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Summary

� Plants are exposed to combinations of various biotic and abiotic stresses, but stress

responses are usually investigated for single stresses only.
� Here, we investigated the genetic architecture underlying plant responses to 11 single

stresses and several of their combinations by phenotyping 350 Arabidopsis thaliana acces-

sions. A set of 214 000 single nucleotide polymorphisms (SNPs) was screened for marker-trait

associations in genome-wide association (GWA) analyses using tailored multi-trait mixed

models.
� Stress responses that share phytohormonal signaling pathways also share genetic architec-

ture underlying these responses. After removing the effects of general robustness, for the 30

most significant SNPs, average quantitative trait locus (QTL) effect sizes were larger for dual

stresses than for single stresses.
� Plants appear to deploy broad-spectrum defensive mechanisms influencing multiple traits in

response to combined stresses. Association analyses identified QTLs with contrasting and with

similar responses to biotic vs abiotic stresses, and below-ground vs above-ground stresses.

Our approach allowed for an unprecedented comprehensive genetic analysis of how plants

deal with a wide spectrum of stress conditions.

Introduction

In nature, plants face variable environments that impose a wide
range of biotic and abiotic stresses. These include, for example,
below-ground and above-ground stresses, stresses imposed by
unicellular and multicellular organisms, and short- and long-
lasting stresses. Under natural conditions, these stresses do not
occur in isolation but are commonly present simultaneously

(Rizhsky et al., 2004; Bergelson & Roux, 2010; Mittler &
Blumwald, 2010; Vile et al., 2012; Prasch & Sonnewald, 2013;
Rasmussen et al., 2013; Kissoudis et al., 2014; Rivero et al., 2014;
Sewelam et al., 2014; Suzuki et al., 2014). Thus, plants are under
strong selection to adapt to local conditions and have evolved
sophisticated mechanisms to withstand multiple adverse environ-
mental conditions (Howe & Jander, 2008; Bergelson & Roux,
2010; Pieterse et al., 2012; Stam et al., 2014; Brachi et al., 2015;
Julkowska & Testerink, 2015; Kerwin et al., 2015). Yet, investi-
gating this in a targeted experimental way is a major challenge*These authors contributed equally to this work.
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owing to the complexity of multiple stress exposure. To gain an
insight into the adaptation of plants to the wide variety of stress-
inducing conditions they face, genetic variation and mechanisms
underlying stress resistance should be studied (Alonso-Blanco
et al., 2009; Brachi et al., 2015; Kerwin et al., 2015). The
responses of plants to stresses have traditionally been investigated
for individual stresses (Howe & Jander, 2008), but the research
focus is currently shifting towards plant responses to combina-
tions of stresses (Holopainen & Gershenzon, 2010; Pierik & Tes-
terink, 2014; Stam et al., 2014; Suzuki et al., 2014; Kissoudis
et al., 2015). The emerging picture is that responses to stress
combinations cannot be predicted reliably from the responses to
individual stresses (De Vos et al., 2006; Makumburage et al.,
2013). For instance, the majority of transcriptional responses of
Arabidopsis to combinations of two abiotic stresses could not be
predicted from responses to the individual stresses (Rasmussen
et al., 2013). Moreover, phenotype expression in response to two
biotic stresses could not be predicted on the basis of existing
information regarding interactions between underlying signaling
pathways (De Vos et al., 2006). Phytohormones are major players
in a signaling network, mediating responses to both biotic and
abiotic stresses (Pieterse et al., 2009). For instance, chewing insect
herbivores particularly elicit the jasmonic acid (JA), abscisic acid
(ABA) and ethylene (ET) signaling pathways; phloem-sucking
insects and biotrophic microbial pathogens particularly elicit the
salicylic acid (SA) pathway; and drought elicits the ABA pathway
(Pieterse et al., 2009). The phytohormonal responses exhibit
extensive crosstalk, resulting in specific changes in plant pheno-
type in response to individual stresses (De Vos et al., 2005;
Pieterse et al., 2012).

In plant breeding, resistance and tolerance to multiple stresses
are a common selection target (Braun et al., 1996). A well-known
strategy to achieve resistance and tolerance is by evaluation of
candidate varieties in multi-environment trials, that is, field trials
at multiple locations during several years (van Eeuwijk et al.,
2010; Malosetti et al., 2013). In such trials, multiple stresses can
occur, but their occurrence and the intensity with which they
occur are not guaranteed and, therefore, plant breeders developed
the concept of managed stress trials in which specific and well-
defined stress conditions are imposed for a single stress or a small
number of stresses (Cooper & Hammer, 1996; Cooper et al.,
2014). Recently, the urge to manage environmental factors even
more precisely has led to the development of phenotyping plat-
forms, where, again, mainly single stresses are investigated (Fio-
rani & Schurr, 2013; Granier & Vile, 2014; Kloth et al., 2015).

Most studies, outside plant breeding, that have examined plant
responses to multiple stresses included only one or a few geno-
types (Holopainen & Gershenzon, 2010; Rasmussen et al., 2013;
Pierik & Testerink, 2014; Stam et al., 2014; Suzuki et al., 2014;
Kissoudis et al., 2015). To obtain a further understanding of the
genetic architecture of complex traits such as plant adaptation to
a diversity of stresses, extensive study of the natural genetic varia-
tion within a species is instrumental. Genome-wide association
(GWA) analysis is an important tool for this, requiring a large
number of well-genotyped plant accessions. Yet, although the
interest in natural variation and GWA mapping is rapidly

increasing (Wijnen & Keurentjes, 2014; Ogura & Busch, 2015),
a large-scale evaluation of natural genetic variation in resistance
of plants to the full diversity of stresses to which they are exposed,
including pathogens, herbivores and abiotic stresses and their
interactions, has not been done to date. To elucidate the genetic
architecture of plant stress resistance, an integrated approach is
needed that models the genetics of responses to a range of single
and combined stresses, including the interaction between those
responses. Here, we have adopted a comprehensive and inte-
grated approach to investigate the genetics underlying plant
responses to 15 carefully standardized single stresses or stress
combinations (Table 1), making use of a global population of
350 Arabidopsis accessions that have been genotyped for 214 000
single nucleotide polymorphisms (SNPs) (Baxter et al., 2010; Li
et al., 2010). The standardization of these 15 stress conditions is
an important element of the study, because it allows for pheno-
typing of well-defined stress responses. We developed a tailored
multi-trait GWA analysis that allowed the identification of candi-
date genes associated with plant responses to multiple stresses that
were validated by gene expression and mutant analyses.

