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We introduce a general and accurate method for determining lattice phase shifts and mixing angles, 
which is applicable to arbitrary, non-cubic lattices. Our method combines angular momentum projection, 
spherical wall boundaries and an adjustable auxiliary potential. This allows us to construct radial lattice 
wave functions and to determine phase shifts at arbitrary energies. For coupled partial waves, we use 
a complex-valued auxiliary potential that breaks time-reversal invariance. We benchmark our method 
using a system of two spin-1/2 particles interacting through a finite-range potential with a strong tensor 
component. We are able to extract phase shifts and mixing angles for all angular momenta and energies, 
with precision greater than that of extant methods. We discuss a wide range of applications from nuclear 
lattice simulations to optical lattice experiments.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Lattice methods are widely used in studies of quantum few-
and many-body problems in nuclear, hadronic, and condensed 
matter systems, see e.g. Refs. [1–5]. A necessary step in such stud-
ies is the computation of scattering phase shifts and mixing angles 
from an underlying microscopic lattice Hamiltonian. Remarkably, 
the same problem arises in the context of experiments on op-
tical lattices. Several groups have pioneered the use of ultracold 
atoms in optical lattices produced by standing laser waves, to em-
ulate the properties of condensed matter systems and quantum 
field theories [6–10]. The basic concept is to tune the interactions 
of the atoms, both with each other and with the optical lattice, to 
reproduce the single-particle properties and particle–particle inter-
actions of the “target theory”. Such studies often require a more 
general setup than a simple cubic lattice, for instance in the case 
of the hexagonal Hubbard model [11], which closely resembles the 
physics of graphene [12] and carbon nanotubes [13]. Clearly, a ro-
bust and accurate method for computing scattering parameters on 
arbitrary lattices is needed.

For the scattering of particles on a cubic lattice, Lüscher’s finite-
volume method [14] uses periodic boundary conditions to infer 
elastic scattering phase shifts from energy eigenvalues. The method 
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has been widely used in lattice QCD simulations with applications 
to different angular momenta [15–19] as well as partial-wave mix-
ing [20], see Ref. [2] for a recent review. An important advantage of 
Lüscher’s method is that periodic boundary conditions are typically 
already used in lattice calculations of nuclear, hadronic, ultracold 
atomic, and condensed matter systems. Since no additional bound-
ary constraints are needed, the method is easily applied to a wide 
class of systems.

However, Lüscher’s method requires that the finite-volume en-
ergy levels can be accurately determined, with errors small com-
pared to the separation between adjacent energy levels. This is 
not practical in cases such as nucleus–nucleus scattering, where 
the separation between finite-volume energy levels is many orders 
of magnitude smaller than the total energy of the system. Fortu-
nately, this problem has been solved using an alternative approach 
called the adiabatic projection method [21–24]. There, initial clus-
ter states are evolved using Euclidean time projection and used to 
calculate an effective two-cluster Hamiltonian (or transfer matrix). 
In the limit of large projection time, the spectral properties of the 
effective two-cluster Hamiltonian coincide with those of the origi-
nal underlying theory. This method has been applied to nuclei and 
ultracold atoms, while applications to lattice QCD simulations of 
relativistic hadronic systems are currently being investigated.

Since the adiabatic projection method reduces all scattering 
systems to an effective two-cluster lattice Hamiltonian, additional 
boundary conditions can be applied to the effective lattice Hamil-
tonian in order to compute scattering properties. This opens the 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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door to methods more accurate than Lüscher’s by removing the ef-
fects of the periodic boundary conditions, which are otherwise a 
significant source of rotational symmetry breaking. One promising 
approach is to place the particles in a harmonic oscillator poten-
tial and extract phase shifts from the energy eigenvalues [25,26]. 
Another prominent example is the method used in Refs. [5,27], 
whereby a “spherical wall” is imposed on the relative separation 
between the two scattering particles. Phase shifts are then deter-
mined using the constraint that the wave function vanishes at the 
wall boundary. This method has been applied to the two-nucleon 
problem in lattice effective field theory (EFT) [28–31] and to lat-
tice simulations of nucleus–nucleus scattering using the adiabatic 
projection method [21–24].

