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Abstract

The extraction of the B → K∗ transition form factors from lattice data is studied, applying non-
relativistic effective field theory in a finite volume. The possible mixing of πK and ηK states is taken into 
account. The two-channel analogue of the Lellouch–Lüscher formula is reproduced. Due to the resonance 
nature of the K∗, an equation is derived, which allows to determine the form factors at the pole position in 
a process-independent manner. The infinitely-narrow width approximation of the results is discussed.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Rare B decay modes provide one of the best opportunities in the search for physics beyond the 
Standard Model (BSM). Among them, B → K∗l+l− is regarded as one of the most important 
channels, as the polarization of the K∗ allows a precise angular reconstruction resulting in many 
observables which can be tested in the Standard Model (SM) and its extensions [1–6]. In 2013, 
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LHCb [7] published the first analysis of a set of optimized observables, presenting an interesting 
pattern of deviations, confirmed by later measurements with a larger statistics [8], as well as by a 
recent analysis from the Belle Collaboration [9]. A first interpretation of this pattern of deviation 
was proposed [10], where the Wilson coefficient C9 of the pertinent semileptonic operator (and, 
possibly, other coefficients as well), received contribution from the BSM physics. Further exper-
imental results have indicated deviations concerning the branching ratios of B → K∗μ+μ−, but 
also Bs → φμ+μ− and B → Kμ+μ−, with the possibility of a violation of lepton flavor univer-
sality between electron and muon modes [11–13]. These results triggered lots of activities on the 
theoretical side and, in particular, their consequences on global fits are being studied [14–16]. In 
these global fits, a special attention has to be paid to the theoretical uncertainties arising from the 
form factors of the corresponding hadronic matrix elements, which affect the branching ratios 
involved in the fit. In the low recoil region, which will be our main focus here, these form factors 
are mostly known from light cone sum rules, which suffer from relatively large uncertainties [17,
18]. It would thus be particularly interesting to have information on these quantities from lattice 
QCD simulations. Also, the method used to calculate these form factors could be applied to other 
interesting processes as, for example, B → K∗γ .

Recently, the first unquenched lattice QCD calculations of the B → K∗ form factors have 
appeared [19–21] (see also Refs. [22–28] for quenched results). Although this work represents 
a major progress in the field, the simulations have been performed at such quark mass values 
that the K∗(892) resonance has been treated as a stable particle. Correspondingly, the standard 
methods of the lattice QCD could be used for the analysis of the data. However, they are not 
applicable anymore, when the K∗ eventually decays into πK .

The following question has to be addressed: how to compute the matrix elements involv-
ing two strongly interacting particles in the in- or out-state? Briefly, the answer is given by 
the so-called Lellouch–Lüscher method [29]. It is a generalization of the Lüscher finite-volume 
approach [30], which provides a method to extract the elastic phase shifts and the resonance pa-
rameters (the mass and width) from the two-particle discrete energy levels spectrum, measured 
on the lattice.

At the next step, it should be understood, how to define the matrix elements involving res-
onances such as K∗, ρ, or �. As it has been argued in Refs. [31,32], the only plausible field-
theoretical definition necessitates an analytic continuation of the matrix element to the resonance 
pole position in the complex plane. Therefore, strictly speaking, the corresponding form factor 
can only be defined at the resonance pole. The other well known definition of the form factor is 
based on the Breit–Wigner parameterization of the resonant amplitude (see, e.g., Refs. [33,34]). 
However, this definition yields a model- and process-dependent result, since the background is 
unknown. If the width of the resonance is not very small (it is roughly 50 MeV in the case of the 
K∗(892)), using different definitions might have an effect on the extracted observables.

There is an additional effect, which is due to the presence of the ηK threshold. For phys-
ical quark masses, it is approximately 150 MeV above the K∗ mass, and this value will be 
reduced when the light quark masses, used in the simulations, are higher. One could expect 
that the effect of this threshold might be seen in the data. The recent lattice calculation by the 
Hadron Spectrum Collaboration, however, indicates that the coupling between the ηK and πK

channels remains small even at the pion mass as large as roughly 400 MeV [35,36]. Neverthe-
less, the two-channel problem has to be addressed. Although of academic interest in the present 
context, a similar theoretical framework could be useful, e.g., for the lattice extraction of the 
electromagnetic form factors of the �(1405) resonance (see Refs. [37,38] for the recent lattice 
results).
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Recently, the Lellouch–Lüscher method has been generalized to include multiple strongly-
coupled decay channels [39–42]. In particular, the authors of Ref. [41] provide general formulas 
for spinless particles, which are also valid for the B → πK(ηK) transition. On the contrary, the 
extraction of the form factors at the resonance pole in the multi-channel case has not been studied 
yet. It has been done only in the one-channel problem [31]. In the present work, we fill this gap 
by considering the πK–ηK coupled-channel system.