Materials and Methods

Arabidopsis thaliana population

In this study we included 350 Arabidopsis thaliana (L.) Heynh.
accessions from the HapMap population (http://bergel
son.uchicago.edu/wp-content/uploads/2015/04/Justins-360-lines.
xls). The HapMap population has been genotyped for 250 000
bi-allelic SNPs (Baxter et al., 2010; Platt et al., 2010; Chao et al.,
2012) and after quality control and imputation this SNP set was
reduced to a set of 214 051 SNPs.

Definition of the target traits

For every experiment, the target traits were derived from the indi-
vidual plant data using the following strategy. First, when residu-
als deviated from normality, a logarithmic, arcsine or square root
transformation was applied to the original observations. Second,
genotypic (accession) means for each treatment were calculated
using a mixed model to account for design effects. Different
mixed models were used in the experiments, reflecting the differ-
ent designs. In all cases, accession effects were modeled as fixed,
and the accession means were the best linear unbiased estimator
(BLUE) of these effects. Third, for traits measured in treatment
and control conditions, differences or residuals (when regressing
treatment on control values) were defined, in order to obtain a
measure of stress tolerance that was corrected for the expression
of the same trait under control conditions. Finally, within each
experiment, the traits were replaced by the first principal compo-
nent if the latter explained more than half of the variation in all
traits in this experiment; in all other cases, the original traits were
retained. An overview of final traits and their corresponding sec-
tions in the Supporting Information Methods can be found in
Table 1. In case of replacement by the first principal component,
original traits and the variance explained by the first principal
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component are listed (Supporting Information Methods Tables
M1–M5 in Methods S1–S3, S7 & S9). In total, phenotypic data
for 73 individual traits were obtained by 10 different research
groups. All calculations were performed in R, unless stated other-
wise. Mixed-model analysis was performed with the R package
ASREML (Butler et al., 2009). In all equations, the term E denotes
residual error. All other terms represent fixed effects unless stated
otherwise. A colon (:) is used to define interactions between
terms.

Statistics

Genetic correlation networks and heritability Pairwise marker-
based genetic correlations between traits, genomic correlations,
were estimated using a multi-trait mixed model (MTMM) (Korte

et al., 2012). Residuals were assumed to be uncorrelated for traits
that were measured on different plants. For some pairs of traits,
the likelihood was monotone, which can also occur in single-trait
mixed models (Kruijer et al., 2015). In this case, the genetic cor-
relation was estimated by the (Pearson) correlation between the
univariate G-BLUPs (De los Campos et al., 2013) estimated for
these traits. A network between predefined groups of traits was
constructed by connecting groups whose average genetic correla-
tion across pairs of traits was > 0.2.

Narrow sense heritability (Table S1) was estimated using the
mixed model Yi = l + Ai + Ei where Yi represents the phenotypic
means of accessions (i = 1, . . ., 350), and Ai and Ei are random
genetic and residual effects. The vector of additive genetic effects
follows a multivariate normal distribution with covariance r2

A K,
K being a marker-based relatedness matrix. The residual errors

Table 1 Phenotypes assessed

The dataset contains three plant stress categories applied to Arabidopsis thaliana: abiotic stress, biotic stress and combinations of both abiotic and biotic
stress. Phenotype assessments that were performed under similar environmental conditions have similar background shading (light and dark gray). ‘Pheno-
type’ refers to different phenotypic assessments (in some cases the first principal component of a group of phenotypes). ‘Treatment’ refers to the sort of
stress that was applied. Additional information on traits can be found in Supporting Information Methods S1–S10. Yellow, abiotic stress; green, biotic stress;
blue, combinations of biotic and abiotic stress.
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are independent, with variance r2
E . We obtained restricted maxi-

mum likelihood (REML) estimates of r2
A and r2

E , and estimated
heritability as h2 ¼ r2

A=ðr2
A þ r2

E ). This is an estimate of nar-
row-sense heritability, as the model for the genetic effects only
captures additive effects, and r2

E is the sum of environmental and
nonadditive genetic effects (see e.g. Kruijer et al., 2015).

Multi-trait mixed models Following Zhou & Stephens (2014),
we assume the MTMM, Y = XB +G + E, with Y being the geno-
types by traits (n9 p) matrix of phenotypic observations. The
terms XB, G and E stand for, respectively, the fixed effects (in-
cluding trait-specific intercepts and SNP effects) and the random
genetic and environmental effects. G follows a zero mean matrix-
variate normal distribution with row-covariance (marker-based
kinship) matrix K and column (trait) covariance matrix Vg. Vg is
a p9 p matrix modeling the genetic correlations between traits.
This is equivalent to g = vec (G ) (the vector containing the
columns of G ) being multivariate normal with a covariance
matrix defined by the Kronecker product Vg ⊗ K (Zhou &
Stephens, 2014). Similarly, vec(E) follows a zero mean normal
distribution with covariance Ve ⊗ In, where Ve accounts for the
nongenetic correlations between traits.

Factor-analytic models As Vg and Ve contain a total of p(p + 1)
parameters, the MTMM becomes difficult to fit for > 10 traits
(Zhou & Stephens, 2014). For Vg we therefore assumed a factor
analytic model, which is well known in the context of quantita-
tive trait locus (QTL) mapping for experimental populations
with limited numbers of markers (Boer et al., 2007), but has not
been used in the context of multivariate GWA studies (GWAS).
As almost all traits were derived from measurements on different
plants, a diagonal model Ve ¼ diagðr2

e;1; . . .; r
2
e;pÞ was chosen

for the environmental covariances. For Vg, a second-order factor

analytic structure was chosen Vg ¼ r2
gðkkt þ diag ðs21; . . .; s2pÞÞ,

where r2
g represents a scale parameter, the magnitude of genetic

effects, the p9 2 matrix k contains the trait-specific scores
belonging to the factor analytic part of the model that provides a
rank two variance-covariance structure between traits, and

diag ðs21; . . .; s2pÞ provides trait-specific residual genetic variances

(Piepho, 1997; Meyer, 2009). The model was fitted with the R
package ASRREML (Butler et al., 2009).

