

Neuromorphic Systems Running Neuron Models on SpiNNaker

13th December 2016 | Guido Trensch, Dimitri Plotnikov, Abigail Morrison (SimLab Neuroscience)

Interests in Neuromorphic Computing

- Large-scale simulations of the brain
 - Current technology is not well suited for large-scale parallel processing

n MWatts

- Accelerated simulation of neural networks exceeding biological real-time
 - Bridge temporal scales
 - Traditional simulations are too slow for the study of plasticity and learning

- Brain-inspired computational solutions for practical applications
- Explore None-Von-Neumann architectures

Architectural Strategy

- Analog-digital mixed signal systems
- Fully digital systems
- Analog systems

Architectural Strategy

Circuit Design Space

Architectural Strategy

Circuit Design Space

CONFLICT

- Custom chip
- Standard cell and application specific chip (ASIC)
- Field-programmable gate array (FPGA)
- Application specific instruction set processor (ASIP)
- Digital signal processor (DSP)
- General purpose processor (GPP)

Architectural Strategy

Circuit Design Space

Neuromorphic circuit implementations

- Neuron circuits
- Synapse circuits
- Dendritec trees and axons
- Spike generators
- Spike distribution systems

Architectural Strategy

Circuit Design Space

Neuromorphic circuit implementations

В

• Neuron circuits

FIGURE 4 | Voltage-amplifier I&F neuron. (A) Schematic diagram; (B) Membrane voltage trace over time.

[Giacomo Indiveri et al., "Neuromorphic silicon circuits", Frontiers in Neuroscience Volume 5]

Architectural Strategy

Circuit Design Space

Neuromorphic circuit implementations

• Neuron circuits

FIGURE 13 |The log-domain LPF neuron (LLN). (A) The LLN circuit comprises a membrane LPF (yellow, M_{L1-3}), a spike-event generation and positive-feedback element (red, M_{A1-6}), a reset-refractory pulse generator (blue, M_{R1-3}), and a spike-frequency adaptation LPF (green, M_{G1-4}). (B) Recorded and normalized traces from a LLN fabricated in 0.25 µm CMOS, exhibits regular spiking, spike-frequency adaptation, and bursting (top to bottom).

Architectural Strategy

Circuit Design Space

Neuromorphic circuit implementations

• Neuron circuits

Architectural Strategy

Circuit Design Space

Neuromorphic circuit implementations

- Synapse circuits
- Dendritec trees and axons

Architectural Strategy

Circuit Design Space

Neuromorphic circuit implementations

• Neuron circuits

FIGURE 21 | Block diagram of a fully digital I&F neuron. Calibrated current source, pulsing current mirrors, and integration capacitors of Figure 20, are replaced by digital adder and accumulator circuits.

[Giacomo Indiveri et al., "Neuromorphic silicon circuits", Frontiers in Neuroscience Volume 5]

Architectural Strategy

Circuit Design Space

Neuromorphic circuit implementations

- Neuron circuits
- Synapse circuits
- Dendritec trees and axons
- Spike generators
- Spike distribution systems

Architectural Strategy

Circuit Design Space

Neuromorphic circuit implementations

Neuromorphic Systems Architecture

Neuroscientific Requirements

Feature richness

Large variety of neuron types with different properties
 Flexibility and malleabitlity

Reproducibility and cross-validation of simulation results

Compatibility with existing tools

Ease of use for non hardware specialists

Neuromorphic system as research platform for neuroscience

Neuroscientific Requirements

Biological & Computational Neuroscience

Infrastructure & Services

Integration into existing HPC landscapes
Interactivity and visualization
Usability
Co-design and technical standards
Software engineering
Community building and support
Methodologies and processes
... etc.

Biological & Computational Neuroscience

Infrastructure & Services

Infrastructure & Services

Biological & Computational Neuroscience

Biological & Computational Neuroscience

Infrastructure & Services

Neuromorphic Systems Architecture

- Analog-digital mixed system
- Implements two neuron models
 - Adaptive exponential neuron model
 - Integrate & fire neuron model
- Two levels of plasticity
 - Short-term depression and facilitation
 - Spike time dependend plasticity (STDP)

$$-C_{\rm m} \frac{dV}{dt} = g_{\rm l}(V - E_{\rm i}) - g_{\rm i} \Delta_{\rm th} \exp\left(\frac{V - V_{\rm th}}{\Delta_{\rm th}}\right) + g_{\rm e}(t)(V - E_{\rm e}) + g_{\rm i}(t)(V - E_{\rm i}) + w(t)$$

$$-\tau_w \frac{dw}{dt} = w(t) - a(V - E_1)$$

Fig. 4. Schematic diagram of a synapse.

BrainScaleS

- Wafer-scale integration
- Inter-reticle connections
- Each wafer incorporates
 - ~200.000 neurons
 - 44 x 10⁶ synapses
- 14336 pre-synaptic inputs per neuron possible
- Synapse weight is represented by a 4, 6, or 8 bit value

Wafer I/O PCB

horizontal

BrainScaleS

- 20 x 8-inch silicon wafers
- 4 million neurons
- Operates at accelerated biological real-time: 10⁴ times faster
- Expected to stay below 1 KW/wafer [Schemmel, "Wafer-Scale Integration of Analog Neural Networks"]
- PyNN API for simulator-independent specification of neuronal network models

- Fully digital many-core system
- SpiNNaker chip
 - Energy efficient ARM968 processor core (~1 Watt/chip)
 - 32 Kbyte ITCM, 64 Kbyte DTCM
 - 128 Mbyte stitch-bonded SDRAM
 - Globally asynchronous locally synchronous (GALS) system with 16+2 ARM cores per chip
 - AER-based communication infrastructure
- Hexagonal mesh topology

24

- Available hardware setups
 - Jörg Conradt's one-node board (TU München)
 - 4-chip board
 - 48-chip board
 - Stand-alone toroid (number of 48-node boards

wired together as a single machine)

• 600-board machine

5 racks per cabinet, 10 cabinets.

- Biologically real-time simulation (1 ms resolution, adjustable)
- Targeting towards simulations of 1 billion neurons (1% of the human cortex)
- Software stack
 - PyNN API for simulator-independent specification of neuronal network models
 - 5 built-in neuron and synapse models (Current and conductance based leaky integrate & fire and Izhikevich models)
 - The software stack allows neuron models to be added.

- Next generation SpiNNaker chip
 - 33 quad cores per chip
 - EXP, LOG and RNG build-in functions
 - Single precision FPU !
 - Current core has no FPU: 32Bit fixed point S16.15 Simulation results might not be accurate and comparable

Modelling and Code Generation

Problem:

• Creating an application for the neuromorphic hardware requires expertise in a broad spectrum of disciplines.

Solution:

• Create an abstract specification and use code generators to run the model.

Creating a Neuron Model with NESTML

Code Generators

The Code Generator captures the domain knowledge

- Instead of solving individual problems every time manifest the knowledge in a code generator.
- Use an abstract model capturing the model essence to create a portable neuron specification.

Questions ?

32