In order to establish a relation between the finite volume quantities, measured on the lattice, 
and infinite volume observables, a systematic theoretical framework is needed. We apply the 
so-called non-relativistic effective field theory in a finite volume in its covariant formulation 
[43,44]. We find this approach algebraically simpler than the one based on the Bethe–Salpeter 
equation (see, e.g., Refs. [45,46]). In the end, both methods have the same range of applicability 
and one arrives at the same results.

The paper is organized as follows: In section 2, we introduce form factors governing the 
B → K∗ transition. We also consider the proper kinematics, which should be used in lattice 
measurements of matrix elements. Further, in section 3, we set up the non-relativistic effective 
field theory in a finite volume. The two-channel analogue of the Lellouch–Lüscher formula is 
re-derived. In section 4, we obtain the equation for the extraction of the form factors at the 
resonance pole in the two-channel case. Additionally, in view of different opinions expressed in 
the literature (see, e.g., Refs. [47,48]), we address the issue of defining the photon virtuality at 
the resonance pole. In section 5, we consider the infinitely small width approximation for our 
results. Section 6 contains our conclusions.

2. Matrix elements on the lattice

2.1. Formalism

The effective theory of the b → s decays is based on the weak Hamiltonian [49–54]

Heff = −4GF√
2

V ∗
tsVtb

∑
i

CiWi , (1)

where GF denotes the Fermi constant, Vts, Vtb are elements of the CKM matrix and the Ci are 
Wilson coefficients. In the SM, one has 10 effective local operators Wi . Such a description is 
applicable at energies much below the masses of the weak gauge bosons.

The seven B → K∗ form factors are contained in the matrix elements of the W7, W9 and W10
operators:

W7 = mbe

16π2
s̄σμνPRbFμν, W9 = e2

16π2
s̄γ μPLb �̄γμ�,

W10 = e2

16π2
s̄γ μPLb �̄γμγ 5�, (2)

where Fμν is the electromagnetic field strength tensor, and

PL/R = 1
2 (1 ∓ γ 5), σμν = i

2 [γ μ, γ ν]. (3)

They are defined, in Minkowski space, through the following expressions (see, e.g., Ref. [20]):

〈V (k,λ)|s̄γ μb|B(p)〉 = 2iV (q2)
εμνρσ ε∗

ν kρpσ , (4)

mB + mV
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〈V (k,λ)|s̄γ μγ 5b|B(p)〉
= 2mV A0(q

2)
ε∗ · q
q2

qμ + (mB + mV )A1(q
2)

(
ε∗μ − ε∗ · q

q2
qμ

)

− A2(q
2)

ε∗ · q
mB + mV

[
(p + k)μ − m2

B − m2
V

q2
qμ

]
, (5)

qν〈V (k,λ)|s̄σμνb|B(p)〉 = 2T1(q
2)εμρτσ ε∗

ρpτ kσ , (6)

qν〈V (k,λ)|s̄σμνγ 5b|B(p)〉 = iT2(q
2)[(ε∗ · q)(p + k)μ − ε∗μ(m2

B − m2
V )]

+ iT3(q
2)(ε∗ · q)

[
q2

m2
B − m2

V

(p + k)μ − qμ

]
, (7)

where q = p − k is a momentum transfer to the lepton pair, and ε(k, λ) denotes a polarization 
vector of the vector meson (K∗) with momentum k and spin polarization λ = 1, 2, 3 (see, e.g., 
Ref. [20]). Here, it is assumed that the K∗ is a stable particle with mass mV and appropriate 
quantum numbers.

There are also contributions of non-local operators to the full decay amplitude. However, 
the method described below does not yet allow to deal with them. Thus, we will consider the 
decay process in the low recoil region and assume that these contributions are small, so that the 
amplitude, extracted from lattice data, coincides approximately with the full one. In fact, there 
are some arguments that this is true in this kinematic region at least for most of the operators 
involved, see Refs. [55–59].

2.2. Finite volume

Since lattice simulations are performed in a finite spatial volume, the continuous rotational 
symmetry is broken down to the cubic one. Consequently, some particular irreducible represen-
tations (irreps) of the cubic group, or its subgroups in the moving frames, should be chosen. 
Taking into account the fact that, at energies below multi-particle thresholds the neglect of D-
and higher partial waves seems to be justified, in order to clearly extract the P-wave scattering 
phase shift through the Lüscher equation, it is preferable to choose irreps, in which no mixing 
between S- and P-waves occurs. For that purpose, we consider the process in the K∗ rest frame:

k = 0, p = q = 2π

L
d, d ∈ Z

3, (8)

where L denotes the side length of the volume, V = L3. When the K∗ is not at rest, only some 
of the form factors can be extracted without mixing. We provide the details in Appendix A. In 
the following, we write down the expressions for the current matrix elements, when the d vector 
is chosen along the third axis d = (0, 0, n). The two other cases, d = (n, n, 0) and d = (n, n, n)

can be treated along the same lines.
The polarization vector of the free massive spin-1 particle with momentum k takes the form:

