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Spike timing-dependent plasticity is a fundamental adaptation mechanism of the nervous system. It induces
structural changes of synaptic connectivity by regulation of coupling strengths between individual cells depending
on their spiking behavior. As a biophysical process its functioning is constantly subjected to natural fluctuations.
We study theoretically the influence of noise on a microscopic level by considering only two coupled neurons.
Adopting a phase description for the neurons we derive a two-dimensional system which describes the averaged
dynamics of the coupling strengths. We show that a multistability of several coupling configurations is possible,
where some configurations are not found in systems without noise. Intriguingly, it is possible that a strong
bidirectional coupling, which is not present in the noise-free situation, can be stabilized by the noise. This
means that increased noise, which is normally expected to desynchronize the neurons, can be the reason for an
antagonistic response of the system, which organizes itself into a state of stronger coupling and counteracts the
impact of noise. This mechanism, as well as a high potential for multistability, is also demonstrated numerically
for a coupled pair of Hodgkin-Huxley neurons.
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I. INTRODUCTION

Spike timing-dependent plasticity (STDP) is an adaptive
change of connections between neurons dependent on the
relative timing of their action potentials. It seems to be a key
mechanism involved in the processes of memory and learning
by the nervous system. STDP was envisioned by Hebb already
in 1949 [1], and evidence for its synaptic implementation has
been found during the last decades [2–12].

For theoretical studies of neuron ensembles with adaptive
coupling structure, mathematical models of different com-
plexity have been used, which incorporate variable coupling
strengths and exhibit different types of synchronization such
as (cluster) coherence and incoherence [13–18]. Among those,
some of the simplest models are networks of phase oscillators
whose coupling strengths are subjected to plasticity. A more
realistic description is obtained if more complex neuron
models, e.g., the Hodgkin-Huxley model, are included as
interacting elements.

Networks of phase oscillators with plasticity have been
considered by several studies [13–15,18–21]. Seliger et al.
[19] investigated ensembles of phase oscillators with phase-
difference-dependent plasticity (PDDP) and examined the
influence of plasticity parameters—in particular, the rate
of the adaptive dynamics. They found parameter regions
where a nonsynchronized, weakly coupled regime coexists
with multiple stable clustered states with enhanced mutual
connections within each cluster. Maistrenko et al. [20] studied
oscillators with a different type of PDDP and showed a
similar phenomenon: multistability of the desynchronized and
partially synchronized cluster states. Clustering phenomena
were also observed in Refs. [15,22,23].

Tass and Majtanik [13] suggested to use a desynchronizing
stimulation to reliably shift a neuronal target population from
a coexisting strongly coupled and synchronized regime to a

weakly coupled and desynchronized regime. Such an approach
can have an important impact on the treatment of neurological
disorders characterized by abnormal neuronal synchronization
like Parkinson’s disease or tinnitus. As shown by several
modeling, experimental, and clinical studies [13,24–34],
pathological neuronal connectivity and synchrony can be
counteracted by a desynchronizing stimulation on a long-
term basis, which may lead to a significant and long-lasting
amelioration of symptoms.

A recent study by Popovych et al. [18] considered a situa-
tion where ensembles of phase oscillators and spiking neurons
with adaptive coupling were perturbed by an independent
random input, which is known to be a powerful method for
counteracting synchronization in coupled oscillators without
STDP [35]. In neuronal networks with adaptive synapses, how-
ever, random noise stimulation administered to a population of
strongly coupled and synchronized neurons with STDP may
enhance the amount of synaptic coupling among the neurons
[18]. For such a stimulation the phenomenon of self-organized
resistance to noise has been reported that is characterized by an
increase of the overall coupling and preservation of synchrony
in the neuronal populations with STDP in response to the
growth of the noise strength.

In this article, we study the mechanism underlying this
phenomenon in detail and investigate the dynamics of the
synaptic strengths between two coupled oscillatory neurons in
the presence of noise. We first study a model where the neurons
are described by phase oscillators, and natural fluctuations are
modeled by Gaussian additive noise. Considering the situation,
when the adaptation of the coupling strengths (plasticity)
occurs on a much slower time scale than the underlying
neural activity, we obtain a reduced system describing the
evolution of the coupling strengths. The analysis of the
reduced equation allows us to gain a deeper, to some extent
analytical, insight into the role that noise, natural frequencies,
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and plasticity play for the long-term evolution of the synaptic
coupling in the case of two oscillators. In particular, we
find that multistability between different coupling regimes
(unidirectional, bidirectional, and uncoupled) is possible. We
show how the multistability is mediated by the noise intensity
and frequency detuning. We provide a supporting analytical
evidence to the observation in [18], that an increased level
of noise can stabilize bidirectional coupling and thereby
strengthen the synchronization properties of the system.

Fokker-Planck equations (FPE) for coupled phase oscilla-
tors with noise but without plasticity have been previously
studied in several publications. For instance Nakao et al. [36]
derived stationary solutions for an ensemble of uncoupled
oscillators with common noise and Kurebayashi et al. [37]
considered a similar scenario in the presence of a colored
noise. Ly and Ermentrout [38] derived a phase reduction for
two coupled oscillators with noise. These studies rely on FPEs
for the phase differences of two oscillators, which, for the
uncoupled case, allows inferences about the dynamics of a
large ensemble [36,37].

In the second part of the paper, we consider a more
realistic model of two interacting spiking Hodgkin-Huxley
(HH) neurons, where synaptic weights are governed by
STDP. The neurons are perturbed by an independent random
excitatory synaptic input. For this model the update rule for
the synaptic weights is based on the relative spike timing
rather than the phase difference as in the case of the phase
oscillator model, and the random perturbations take the form
of excitatory synaptic input generated by a spike train with
Gaussian distribution rather than Gaussian noise. In spite of
the different update rule and the different type of random
perturbations, HH neurons and phase oscillators demonstrate
much similarity in the dynamics of coupling when parameters
vary. In particular, we observed a noise-induced emergence of
bidirectional coupling and a multistability of different coupling
regimes in both models. These results are also in accordance
with Ref. [18] which showed that the emerging coupling
structure in a network of HH neurons is well resembled by
the emerging structure in a network of phase oscillators.

The paper is organized as follows. Section II introduces the
phase model. In Secs. III and IV we derive reduced dynamical
equations for slowly changing coupling strengths. Section V
is devoted to the study of the derived system for the coupling
strengths. Two coupled HH neurons are considered in Secs. VI
and VII, and Sec. VIII gives final conclusions.

II. MODEL EQUATIONS

A. Phase dynamics

As a simple model for a pair of mutually coupled neurons
we consider two phase oscillators ϑ1(t) and ϑ2(t) with natural
frequencies ω1 and ω2, coupled via a 2π -periodic coupling
function g and coupling weights w1 and w2. Further, we
consider natural fluctuations in the form of independent
Wiener processes W1 and W2 which act on the dynamics with
the intensity

√
μ. The corresponding stochastic differential

equations [39] are given by

dϑ1 = [ω1 + w1g(ϑ2 − ϑ1)]dt + √
μdW1,

(1)
dϑ2 = [ω2 + w2g(ϑ1 − ϑ2)]dt + √

μdW2;

FIG. 1. Schematic representation of the model; see Eq. (1).

see Fig. 1. From the system of two coupled phase oscillators
(1) we obtain the equation for the phase difference ϕ(t) =
ϑ2(t) − ϑ1(t) ∈ [0,2π ):

dϕ = [�ω + w2g(−ϕ) − w1g(ϕ)]dt +
√

2μdW, (2)

with �ω = ω2 − ω1 and W = (W2 − W1)/
√

2.
In this work we are interested in the combined effects of

noise and synaptic plasticity. This means the coupling weights
w1,2 = w1,2(t) change in time depending on the dynamics
of the phases ϑ1,2(t). One common modeling assumption is
that the change of w1,2(t) depends continuously on the phase
difference; see [15,19,20,40,41]. This leads to dynamical
equations for w1,2, which take the form

ẇi(t) = Pi[ϕ(t)], (3)

with some functions Pi(·) governing the continuous coupling
update. In general these functions are much smaller in absolute
value than the functions governing the dynamics of the neurons
(2), since the plasticity update occurs on a slower time scale.
We refer to an update of the form (3) as “phase-difference-
dependent plasticity” (PDDP).