In spite of such progress in lattice scattering theory, all methods 
are still lacking in precision, especially when partial-wave mix-
ing and high angular momenta are concerned. In previous work, 
numerical approximations were used for the study of coupled-
channel systems [5]. We now describe an extension of the spher-
ical wall method, which enables an efficient and precise determi-
nation of two-particle scattering parameters for arbitrary energies 
and angular momenta. We use angular momentum projection and 
solve the lattice radial equation with spherical wall boundaries, 
supplemented by an “auxiliary potential”. We test our method on 
a lattice model with strong tensor interactions that induce appre-
ciable partial-wave mixing. We expect our method to be applicable 
in theoretical lattice studies of nuclear, hadronic, ultracold atomic, 
and condensed matter systems, as well as in the experimental 
design of optical lattices. While we discuss only non-relativistic 
wave mechanics in our examples here, the extension to relativis-
tic systems simply entails replacing the non-relativistic dispersion 
relation with the relativistic one.

2. Benchmark system

We begin with the eigenvalue equation[
−∇2

2μ
+ V (r,σ 1,σ 2)

]
ψ = Eψ, (1)

where r is the relative displacement, σ i , with i = 1, 2, are the 
spins of the two scattering nucleons with mN ≡ 2μ = 938.92 MeV. 
Following Ref. [5], we take

V = C

{
1 + r2

R2
0

[
3(r̂ · σ 1)(r̂ · σ 2) − σ 1 · σ 2

]}

× exp

(
− r2

2R2
0

)
, (2)

with C = −2.00 MeV and R0 = 2.00 × 10−2 MeV−1. We only con-
sider states of total intrinsic spin S = 1. The radial equation is[
− 1

2μr

∂2

∂r2
r + L(L + 1)

2μr2
+ V J (r)

]
ψ J (r) = Eψ J (r), (3)

where L is the orbital angular momentum and J the total angular 
momentum. The “effective” potential is

V J (r) = C

(
1 + 2r2

R2
0

)
exp

(
− r2

2R2
0

)
, (4)

for uncoupled channels, and

V J (r) = C

⎡
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0

Fig. 1. (Color online.) Left panel: Grouping of mesh points according to lattice co-
ordinates (ρ, ϕ), with lattice spacing a. Right panel: Spherical wall radius RW , 
interaction regions I–III as discussed in the text and effective potential V J (r) for 
uncoupled channels with V 0 = −25 MeV.

for coupled ones. In the continuum, phase shifts and mixing angles 
are obtained by solving Eq. (3) using the potentials (4) and (5) with 
appropriate boundary conditions.

As rotational symmetry is broken by the lattice, the energy 
eigenstates of Eq. (1) belong to the irreducible representations 
(irreps) A1, A2, E , T1 and T2 of the cubic group S O (3, Z) rather 
than the full S O (3) rotational group [5,32,33]. For cubic periodic 
boundary conditions, as in Lüscher’s method [14], the cubic sym-
metry remains exact, thus our solutions can still be classified by 
cubic irreps. Nevertheless, the rotational symmetry breaking due to 
the boundaries makes it difficult to identify states of high angular 
momentum and to extract scattering parameters. In order to re-
move these effects, we impose a hard spherical wall of radius RW ,

V → V + �θ(r − RW ), (6)

where θ is the Heaviside step function and � is a (large) positive 
constant, intended to sufficiently suppress the wave function be-
yond RW (we set � = 108 MeV). We take RW to exceed the range 
of the interaction, such that the boundary is placed in the asymp-
totic (non-interacting) region. We also take 2RW to be less than 
the difference of the box size and the interaction range, which en-
sures that cubic boundary effects remain negligible.