εμ(k,λ) =
(

k · ε(λ)

mV

, ε(λ) + k · ε(λ)

mV (k0 + mV )
k
)

, (9)

where the arbitrary vectors ε(λ) form an orthonormal basis. In particular, one can choose them as

ε(+) = 1√ (1, i,0), ε(−) = 1√ (1,−i,0), ε(0) = (0,0,1). (10)

2 2
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Obviously, the polarization vectors εμ(k, λ) satisfy the gauge invariance condition

kμ · εμ(k,λ) = 0, λ = +,−,0. (11)

Further, the Eqs. (4)–(7) first have to be rewritten in the Euclidean space. This can be done by 
applying the prescription

aE
μ = (a, ia0), γ E

μ = (−iγ , γ0), γ E
5 = γ 5, μ = 1,2,3,4, (12)

where aμ is an arbitrary four-momentum in Minkowski space. The superscript E will be sup-
pressed from now on.

With this in mind, we pick up the following current matrix elements

〈V (+)|J (+)|B(p)〉 = −2imV |q|V (q2)

mB + mV

,

〈V (0)|i(EB − mV )JA + |q|J (0)
A |B(p)〉 = −2imV |q|A0(q

2),

〈V (+)|J (+)
A |B(p)〉 = −i(mB + mV )A1(q

2),

〈V (0)|i(EB − mV )J
(0)
A − |q|JA|B(p)〉 = 8mBmV A12(q

2),

〈V (+)|i(EB − mV )I (+) + |q|I (+)
0 |B(p)〉 = 2imV |q|T1(q

2),

〈V (+)|i(EB − mV )I
(+)
A + |q|I (+)

0A |B(p)〉 = −i(m2
B − m2

V )T2(q
2),

〈V (0)|I (0)
A |B(p)〉 = − 4mBmV

mB + mV

T23(q
2), (13)

where EB =
√

m2
B + q2 is energy of the B meson, and 〈V (+)| is a state vector with a positive 

circular polarization,

〈V (+)| = 〈V (1)| − i〈V (2)|√
2

. (14)

Here, the current operators are given by

J (±) = 1√
2
s̄(γ1 ± iγ2)b, J

(±)
A = 1√

2
s̄(γ1 ± iγ2)γ5b,

J
(0)
A = s̄γ3γ5b, JA = s̄γ4γ5b, I

(0)
A = s̄σ34γ5b,

I
(±)
0 = 1√

2
s̄(σ13 ± iσ23)b, I

(±)
0A = 1√

2
s̄(σ13 ± iσ23)γ5b,

I (±) = 1√
2
s̄(σ14 ± iσ24)b, I

(±)
A = 1√

2
s̄(σ14 ± iσ24)γ5b, (15)

and the quantities A12(q
2), T23(q

2) are related to the form factors through

A12(q
2) = (mB + mV )2(m2

B − m2
V − q2)A1(q

2) − λA2(q
2)

16mBm2
V (mB + mV )

, (16)

T23(q
2) = mB + mV

8mBm2
V

[(
m2

B + 3m2
V − q2

)
T2(q

2) − λT3(q
2)

m2
B − m2

V

]
, (17)

where λ ≡ λ(m2
B, m2

V , q2) = [(mB +mV )2 − q2][(mB −mV )2 − q2] denotes the Källén triangle 
function. In the following, we denote the matrix elements Eq. (13) shortly as FM , M = 1, . . . , 7.
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Table 1
Extraction of matrix elements in the irreps without partial-wave mixing.

Little group Irrep Form factor

C4v E V , A1, T1, T2
A1 A0, A12, T23

When the K∗ is taken at rest, it is necessary to consider lattice simulations in asymmetric 
boxes (see below). These boxes, which are of the type L × L × L′, have the same symmetry 
properties as the symmetric ones boosted in the d = (0, 0, n) direction. In Table 1, the irreps 
of the corresponding little group, where the matrix elements Eq. (13) should be measured, are 
listed.

The states 〈V (±)|, 〈V (0)| are created by acting with the following local field operators, trans-
forming according to these irreps, on the vacuum state 〈0|:

O(±)
E

(0, t) = 1√
2

∑
x

(
O1(x, t) ∓ iO2(x, t)

)
, O(0)

A1
(0, t) =

∑
x

O3(x, t), (18)

where Oi(x) are spatial components of the vector field potential (see, e.g., Ref. [60]). Such 
operators are constructed out of the local quark bilinears. In practice, it is important to add also 
meson–meson-type non-local operators in lattice simulations. These can be constructed along 
the lines described in Ref. [60].