Note that if both connections between ϑ1 and ϑ2 have the
same type of plasticity, we have P1(ϕ) = P2(−ϕ). Several
different choices for the coupling update have been used in
previous studies. For instance, Aoki et al. [15,40] considered
trigonometric functions of the form

ẇ1 = ε sin (ϕ − β),

with a parameter β, which can be adjusted to mimic in a
simple way plasticity rules occurring in neural connections.
Maistrenko et al. [20] considered a more specific function of
the form

ẇ1 =
{

(α − w1) exp
(

ϕ

τp

)
, ϕ ∈ [−π,0],

−w1 exp
(− ϕ

τd

)
, ϕ ∈ [0,π ].

(4)

Some other functions can be found in [19,41]. In the following
Sec. II B, we consider an additive update rule based on the
spike time difference and show how STDP can be related to a
PDDP rule in some situations.

B. PDDP versus STDP

In the course of this work we will adopt a PDDP model, but
first we comment on the relation between PDDP and STDP.
In a model which describes an oscillatory neuron by its phase
ϑ(t) ∈ [0,2π ), one can deliberately choose the point ϑ = 0 as
corresponding to the moment when a spike occurs. So let us
employ this convention for each neuron of the system (1).
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FIG. 2. (a) Plasticity function (5) with A1 = 1, A2 = 0.5, τ1 =
0.5, and τ2 = 1.4; (b) the corresponding PDDP dynamics for w(t) ∈
(0,wmax); see (8).

In the case of STDP it is assumed that the coupling strength
of a connection is updated each time, when one of the two
connected neurons emits an action potential. Further, we
assume that the STDP function depends on the time difference

�t = tpost − tpre

between the last spikes of both neurons. Here tpost is the
last spike time of the postsynaptic and tpre of the presynaptic
neuron; cf. Fig. 1. We denote the value of the corresponding
change in the coupling strength by δ�w(�t), such that
w → w + δ�w(�t), where δ is a parameter determining the
magnitude of an individual update. In order to reflect that the
coupling dynamics takes place at a much slower time scale
than the underlying neuronal activity, the maximal update of
synaptic weights is usually considered of order 10−3 to 10−4

of magnitude [2,11,16]. The approach presented in this work
does not pose any special assumptions on the coupling function
g(·) or the update function �w(·). But wherever we have to
be more specific (e.g., for illustrations) we will refer to the
following form [2,3,7,10,42] [see Fig. 2(a)]:

�w(�t) =
⎧⎨
⎩

�w+(�t) = A1 exp
( − �t

τ1

)
, for �t > 0,

�w−(�t) = −A2 exp
(

�t
τ2

)
, for �t < 0,

0, for �t = 0,

(5)
where the plasticity parameters A1, A2, τ1, and τ2 are positive.
In our simulations we consider the case A1 > A2 and τ1 <

τ2, as in Fig. 2, where potentiation dominates for small �t ,
and depression dominates for large �t , which was confirmed
experimentally [4,7,43].

The rule (5) implies that the synaptic strength is increased
each time when the postsynaptic neuron spikes at tpost, since
the last spike of the presynaptic neuron was in the past and

tpre < tpost, hence �t > 0. Similarly, the synaptic strength is
decreased each time when the presynaptic neuron spikes, since
tpost < tpre and �t < 0 at this moment. The longer the last two
spike times come apart, the less is the amount of change of the
coupling strength.

From a practical point of view it can be desirable to reduce
the STDP rule of the phase model to a PDDP where the update
occurs each time when ϑpost = 0 or ϑpre = 0, and the update
function depends on the phase difference ϕ = ϑpre − ϑpost ∈
[0,2π ] only. The main advantage of the PDDP description is
that it reduces the complexity of the model considerably.

In the case when the evolution of the phase differences
is slower than the phase dynamics (e.g., if multiple spikes
occur prior to a significant change of the phase difference, or
if the system is close to a phase-locked state), this reduction
is possible: One can approximate the STDP update �w(�t)
by an expression based on the phase difference ϕ. For
instance, at the time when the postsynaptic neuron spikes,
i.e., ϑpost = 0, the spike time difference can be approximated
as �t ≈ ϕ/�, where � is the mean spiking frequency (e.g.,
frequency of the locked state). Correspondingly, the effective
update is approximated by �w+(�t) ≈ �w+(ϕ/�), where
we indicate the sign of the argument by a subscript as in (5).
If the presynaptic neuron spikes, the (negative) spike time
difference is approximately given by �t ≈ (ϕ − 2π )/� and
�w−(�t) ≈ �w−[(ϕ − 2π )/�].

If the changes of coupling strengths take effect on a large
time scale, that is, if the update magnitude δ is small, it is
possible to approximate the discontinuous coupling strength
update at spike times by a continuous change according to the
update rate

ẇ(t) = δ
�

2π

[
�w+

(
ϕ

�

)
+ �w−

(
ϕ − 2π

�

)]
. (6)

Here �/2π is the number of spikes (crossings of ϑpost = 0) per
unit time, and the two summands correspond to the twofold
update at spike times of the presynaptic and of the postsynaptic
neuron. With the plasticity function (5), we obtain the update

ẇ(t) = δ�

2π

[
A1 exp

(
− ϕ

�τ1

)
− A2 exp

(
ϕ − 2π

�τ2

)]
. (7)

Assuming � = 1 (e.g., by rescaling time or redefining the
plasticity parameters) and defining the function

h(ϕ) := 1

2π

[
A1 exp

(
− ϕ

τ1

)
− A2 exp

(
ϕ − 2π

τ2

)]
, (8)

the corresponding continuous PDDP update rule for w1(t) in
(2) reads

ẇ1(t) = δh(ϕ). (9)

In a similar way, the equation describing the dynamics of the
coupling weight w2(t) is obtained as

ẇ2(t) = δh(2π − ϕ). (10)

Figures 2(a) and 2(b) compare the STDP update function (5)
and the corresponding PDDP function h(ϕ). One can observe
the qualitative similarity of the right part of h (for π < ϕ <

2π ) with the negative part �w− of (5), and the left part of h (for
0 < ϕ < π ) with �w+. This is because the tails of �w(�t)
are exponentially decreasing.
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Taking into account Eqs. (9) and (10), in the following, we
study the dynamics of system (2) with the PDDP rule

ẇ1 = δh(ϕ), 0 < w1 < wmax,

ẇ2 = δh(2π − ϕ), 0 < w2 < wmax.
(11)

To guarantee that the coupling weights remain bounded we
restrict them to an interval [0,wmax]. This is achieved modeling
the natural saturation of the coupling weights via the following
“hard bounds” [2,16,18,44]:

ẇ1 = min{δh(ϕ),0}, for w1 = wmax,
(12)

ẇ2 = min{δh(2π − ϕ),0}, for w2 = wmax,

and

ẇ1 = max{δh(ϕ),0}, for w1 = 0,
(13)

ẇ2 = max{δh(2π − ϕ),0}, for w2 = 0.

We note that there are also other ways of introducing
the saturation, such as “soft bounds”; see Eq. (4) or
Refs. [15,19,20,42,45,46].

III. COEXISTENCE AND SWITCHING BETWEEN
SYNCHRONOUS AND DESYNCHRONOUS STATES

Systems with plasticity (STDP as well as PDDP) often
exhibit multistability of desynchronized and synchronized
solutions [13,18,20,24]. Desynchronized states are usually
characterized by weak coupling strengths when the neurons
behave independently from each other. Synchronized or
coherent states usually appear when the coupling is strong,
were the neurons show identical mean frequencies, and the
phase differences are bounded. Multistability appears if several
different configurations of connectivity become dynamically
stable.

For instance, the uncoupled state w1,2 ≈ 0 in system (2),
with PDDP (9) and (10) and cut-off (12) and (13), will be stable
if the coupling weights w1,2 are in average depressed whenever
they become slightly positive. Since phase differences of
the uncoupled and desynchronized system are uniformly
distributed, the average update is

〈ẇ1〉 = 〈ẇ2〉 = δ

2π

∫ 2π

0
h(ϕ)dϕ

= δ

4π2
[A1τ1(1 − e−2π/τ1 ) − A2τ2(1 − e−2π/τ2 )]. (14)

In the case when this quantity is negative, there appears the
following stabilizing (negative) feedback: a small intermediate
increase of w1 and w2 causes only a small deviation of
the phase distribution from the uniform one and therefore
the average update still remains negative. Consequently, the
coupling strengths are forced to decrease to zero again. For
example, for the parameters of the plasticity function A1 > A2,
the uncoupled state can be stable only for τ2 > τ1. In particular,
Eq. (14) is negative for the parameters in Fig. 2, and the
uncoupled state is stable.

