distribution to the data collected in other settings.

These results firstly validate the data we collected with our
devices by showing the similarity with the observations’ data
and the fact that the patterns we observe are expected for data
collected with a proximity sensing system; as already reported
in previous works that adopted a similar technology. Secondly,
they show that even if our devices do not capture the specific
communication events, the proximity information they provide
represents a good approximation for them.

2) Commercial Devices: We then post-process the data
collected with our custom device in a simple uniform way
by removing data points uniformly to match the watches’ data
rates. Table IV reports the classification accuracy. Firstly, we
notice that increasing the window size the accuracy increases.
This is because the RSS data has high-frequency noise which
is increasingly attenuated by computing the features over
a larger number of data points. However, this impacts the
granularity of the detected proximity events. For example,
using a 10-second window it is impossible to say if the
proximity event was 5 or 8 seconds long. The second important
aspect to observe is that using the configuration Tizen Low
Latency it is possible to achieve a high detection accuracy
(similar to the one we obtained with our custom device)
especially for large window sizes (from 10s onwards).

For what concerns Android Wear instead, even if it offers
the same Tizen’s duty cycle for the scan operation, its large
Advertising Interval does not allow to obtain a receive rate that
is high enough. This results in the need to use larger window
sizes to improve the accuracy.

Now we consider a different way to post-process the data
which is more similar to how the watches perform the scan
operation. Watches in fact scan every 5 seconds and just for
500ms, therefore in this case we emulate this behaviour by
keeping the first 500ms of data every 5 seconds and then
making sure that the average receive rate matches the one
achievable with each configuration. In this case we could not
consider the configuration Tizen Low Latency. When choosing
the deployment parameters for our device we had to find the
best compromise between device’s lifetime and data collection
rate in order to ensure a realistic scenario were people would
wear the device for at least 8 hours a day. This resulted in a rate



TABLE V: True positive rate (TP), false positive rate (FP) and
area under ROC curve (AUC) for different window sizes when
the raw data is post-processed to emulate the watches’s scan
behaviour (scan for 500ms every 5 seconds). The configuration
names refer to Table III. The data from the custom device has
not been post-processed.

Window
Size (s)

Custom
Device

Tizen
Balanced

Tizen
Low Power

Android Wear
Low Power

TP/FP AUC TP/FP AUC TP/FP AUC TP/FP AUC

1 0.79
0.21 0.85 0.55

0.44 0.57 0.53
0.47 0.53 0.53

0.47 0.53

5 0.94
0.06 0.97 0.79

0.21 0.83 0.66
0.33 0.68 0.66

0.33 0.68

10 0.97
0.03 0.98 0.90

0.10 0.93 0.77
0.23 0.81 0.77

0.23 0.81

(2.15Hz) that prevented us the ability to post-process the data
to match the Tizen Low Latency configuration. Tizen version
2.3.1 was released after we did the deployment, therefore we
could not predict this possibility.

From Table V it is possible to notice that, as the window
size increases the accuracy increases and gets closer to the
one we achieved with our custom device. This is because with
larger windows the fact that the watch scans with a low duty
cycle is mitigated. Indeed, with a larger window, data from
different scans is considered and this increases the accuracy
but reduces also the granularity. Instead, with shorter windows
the accuracy declines drastically because there will be more
windows with no data at all (between two consecutive scans
for example) which will be misclassified.

VI. DISCUSSION

The study has confirmed that BLE is an appropriate tech-
nology for the automatic detection of individuals proximity
in the workplace. Our device is able to reach a considerable
accuracy (97%) with a relatively small time window of 10
seconds. This represents an improvement when compared to
the 20 seconds granularity of dedicated RFID devices [17] or
to the few minutes of Bluetooth Classic [8], [16].

Our work also explored how current commercial wrist-worn
devices would perform in such deployments. We highlight
that the concurrent use of Broadcaster and Observer roles on
these devices does not affect their usability, except for an
increased battery consumption. In general, the OS vendors
tend to be conservative in terms of energy consumption in
order to provide a satisfiable experience to the end-users. For
this reason they limit the configurable options to the ones that
impact the least the battery consumption. This is the case for
Tizen OS which permits to set different Advertising Intervals
but offer no options for the scan operation. Android Wear
instead allows to scan quite aggressively in Low Latency and
Balanced modes. However, we showed in Section IV-A that
these settings result in an excessive power consumption which
would make an office deployment unfeasible.

The Samsung Gear S2 could well support proximity-based
applications because it allows to detect proximity with an
accuracy of around 90% with a 5-second window (when the
data is down-sampled uniformly). By contrast, Android Wear

would require an increased transmit rate or a bigger scan
window. In fact, the 1280ms Advertising Interval is too big
to achieve a useful receive rate. Our results show that with
an Advertising Interval of around 100/200ms also an Android
Wear watch would be able to capture short-lived proximity
events as Tizen. However, at the moment Android Wear suffers
an high power consumption which should also be addressed in
order to make longitudinal studies with this platform feasible.

Comparing Table IV and V it is noticeable that even using
the relatively low receive rates achievable by the watches it is
possible to slightly improve the granularity and accuracy by
having more uniform data. In fact, when the raw data has been
post-processed to match the watches’ rates down-sampling it
uniformly (Table IV), the accuracy is higher even for smaller
windows. This suggests that OS vendors could improve the
proximity detection on wearables (although only of a few
percentage points) by allowing their devices to scan on a more
regular basis. At the moment in fact, the few seconds of gap
with no data, due to the scan being performed every 5 seconds,
is detrimental for detection accuracy. The OS should allow
to scan more frequently but for less time in order to obtain
more uniform data while keeping the current rate and a similar
power consumption. We also note that giving more control
to the developer on the Advertising Interval setting would
not be counterproductive in terms of end-user experience. In
fact, this parameter is the one that affects the least the power
consumption of the wearable device.

The Transmission Power instead is a parameter that is non-
adjustable on both tested watches (at least Android Wear offers
the API so we can speculate that it may be enabled in future
releases). This could be a limiting factor for proximity-based
applications. A power that is too high would require filtering
on the RSS values to remove data that correspond to devices
that are too far away or could create collision problems in
crowded environments, while a power that is too low could
result in missing contacts. Again, since this parameter does
not affect the battery life dramatically the possibility to adjust
it would not worsen the user experience.

VII. CONCLUSION

This work highlights the feasibility of workplace interaction
studies using commercial BLE wrist-worn devices: it has
explored the parameter space through a prototype platform on
which BLE could be used without constraints. This allowed us
to infer the proximity detection power of COTS devices and
a discussion of the limitations. We hope this study can offer
guidance to developers and hardware producers regarding their
APIs and specifications. In the future, we plan to integrate our
findings into a framework which offers prompt user feedback.
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[37] L. Isella, J. Stehlé, A. Barrat, C. Cattuto, J.-F. Pinton, and W. Van den
Broeck, “What’s in a crowd? analysis of face-to-face behavioral net-
works,” Journal of theoretical biology, vol. 271, no. 1, pp. 166–180,
2011.