Until now, the K∗ has been assumed to be a stable vector meson. When the K∗ becomes a 
resonance in lattice simulations, the matrix elements of Eq. (13) can still be measured. However, 
one gets the matrix elements of the current between a one-meson state |B(p)〉 and a certain 
eigenstate of the finite-volume Hamiltonian. The mass mV is now replaced by the discrete energy 
En of the n-th eigenstate (n = 0, 1, . . .). The dependence of the energy En on the volume is not 
suppressed exponentially (unlike the case of a stable K∗) [30]. A similar statement holds for the 
quantities FM .

The matrix elements FM are functions of the total center-of mass (CM) energy En and 
3-momentum |q| of the B meson: FM = FM(En, |q|). As it has been previously discussed in 
case of the �Nγ ∗ transition in Ref. [31], in order to determine the form factors at the K∗ res-
onance pole, the quantities FM should be measured at different values of the energy En (for a 
given value of n), while keeping |q| fixed. Again, this could be achieved by applying asymmetric 
volumes with asymmetry along the third axes L ×L ×L′ or (partial) twisting in the b-quark (see 
Ref. [31] for more details).

Below, we study in detail the extraction of the form factors on the real energy axis as well 
as at the complex resonance pole. We emphasize once more, that only the definition, which 
implies the analytic continuation, leads to the process-independent values of the resonance form 
factors.

3. Lellouch–Lüscher formula

3.1. Infinite volume

In this section, the analogue of the Lellouch–Lüscher formula in the two-channel case is 
reproduced. For that purpose, we apply the non-relativistic effective field theory in a finite volume 
along the lines of Refs. [32,31]. We generalize the formulas given there appropriately so that they 
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can suit our needs. In the following, the K∗ is taken at rest, so that there is no S- and P-wave 
mixing.

Further, we specify the matrix elements of the scattering amplitude. The actual physics can 
not, of course, depend on the chosen parameterization. In the literature, there exists a parame-
terization of the S-matrix due to Stapp et al. [61]. In this work, we rather follow the one from 
Refs. [39,62] and write the T -matrix in terms of three real parameters: the so-called eigenphases 
δ1(p1), δ2(p2) and mixing parameter ε(E)

T = 8π
√

s

⎛
⎝ 1

p1
(c2

εe
iδ1 sin δ1 + s2

ε eiδ2 sin δ2)
1√

p1p2
cεsε(e

iδ1 sin δ1 − eiδ2 sin δ2)

1√
p1p2

cεsε(e
iδ1 sin δ1 − eiδ2 sin δ2)

1
p2

(c2
εe

iδ2 sin δ2 + s2
ε eiδ1 sin δ1)

⎞
⎠ ,

(19)

where sε ≡ sin ε(E), cε ≡ cos ε(E). Here, p1 and p2 denote the relative 3-momenta in the πK

and ηK channels, respectively. They are related to the total energy E through the equations

|p1| = λ(m2
π ,m2

K, s)

2
√

s
, |p2| =

λ(m2
η,m

2
K, s)

2
√

s
, (20)

where s = E2. We note that the eigenphases δ1, δ2 have the meaning of phase shifts in the 
corresponding channels πK and ηK , respectively, only in the decoupling limit ε → 0. Other-
wise, their behavior with energy is non-trivial (see, e.g., Refs. [63,64]). Firstly, thanks to the 
no-crossing theorem [65], the curves of the functions δ1(E), δ2(E) cannot intersect. Secondly, 
assuming the Breit–Wigner approximation, it can be shown that only one of these curves crosses 
π/2 in the vicinity of the resonance energy (see below). Lattice data should not be in contradic-
tion with these properties.

On the other hand, the T -matrix obeys Lippmann–Schwinger equation (see Ref. [32]):

T = V + V GT, (21)

where the angular momentum index l has been suppressed. Here, V denotes a potential and G(s)

is a loop function matrix given by

G =
(

ip1
8π

√
s

0

0 ip2
8π

√
s

)
. (22)

In Eq. (21), all quantities have been taken on the energy shell p1 = p′
1, p2 = p′

2, where p1, p2
and p′

1, p
′
2 are respective relative momenta in the initial and final two-particle states.

The parameterization of the potential V in terms of parameters δ1(p1), δ2(p2) and ε(E) is 
obtained readily from Eqs. (19) and (21):

V = 8π
√

s

⎛
⎝ 1

p1
(t1 + s2

ε t) − 1√
p1p2

cεsεt

− 1√
p1p2

cεsεt
1
p2

(t2 − s2
ε t)

⎞
⎠ , (23)

where ti ≡ tan δi(pi) and t = t2 − t1. Clearly, the potential matrix V is real and symmetric.

3.2. Finite volume

3.2.1. Two-point function
We return to the derivation of the two-channel Lellouch–Lüscher formula. Our goal is to 

calculate the two- and three-point correlation functions relevant to the B → K∗ form factors. Let 
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Fig. 1. Two-point function D(x0 − y0) in the non-relativistic effective field theory in a finite volume. The grey circle, 
square, and triangle depict different couplings in the πK–ηK system. The quantities X1, X2 are couplings of the operator 
O to the respective channels. Similar diagrams are obtained by replacements X1 → X2 and X2 → X1.

