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Introduction and Objectives 
In sparsely rooted subsoils secondary minerals, such 

as iron and aluminum oxides are predominant 

sorption sites for phosphorus (P) and thus important 

sinks for P fertilizers. P supply from these oxides can 

contribute to effective strategies for a sustainable 

future use of P fertilizers. Here we are going to 

combine (1) P radio-isotope tracing and imaging 

techniques, (2) diffuse gradient in thin films 

technology (DGT), and (3) magnetic resonance 

imaging (MRI) with the objective to assess the P 

accessibility and use efficiency from stable P 
reservoirs. 

Bioimaging technology – 

Radioluminography 
Using radioimaging it is possible to locate 33P labelled 

P within the plant and roots. The CR 35 Bio is a 

compact high-speed image plate scanner (Figure 1) to 

detect a variety of different radio nucleotides 

(radioluminographic imaging). The Imaging plate (IP) 

is a flexible, coated radiation sensor plates, which 

contains fine crystals (< 5 µm) of photo-stimulable 

barium fluorobromide spiked with bivalent europium 

as luminescence center (Nakajima, 1993). By 

comparison with conventional X-ray imaging, referred 

to as autoradiography, this technique enables shorter 

exposition times, high resolutions (till 30 µm) and an 

easy handling due to digital processing.  

Study design and first results 

Outlook  
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Figure 1: Left: CR 35 Bio compact high-speed image plate scanner (Photo: 
Koch; 2015). Right: Insights of a scanner unit with activated laser beam (red 
lines) reading an image plate (blue) (Picture: www.biostep.de). 

In a plant-agar system 32P labelled Fe-P and Al-P oxides are 

applied in agar gel (Figure 2; brown and white boxes in the square 

petri dishes). Wheat plants were grown in the agar for 18 d, 

afterwards 32P plant up take was quantified via liquid scintillation 

counting (LSC). 

  

The hypothesis of this study was to analyse 

(1)whether the plants take up more 32P in the low P concentration 

agar medium (0,2 mM) than in the high P medium (5mM)? 

(2)what is the P supply potential of Fe-P and Al-P oxides? Is the 

plant able to adapt strategies for P supply to different soil 

minerals? 

Figure 2: Photo and bioimager image of plant-agar system after 18 d of growth. P sources were provided as (1) P sorbed 
on to amorphous iron oxide and (2) on to amorphous aluminum oxide, both labelled with 32P-Orthophosphate mixed in 
agar gel and implemented in surrounding agar gel with basal nutrition solution containing (a) 5mM and (b) 0,2 mM of 
KH2PO4. The experiment was performed in a growth chamber with 16 h day-length at a light intensity of 320 µmol m-2 s-
1 (PAR). Day-time conditions were 20 °C and 60% relative air humidity, while at night temperature decreased to 12 °C at 
80% relative air humidity. IPs was exposed for 6 h and scanned with 100µm sensitivity. 

(1) Plant - Soil System - P Uptake 
33P sorbed oxide uptake studies allow to 

evaluate P utilization potential from P 

associated with soil minerals in a natural 

environment.  

 

The results illustrated that it is possible to quantify P plant 

acquisition from dominant soil P sources via radio-isotopic labelling. 

Plants grown in 0,2 mM P agar medium showed higher specific 32P 

activities. Further, P sorbed to iron oxide was significantly better 

accessible than from aluminum oxide due to adapted acquisition 

strategies of the plant to utilize the Fe-P as available P source. 

Figure 4 : Functional design of the  
DGT method. Illustrating the 
trapping of soil desorable P in the 
soil solution (modified Picture: 
soilpforum.com) 

Figure 5 : MRI picture of a Lupine root (Oswald et al., 2015) 
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(2) Oxid-P desorption isothermes - DGT 

To unambiguously analyse exchange - and 

desorption potentials in soils compared to plant 

acquisition strategies of Fe-P and Al-P oxides. 

(3) Root morphology - MRI 

MRI experiments (Figure 5) for analysing 

root morphology and to obtain a structural 

model of plant root systems. This allows to  

evaluate P acquisition strategies by plant 

roots at the soil profile scale.  
Figure 3 : Design of soil filled 
rhizotron  for analysing Fe-P/ Al-P 
accessibility in subsoil by wheat 
plants 
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Iron oxide  Aluminium oxide Control 

P concentration 5mM (1a) 0,2 mM (1b) 5mM (2a) 0,2 mM (2b) 0,6 mM 

Shoot DW [mg] 178±33 183±28 120±6 146±15 176±39 

Root   DW [mg] 42±20 37±3 36±3 41±2 45±9 

Shoot 32P (%) 1.1±0.3 3.9±0.7* 0.1±0.0 0.3±0.0 - 

Root   32P (%) 1.2±1.0 1.9±0.0 1.1±0.2 1.8±0.3 - 

Agar   32P (%) 98±1.1 94±0.7 99±0.4 98±0.2 - 

Table 1: Dry weights (DW) and 32P proportions of selected plant 

compartments and agar nutrition medium after 18 d of growth. 32P recovery 

was between 96% and 100%. Significant at * P < 0.05. n = 3 