3. Angular momentum decomposition

Let |�r〉 ⊗ |Sz〉 denote a two-body quantum state with separa-
tion �r and z-component of total intrinsic spin Sz . We define radial 
lattice coordinates (ρ, ϕ) by grouping equidistant mesh points, as 
shown in Fig. 1. To construct radial wave functions, we project 
onto states with total angular momentum ( J , J z) in the contin-
uum limit, using

|m〉( J ),( J z)

(L) ≡
∑

�n,Lz,Sz

C J , J z
L,Lz,S,Sz

Y L,Lz
(n̂)

× δρm,|�n| |�n〉 ⊗ |Sz〉, (7)

where the Y L,Lz are spherical harmonics with orbital angular mo-

mentum (L, Lz). The C J , J z
L,Lz,S,Sz

are Clebsch–Gordan coefficients. The 
parentheses around J , J z and L on the left hand side signify that 
these quantum numbers are not exactly good quantum numbers. 
Note that Eq. (7) is applicable to arbitrary geometries. Here, �n runs 
over all lattice points and the “radial shell” is given by the inte-
ger m. Then, ρm is the distance from the origin in units of the 
lattice spacing a, and δρm,|�n| picks out all lattice points for which 
ρm = |�n|. It may be practical (especially for non-cubic lattices) to 
relax this condition to include all lattice points with |ρm − |�n|| < δ

for small, positive δ. On the lattice, the |m〉 J , J z form a complete 
L
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Table 1
Energy levels and differences 	 (in MeV) with (w/) and without (w/o) unphysical J -mixing matrix elements. In the former case, we compute the 
eigenstates of the lattice Hamiltonian without a spherical harmonic projection.

Even parity Odd parity

state irrep w/ w/o 	 state irrep w/ w/o 	

13 S(D)1 T1 0.037 0.038 0.001 13 P1 T1 0.917 0.918 0.001
13 D2 E 2.764 2.766 0.002 13 P (F )2 E 1.795 1.796 0.001
13 D(G)3 T1 3.347 3.351 0.004 13 P0 A1 3.048 3.053 0.005
13G4 A1 6.562 6.567 0.005 13 F3 A2 4.616 4.620 0.004
13G4 T1 6.624 6.637 0.013 13 F (H)4 A1 4.998 5.003 0.005
Fig. 2. (Color online.) Illustration of rotational symmetry breaking effects in the 
Hamiltonian matrix, given in the basis of Eq. (7). The colors show the magnitude 
of the matrix elements. To study unphysical mixings, we remove the tensor com-
ponent of V J (r). The resulting Hamiltonian matrix should ideally be block-diagonal 
in the S-, D- and G-waves etc. Clearly, the matrix elements that cause unphysical 
mixings are suppressed by several orders of magnitude. In each block, the row and 
column indices represent the radial coordinates of the mesh points. For higher par-
tial waves, entire “radial shells” ρm vanish due to the angular dependence of the 
wave function, and such redundant rows and columns have been removed.

(but non-orthonormal) basis. We therefore compute the norm ma-
trix of these states before solving for the eigenstates of the lattice 
Hamiltonian.

We find that rotational symmetry breaking is almost entirely 
due to the non-zero lattice spacing a. As we take a → 0 at fixed 
RW , rotational symmetry is exactly restored. The degree of mix-
ing between different total angular momenta J and J ′ is a useful 
indicator of rotational symmetry breaking. Such effects can be in-
terpreted as arising from the non-orthogonality of wave functions 
in different partial waves when their inner product is computed 
as a sum over discrete lattice points. The degree of mixing is dif-
ficult to estimate a priori, as it depends strongly on the details of 
the interaction.