The synchronized state of the noise-free (μ = 0) system (2)
with, for example, coupling function g(ϕ) = sin (ϕ) is char-
acterized by a fixed phase difference ϕ∗ = arcsin[�ω/(w1 +

FIG. 3. Time evolution of the coupling weights and phase differ-
ences of two oscillators (2) with the coupling function g(ϕ) = sin (ϕ)
and the PDDP rule (7); see Fig. 2. Plot (a) shows a unidirectionally
coupled state with w1 ≈ wmax = 1 and w2 ≈ 0, and (b) shows the
coexisting desynchronized (and uncoupled) state with w1,2 ≈ 0. For
(a) and (b) the same parameters were used: �ω = 0.1, μ = 0.01, δ =
0.001, and plasticity parameters as given in Fig. 2.

w2)]. As follows from Eqs. (8)–(10), in this regime the coupling
weight w1 will be potentiated if

τ1 >
ϕ∗τ2

2π − ϕ∗ − τ2ln(A2/A1)
,

and the coupling weight w2 will be depressed if

τ1 <
(2π − ϕ∗)τ2

ϕ∗ − τ2ln(A2/A1)
.

In particular, the above conditions are satisfied for the
parameters in Fig. 2, such that there coexist two stable coupling
regimes, the uncoupled state with (w1,w2) ≈ (0,0) and unidi-
rectional coupling (w1,w2) ≈ (wmax,0). These regimes are also
preserved for small noise.

In Fig. 3 we show typical evolutions of the phase difference
ϕ(t) and coupling weights w1(t) and w2(t). For noise intensity
μ = 0.01, detuning �ω = 0.1, and sufficiently small plasticity
rate δ = 10−3, we observe two states which persist over a very
long time. The first state is characterized by a unidirectional
coupling (w1,w2) ≈ (1,0) and synchronization of the two
neurons [Fig. 3(a)], while the second one is the uncoupled
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FIG. 4. Noise-induced switching between the desynchronized
(uncoupled) regime and the unidirectionally coupled phase-locked
regime. Plot (a) shows a single event for δ = 0.005 at time t0 ≈ 900.
Switch events were detected as the first time t0 for which the system
reaches a state with w1(t0) > 0.5. In (b) the mean switching time from
the uncoupled state to the unidirectionally coupled state is shown in
dependence of the plasticity rate δ for μ = 0.01, 0.1, 0.2, and 0.3.
Other parameters as in Fig. 3.

and desynchronized state with (w1,w2) ≈ (0,0) [Fig. 3(b)].
Both states correspond to attractors of the deterministic system
without noise (μ = 0): a stable unidirectionally coupled state
with a constant phase difference ϕ = arcsin(�ω/wmax) and a
stable uncoupled state with small fluctuations of the coupling
weights with a magnitude δ.

Under the influence of noise, the system may leave the
desynchronized state even if the average update (14) is nega-
tive. For the parameters as in Fig. 3 we observe switching from
the uncoupled state to the unidirectionally coupled attracting
state which is illustrated in Fig. 4(a). These switchings occur
more often with increasing δ. Figure 4(b) shows how the
mean time needed until a switch occurs after the initialization
with w1 = w2 = 0 decreases with δ for μ = 0.01, 0.1,0.2, and
0.3. In simulations we also observed that the mean switching
times grow further with increased noise intensity μ > 0.3.
Switchings from the unidirectionally coupled state back to the
uncoupled state were not observed for the depicted parameter
values and the considered simulation time, which may be
connected to the size of the basins of attraction of these
coupling regimes and their attraction rates.

IV. AVERAGED MODEL FOR THE COUPLING WEIGHTS
DYNAMICS

Under the assumption that the phase dynamics is much
faster than the changes of the coupling due to plasticity (i.e., δ
is small), (11) can be averaged leading to

ẇ1 = δ

∫ 2π

0
h(ϕ)ρ(t,ϕ; w1,w2)dϕ,

(15)

ẇ2 = δ

∫ 2π

0
h(2π − ϕ)ρ(t,ϕ; w1,w2)dϕ.

For the ease of notation we drop the brackets indicating
averages in Secs. IV and V, i.e., wj � 〈wj 〉. In Eq. (15)
ρ(t,ϕ; w1,w2) is the probability density for the state of system
(2) for fixed values of w1 and w2, and it satisfies the following
Fokker-Planck equation (FPE) [39]:

∂tρ = −∂ϕ(v(ϕ)ρ) + μ∂2
ϕρ, (16)

where

v(ϕ) = �ω + w2g(−ϕ) − w1g(ϕ); (17)

see Eq. (2). Note that for the case of the hard bounds (12) and
(13), Eqs. (15) hold within the domain 0 < w1 < wmax,0 <

w2 < wmax, and the boundaries should be treated separately.
Let us further assume that the FPE converges to some

stationary distribution ρs(ϕ; w1,w2) on a faster time scale than
the changes of coupling weights. As a result, we can further
simplify (15) as follows:

ẇ1 = δ

∫ 2π

0
h(ϕ)ρs(ϕ; w1,w2)dϕ,

(18)

ẇ2 = δ

∫ 2π

0
h(2π − ϕ)ρs(ϕ; w1,w2)dϕ.

Note that for the case of the uniform distribution ρs(ϕ; 0,0) ≡
1/2π , Eqs. (18) lead to the update (14). In general, they define
a planar vector field with respect to (w1,w2), describing the
slow average evolution of the coupling weights.

Let us determine the stationary distribution ρs , which is the
last unknown ingredient in Eq. (18). It must satisfy Eq. (16)
with ∂tρs = 0. By integration we obtain

∂ϕρs(ϕ) = 1

μ
v(ϕ)ρs(ϕ) + C (19)

with the following periodic and normalization conditions:

ρs(0) = ρs(2π ),
∫ 2π

0
ρs(ϕ)dϕ = 1. (20)

For brevity we have omitted the dependence of ρs on w1 and
w2. Equation (19) can be solved by variation of constants
formula, which yields

ρs(ϕ) = e
∫ ϕ

0 (1/μ)v(ψ)dψ

(
ρ0 + C

∫ ϕ

0
e− ∫ χ

0 (1/μ)v(ψ)dψdχ

)
,

(21)
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FIG. 5. Panels (a) and (b): Lines show stationary distributions
ρs(ϕ) given by Eq. (21) in the case of fixed unidirectional coupling
w1 = 1, w2 = 0. Bars show numerically obtained histograms from
the computed phase dynamics (2). The histograms consist of 100
bins, and are based upon data from a simulation over 10 000 units
of time. Panels (c) and (d): Stationary distributions ρs for different
noise intensities μ (black lines) and fixed unidirectional coupling.
The red line indicates the value of the advection part v(ϕ) of the
phase dynamics; see (17). Panels (a) and (c): results for the coupling
function g(ϕ) = sin (ϕ) and parameters �ω = 0.1,μ = 0.2. Panels
(b) and (d): g(ϕ) = 0.2 sin (ϕ) + cos (2ϕ) and �ω = 0.2,μ = 0.2.

where the two unknown constants ρ0 = ρs(0) and C can be
determined from (20). We find

C = 1

γ

(
1 − e(1/μ)v̄

)
,

where v̄ = ∫ 2π

0 v(ϕ)dϕ,

γ =
∫ 2π

0

(∫ ϕ

0
e
∫ ϕ

χ
(1/μ)v(ψ)dψ

dχ

+
∫ 2π

ϕ

e
(1/μ)v̄−∫ χ

ϕ
(1/μ)v(ψ)dψ

dχ

)
dϕ,

and

ρ0 = 1

γ

∫ 2π

0
e
∫ 2π

χ
(1/μ)v(ψ)dψ

dχ. (22)

Figure 5 shows some examples of ρs(ϕ) for different param-
eters. It also demonstrates a good matching of ρs(ϕ) with the
numerically calculated histograms of ϕ using (2) for fixed
coupling strength.

Together with the expression (21), which determines the
distribution ρs(ϕ), Eq. (18) is an explicit two-dimensional sys-
tem of ordinary differential equations governing the averaged
update of the coupling weights. In the next section, we use the
obtained system to study the influence of noise and frequency
detuning on the dynamics of the coupling weights.