O(x) be a local operator with quantum numbers of the K∗ that transforms according to the given 
irrep, as provided explicitly in Eq. (18). According to the methodology of the lattice calculations, 
one is interested in the Euclidean two-point function of the form

D(x0 − y0) = 〈0|O(x0)O†(y0)|0〉, (24)

where O(t) is given by the Fourier transformation of the O(x) in the rest frame:

O(t) =
∑

x

O(x, t). (25)

Note that we always work in the limit of zero lattice spacing, in which the right-hand side of 
Eq. (25) contains an integral over the finite volume instead of a sum over the lattice sites.

It is clear from the spectral representation1 of the function D(x0 − y0),

D(x0 − y0) =
∑
n

e−En(x0−y0)|〈0|O(0)|En〉|2, (26)

that energy levels En can be extracted by studying the decay pattern of D(x0 − y0) in the formal 
limit x0 → +∞, y0 → −∞.

The diagrammatic representation of the two-point function Eq. (24) within the non-relativistic 
effective field theory below the inelastic threshold is shown in Fig. 1. The quantities Xα, α =
1, 2, denote the couplings of the operator O to respective channels. Since the corresponding 
Lagrangian contains terms with arbitrary number of spatial derivatives, one has Xα = Aα +
Bαp2

α +· · · , where Aα, Bα, . . . contain only short-range physics. Here, p2
α, α = 1, 2, are external

relative 3-momenta squared in the corresponding channels. Although the expansion for Xα is 
written in the CM frame, it can be brought to the covariant form in an arbitrary moving frame 
(see Ref. [44]). It is important to note that quantities Xα will drop out in the final result.

After summing up all two-particle reducible diagrams, the two-point function reads

D(x0 − y0) = V
+∞∫

−∞

dP0

2π
eiP0(x0−y0)XT [GL(P0) + GL(P0)TL(P0)GL(P0)]X, (27)

where XT = (X1, X2), V is the lattice volume, and GL denotes a finite-volume counterpart of 
the loop function matrix Eq. (22):

GL =
(− p1

8π
√

s
cotφ(p1) 0

0 − p2
8π

√
s

cotφ(p2)

)
, s = −P 2

0 . (28)

1 In this work, we use a different form from Ref. [31] normalization of the eigenstates of the total Hamiltonian. While 
the single B-meson state in a finite volume is still normalized, according to 〈B(p)|B(p)〉 = 2EB , the normalization of 
the two-particle states En is given by 〈En|En〉 = 1.
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Here, φ(pα) are the volume-dependent functions that are related to the Lüscher zeta-function. 
They are given by the following expressions in the irreps of interest E and A1 (see, e.g., 
Ref. [60]):

cotφE(pα) = − 1

π3/2ηα

{
Ẑ00(1;η2

α) − 1√
5η2

α

Ẑ20(1;η2
α)

}
, (29)

cotφA1(pα) = − 1

π3/2ηα

{
Ẑ00(1;η2

α) + 2√
5η2

α

Ẑ20(1;η2
α)

}
, (30)

where ηα = pαL/2π . The Lüscher zeta-function Ẑlm(1; η2) for generic asymmetric volumes 
L × L × L′ with L′ = xL reads

Ẑlm(1;η2) = 1

x

∑
n∈Z3

Ylm(r)
r2 − η2

, r1,2 = n1,2 , r3 = 1

x
n3 , Ẑ20(1;η2) �= 0 . (31)

Further, the TL-matrix is a scattering amplitude in a finite volume that is defined formally also 
through a Lippmann–Schwinger equation with the same potential V :

TL = V + V GLTL. (32)

Substituting the potential V , Eq. (23), into this equation, we obtain:

TL = 8π
√

s

f (E)

(
1
p1

[t1τ1(t2 + τ2) + s2
ε τ1τ2t] − 1√

p1p2
cεsετ1τ2t

− 1√
p1p2

cεsετ1τ2t
1
p2

[t2τ2(t1 + τ1) − s2
ε τ1τ2t]

)
, (33)

where τα ≡ tanφ(pα) and

f (E) ≡ (t1 + τ1)(t2 + τ2) + s2
ε (t2 − t1)(τ2 − τ1). (34)

The two-channel Lüscher equation [39,66,67], which allows to determine the infinite-volume 
T -matrix elements [39,68,69], follows directly from Eq. (34)

(t1 + τ1)(t2 + τ2) + s2
ε (t2 − t1)(τ2 − τ1)

∣∣
E=En

= 0, (35)

where all quantities are taken at the energies E = En of the simple poles of the TL-matrix, or 
equivalently, the eigenvalues of the corresponding strong Hamiltonian in a finite volume.