Given a simple cubic lattice with a cubic-invariant interaction, 
unphysical J -mixing only occurs between cubic irreps of the same 
type. If the objective is to describe a rotationally invariant system 
on the lattice, then we may simply drop all unphysical couplings 
between channels with different J . We find that rotational sym-
metry breaking is numerically insignificant at low energies in the 
spherical wall method. Still, it is instructive to study the sizes of 
the unphysical J -mixings. For this purpose, we use a simple cu-
bic lattice with a = 100 MeV−1 and RW = 10.02a. In the radial 
basis (7), the Hamiltonian matrix becomes nearly block-diagonal, 
with each block corresponding to a specific J . The non-block-
diagonal elements induce unphysical J -mixing. In Table 1, we ex-
amine the lowest energy levels with and without J -mixing matrix 
elements. When J -mixing is included, we solve directly for the 
eigenstates of the lattice Hamiltonian without a spherical harmonic 
projection. In Fig. 2, we show the Hamiltonian matrix elements in 
the projected basis defined in Eq. (7). In order to focus entirely on 
unphysical mixings caused by rotational symmetry breaking, we 
have neglected the tensor component of V J (r) in Fig. 2. The mag-
nitude of such unphysical mixing matrix elements is found to be 
greatly suppressed.

4. Auxiliary potential

We first consider uncoupled channels, where V vanishes be-
yond an “inner” radius R I . A hard wall at RW gives access to 
discrete energy eigenvalues only, and a very large box is needed at 
low energies. To resolve these issues, we define an “outer” radius 
R O , between R I and RW , as shown in Fig. 1. We also introduce a 
Gaussian “auxiliary” potential in region III,

V aux(r) ≡ V 0 exp
[
−(r − RW )2/a2

]
, (8)

with R O ≤ r ≤ RW , where the separation between R O and RW is 
chosen such that V aux is negligible at R O . Note that V aux vanishes 
in regions I and II. The energy eigenvalues can now be adjusted 
continuously as a function of V 0. In Fig. 1, we show V J (r) for V 0 =
−25 MeV.

In order to extract phase shifts, we express ψ(r) in region II as

ψ(r) ∼= Ah−
J (kr) − Bh+

J (kr), (9)

for R I ≤ r ≤ R O , where h+
J (kr) and h−

J (kr) are spherical Bessel 
functions, and k = √

2μE . The constants A and B can be deter-
mined e.g. by a least-squares fit in region II. We note that

B = S A, (10)

with S ≡ exp(2iδ J ), from which δ J can be obtained.
For coupled channels, ψ has two components with L = J ± 1. 

Given Eq. (5), both satisfy the spherical Bessel equation in region II, 
and are therefore of the form (9). If we denote A ≡ (A J−1, A J+1)

T

and B ≡ (B J−1, B J+1)
T , the S-matrix couples channels with L =

J ± 1. In the Stapp parameterization [34],

S ≡
[

exp(iδ J−1)

exp(iδ J+1)

]

×
[

cos(2ε J ) i sin(2ε J )

i sin(2ε J ) cos(2ε J )

]

×
[

exp(iδ J−1)

exp(iδ J+1)

]
, (11)

where ε J is the mixing angle.
When solving S from Eq. (10) as in the uncoupled case, we 

encounter a subtle problem. For a simple hard wall boundary, only 
one independent solution per lattice energy eigenvalue is obtained. 
In order to determine S unambiguously, two linearly independent 
vectors A and B are needed. In Ref. [5], this problem was cir-
cumvented by taking two eigenfunctions with approximately the 
same energy and neglecting their energy difference. However, such 
a procedure introduces significant uncertainties.
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Fig. 3. (Color online.) Phase shifts and mixing angles for J ≤ 4 and S = 1. Full, open and “half-open” squares correspond to V 0 = 0, V 0 = −25 MeV and V 0 = −20 MeV, 
respectively. For V 0 = −20 MeV, only partial results are shown in order to reduce clutter. Solid lines denote continuum results.
As the potential (5) is real and Hermitian, an exact time-
reversal symmetry results. We now add to V J (r) an imaginary 
component,

V J (r) → V J (r) +
[

iUaux(r)
−iUaux(r)

]
, (12)

where Uaux(r) is an arbitrary, real-valued function with support 
in region III only. This leaves V J (r) Hermitian and the energy 
eigenvalues real, while the time-reversal symmetry is broken. Also, 
ψ and ψ∗ are now linearly independent and satisfy Eq. (3) in 
regions I and II with identical energy eigenvalues. In addition to 
Eq. (10), we have the conjugate expression,