V. DYNAMICS OF COUPLING WEIGHTS FOR THE CASE
OF SINUSOIDAL COUPLING

The obtained system (18)–(21) is quite general. It can be
used for studying the dynamics of the coupling for arbitrary
plasticity rules h(ϕ) and coupling functions g(ϕ). It also

incorporates the effect of noise, which is included in expression
(21) for ρs(ϕ).

In this section, we consider the specific case when the plas-
ticity function is of the form (8) derived from the STDP rule,
and the coupling function g(ϕ) = sin ϕ as in the Kuramoto
system.

Before we plot the specific bifurcation diagram, let us make
some general remarks about the properties of the system (18)–
(21):

Property 1. For any odd or even coupling function g(ϕ),
the admissible region Q = [0,wmax]2 of the dynamics (18) is
foliated by straight lines where the vector field takes identical
values. Indeed, in this case the phase difference dynamics (2)
and, hence, the function v(ϕ) in Eq. (17) depends only on the
sum w1 + w2 [for odd g(ϕ)], respectively difference w1 − w2

[for even g(ϕ)]. Consequently, the nullclines of w1 and w2, i.e.,
the sets with ẇ1 = 0 and ẇ1 = 0, consist of diagonals where
the value of w1 + w2 (respectively w1 − w2) is constant and
segments of the boundary of the domain Q. As a result, if a
fixed point (w∗

1,w
∗
2) occurs within the interior of the domain Q,

it leads to a line of fixed points corresponding to w1 + w2 =
w∗

1 + w∗
2 (or w1 − w2 = w∗

1 − w∗
2, respectively). For a coupling

function g, which is neither odd nor even, isolated fixed points,
stable and unstable, can also occur within Q.

Property 2. For the considered plasticity function (8) and the
coupling g(ϕ) = sin ϕ we observe numerically that ẇ1 > ẇ2

holds for �ω > 0. As a result, we did not observe continua
of fixed points which may in principle appear when two
diagonal nullclines coincide. Furthermore, maximally one
diagonal nullcline exists for each coupling strength and the
uncoupled state w1 = w2 = 0 is attracting, i.e., (14) < 0. As
a consequence, all stable fixed points (w∗

1,w
∗
2) are contained

in the corners of Q; see Figs. 6(a)–6(f). Note that neither the
noise intensity μ nor the frequency detuning �ω can change
the type of stability of the uncoupled state in (18).

Property 3. For an odd coupling function it is not possible
that both unidirectionally coupled states are attracting, since
the vector field takes the same values in the vicinity of
the points (w1,w2) = (wmax,0) and (w1,w2) = (0,wmax) and
therefore the stability of one unidirectionally coupled state
implies the instability of its counterpart. However, it is possible
that, besides the uncoupled state, either one unidirectionally
coupled state or the bidirectionally coupled state or both of
them are stable at the same time [Figs. 6(a)–6(f)].

Figure 6(g) shows a bifurcation diagram in the (μ,�ω)
plane for system (18) with g(ϕ) = sin ϕ. The stability regions
of the bidirectionally coupled state w1 = w2 = wmax and
the unidirectionally coupled state (w1,w2) = (wmax,0) are
indicated. The letters (a)–(f) refer to the different cases for the
flow as depicted in the corresponding panels. The parameter
region where the bidirectionally coupled state is stable is
shaded in blue, and the stability regions of the unidirectionally
coupled state is shaded in red. For each state there exist
two bifurcation lines, which can bound the stability region.
Each line denotes a set of parameters where one of the
components of the vector field, ẇ1 or ẇ2, changes its sign.
Consider, for example, �ω = 0.1 and μ = 2.5 [region (f)],
then the bidirectionally coupled state is unstable since ẇ1 < 0
and ẇ2 < 0, that is, both coupling weights decrease. If we
decrease the noise intensity to μ = 1.5 [region (c)] both blue
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FIG. 6. Phase portraits and bifurcation diagram for system (18)
with g(ϕ) = sin ϕ and h(ϕ) as in Fig. 2. Panels (a), (c): uncou-
pled and bidirectionally coupled states are stable; (b) uncoupled,
unidirectionally and bidirectionally coupled states are stable; (d)
uncoupled and unidirectionally coupled states are stable; (e), (f)
only the uncoupled state is stable. A bold arrow between two phase
portraits indicates that these regimes are connected by a bifurcation
[solid lines in (g)]. Panel (g) shows the corresponding bifurcation
diagram in the (�ω,μ) plane. Blue-shaded region: parameters, for
which the bidirectional coupling (w1 = w2 = wmax = 1) is stable [cf.
(a)–(c)]. Red-shaded region: parameter for which the unidirectional
coupling (w1 = wmax = 1,w2 = wmin = 0) is stable [cf. (b) and (d)].
For all parameters �ω 
= 0 and μ, the uncoupled state w1 = w2 = 0
is stable.

lines are crossed which indicate that ẇ1 and ẇ2 changed their
sign at the bidirectionally coupled state. Hence, at μ = 1.5
and close to the bidirectionally coupled state, the direction of
the flow is now ẇ1 > 0 and ẇ2 > 0, and it points towards
(wmax,wmax). Since the coupling weights are bounded by
wmax they get “trapped” in the corner w1 = w2 = wmax. The
shaded blue region summarizes all parameter values where
bidirectional coupling is stable [regions (a)–(c)]. Similarly, the
unidirectionally coupled state w1 = wmax, w2 = 0, is stable if
ẇ1 > 0 and ẇ2 < 0, and the system can be attracted to the
corresponding corner of Q. The parameter region where this
is the case is shaded in red [regions (b) and (d)]. As mentioned
above, in addition to the considered states, the uncoupled
state with w1 = w2 = 0 is stable independently on μ and
�ω.

FIG. 7. Three realizations of the stochastic system (1) with (8)–
(10) starting from the same initial condition for the coupling weights
(w1(0),w2(0)) = (0.6,0.92) and converging either to a bidirectional
coupling (trajectory 1) or to unidirectional coupling (trajectories 2
and 3). Parameters �ω = 0.05 and μ = 1.5, which correspond to the
case (c) in Fig. 6.

One may notice that the bifurcation curves of unidirec-
tional and bidirectional coupling in Fig. 6(g) are rescaled
copies of each other. This is due to the odd symmetry
in g(ϕ) and a parameter redundancy in (16). In fact, the
rescaling

(w1,w2) �→ (cw1,cw2), c > 0, (23)

of the coupling weights is equivalent to the simultaneous
rescaling of time, frequency detuning, and noise intensity as

(t,�ω,μ) �→
(

ct,
�ω

c
,
μ

c

)
. (24)

This means that a weakly coupled pair of neurons may
be equally conceived as a strongly coupled pair with large
detuning and high noise intensity.

For the case of odd coupling g(ϕ), Eqs. (23) and (24) imply
that the value of the vector field (ẇ1,ẇ2) at (w1,w2) = (1,1)
and (μ,�ω) = (μ0,�ω0) coincides with its value at (w1,w2) =
(1,0) and (μ,�ω) = (μ0/2,�ω0/2). Therefore, the curves
ẇ1,2 = 0 for (w1,w2) = (1,0) (red line color) are rescaled by
a factor 0.5 in comparison to the corresponding curves for
(w1,w2) = (1,1) (blue line color).

Figure 7 illustrates three trajectories of the original stochas-
tic system (1) starting at the point (w1(0),w2(0)) = (0.6,0.92),
where ẇ1 = −ẇ2. This point lies close to a separatrix in the
system (18), which bounds the basins of the uncoupled and
the bidirectionally coupled state. It is the stable manifold
of the unstable fixed point at the intersection of {ẇ2 = 0}
with the boundary of the phase space Q. For trajectories of
the stochastic system which start near this separatrix it is
possible to end in both attractors either via a rather direct
transition or via a longer transition which spends some time
near the seperatrix and the unstable fixed point. The three
shown realizations illustrate these possible behaviors.

The most remarkable observation from the diagram in
Fig. 6(g) is that it shows how an increasing noise intensity may
lead to stabilization of a more strongly coupled state. Thereby
the noise indirectly enhances the synchronization properties
of the system which is somewhat counterintuitive and can be
referred to as a self-organized noise resistance [18].