The integral Eq. (27) is evaluated by applying Cauchy’s theorem. It can be shown explicitly 
that only the poles of the TL(P0)-matrix contribute to the integral, while free poles cancel in the 
integrand [32,41]. The residues of the TL(P0) factorize in the n-th pole P0 = iEn:

T
αβ
L = fαfβ

En + iP0
+ · · · . (36)

Here, the quantities f1, f2 can be brought to the following form by applying the Lüscher equa-
tion:

f 2
1 = 8π

√
s

p1

τ 2
1 (t2 + τ2 − s2

ε t)

f ′(E)

∣∣∣∣
E=En

, f 2
2 = 8π

√
s

p2

τ 2
2 (t1 + τ1 + s2

ε t)

f ′(E)

∣∣∣∣
E=En

, (37)

where f ′(E) ≡ df (E)/dE. Performing the integration over P0, we get

D(x0 − y0) = V
64π2E2

n

∑
e−En(x0−y0)

[ 2∑
Xαpα(En)τ

−1
α (En)fα(En)

]2

. (38)

n α=1
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Fig. 2. Diagrams contributing to the B → K∗ transition in a finite volume (see Fig. 1 for notations). The quantities 
F̄M

α (E, |q|), α = 1, 2, are volume-independent up to exponentially suppressed contributions.

Comparing this equation with the spectral representation Eq. (26), we finally obtain

|〈0|O(0)|En〉| = V1/2

8πEn

∣∣∣∣
2∑

α=1

Xαpα(En)τ
−1
α (En)fα(En)

∣∣∣∣. (39)

3.2.2. Three-point function
We proceed to evaluate the current matrix elements FM(E, |q|) in a finite volume. To this 

end, we start from the quantity

�M(x0,p) = 〈0|O(x0)J
M(0)|B(p)〉, M = 1, . . .7. (40)

Here, the JM(0) denote the operators in the matrix elements of Eq. (13). Inserting a complete set 
of states, we get the spectral representation of �M(x0, p)

�M(x0,p) =
∑
n

e−Enx0〈0|O(0)|En〉FM(En, |q|). (41)

Diagrammatically, the B → K∗ transition matrix elements are shown in Fig. 2. The quantities 
F̄M

α (E, |q|), α = 1, 2, denote the sum of all two-particle irreducible diagrams in the respective 
channels. They do not depend on the volume up to exponentially suppressed contributions. The 
volume dependence arises due to the final-state meson interaction. We note that the diagrams, 
in which the photon is attached to one of the internal lines or the B meson external line do not 
contribute to the matrix elements of flavor changing neutral currents. As a result, summing up 
the bubble diagrams we obtain

�M(x0,p) = V−1/2

+∞∫
−∞

dP0

2π
eiP0x0XT [GL(P0) + GL(P0)TL(P0)GL(P0)]F̄M(P0, |q|),

(42)

where F̄M(P0, |q|) denotes a two-component vector with elements F̄M
α (P0, |q|). Similarly to 

the case of the two-point function, only the poles of the TL(P0)-matrix contribute to the integral. 
Integrating over P0, one gets

�M(x0,p) = V−1/2

64π2E2
n

∑
n

e−Enx0

2∑
α,β=1

[Xαpα(En)τ
−1
α (En)fα(En)]

× [pβ(En)τ
−1(En)fβ(En)F̄

M(En, |q|)]. (43)
β β
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Comparing this formula with Eq. (41) and using Eq. (39), we arrive at the final result:

|FM(En, |q|)| = V−1

8πE

∣∣p1τ
−1
1 f1 F̄M

1 + p2τ
−1
2 f2 F̄M

2

∣∣∣∣∣∣
E=En

. (44)

The last step that needs to be done is to relate the above defined quantities F̄M
1 , F̄M

2 to the 
(infinite-volume) decay amplitudes AM

1 (B → πKl+l−) and AM
2 (B → ηKl+l−) through the 

two-channel Watson theorem. After summing up the two-particle reducible diagrams in the infi-
nite volume, one gets

AM = (1 − V G)−1F̄M, (45)

or

AM = T V −1F̄M, (46)

where the Lippmann–Schwinger equation has been used. We obtain:

AM
1 = 1√

p1
(uM

1 cεe
iδ1 − uM

2 sεe
iδ2), AM

2 = 1√
p2

(uM
2 cεe

iδ2 + uM
1 sεe

iδ1), (47)

where

uM
1 = (

√
p1cεF̄

M
1 + √

p2sεF̄
M
2 ) cos δ1, uM

2 = (
√

p2cεF̄
M
2 − √

p1sεF̄
M
1 ) cos δ2. (48)

We have arrived at the two-channel analog of the Lellouch–Lüscher formula for the B → K∗
transition. Note that, writing Eq. (44) in terms of the amplitudes uM

1 , uM
2 , one obtains the ex-

pressions similar to ones given in Ref. [39]. Later, we will consider the limit of this result, when 
the K∗ resonance is infinitely narrow.