Compressed kinship Factor analytic models have been success-
fully applied to experimental populations with a simple genetic
relatedness structure (Boer et al., 2007; Malosetti et al., 2008;
Alimi et al., 2013), but currently available software could not per-
form REML estimation for the HapMap population. The kin-
ship matrix was therefore replaced with a compressed kinship
matrix (Bradbury et al., 2007; Zhang et al., 2010), modeling the
genetic relatedness between a number of internally homogeneous
groups. Assuming there are m such groups, containing n1, . . ., nm
accessions each, the original kinship matrix K is replaced by
ZKCZ

t, where KC is the kinship matrix for the groups, and Z is
the n9m incidence matrix assigning each of the n accessions to
one of the m groups. The groups were created by a procedure that

restricted the marker data to be linear combinations of environ-
mental covariates representing the conditions at the place of
origin of the accessions, as explained later.

Compressed kinship was calculated as the average kinship
within genetic groups. Genotypes were assigned to k genetic
groups by performing Ward clustering based on the squared
Euclidean distance along the first k� 1 principal components
calculated from a matrix of standardized SNP scores, followed by
cutting the resulting dendrogram into k distinct clusters (van
Heerwaarden et al., 2012, 2013; Odong et al., 2013).

The use of a compressed kinship matrix requires a choice of
the degree of compression, as determined by the number of
genetic groups over which the individual kinship is averaged.
This choice needs to balance the gain in computational efficiency
with model fit (Zhang et al., 2010) and the ability of the com-
pressed matrix to capture the correlation between genetic dissimi-
larity and phenotypic differences, which is ultimately the reason
for including a kinship matrix in the association model. There
are currently no standard methods to determine the optimum
degree of compression, at least not when used in a multi-trait set-
ting. We determined the appropriate degree of compression for
each association model based on the model likelihood, conver-
gence and correspondence between kinship and phenotypic and
geographical similarity. The latter was quantified as the Frobe-
nius norm of the difference between the complement of the com-
pressed kinship matrix, expanded to a block matrix of full rank,
and the Euclidean distance matrix of phenotypic traits or geo-
graphic coordinates. We considered a range of four to 100
groups. Correspondence with phenotypic and geographical dis-
similarity increased steeply from four to c. 35 groups, after which
correspondence with geographic distance increased more slowly
and the correspondence with phenotypic distance showing a local
decrease until 58 groups. Model likelihood was relatively stable
above four groups, but convergence was erratic depending on the
modeled contrasts. For each model the number of groups was
therefore chosen to be the minimum number of groups needed
to achieve a degree of correspondence approximating that found
at 35 groups, under condition of model convergence.

Multi-trait GWAS Traits (columns of Y) were standardized.
Along the genome, MTMMs of the type Y = XB +G + E were fit-
ted with initially for each marker trait-specific QTL effects b1,
. . ., bp (contained in B). To identify general QTLs with trait-
specific effects, for individual markers, the null hypothesis
b1 = b2 = . . . bp = 0 was tested by a Wald test against the alterna-
tive hypothesis that at least one of the trait-specific effects was
nonzero (Zhou & Stephens, 2014). To identify consistent QTLs,
the null hypothesis b1 = b2 = . . . bp = b 6¼ 0 was tested. To iden-
tify potentially adaptive QTLs, contrasts defined on the trait-
specific QTL effects were tested. For example, suppose the first
p1 of the full set of p traits represents responses measured under
abiotic stresses, while the second p2 traits represent responses
under biotic stresses. A contrast can now be defined to test the
hypothesis of whether the QTL effect for abiotic stresses differs
from that for biotic stresses: b1 = b2 = . . . bp1 = aabiotic;
bp1+1 = bp1+2 = . . . bp = abiotic and H0: aabiotic = aabiotic vs Ha:
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aabiotic 6¼ abiotic. For the Wald test for the hypothesis b1 = . . . = bp
we first fit the MTMM Y = XB +G + E with XB only containing
trait-specific means l1, . . ., lp, and then we test hypotheses on
the marker effects. The contrast is defined through a partitioning
of the traits in two groups (e.g. resistance against biotic or abiotic
stress). Using the R package ASREML (Butler et al., 2009) we per-
form Wald tests for the following hypotheses:

1 H0: b = 0, in the constrained model b1 = . . . = bp = b.
2 H0: a1 = a2, in the constrained model where a1 is the effect on
all traits in the first group, and a2 is the effect on traits in the sec-
ond group.

Simulations to compare power for full MTMM, contrast
MTMM and univariate analysis We further compared the dif-
ferent Wald tests using simulations, described in more detail in
Methods S12. Specifically, we compared the performance of the
general MTMM (i.e. testing the hypothesis b1 = b2 = . . . bp = 0)
with the MTMM used for the contrasts (i.e. H0:
agroup1 = agroup2, where, within two predefined groups of traits,
all SNP effects equal agroup1 and agroup2, respectively). We simu-
lated phenotypic data for given genotypic data, either assuming
the SNP effects were positive (but not equal) within one group of
traits and negative for the other (scenario A), or choosing the sign
of each SNP effect randomly (scenario B). The simulation results
as presented in Fig. S11 (see later) clearly indicate that the Wald
test for the contrast has superior power under scenario A, while
the general MTMM performs best under scenario B. In both
cases, univariate analysis of the trait with the highest heritability
is outperformed by at least one of the MTMM analyses. As a con-
sequence, univariate GWAS and GWAS with the general and
contrast MTMM give different rankings of SNPs.

Selecting candidate genes

A significance threshold of P < 0.0001 was chosen after imple-
mentation of genomic control (see below in the section
‘Correction for genomic inflation’). For MTMM this resulted in
43 SNPs meeting this criterion. Such a threshold of 0.0001 is not
uncommon in studies involving single-trait GWAS (e.g. El-Soda
et al., 2015; van Rooijen et al., 2015; Kooke et al., 2016). Given
the total number of SNPs analyzed (i.e. 199 589 SNPs having a
minor allele frequency > 0.05) and under the null hypothesis of
no QTLs and independence of the markers, we arrive at a naive
estimate for the expected number of false positives of c. 20, which
is considerably smaller than the 43 SNPs with P < 0.0001
recorded in the full MTMM, suggesting that about half of the
significant SNPs must be true positives. Furthermore, following
the procedure described by Benjamini & Hochberg (1995), we
estimated the false discovery rate to be 0.45, a number very com-
parable to our naive estimate earlier. SNPs within a 20 kb region
were considered to be part of one linkage disequilibrium (LD)
block. This resulted in 30 genomic regions. For presentation pur-
poses, each LD block was represented in figures and heat
maps by the SNP with the strongest (absolute) effect, on average,
across all traits. For the GWA contrast analyses, the same proce-
dure was followed to define LD blocks and representative SNPs.