The simultaneous stability of the uncoupled and the
unidirectionally coupled regimes, which can be observed for
vanishing noise intensity μ and finite frequency detuning �ω,
generalizes to the case of hierarchical coupling which was
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found to be stable for ensembles of many coupled neurons as
well [18,20].

VI. TWO HODGKIN-HUXLEY NEURONS

In this section we consider a system of two interacting
Hodgkin-Huxley (HH) neurons [47,48],

CV̇1,2 = I1,2 − gNam
3
1,2h1,2(V1,2 − VNa)

−gKn4
1,2(V1,2 − VK ) − gl(V1,2 − Vl)

+0.5(Vr − V1,2)w1,2s2,1 + I
input
1,2 ,

ṁ1,2 = αm(V1,2)(1 − m1,2) − βm(V1,2)m1,2, (25)

ḣ1,2 = αh(V1,2)(1 − h1,2) − βh(V1,2)h1,2,

ṅ1,2 = αn(V1,2)(1 − n1,2) − βn(V1,2)n1,2,

ṡ1,2 = 0.5(1 − s1,2)

1 + exp[−(V1,2 + 5)/12]
− 2s1,2,

where the variables V1,2 model the membrane potentials of the
neurons, and αm(V ) = (0.1V + 4)/[1 − exp(−0.1V − 4)],
βm(V ) = 4 exp[(−V − 65)/18], αh(V ) = 0.07 exp[(−V −
65)/20], βh(V ) = 1/[1 + exp(−0.1V − 3.5)], αn(V ) =
(0.01V + 0.55)/[1 − exp(−0.1V − 5.5)], and βn(V ) = 0.125
exp[(−V − 65)/80]. The neurons are excitatorily coupled
(with reversal potential Vr = 20 mV; the results reported
below are qualitatively preserved also for Vr = 0 mV) via
chemical synapses with synaptic weights w1,2 modeling
the strength of the coupling from the presynaptic neuron to
the postsynaptic neuron; see Fig. 1. The constant currents
I1 = I − �I and I2 = I + �I with I = 11 μA/cm2 control
the spiking frequencies f1,2 (number of spikes per second)
of the neurons which periodically fire with, for example,
f1,2 ≈ 70.71 Hz for �I = 0 μA/cm2, and f1 ≈ 70.44
Hz and f2 ≈ 70.99 Hz for �I = 0.12 μA/cm2. Other
parameters C = 1 μF/cm2, VNa = 50 mV, VK = −77 mV,
Vl = −54.4 mV, gNa = 120 mS/cm2, gK = 36 mS/cm2, and
gl = 0.3 mS/cm2.

The excitatory synaptic input current I
input
i , i = 1,2, reads

I
input
i (t) = μ[Vr − Vi(t)]

∑
τi,k<t

α(t − τi,k)e−α(t−τi,k ). (26)

The α train in Eq. (26) models the synaptic activity reflecting
a pulsatile synaptic input received by neuron i at times τi,k

with the length of interpulse intervals �τi,k = τi,k+1 − τi,k �
0 independently drawn from a Gaussian distribution with
mean 〈�τi,k〉 = 14 ms and standard deviation 4 ms, and
α = 24/〈�τi,k〉. The mean time scale of such an input approx-
imately equals the mean period of the coupling- and input-free
neurons (25), and each neuron receives an independent random
synaptic input of intensity μ, which does not significantly
perturb its natural spiking frequency.

The neural ensemble (25) is equipped with STDP, where the
synaptic weights wi = wi(t) are functions of time and updated
as wi → wi + δ�w(�t) according to the STDP function (5)
with parameters A1 = 1, A2 = 0.5, τ1 = 1.8 ms, τ2 = 6 ms,
and δ = 0.0005. �t is the time difference between the nearest
spike onsets of the neurons. The spike onsets are detected by
the upward zero crossing by the membrane potential following
an interspike hyperpolarization. The synaptic weights wi are

FIG. 8. Noise-induced coupling regimes of two interacting HH
neurons (25) with random input vs parameters �I and μ. (a) The
shaded domains correspond to parameter regions where different
coupling configurations are stable. The stability region of the
unidirectional coupling (w1,w2) ≈ (0.5,0.0) is shaded in red, and
the bidirectional coupling (w1,w2) ≈ (0.5,0.5) in blue as in Fig. 6(g).
The uncoupled state (w1,w2) ≈ (0.0,0.0) is stable in the gray shaded
region, and the stability region of the inverse unidirectional coupling
(w1,w2) ≈ (0.0,0.5) is indicated by green shading. The level curve
〈w2〉 = 0.25 with w1 ≈ 0.5 is depicted by blue dashed curve. The
vertical magenta dashed line indicates a cross section of the parameter
plane used in Figs. 9 and 10. (b) The values of the time-averaged
synaptic weight 〈w2〉 observed in a stable configurations with w1 ≈
0.5 are encoded in color.

confined to the interval [wmin, wmax] = [0,0.5] by setting wi

to wmin as soon as it is depressed to a lower value than
wmin via STDP or, respectively, to wmax if it is potentiated
over this value. As for the phase oscillators, we consider the
additive update rule for synaptic weights with hard bounds
[2,16,18,44]. In the Appendix we also illustrate the impact
of noise and parameter mismatch on the connectivity for
the multiplicative update rule with soft bounds; see also
Refs. [18,45].

To illustrate the noise-induced dynamics of the synaptic
weights for the HH neurons (25), we scan the parameter
space (�I,μ) for possible regimes and summarize the results
in Fig. 8. To numerically address the stability of the above
coupling regimes we simulate the HH neurons (25) during
2000 s [the time in Eq. (25) is in ms] and check whether
the trajectory escapes from a given coupling regime. In such a
way the stability regions were obtained, which are illustrated in
Fig. 8(a) with smoothed boundaries. We found that following
coupling configurations can be stabilized by the random input:
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Full bidirectional coupling (w1,w2) ≈ (0.5,0.5). This
regime can be observed for parameters from the blue shaded
domain in Fig. 8(a).

Unidirectional coupling (w1,w2) ≈ (0.5,0.0). This regime
can be observed for parameters from the red shaded domain
in Fig. 8(a). In this regime the fast neuron 2 drives the slow
neuron 1, and coupling in the opposite direction vanishes. Such
a coupling configuration can also be stable for the input-free
(μ = 0) system (25).

Inverse unidirectional coupling (w1,w2) ≈ (0.0,0.5). This
regime can be observed for parameters from the green shaded
domain in Fig. 8(a), containing parameter values with large
random perturbations and moderate frequency detuning.

Uncoupled state (w1,w2) ≈ (0.0,0.0). This regime can be
observed for parameters from the gray shaded domain in
Fig. 8(a), i.e., for sufficiently large random perturbations but
as well for small random perturbations if the detuning �I is
sufficiently large. Such a coupling configuration can also be
stable for the input-free (μ = 0) system (25).

Note that there exists a white region in Fig. 8(a), where
none of the above states can be found. This is because in
this region the observed mean value 〈w2〉 takes intermediate
values between wmin = 0.0 and wmax = 0.5. Its continuous
dependence on the parameters corresponds to the continuous
color gradient in Fig. 8(b), where the value of 〈w2〉 is encoded
in color for coupling configurations with w1 ≈ 0.5. In the
red region of Fig. 8(b) 〈w2〉 reaches its maximal value,
i.e., 〈w2〉 ≈ 0.5. This domain corresponds to the bidirec-
tional coupling (w1,w2) ≈ (0.5,0.5) [blue shaded domain in
Fig. 8(a)], whereas the region where 〈w2〉 approaches its
minimal value 〈w2〉 ≈ 0.0 corresponds to the unidirectional
coupling (w1,w2) ≈ (0.5,0.0) [red shaded domain in Fig. 8(a)].
In Sec. VII B we provide a more detailed illustration of this
phenomenon, which is not observed for the phase oscillators
with sinusoidal coupling considered in Sec. V.

As discussed for the phase oscillators, the random input
may force the system to escape from a stable state and to
switch to a different coupling regime; see Fig. 4. For the above
coupling regimes we also performed a more detailed analysis
(see below) for a fixed value of the parameter detuning �I =
0.05 indicated by the vertical magenta dashed line in Fig. 8(a).