Hence, in the two-channel case, two quantities F̄M
1 , F̄M

2 and their relative sign have to be de-
termined from one equation, whereas in the one-channel case, only one quantity for one equation 
was involved. Consequently, one needs at least three different measurements at the same energy. 
This involves the extraction of the excited energy levels (see Ref. [39]). An alternative would 
be to measure the same energy level in asymmetric volumes of type yL × yL × L′ for different 
values of parameter y and L′ fixed. Also, as long as one does not insist on keeping the variable 
|q| fixed and is ready to perform a two-variable fit for the quantities F̄M

α , (partial) twisting in 
the s-quark or boosts can be applied. Then, the spectrum becomes dependent on the value of the 
twisting angle and/or the boost momentum. Although this option appears to be promising [69], 
the (potentially large) S- and P-wave mixing is inevitable in this case.

4. Form factors at the K∗ resonance pole

The current matrix elements involving resonances have the proper field-theoretical meaning 
only if they are analytically continued to the resonance pole position. The advantage of such a 
definition is that it is process-independent. On the other hand, the definition based on the Breit–
Wigner parameterization is, generally, not free of process- and model-dependent ambiguities, 
since the non-resonant background is unknown.

4.1. Effective-range expansion

The first step towards the pole extraction of the B → K∗ form factors consists in the deter-
mination of the K∗ resonance position. As is well known, the resonances are associated with 
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complex poles of the scattering amplitude T on unphysical Riemann sheets in the energy plane 
(s plane). The T -matrix itself is analytic on the whole plane except for cuts and poles. Here we 
will assume that all distant singularities from the pole do not affect the determination of its posi-
tion. Thus, from the analytic structure of the functions p1(E), p2(E), Eq. (20), the only relevant 
singularities for our purpose are two cuts, which run from branch points at the threshold energies 
E1 = mK + mπ and E2 = mK + mη, respectively, along the positive axis to infinity. The imag-
inary parts of the pα(s), α = 1, 2, change the sign, when one goes from one sheet to another 
through these cuts. The four Riemann sheets are classified according to the signs of Imp1 and 
Imp2 (see, e.g., Ref. [70]). For example, on the sheet II one has Imp1 < 0 and Imp2 > 0, etc.

Further, it is convenient to formulate the problem in the K-matrix formalism. The l = 1
partial-wave amplitude T is defined in terms of K-matrix as follows:

T = (8π
√

s)(K−1 − iP )−1, (49)

where P = diag(p1, p2) is a diagonal matrix. A comparison of this equation with Eq. (21) leads 
to the conclusion that the K-matrix is proportional to the potential V :

K = (8π
√

s)−1V. (50)

The poles of the scattering amplitude T appear as the complex solutions of the secular equation, 
which we write as

det(PK−1P − iP 3) = 0. (51)

The explicit form of this equation is different on each Riemann sheet. For instance, if one is 
interested in the solutions on the sheets II and III, then the matrix P must be chosen as PII =
diag(−p1, p2) and PIII = diag(−p1, −p2), respectively. The change of sign of momenta p1
and/or p2 is equivalent to the transition from one sheet to another.

The analytic properties of the K-matrix ensure that the PK−1P function obeys a polynomial 
expansion of the form (see Refs. [70,71])

PK−1P = A + B(E − E0) + · · · , (52)

where E0 is an arbitrary point on the real axis, around which the Taylor expansion is made. The 
formula Eq. (52) is a multi-channel generalization of the well-known effective-range approxima-
tion [72]. Its additional advantage is the freedom to choose the value of the energy E0: one does 
not need to start the expansion at threshold energies, as it is usually done. Consequently, the con-
vergence of the series in Eq. (52) could be substantially improved. Also, the analytic continuation 
to the resonance pole position will not be spoiled by the presence of the distant singularities. This 
expansion, in particular, might be useful in case of the ρ resonance, when lattice simulations are 
performed at nearly physical quark masses.

In principle, one could also expand the K-matrix, see, e.g., Refs. [70,73]. However, such an 
expansion contains pole terms, which makes the fitting to data more complicated, although not 
impossible. In fact both parameterizations of the K-matrix have been recently used in the lattice 
study of the resonances in the coupled πK–ηK system [35,36].

The procedure to determine the resonance pole position consists in the following steps:

a) The K-matrix is numerically extracted on the lattice, by applying the Lüscher approach;
b) The parameters A, B, . . . are fitted to lattice data;
c) Eq. (51) is solved on each unphysical Riemann sheet. The complex solution, which is nu-

merically closest to the πK, ηK thresholds is identified with the K∗ resonance pole.
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Next, we assume that the K∗ resonance is located on the sheet II. Other cases can be studied 
along the same lines.