Correcting for genomic inflation

The Wald test is known to suffer from some inflation (Zhou &
Stephens, 2014), which we correct for using genomic control
(Devlin & Roeder, 1999; Devlin et al., 2001), which divides the
observed test statistics T1, . . ., Tp by the genomic inflation factor.
For both the unconstrained MTMM and the MTMM for con-
trasts described earlier, we observed inflation for small as well as
large P-values (i.e. also more P-values close to 1 than expected).
Consequently, the usual genomic control procedures based on
the observed vs expected median of test statistics gave overly opti-
mistic inflation factors. We therefore applied an alternative
genomic control procedure, in which we regress the observed
�log10(P) values on the expected ones, and correct the observed
�log10(P) values for the slope. The genomic inflation factor was
1.24 for the full MTMM, with similar values for the other
MTMM analyses (between 1.07 and 1.38). For the full MTMM
without correction for population structure (i.e. taking the kin-
ship to be the identity matrix), the inflation factor was 2.36.

Results

The phenotypic response of a population of 350 Arabidopsis
accessions to an extensive set of stress-inducing conditions was
quantified relative to the respective control treatments. Correcting
for the respective control means that in the residual signal for a
trait, effects of earliness, flowering time, general robustness, vigor,
and so on, have been removed already. Therefore, the traits as
analyzed represent a kind of stress per se response from which all
kinds of disturbances have already been eliminated. Thirty traits,
including, for example, root length, number of damaged leaves
or number of pathogen-inflicted spreading lesions (Table 1), were
quantified when the plants were exposed to 15 different stresses,
that is, four abiotic stresses (drought, salt stress, osmotic stress
and heat), seven biotic stresses (parasitic plant, phloem-feeding
aphid, phloem-feeding whitefly, cell-content feeding thrips, leaf-
chewing caterpillar, root-feeding nematode and necrotrophic
fungus) and four stress combinations (fungus and caterpillar,
drought and fungus, drought and caterpillar, caterpillar and
osmotic stress). For detailed information on the carefully stan-
dardized stress treatments, the trait definitions and phenotyping,
see Supporting Information Methods S1–S10.

Heritability of responses to biotic and abiotic stresses

The phenotypic analysis resulted in a wide range of marker-
based, narrow-sense heritability (Kruijer et al., 2015) estimates
with 15 traits of low (h2 < 0.2), 10 of moderate heritability
(0.2 < h2 < 0.5) and five of high (h2 > 0.5) heritability (Fig. S1).
The number of abiotic stress traits per heritability category was
similar, while the number of traits related to biotic and combined
stresses decreased with increasing heritability class. The most her-
itable traits were responses to feeding damage by thrips
(Thrips_1; h2 = 0.8), nematodes (h2 = 0.7) and responses to salt
(Salt_1 and Salt_3; resp. h2 = 0.6 and h2 = 0.7) and heat (Heat;
h2 = 0.6) (Table S1). The traits related to combined stresses have
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predominantly low heritabilities; however, it should be empha-
sized that the combined stresses particularly relate to combina-
tions involving fungal and caterpillar stress.

Genetic commonality underlying responses to different
stresses

To analyze the phenotypic variation between Arabidopsis acces-
sions as a function of molecular marker variation, we used various
mixed-model approaches (see the Materials and Methods sec-
tion). We estimated marker-based genetic correlations, that is,
correlations based on the genome-wide commonality of SNP
effects underlying pairs of traits (see the Materials and Methods
section), to investigate the magnitude of genetic commonality
underlying resistance mechanisms in response to a range of biotic
and abiotic stresses. For brevity, we will refer to these marker-
based genetic correlations as genetic correlations. Such genetic
correlations can be interpreted as upper bounds to the joint deter-
mination of pairs of traits by genetic factors. Genetic correlation
analysis revealed a strong connection between the responses to
parasitic plants and to aphids (r = 0.8), which were both nega-
tively associated with other stress responses (Fig. 1). Parasitic
plants and aphids have in common that they target phloem and
xylem tissue (Tjallingii & Hogen Esch, 1993; Dorr & Kollmann,
1995), and induce the SA phytohormonal pathway (De Vos
et al., 2005; Runyon et al., 2008). By contrast, the biotic stress
responses that were negatively associated with the responses to
parasitic plants and aphids, that is, responses to necrotrophic
fungi, caterpillars, and thrips, represent JA-inducing stresses (De
Vos et al., 2005; Pieterse et al., 2009, 2012). Because the SA and
JA pathways predominantly interact through negative crosstalk
(Pieterse et al., 2009), the two main clusters resulting from the
genetic correlation analysis represent different phytohormonal
signaling response mechanisms. We also observed a strong

genetic correlation between plant responses to osmotic stress and
root-feeding nematodes. This supports the notion that root-knot
nematodes trigger a differentiation of root cells to multinucleate
giant cells with severely altered water potential and osmotic pres-
sure (Baldacci-Cresp et al., 2015). While the correlations between
traits at the phenotypic level were generally rather low, the
genetic correlation analysis revealed a common genetic basis
underlying the responses to sets of single and combined stresses
(Fig. S2).

Candidate genes underlying responses to stresses

To identify individual candidate genes that contributed most to
the pattern of genetic correlations, we fitted multi-trait QTL
mixed models (MTMMs) to the total set of 30 traits, using a
214 000 SNP set that is commonly used for GWAS in Arabidop-
sis (Kim et al., 2007; Atwell et al., 2010; Li et al., 2010; Horton
et al., 2012; Bac-Molenaar et al., 2015). Our multi-trait GWA
approach closely follows the modeling framework developed by
Zhou & Stephens (2014) and generalizes the use of MTMMs as
described previously (Boer et al., 2007; Malosetti et al., 2008;
Alimi et al., 2013) for classical biparental offspring populations
to association panels. This GWA analysis identified 30 chromo-
some regions with multiple, significant SNP–trait associations.
From each of those regions, the significant SNP with the
strongest effect was chosen to represent the locus (Fig. 2;
Table S2). Clustering of stresses by estimated SNP-effect profiles
(Fig. 2) indicates that multiple SNPs were associated with
response to more than one stress. Stress combinations induced
large QTL allele substitution effects in the MTMM mapping
(Fig. 2; Table S2), indicating that combinations of stresses trigger
broad-spectrum defensive mechanisms. A total of 125 genes were
in LD with the 30 most significant SNPs from the GWA analysis.
Twenty of these genes were stress-related according to gene