As follows from Fig. 8, the uncoupled state (w1,w2) ≈ (0,0)
is unstable if the input intensity μ < 0.082 for �I = 0.05 [i.e.,
in the complement of the gray domain in Fig. 8(a)]. For such
parameter values the trajectory escapes from the uncoupled
state and switches to another existing stable coupling regime,
see Fig. 8, in a relatively short time. We calculate such a mean
switching time by averaging over 200 trajectories initiated
at the uncoupled state and plot it versus μ in Fig. 9(a).
For example, for �I = 0.05 and μ = 0 the system escapes
from the uncoupled regime and switches to the unidirectional
coupling in 27 s in average [Fig. 9(a)]. The mean switching
time increases by several orders of magnitude as parameter μ

leaves the instability interval and quickly reaches the selected
maximal simulation time of 300 000 s [Fig. 9(a)]. Therefore,
for parameter values within the gray domain in Fig. 8(a) the
HH neurons (25) can exhibit the uncoupled regime for a very
long time.

The inverse unidirectional coupling (w1,w2) ≈ (0.0,0.5) is
apparently unstable in the parameter domain complementary

FIG. 9. Mean switching time of (a) uncoupled state, (b) inverse
unidirectional coupling, and (c) bidirectional and unidirectional
coupling vs input intensity μ for the fixed parameter of detuning
�I = 0.05 indicated by the magenta dashed line in Fig. 8(a). The
vertical dashed lines in the plots indicate the border values of μ

of stability domains [i.e., the intersection of the vertical magenta
dashed line in Fig. 8(a) with the borders of the corresponding stability
regions]. In plot (c) the value μ = 0.049 of the intersection of
the vertical magenta dashed line �I = 0.05 with the level curve
〈w2〉 = 0.25 in Fig. 8(a) is indicated by black dashed line instead.
The insets show plots in linear-log scale. The mean switching time
was obtained by averaging over 200 trajectories initiated at the
corresponding coupling regime. The maximal simulation time was
300 000 s.

to the green shaded region in Fig. 8(a), where the trajectory
can relatively quickly escape from this regime. The mean
switching time from the inverse unidirectional coupling is
shown in Fig. 9(b) versus μ for �I = 0.05. On the other hand,
for parameter values from the stability region [Fig. 8(a), green
shaded region], the mean switching time gets significantly
larger [Fig. 9(b)] such that the HH neurons exhibit this
coupling regime for a long time in spite of relatively strong
random perturbations.

The mean switching time for the bidirectional cou-
pling (w1,w2) ≈ (0.5,0.5) and the unidirectional coupling
(w1,w2) ≈ (0.5,0.0) demonstrates similar rapid growth and
exceeds the selected maximal simulation time [Fig. 9(c)] as
parameters enter the stability regions depicted by blue and
red shaded domains, respectively, in Fig. 8(a). As mentioned
above, for small values of the input intensity μ, there is a
gradual transition between these coupling regimes where the
mean synaptic weight 〈w2〉 can attain intermediate values
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between wmin = 0.0 and wmax = 0.5; see Figs. 8(a) (white
region) and 8(b). We therefore indicate the intersection value
μ = 0.049 of the line �I = 0.05 [Figs. 8(a), vertical magenta
dashed line] with the intermediate level curve 〈w2〉 = 0.25 by
a vertical black dashed line in Fig. 9(c).

VII. DIVERSITY OF STATES IN HH NEURONS

In the following we highlight two aspects of the HH
dynamics which were not observed for phase oscillators with
sinusoidal coupling as studied in Sec. V. First we take a closer
look at the multistability in the HH dynamics and subsequently
we explain the presence of a stable configuration where w2

takes intermediate values between wmin = 0 and wmax = 0.5.

A. Multistability

The noise-induced coupling regimes can coexist with each
other, and the HH neurons converge to a particular state
depending on the initial conditions. By varying the initial
synaptic weights w1(0) and w2(0) we calculate the basins of
attractions of the above coupling regimes and plot them in
Fig. 10 for a few values of parameter μ and fixed �I = 0.05
indicated by crosses on the vertical magenta dashed line in
Fig. 8(a). As follows from Figs. 8(a) and 10, the four coupling
regimes may coexist in different combinations:

(i) Bistable regime, where uncoupled state (w1,w2) ≈
(0,0) coexists with bidirectional coupling (w1,w2) ≈ (0.5,0.5)
[Fig. 10(a)] or with unidirectional coupling (w1,w2) ≈ (0.5,0)
(not shown).

(ii) Three coexisting coupling regimes, where uncoupled
state and unidirectional coupling coexist with bidirectional
coupling [Fig. 10(b)] or with inverse unidirectional coupling
(w1,w2) ≈ (0,0.5) [Fig. 10(d)].

(iii) All four coupling regimes may coexist [Fig. 10(c)].
Since the neurons (25) are perturbed by an independent

random input, the system may converge to different coupling
regimes even for a fixed initial synaptic weight (w1(0),w2(0)),
in particular, for those close to the boundaries of the basins of
attraction [Fig. 10]. This was reported for the phase oscillators;
see Fig. 6 (lower panel). To illustrate such a property for
HH neurons, we consider parameters (�I,μ) = (0.05,0.137),
where all four coupling regimes coexist [Figs. 8(a) and 10(c)],
and simulate system (25) for fixed initial synaptic weights
(w1(0),w2(0)) = (0.17,0.4) [Fig. 10(c), black dot] and 31
different random initial conditions for neurons’ variables. We
found that 5 such trajectories were attracted to the bidirection-
ally coupled regime [Fig. 10(e)], 14 to unidirectional coupling
[Fig. 10(f)], 4 to inverse unidirectional coupling [Fig. 10(g)],
and 8 to the uncoupled state [Fig. 10(h)]. Since most of
the trajectories converged to the unidirectional coupling,
the considered initial synaptic weight has been assigned to
the basin of attraction of this coupling regime [Fig. 10(c)].
The probability of being attracted to the corresponding
coupling regime grows for parameters from the interior of
the basins of attraction shown in Fig. 10. For example,
all 31 trajectories are attracted to the bidirectional coupling
for (w1(0),w2(0)) = (0.45,0.4), to unidirectional coupling for
(w1(0),w2(0)) = (0.45,0.1), to inverse unidirectional coupling
for (w1(0),w2(0)) = (0.05,0.4), and to the uncoupled state

FIG. 10. (a)–(d) Basins of attraction of coexisting coupling
regimes of HH neurons (25) depicted by color in the plane of the
initial synaptic weights (w1(0),w2(0)) for (a) μ = 0.1, (b) μ = 0.132,
(c) μ = 0.137, and (d) μ = 0.15 and fixed �I = 0.05; see Fig. 8(a)
(markers on the vertical magenta dashed line). The corresponding
coupling regimes are indicated in the plots. Black dot and crosses
in (c) indicate initial synaptic weights used for (e)–(h). Any fixed
initial synaptic weight was assigned to the basin of attraction of that
coupling regime to which the most of 31 different trajectories have
been attracted after skipped transient. (e)–(h) Examples of the time
courses of synaptic weights w1(t) (red curves) and w2(t) (blue curves)
in system (25) for μ = 0.137 [as in (c)], fixed initial synaptic weights
(w1(0),w2(0)) = (0.17,0.4) [black dot in (c)], and random initial
conditions for neurons’ variables. The coupling regimes reached by
the neurons after transient are indicated in the plots.

for (w1(0),w2(0)) = (0.05,0.1); see Fig. 10(c), where the
mentioned initial synaptic weights are indicated by crosses.

Note that in the case of coupled phase oscillators with
sinusoidal coupling as considered in Sec. V the inverse
unidirectional state (w1,w2) = (0,wmax) was not observed at
all. In fact, the simultaneous stability of all four coupling
configurations with w1,2 ∈ {wmin,wmax} is not possible for odd
coupling functions like sin(ϕ) since the vector field takes
identical values along the diagonals w1 − w2 ≡ const [cf.
Fig. 6 and property 3 in Sec. V].

B. Intermediate values of the coupling strength w2

Another feature which is present for coupled HH neurons,
but not for sinusoidally coupled phase oscillators, is the appear-
ance of stable intermediate values w2 ∈ [wmin,wmax]; see Fig. 8.
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FIG. 11. Time courses of the synaptic weights w1 and w2 in
system (25) for (a) input-free case with μ = 0 and (b) neurons
perturbed by an independent random synaptic input of intensity
μ = 0.03 and different parameter mismatches �I as indicated in the
legends. As initial state, the uncoupled regime w1(0) = w2(0) = 0.0
was taken. Plots (c) and (d) show the time-averaged synaptic weight
〈w2〉 in system (25) vs (c) parameter mismatch �I for the input-free
case μ = 0, (d) input intensity μ for different �I as indicated in the
legend. The other synaptic weight w1 ≈ wmax = 0.5 [cf. (a) and (b)].