A∗ = S B∗, (13)

and the S-matrix

S = [
B A∗ ] [

A B∗ ]−1
, (14)

from (10) and (13). Phase shifts and mixing angles can then be 
obtained from Eq. (11). Note that the inverse in Eq. (14) cannot be 
computed without Uaux(r), since in that case A = −B∗ . We use

Uaux(r) = U0 δr,r0 , (15)

for R O ≤ r0 ≤ RW , where r0 is a radial mesh point in region III 
and U0 is an arbitrary real constant. We find that the distortion 
of the energy eigenvalues and radial wave function introduced by 
this choice is minimal. The same methodology we have applied 
here for coupled partial waves can also be applied to more general 
problems with different scattering constituents.

5. Numerical results

We benchmark our method numerically with the interaction (2)
using a cubic lattice with a = 100 MeV−1 (π/a = 314 MeV), box 
size 35a, and we take R I = 9.02a, R O = 12.02a, and RW = 15.02a. 
For all channels, we use the real auxiliary potential (8), while for 
coupled channels we add the complex auxiliary potential (15) with 
U0 = 20.0 MeV and r0  RW .

In Fig. 3, we show our lattice phase shifts and mixing an-
gles. We compare with continuum results, obtained by solving 
Fig. 4. (Color online.) Phase shift for the 1 S0 channel on anisotropic rectangular 
lattices. Circles, triangles, diamonds and squares denote results for lattice spacings 
az = 1.2a, az = 1.4a, az = 3.0a and az = 5.0a, respectively. The dashed lines are 
intended as a guide to the eye.

the Lippmann–Schwinger equation for each channel. All our lat-
tice results agree well with the continuum ones, from threshold to 
a relative center-of-mass momentum of pCM ≡ k = 140 MeV. We 
note the marked improvement over Ref. [5] for the same bench-
mark system.

6. Application to arbitrary lattices

While Lüscher’s method has been extended to asymmetric rect-
angular boxes [35], no standard method yet exists for an arbitrary 
lattice. Our method can be used to characterize particle–particle 
interactions on arbitrary lattices, in any number of spatial dimen-
sions. This is significant for optical lattices, as the lattice geom-
etry is then engineered to reproduce the single-particle energies 
of a given condensed matter or quantum field theoretical system. 
Anisotropic lattices exhibit more breaking of rotational invariance 
than a simple cubic lattice does. This is often an essential feature, 
e.g. in the crossover from a three-dimensional system to a lay-
ered two-dimensional one. In Fig. 4, we show the 1 S0 phase shift 
on an anisotropic rectangular lattice, where the spacing along the 
z axis, az , exceeds those along the x and y axes, denoted collec-
tively by a. The unit cell volume is 1003 MeV−3 in all cases. While 
we find good agreement with the continuum up to az  1.4a, this 
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breaks down when az becomes comparable to the range of the in-
teraction, with increasing deviation at high pCM. Such a crossover 
to two-dimensional behavior can be characterized in terms of mix-
ing between the 1 S0 and 1 D2 ( J z = 0) partial waves, an effect of 
rotational symmetry breaking. The low-energy particle–particle in-
teractions of any lattice system can be similarly described.

7. Summary and discussion

We have described a general and systematic method for the 
calculation of scattering parameters on arbitrary lattices, which we 
have benchmarked using a lattice model of a finite-range inter-
action with a strong tensor component. Extensions to more gen-
eral interactions are straightforward. The Coulomb interaction can 
be accounted for by replacing the spherical Bessel functions by 
Coulomb functions, and by defining the distance between particles 
as the minimum distance on a periodic lattice. The spherical wall 
then removes unphysical boundary effects. When combined with 
the adiabatic projection method, the techniques we have discussed 
can be applied to any scattering system in nuclear, hadronic, ultra-
cold atomic, or condensed matter physics. We expect our method 
to be applicable to optical lattice experiments, in addition to its 
immediate usefulness for lattice studies in nuclear, hadronic, and 
condensed matter theory. In fact, the method proposed here has 
already been used to significantly improve the adiabatic projection 
method, as detailed in Ref. [36].
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