Fig. 1 Mean genetic correlations between
responses of Arabidopsis thaliana to abiotic
(red) and biotic (dark blue) plant stresses.
The thickness of lines represents the strength
of mean genome-wide correlations,
annotated with r-values (orange, positive;
blue, negative correlation). The more shared
genetic associations between stresses, the
higher the absolute genetic correlation.
Correlations are negative when alleles have
opposite effects, that is, resulting in increased
resistance to one stress, but decreased
resistance to the other stress. Values in
balloons represent mean within-group
correlation (not shown for groups consisting
of a single trait). Mean between-group
correlations are not shown if they are below
an absolute value of r = 0.2. Two clusters can
be distinguished: parasitic plants and aphids;
and the other stresses, except whiteflies.
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ontology annotation data (Table S3). Of these 20 genes, six have
been functionally characterized by at least one study (Table 2a).
For these six genes, we explored expression data to evaluate the
biological relevance of these genes in stress-responsive mecha-
nisms of Arabidopsis (Fig. S3). Of special interest were SNPs
chr5.7493620, chr5.22041081 and chr4.6805259, which were
in LD with WRKY38 (encoding a WRKY transcription factor
involved in SA-dependent disease resistance) (Kim et al., 2008),
AtCNGC4 (involved in pathogen resistance) (Chin et al., 2013)
and RMG1 (coding for disease resistance protein) (Yu et al.,
2013), respectively.

Phytohormonal signaling underlying contrasts in stress
responses

The MTMM framework allowed constraints to be imposed on
the values of the estimated QTL effects, thereby providing a pow-
erful testing framework for QTLs that have a common effect for
the stresses belonging to one particular group of stresses, as con-
trasted with the effect for another group of stresses (see the
Materials and Methods section ‘Multi-trait GWAS’). We investi-
gated whether polymorphisms for genes involved in SA and JA
biosynthesis or genes responsive to signals from these pathways

were the cause of the negative genetic correlations between the
groups of traits sharing one or the other phytohormonal signaling
pathway. To this end, we performed multi-trait GWA mapping
to test the contrast between parasitic plant and aphid response vs
the most negatively correlated traits, that is, fungus, caterpillar,
thrips and drought response (Fig. 1). Fifteen SNPs were signifi-
cantly associated with contrasting effects between the two trait
clusters (Fig. S4). Seven of these SNPs were in LD with one or
more genes known to be involved in JA-, SA- or resistance-related
signal transduction (Table S4). Among these genes are LOX5,
whose product is involved in facilitating aphid feeding (Nalam
et al., 2012a,b), MYB107 encoding a transcription factor respon-
sive to SA (Stracke et al., 2001; Chen et al., 2006), the JA-
inducible genes TPS02 and TPS03 encoding terpene synthases
(Huang et al., 2010), and MES16, encoding a methyl jasmonate
esterase (Christ et al., 2012). Using TAIR10 annotations, we
found that in total there are 371 genes that have an annotation
related to JA and SA signaling (JA-SA genes). Our GWA analysis
identified significant SNPs inside or in a 20 kb neighborhood of
five of those. In the remainder of the genome (i.e. non JA-SA),
we identified 162 genes close to or with significant SNPs. So, in
candidate regions for JA-SA, we had a ratio of 5/371 = 1.35%
significant genes, while in noncandidate regions, we found 162/

Fig. 2 Multi-trait mixed-model (MTMM)
genome-wide association (GWA) mapping
with 30 different stress responses of
Arabidopsis thaliana. The top panel shows
the 214 000 single nucleotide polymorphisms
(SNPs) with their corresponding �log10(P)
values for the five chromosomes. The lower
panel depicts the trait-specific effect sizes of
the rare alleles for significant SNPs
(P < 0.0001) as estimated by the full MTMM.
When several SNPs were located within the
20 kb linkage disequilibrium half-windows
around the most significant SNP in a region,
the effects for the SNP with the strongest
absolute average effects are shown (red-
flagged in the Manhattan plot). SNPs are
named by chromosome number and position
on the chromosome. Negative effect sizes
(blue) correspond to reduced plant resistance
as a result of the rare allele, and positive
effect sizes (yellow) correspond to increased
resistance as a result of the rare allele. Stress
responses were clustered hierarchically
according to their effect, using Ward’s
minimum variance method. The key shows
the frequency distribution for the effect sizes
of the SNPs.
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Table 2 Candidate Arabidopsis thaliana genes resulting from (a) multi-trait mixed-model (MTMM) analysis of all 30 stress responses as presented in Fig. 2;
and (b) contrast-specific analysis with MTMM for contrasting effects of biotic and abiotic stresses as presented in Fig. 3

Marker* Gene in LD
Gene
name Gene description† Responsiveness References

(a)
chr2.11659416 AT2G27250 CLV3 One of the three CLAVATA genes control-

ling the size of the shoot apical meristem
(SAM) in Arabidopsis

Unknown Clark et al. (1996); Fletcher
et al. (1999); Shinohara &
Matsubayashi (2010)

chr3.19804402 AT3G53420 PIP2 A member of the plasma membrane
intrinsic protein subfamily PIP2

Heat, salt and heat, heat and
silwet

Martiniere et al. (2012); Peret
et al. (2012); Rasmussen
et al. (2013); Sanchez-
Romera et al. (2014)

chr4.6805259 AT4G11170 RMG1 Encodes RMG1 (Resistance Methylated
Gene 1), an NB-LRR disease resistance
protein with a Toll/interleukin-1 receptor
(TIR) domain at its N terminus

Flagellin Yu et al. (2013)

chr5.7493620 AT5G22570 WRKY38 Member of WRKY Transcription Factor;
Group III

SA, Pseudomonas Mare et al. (2004); Kim et al.

(2008)
chr5.22041081 AT5G54250 CNGC4 Member of cyclic nucleotide gated channel

family, a downstream component of the
signaling pathways leading to
hypersensitive response (HR) resistance.
Mutant plants exhibit gene-for-gene
disease resistance against avirulent
Pseudomonas syringae despite the near-
complete absence of the HR. Salicylic acid
accumulation in dnd2mutants is com-
pletely PAD4-independent

Cold, flagellin Jurkowski et al. (2004); Keisa
et al. (2011); Chin et al.
(2013); Rasmussen et al.