For small parameter mismatch �I these intermediate values
can already be found in the noise-free case μ = 0 [Figs. 11(a)
and 11(c)]. They mediate small values of w2 ≈ 0 for large
�I and large (maximal) values of w2 for identical oscillators,
i.e., �I = 0 [Fig. 11(c)], where the symmetric bidirectional
coupling is stable also in the input-free case. The intermediate
values of w2 extend to the two-parameter plane (�I,μ) for
finite noise intensity μ > 0 [Figs. 11(b) and 11(d)]. In this
section we consider the emergence of intermediate values of
w2 for the cases μ = 0 and μ > 0. This phenomenon has also
been verified for the reversal potential Vr = 0 mV as well as for
the multiplicative update rule with soft bounds; see Appendix.

FIG. 12. Neuronal dynamics in the input-free (μ = 0) system
(25) for (a) and (b) fixed synaptic weights (STDP is off) (w1,w2) =
(0.5, 0.5) and (w1,w2) = (0.5, 0.0), respectively, and (c) adaptive
synaptic weights (STDP is on) approaching the state (w1,w2) =
(wmax,w

∗
2) with w∗

2 ≈ 0.21 due to STDP; see Fig. 11(a) for �I = 0.02.
In plots (a) and (b) the time courses of the membrane potentials Vj of
the neurons are shown, and (c) depicts the distribution density of the
spiking time difference �t = tpost − tpre for the postsynaptic neuron
2 contributing to the update of synaptic weight w2. (d) Dynamics of
the average update 〈�w2〉 (see text for definition) for the conditions
of plots (a)–(c), as indicated in the legend. (e) Log-log plot of 〈�w2〉
for adaptive synaptic weights [blue circles in plot (d), corresponding
to conditions of plot (c) and Fig. 11(a) for �I = 0.02]. The black
dashed line has a slope −1 and is given for comparison. Parameters
�I = 0.02 and μ = 0.

Let us first turn the STDP off and fix the coupling w1 =
wmax = 0.5 and w2 = 0 or w2 = wmax for �I = 0.02 and
μ = 0. We find that for both coupling cases the neurons are
well locked to each other, where the time lag between spikes is
well separated from zero [Figs. 12(a) and 12(b)]. In the case of
bidirectional coupling (w1,w2) = (0.5, 0.5) the spikes of the
fast neuron 2 advance those of the slow neuron 1 [Fig. 12(a)].
In the case of unidirectional coupling (w1,w2) = (0.5, 0.0),
where the fast neuron 2 drives the slow neuron 1, the spiking
sequence is reversed such that the spikes of fast neuron 2
follow the spikes of slow neuron 1 [Fig. 12(b)]. The observed
reversing of the spike timing differs from the dynamics of
the phase oscillators (1) with sinusoidal coupling function
g(ϕ) = sin(ϕ). There the fast oscillator always advances the
slow oscillator in the phase-locked regime, irrespectively of
the coupling configuration.
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LÜCKEN, POPOVYCH, TASS, AND YANCHUK PHYSICAL REVIEW E 93, 032210 (2016)

The spike timing illustrated in Figs. 12(a) and 12(b) leads
to that, due to STDP, the synaptic weight w2 must increase
when starting from the unidirectional coupling (w1,w2) =
(0.5, 0.0) and decrease when starting from the bidirectional
coupling (w1,w2) = (0.5, 0.5). Indeed, the average update of
w2 calculated as 〈�w2〉(t) = N−1

sp

∑Nsp

j=1 �wj , where �wj is
the corresponding update of w2 at the j th spike, and Nsp is the
number of spikes in the time interval [0, t], converges to 0.3 for
the fixed unidirectional coupling [Fig. 12(d), red triangles] and
to −0.23 for the fixed bidirectional coupling [Fig. 12(d), black
squares]. When STDP is turned on, w2 approaches w∗

2 ≈ 0.21
[Fig. 11(a)], where an exchange between the two spiking
regimes illustrated in Figs. 12(a) and 12(b) takes place. In this
regime of (w1,w2) = (wmax,w

∗
2) a potentiation of w2 over w∗

2
leads to the spiking ordering as in Fig. 12(a), which induces a
depression of w2. On the other hand, for smaller w2 the spiking
ordering becomes as in Fig. 12(b), which causes a potentiation
of w2. The synaptic weights slightly fluctuate around the
above state [Fig. 11(a) for �I = 0.02], and the spiking time
difference �t = tpost − tpre between the postsynaptic neuron
2 and the presynaptic neuron 1 gets distributed around zero
[Fig. 12(c)], where the neurons fire spikes in a mixed order
even without a noise input. In this coupling regime, the
average update 〈�w2〉 converges to zero as t−1 [Figs. 12(d)
and 12(e), blue circles], which indicates a saturation of w2 at
the intermediate value w∗

2.
For a larger parameter mismatch, for instance, �I = 0.04,

the input-free (μ = 0) neurons fire in the same well-defined
order for both fixed bidirectional and unidirectional couplings,
where the fast neuron advances the slow one. An example
of the distribution density of the spiking time difference �t

for fixed (w1,w2) = (0.5, 0) and vanishing input (μ = 0) is
illustrated in Fig. 13(a) (black filled histogram). We found
that the average update 〈�w2〉 converges to negative values
−0.22 for (w1,w2) = (0.5, 0.5) and −0.24 for (w1,w2) =
(0.5, 0.0). Therefore, due to STDP, the input-free system
(25) approaches the unidirectional coupling regime (w1,w2) =
(wmax,0) [Fig. 11(a) for �I = 0.04].

With the noise input, however, the synaptic weight w2 can
be potentiated. For example, for the fixed synaptic weight (no
STDP) (w1,w2) = (0.5, 0.5) and noise intensity μ = 0.03, the
spiking time difference �t gets broadly distributed [Fig. 13(a),
red hatched histogram], nevertheless, the average update
〈�w2〉 of w2 still remains negative [Fig. 13(c), red triangles].
On the other hand, for the fixed unidirectional coupling
(w1,w2) = (0.5, 0), which is stable under STDP for vanishing
noise [Fig. 11(a)], the random input of the same intensity
leads to such a neuronal dynamics and distribution of the
spiking time difference [Fig. 13(a), blue empty histogram]
that the average update 〈�w2〉 becomes positive [Fig. 13(c),
blue squares]. Therefore, when STDP is switched on, w2

approaches intermediate values because it will be potentiated
if it approaches zero and will be depressed if it approaches
wmax. For the considered parameters, the synaptic weights
were found to fluctuate around (wmax, w∗

2) with w∗
2 = 〈w2〉 ≈

0.2 [Fig. 11(b), green circles]. In this coupling regime, the
distribution of �t [Fig. 13(d)] interpolates between the two
noise-induced distributions of �t in Fig. 13(a) [blue empty
and red hatched histograms] for the limiting cases of w2 = 0
and w2 = wmax, and the average update 〈�w2〉 of w2 converges

FIG. 13. Impact of the random input on the neuronal dynamics of
system (25). (a) Distribution densities of the spiking time difference
�t = tpost − tpre for the postsynaptic neuron 2 contributing to the
update of synaptic weight w2 for the fixed coupling (STDP is off)
(w1,w2) = (0.5, 0) (blue empty histogram) and (w1,w2) = (0.5, 0.5)
(red hatched histogram) and input intensity μ = 0.03. The distri-
bution of �t for (w1,w2) = (0.5, 0) and vanishing input (μ = 0) is
depicted by black filled histogram (scaling on the right vertical axis).
(b) Dynamics of the average update 〈�w2〉 for the two conditions
(w1,w2) = (0.5, 0) and (w1,w2) = (0.5, 0.5) of plot (a) with random
input and fixed coupling (blue squares and red triangles) and adaptive
synaptic weights (green circles) as indicated in the legend. (c) Log-log
plot of 〈�w2〉 for the case when STDP is on [green circles in plot
(b), corresponding to conditions of Fig. 11(b) for �I = 0.04]. The
black dashed line has a slope −1 and is given for comparison. (b)
Distribution density of �t for adaptive synaptic weights (STDP is on),
where (w1,w2) fluctuates around (wmax, w∗

2) with w∗
2 ≈ 0.2 [Fig. 11(b)

for �I = 0.04] corresponding to the case depicted by green circles
in plots (b) and (c). Parameters �I = 0.04 and μ = 0.03.

to zero as t−1 [Figs. 13(c) and 13(d), green circles]. For larger
noise, w2 may further increase [Fig. 11(d)]. The above example
illustrates the mechanism of the noise-induced potentiation of
coupling in systems with STDP.