(2013)

chr5.23302987 AT5G57560 TCH4 Encodes a cell wall modifying enzyme,
rapidly up-regulated in response to
environmental stimuli

Heat, heat and silwet, heat
and salt, heat and high
light, high light, high light
and cold, high light and salt

Braam & Davis (1990); Xu
et al. (1996); Purugganan
et al. (1997); Iliev et al.
(2002); Rasmussen et al.

(2013)
(b)
chr1.30381439 AT1G80820 CCR2 CINNAMOYL COA REDUCTASE. Encodes

a cinnamoyl CoA reductase isoform.
Involved in lignin biosynthesis

Cold and flagellin and silwet Luderitz & Grisebach (1981);
Lauvergeat et al. (2001);
Zhou et al. (2010); Ras-
mussen et al. (2013)

chr1.30381439 AT1G80840 WRKY40 Pathogen-induced transcription factor.
Binds W-box sequences in vitro. Forms
protein complexes with itself and with
WRKY60. Coexpression withWRKY18 or
WRKY60made plants more susceptible to
both P. syringae and Botrytis

Cold and flagellin and silwet Chen et al. (2010a); Pandey
et al. (2010); Liu et al.

(2012); Rasmussen et al.

(2013)

chr1.6038270 AT1G17610 CHS1 CHILLING SENSITIVE 1, mutant accumu-
lates steryl-esters at low temperature

Cold and high light Rasmussen et al. (2013);
Wang et al. (2013); Zbierzak
et al. (2013)

chr5.171177 AT5G17640 ASG1 ABIOTIC STRESS GENE 1; expression of
this gene is induced by ABA and salt stress

ABA, salt Coste et al. (2008); Batelli
et al. (2012)

chr5.23247572 AT5G57380 VIN3 Encodes a plant homeodomain protein
VERNALIZATION INSENSITIVE 3 (VIN3).
In planta VIN3 and VRN2,
VERNALIZATION 2, are part of a large
protein complex that can include the poly-
comb group (PcG) proteins
FERTILIZATION INDEPENDENT

ENDOSPERM (FIE), CURLY LEAF (CLF),
and SWINGER (SWN or EZA1). The com-
plex has a role in establishing FLC

(FLOWERING LOCUS C) repression dur-
ing vernalization

Cold Sung et al. (2007); Bond et al.
(2009); Finnegan et al.

(2011)
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27863 = 0.58%. This is an enrichment of 2.33 times, significant
at a = 0.05 (Fisher’s exact probability test, mid-P value < 0.046;
Rivals et al., 2007). Following Atwell et al. (2010), an upper
bound for the false discovery rate is then 1/2.33 = 0.43.

In addition to screening for SNPs with contrasting effects, we
screened for SNPs with a similar effect across the earlier-
mentioned trait clusters (Fig. S5) and found candidate genes
involved in oxidative stress and plant responses to salinity and
pathogens (Table S5).

QTLs underlying contrasts in responses to biotic and abiotic
stresses

We expected a negative correlation between the responses to abi-
otic and biotic stresses as a result of antagonistic interactions
between ABA and the SA and JA-ET pathways (Anderson et al.,
2004; Fujita et al., 2006; De Torres Zabala et al., 2009; Kissoudis
et al., 2015). Testing for this contrast within the GWA analysis
using our MTMM approach significantly identified 43 SNPs
with a QTL effect that changed sign between biotic and abiotic
conditions. For presentation purposes, traits were grouped by a
cluster analysis across SNPs, while SNPs were grouped by cluster-
ing across traits. Fig. 3 shows the SNPs with the strongest overall
effects, identified in 18 LD intervals. The minor alleles of nine of
these SNPs displayed a positive effect on biotic stress response
traits and a negative effect on abiotic response traits. The remain-
ing nine SNPs displayed the opposite effect (Fig. 3). Several can-
didate genes were identified in LD with the SNPs that are
specific for plant responses to either abiotic or biotic stresses
(Table 2b), such as TCH4 (encoding a cell wall-modifying
enzyme), AtCCR2 (involvement in lignin biosynthesis) and
ASG1 (a gene induced by ABA and salt stress). Transcription data
(Fig. S6) support the notion that these genes play a contrasting
role in responses to abiotic and biotic stresses and reveal an antag-
onistic responsiveness between ABA and JA treatment (TCH4) or
a specific responsiveness to either ABA (AtCCR2, ASG1,
ATVDAC4) or JA (ATWRKY40). This is in line with the hypoth-
esis that there are antagonistic effects between abiotic stress

responses, predominantly involving the ABA pathway, and
wound and biotic stress responses involving the JA-ET or SA
pathways (Kissoudis et al., 2015). Previous studies have, however,
also revealed an overlap in abiotic and biotic plant responses,
such as similar transcriptomic perturbations after salinity and
pathogen stress (Ma et al., 2006). A screen for QTLs with similar
effects on resistance to biotic and abiotic stress (Fig. S7) identi-
fied three genes annotated to be responsive to stress stimuli
(Table S6). Transcriptional data show that these genes respond
differentially to different (a)biotic stresses and phytohormones
(Fig. S8). ARGAH2, encoding an arginase enzyme with a role in
the metabolism of polyamines and nitric oxide, is involved in
both SA- and JA-mediated resistance to both biotrophic and
necrotrophic pathogens, and is also responsive to abiotic stimuli
such as temperature, salt and light intensity (Fig. S8) (Jubault
et al., 2008; Gravot et al., 2012; Rasmussen et al., 2013). PKS1 is
known to be involved in adaptation in plant growth in response
to light (Fankhauser et al., 1999; Molas & Kiss, 2008), but also
seems to be responsive to Botrytis (Fig. S8). These genes are
promising candidates for consistent effects across biotic and abi-
otic stresses.

QTLs underlying contrasts in responses to below- and
above-ground stresses

We expected a negative correlation between responses to
below- and above-ground stresses. A strong QTL signal was
found on chromosome 1 for this contrasting response
(Fig. S9). The associated marker (chr1.13729757) had 12
genes in LD with it, of which 11 are annotated as pseudo-
genes. Transcriptional data on abiotic stresses for the only
protein coding gene (AT1G36510) show an up-regulation in
above-ground tissues, yet a down-regulation in the root tissues
(Winter et al., 2007). Marker chr5.16012837 showed the
strongest signal for similar effects on responses to below- and
above-ground stresses (Fig. S10) for which the pathogenesis-
related thaumatin superfamily protein (AT5G40020) is the
most promising candidate gene.

Table 2 (Continued)

Marker* Gene in LD
Gene
name Gene description† Responsiveness References

chr5.23293119 AT5G57560 TCH 4 Encodes a cell wall-modifying enzyme Heat, heat and silwet, heat
and salt, heat and high
light, high light, high light
and cold, high light and salt

Braam & Davis (1990); Xu
et al. (1996); Purugganan
et al. (1997); Iliev et al.
(2002); Rasmussen et al.

(2013)
chr5.23293870 AT5G57490 VDAC4 Encodes a voltage-dependent anion

channel (VDAC: AT3G01280/VDAC1)
Pseudomonas Lee et al. (2009); Tateda et al.

(2011)
chr5.23366252 AT5G57685 GDU3 Encodes a member of the GDU (glutamine

dumper) family proteins involved in amino
acid export: At4g31730 (GDU1)

Unknown Chen et al. (2010b)

NB-LRR, nucleotide binding site–leucine-rich repeat.
*Markers derived from MTMM analysis (see Fig. 2).
†Based on information on http://www.arabidopsis.org/tools/bulk/go/index.jsp.
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Validation of identified QTLs

To obtain experimental support for the most interesting QTLs
resulting from the MTMM, we tested homozygous T-DNA
insertion lines for candidate genes RMG1 and WRKY38 (both
resulting from the MTMM analysis), and TCH4 (from MTMM
analysis on biotic vs abiotic contrast) for several of the stresses
addressed in this study. Two independent rmg1 T-DNA inser-
tion lines showed a phenotype that was different from the wild-
type (Col-0) for some of the stress conditions (Fig. 4; Methods
S11), being more resistant to caterpillar feeding and osmotic
stress (Fig. 4). RMG1 (AT4G11170) encodes a nucleotide bind-
ing site–leucine-rich repeat disease resistance protein, which acts
as a pattern-recognition receptor that recognizes evolutionarily
conserved pathogen-derived signatures, and transcription is
induced by the bacterial peptide flg22 (Yu et al., 2013). The rare
allele of the corresponding marker chr4.6805259 is associated
with enhanced resistance to salt stress and the combined stresses
‘caterpillar and drought’ and ‘caterpillar and fungus’ and with
enhanced susceptibility to drought stress. Gene expression data
show that RMG1 is up-regulated by several abiotic and biotic
stresses (Fig. 4). In addition, gene ontology enrichment analysis
of the coexpression network of RMG1 shows an overrepresenta-
tion of genes involved in immune responses and maintenance of
ion homeostasis. The latter is based upon coexpression with five

genes encoding glutamate receptors (GLR1.2, GLR1.3, GLR2.5,
GLR2.8, and GLR2.9), putatively involved in ion-influx-
mediated long-distance signaling of wound, pathogen and salt
stress (Ma et al., 2006; Mousavi et al., 2013; Choi et al., 2014;
Kissoudis et al., 2015). T-DNA insertion lines for TCH4 and
WRKY38 did not show a phenotype different from the wild-type
(Col-0) for any of the tested stress conditions. Whether this is
dependent on the genetic background used remains to be investi-
gated.

Summarizing, our multi-trait GWA methodology facilitated a
detailed analysis of the genetic architecture of resistance in
Arabidopsis to a wide diversity of biotic and abiotic stresses.
Application of this methodology revealed novel candidate genes
associated with multiple stress responses, where specific contrasts
were identified with some genes positively associated with the
resistance to one set of stresses while being negatively associated
with another set of stresses. In plant breeding (Brady et al., 2005;
Ballesteros et al., 2015), such genes are classified as adaptive.
Alternatively, other genes were identified with consistent effects
across a wide spectrum of stress conditions. Such genes are
labeled as constitutive in the plant breeding literature (Brady
et al., 2005; Ballesteros et al., 2015). Both adaptive and constitu-
tive QTLs are important factors to contribute to improved stress
resistance and tolerance in commercial crop species (Brady et al.,
2005; Ballesteros et al., 2015).

–log10P

Fig. 3 Genetic associations specific for
contrasting responses of Arabidopsis
thaliana to abiotic and biotic stresses.
Genetic associations (in red) were estimated
with a contrast-specific genome-wide
association analysis using a multi-trait mixed
model (MTMM). For exploratory purposes,
significant single nucleotide polymorphisms
(SNPs) (P ≤ 10�4) for the biotic–abiotic
contrast were clustered on their trait-specific
effect sizes as estimated in the full MTMM,
that is, without imposing a contrast
restriction on the SNP effects. If there was
another SNP in LD that had a higher effect
size, this SNP was used as a representative of
the LD block. Negative effects (blue) were
cases where the rare allele was associated
with a detrimental effect on the plants, while
positive effects (yellow) were cases where
the rare allele was associated with increased
resistance to the stress. The rare alleles of the
top nine SNPs are associated with enhanced
resistance to abiotic stresses and reduced
resistance to biotic stresses; the bottom nine
SNPs show the inverse. Stresses were
clustered on the basis of SNP effects using
Ward’s minimum variance method. The key
shows the frequency distribution of SNPs
across effect sizes.
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Fig. 4 Phenotypes of RMG1 T-DNA mutant screenings for Arabidopsis thaliana. Phenotypes are given for two T-DNA lines in the RMG1 gene and for
Col-0 as control. (a) Number of thrips feeding spots on a detached leaf at 6 d postinfestation (n = 24). (b) Leaf area consumed by Pieris rapae caterpillars
(n = 6). (c) Number of nematode egg masses (n = 23). (d) Number ofMyzus persicae aphid offspring (n = 10–17). (e) Percentage survival of adult whiteflies
(Aleyrodes proletella) (n = 10). (f) Plant FW after osmotic treatment in comparison with control (% relative to control) (n = 4). (g) Plant DW after 75mM
salt treatment in comparison with control (ratio) (n = 7–10); mean� SE; *, P < 0.05; **, P < 0.01 (difference in comparison with Col-0). (h, i) Relative
expression fold-change for RMG1 compared with untreated control plants in above-ground (h) and below-ground (i) tissue. Expression data from
Arabidopsis eFP browser (http://bbc.botany.utoronto.ca).
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Discussion