VIII. CONCLUSION

In the first part of the paper, we developed an analytical
approach to predict the slow dynamics of coupling weights
in a pair of coupled oscillatory neurons modeled by phase
oscillators subject to noise and STDP. Our main result is the
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reduction of the stochastic dynamics to a two-dimensional
system of ordinary differential equations which describe
the coupling dynamics. It is worthwhile to mention two
assumptions again. First, in order to transform the STDP
rule to a globally valid PDDP rule the relative detuning
�ω/� of the natural frequencies has to be small. Second, the
coupling dynamics have to be slow enough to render valid the
averaging of the FPE and thereby enable us to obtain Eq. (18).
Under these assumptions the proposed technique is very
general and can be applied to arbitrary coupling and plasticity
functions.

The numerical bifurcation analysis for an example with
sinusoidal coupling and an exponential PDDP rule revealed a
possibility of multistability of the uncoupled, the unidirection-
ally, and the bidirectionally coupled states and the presence of
self-organized resistance to noise.

It is certain that the PDDP model yields qualitatively
equivalent results in many situations though there are some
features of the STDP case which may not be captured. For
instance the values of the natural frequencies of the phase
oscillators do not enter the calculations. Merely the frequency
detuning �ω = ω2 − ω1 appears in the equations. However,
the natural frequencies do show up independently when an
STDP rule is applied, i.e., the spike time differences are
taken into account for the update of the coupling strength.
For instance, this is the reason why the stability of the
uncoupled state is independent of μ and �ω in the PDDP
model, while it may change with a variation of μ and �I in
the Hodgkin-Huxley model [Fig. 8(a)].

The results obtained for the phase oscillators are qual-
itatively confirmed for a system of two spiking Hodgkin-
Huxley neurons; see Sec. VI. In particular, we show that a
random independent synaptic input leads to the emergence
of bidirectional coupling between neurons, which strengthens
the overall connectivity in the system as observed for large
neuronal ensembles [18]. As for the phase oscillators, the
noisy input can induce a multistability in coupled neurons and
switching between different stable coupling regimes. In the
case of Hodgkin-Huxley neurons all four different stable states
(combinations of wj ∈ {0,wmax}) can coexist [cf. Fig. 10(c)],
while for the phase model with g(ϕ) = sin(ϕ) a coexistence of
both unidirectionally coupled states is impossible. Moreover,
for a certain parameter range we observe for the coupled
Hodgkin-Huxley neurons that the average value of coupling
strengths saturates at intermediate values, i.e., 〈w2〉 ≈ w∗,
where w∗ is neither close to zero nor to the maximal coupling
strength. Such states of intermediate asymptotic coupling
strengths, as well as a multistability of both unidirectionally
coupled states, can also be observed for coupled phase
oscillators with coupling functions g(ϕ) 
= sin(ϕ) (data not
shown). In this context, it can be interesting to explore the
validity of the proposed technique for the phase reductions of
different neuron models in detail.

Our findings demonstrate that the reported noise-induced
effects are rather general phenomena and take place for very
different models of the intrinsic dynamics (phase oscillators
or conductance-based model neurons), plasticity rules (PDDP
or STDP), coupling type (based on the phase differences
or chemical synaptic coupling), and random perturbations
(noise or random synaptic input). The reported results are

valid under the natural assumption that the coupling induces
a synchronization, which however may not be the case, for
instance, for integrate-and-fire neurons or when the excitatory
synapses are too slow [49,50]. For analytical derivations and
numerical simulations we used Gaussian noise for random
input. The results are expected to be preserved for input with
independent Poisson spike trains [18].

Our results contribute to a better understanding of
stimulation-induced changes of collective neuronal dynam-
ics, especially of neuronal synchronization. Apart from its
clinical relevance [see Introduction], our findings might be
relevant to other neuroscientific issues, e.g., for the relation
between intrinsic dynamics and stimulus responses [51–53].
We have demonstrated that the firing pattern of a fundamental
neuronal building block, two neurons connected through
plastic synapses, is not just a simple reflection of the
stimulus’ properties. In fact, already in the presence of a
putatively simple stimulus, uncorrelated noise, a variety of
different dynamical regimes might be present, depending on
characteristic parameters intrinsic to the neurons involved.
In networks of phase oscillators with constant coupling
it was shown that the response to pulsatile stimuli may
crucially depend on the coupling mechanism [54]. Hence, the
interplay between ongoing input, caused by other neurons and
modulated by ongoing sensory input, and pulsatile (sensory)
stimuli may lead to a substantial variety of stimulus-induced
responses as observed experimentally [51–53]. Accordingly,
in future studies one could additionally take into account
pulsatile stimuli to study the repertoire of transient stimulus-
induced responses and their relation to the initial spontaneous
state.
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APPENDIX: MULTIPLICATIVE UPDATE WITH SOFT
BOUNDS

In this study we considered the STDP rule with additive
update of synaptic weights wi → wi + δ�w(�t) with so-
called hard bounds, where wi ∈ [wmin, wmax] is set to wmin

or to wmax if it is depressed to a lower value than wmin

or potentiated over wmax, respectively [2,16,18,44]. Another
approach consists of a multiplicative (state-dependent) update
rule, where the coupling weights are changed relative to their
current values wi → wi + (wM − wi)|δ�w(�t)|, where wM =
wmax or wM = wmin depending on whether the coupling update
δ�w(�t) is positive (potentiation) or negative (depression),
respectively [15,19,20,42,45,46]. For the multiplicative update
rule the potentiation (depression) gradually weakens when the
synaptic weights approach upper (lower) bound, which makes
them confined to the interval [wmin, wmax].
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For the same parameters of the STDP function (see Sec. VI)
the input-free (μ = 0) HH neurons (25) with multiplicative
STDP rule demonstrate a similar behavior of the synaptic
weights as for the additive update; see Fig. 14(a) and compare
it with Fig. 11(c). For large parameter detuning �I , the
neurons are unidirectionally coupled, where the fast neuron
2 drives the slow neuron 1. For small �I we observe
intermediate values of w2 with large values of w1. Identical
neurons become symmetrically bidirectionally coupled as for
the additive update, although the synaptic weights deviate from
the maximal value wmax [Fig. 14(a)].

The independent random input potentiates the coupling
from slow neuron to fast neuron and depresses the coupling
in the opposite direction [Figs. 14(b) and 14(c)]. For large
enough noise the neurons become bidirectionally coupled
as for the additive update, but the synaptic weights saturate
at an intermediate value. As for the additive update rule,
the multiplicative update also enhances the mean coupling
(w1 + w2)/2 when the noise strength increases [Figs. 14(b) and
14(c), blue triangles]. This effect becomes more pronounced
for large neuronal ensembles as reported in Ref. [18]. However,
even for strong noise the neurons remain strongly coupled
in spite of the asynchronous neuronal firing [Fig. 14(d)]. As
compared to the additive STDP rule, the considered multi-
plicative update can hardly differentiate between synchronized
and desynchronized neuronal dynamics by the extent of
connectivity: for both regimes the multiplicative STDP rule
leads to large mean coupling in the neuronal population
(Fig. 14), see also Ref. [18]. Another essential difference
between the additive and multiplicative STDP rules is that
we did not observe any multistability of diverse coupling
regimes for the latter case. For the considered parameters and
for different initial conditions the connectivity converges to
the same state illustrated in Fig. 14. In this sense the dynamics
of coupling governed by the multiplicative STDP rule appears
to be much simpler.

FIG. 14. Time-averaged synaptic weights in system (25) for the
multiplicative update rule with soft bounds vs (a) parameter mismatch
�I for the input-free case μ = 0 and (b) and (c) input intensity
μ for different �I as indicated in the plots. (d) Time courses of
the membrane potentials of the HH neurons (25) for �I = 0.02,
noise intensity μ = 0.2, and coupling regime from plot (b). Parameter
Vr = 0 mV.
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