We developed a novel mixed-model approach to multi-trait
GWA mapping with a special feature for testing contrasts
between groups of stresses to identify the genetic architecture
underlying a total of 30 stress response traits in Arabidopsis. The
strength of our statistical approach was that our multi-trait mixed
model accounted simultaneously for dependencies between geno-
types and between traits, providing a natural and appropriate cor-
rection for multiple testing, while maximizing power for the
detection of QTLs for the stress contrast under study. As we
addressed a large number of stresses, our phenotyping experi-
ments were distributed across a series of laboratories and were
not performed simultaneously. To mitigate as much as possible
the occurrence of QTLs induced purely by experiment-specific
differences in plant management and environmental control, our
phenotypic responses were defined in terms of control-corrected
responses. This type of correction will emphasize QTLs for resis-
tance and tolerance per se and will decrease detection power for
QTLs related to development and viability.

The extensive phenotyping executed in this study was done
under carefully controlled conditions in climate chambers.
Ideally, phenotyping should be done in nature because that is
where genetic variation is exposed to natural selection (Bergelson
& Roux, 2010; Brachi et al., 2010, 2013). Here, we have pheno-
typed the plant population to 15 different stresses under labora-
tory conditions and our data show an interesting pattern based
on genetic correlations that matches with phytohormonal signal-
ing underlying stress responses (Fig. 1). This indicates that the
genetic architecture recorded here is biologically relevant.
Drought and salt stress responses share signal transduction mech-
anisms (Zhu, 2002) which are represented by the genetic correla-
tions recorded (Fig. 1). Insect damage is commonly associated
with drought or osmotic stress and this is also clear from overlap
in underlying phytohormonal signalling (Pieterse et al., 2012).
Fig. 1 shows that drought stress and osmotic stress correlate with
insect stresses. Extending studies of genetic variation and the
genetic architecture underlying responses to multiple stresses to
natural conditions will be an important next step (Bergelson &
Roux, 2010).

Through the approach developed here, candidate genes for
stress responses were identified that are involved in contrasting
responses when comparing biotic and abiotic stresses, above- and
below-ground stresses, and attack by phloem feeders vs other
biotic stresses. Among these genes many are involved in phyto-
hormone-mediated processes, supporting the notion that the
phytohormonal regulatory network plays an important role in
plant stress responses (Pieterse et al., 2012). The MTMM
approach further showed that certain SNPs were associated with
multiple stress responses and that transcriptional patterns of
genes to which the SNPs were linked, as well as the phenotype
expressed upon knocking out one of these genes, matched the
observed stress responses of the plants. The RMG1 gene that was
identified through this procedure has relevant effects on plant
phenotype in the context of responses to individual stresses.
RMG1 is a bacterium-inducible resistance gene whose activity is

modulated by the plant through RNA-directed DNA methyla-
tion (RdDM) (Yu et al., 2013). RMG1 expression activates the
SA pathway (Yu et al., 2013). Thus, the increased resistance
against caterpillars in rmg1 mutants may be the result of elimina-
tion of SA-mediated interference with JA-induced resistance to
caterpillars (Pieterse et al., 2012). RMG1 appears to be inducible
by several stresses and deserves further in-depth analysis for its
role in plant response to multiple stresses. Our data show that for
the 30 most significant SNPs resulting from the MTMM analy-
sis, the average absolute effect size for double stresses is higher, on
average, than that for single stresses (P < 0.007, Table S2). This
suggests that resistance mechanisms involved in countering dual
stresses are of a more general nature, in contrast to the rather
specific resistance mechanisms involved in single stress responses.
However, the combined stresses included in this study particu-
larly involve fungal and caterpillar stresses. Future studies includ-
ing other combined stresses are needed to further investigate the
suggested pattern.

The MTMM framework that we used for GWA mapping pro-
vides unbiased estimates for QTL allele substitution effects
together with correct standard errors for these effects. Within the
same framework we developed unique facilities to test hypotheses
on QTL9 stress interactions in multi-trait models, which are
not available in competing meta-analysis approaches (Zhu et al.,
2015). The variance-covariance structure that we used for the
polygenic term protects against inflated type I error, that is, too
many false-positive SNP–trait associations, as a consequence of
population structure and kinship on the genotypic side and
genetic correlations between traits on the trait side. The inclusion
of trait correlations will, for most QTLs, improve the power of
detection in comparison to single-trait GWA mapping (Korte
et al., 2012; Zhou & Stephens, 2014; see ‘Multi-trait GWAS’ in
the Materials and Methods section). For a comparison of the
MTMM analysis with single-trait analyses, see ‘Simulations to
compare power for full MTMM, contrast MTMM and
univariate analysis’ in the Materials and Methods section,
Methods S12 and Figs S11 and S12. Our choice for the variance-
covariance structure of the polygenic term as a Kronecker
product of a compressed kinship on the genotypes with an
approximated unstructured variance-covariance model on the
environments is sometimes used in plant breeding for genomic
prediction models (Burgueno et al., 2012). However, implemen-
tation of such models in GWA mapping and especially on the
scale that we present here, with 30 traits, is unprecedented and is
practically far from straightforward. It required substantial work
on preparatory phenotypic analyses as well as fine-tuning of the
genotypic and trait variance-covariance structures to achieve con-
vergence of the mixed models.

The MTMM analyses identified candidate genes associated
with contrasting responses to biotic and abiotic stresses. Stress
combinations appeared to have a strong influence on the
MTMM outcome, indicative for significant interactions between
different stresses when occurring simultaneously, and underlining
the importance of studying the resistance of plants to combina-
tions of stress. Transcriptional data and phenotyping of mutants
provide initial support for the role of several of the candidate
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genes identified. Studies of plant responses to a diverse set of
biotic stresses show that the transcriptional pattern is stress-
specific and that phytohormonal signaling pathways can explain
up to 70% of the induced gene regulation (De Vos et al., 2005).
Taking the outcome of the MTMM analyses to investigate the
involvement of identified candidate genes in the resistance of
plants to several stresses, not only in Arabidopsis but also in
related crop species, such as, for example, Brassica species, will be
valuable in the breeding by design of future crops to protect them
against combinations of stresses, including biotic and abiotic
stresses. This will be of great value for next-generation crops.
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