4.2. Pole extraction of the form factors

We proceed with the evaluation of two- and three-point functions in the infinite volume. Af-
terwards, the result will be analytically continued to the resonance pole. The two-point function 
in Minkowski space is given by

i 〈0|T [O(x)O†(y)]|0〉 =
∫

d4P

(2π)4
e−iP (x−y)D(P 2), (53)

where the function D(P 2) reads

D(P 2) = XT [GII (s) + GII (s)TII (s)GII (s)]X. (54)

Here, P 2 = s and the loop function GII (s) is chosen as

GII (s) =
(− ip1

8π
√

s
0

0 ip2
8π

√
s

)
. (55)

The form of the GII guaranties that the scattering amplitude T , which is obtained from the 
Lippmann–Schwinger equation,

TII = (V −1 − GII )
−1, (56)

has poles on the sheet II. The simplest way to determine the TII -matrix is to make the replace-
ments τ1 → −i, τ2 → +i in Eqs. (33), (34). We get

TII = 8π
√

s

h(E)

(
1
p1

[t1(1 − it2) + s2
ε t] − 1√

p1p2
cεsεt

− 1√
p1p2

cεsεt
1
p2

[t2(1 + it1) − s2
ε t]

)
, (57)

where the quantity h(E) is given by

h(E) ≡ (t1 − i)(t2 + i) + 2is2
ε (t2 − t1). (58)

The resonance pole position E = ER ≡ √
sR is obtained from the equation

h(ER) = 0. (59)

Inverting the integral Eq. (53) and performing the integration over all variables, we get

D(P 2) = ZR

sR − P 2
, (60)

where ZR is the (complex) wave-function renormalization constant of the resonance. From 
Eq. (60) it follows that

ZR = lim
P 2→sR

(sR − P 2)D(P 2). (61)

On the other hand, the T (s)-matrix on the second Riemann sheet has a pole at P 2 = sR . In 
the vicinity of the pole, one has

T
αβ
II (s) = hαhβ

2
+ · · · . (62)
sR − P
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Here, the quantities h1, h2 are given by

h2
1 = −8π

√
s

p1

2E(t2 + i − s2
ε t)

h′(E)

∣∣∣∣
E=ER

, h2
2 = −8π

√
s

p2

2E(t1 − i + s2
ε t)

h′(E)

∣∣∣∣
E=ER

, (63)

where h′(E) ≡ dh(E)/dE. Consequently, we obtain the renormalization constant ZR:

ZR = − 1

64π2E2
R

[ 2∑
α=1

(−1)α Xαpα(ER)hα(ER)

]2

. (64)

The calculation of the three-point function in the infinite volume proceeds in a similar manner. 
One gets

i 〈0|T [O(x)JM(0)]|B(p)〉 =
∫

d4P

(2π)4
e−iP x�M(P,p), (65)

where the quantity �M(P, p) in the frame P μ = (P0, 0), pμ = (

√
m2

B + q2, q) reads

�M(P,p) = XT [GII (s) + GII (s)TII (s)GII (s)]F̄M(P0, |q|). (66)

Further, recall that the irreducible amplitudes F̄M
α (P0, |q|), α = 1, 2, are analytic functions in 

the complex energy plane. Then, following Refs. [74,75], in which the case of matrix elements 
between the bound states has been first studied, we define the current matrix elements at the 
resonance pole as

FM
R = lim

P 2→sR

Z
−1/2
R (sR − P 2)�(P,p). (67)

Using Eqs. (62), (66), (67), we arrive at the final result:

FM
R (ER, |q|) = − i

8πE

(
p1h1F̄

M
1 − p2h2F̄

M
2

)∣∣∣∣
E=ER

. (68)

Note that one still has an overall sign ambiguity in this formula. The corresponding form factors 
can be read off from Eq. (13), in which the kinematic factors are low-energy polynomials.

In order to reproduce the one-channel result of Ref. [31], the mixing between the channels 
should be neglected. Then, h(E) takes the form

h(E) = (t1 − i)(t2 + i). (69)

So, one has at the pole position either t1(ER) = +i or t2(ER) = −i. Consider, for instance, the 
first alternative t1(ER) − i = 0. The derivative h′(E) at E = ER reads

h′(ER) = (t2(ER) + i)t ′1(ER), (70)

so that the quantities h1, h2 are given by

h2
1 = − 16πE2

p1t
′
1(E)

∣∣∣∣
E=ER

, h2
2 = 0. (71)

Consequently, from Eq. (68) we obtain

FM
R (ER, |q|) =

√
p1

4π t ′1(E)
F̄M

1 (E, |q|)
∣∣∣∣
E=ER

. (72)

A similar formula holds for the Kη channel.
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Fig. 3. The factorization of the amplitudes at the resonance pole (see Fig. 2 for notations). The photon virtuality, given 
by Eq. (73), is complex.

4.3. Photon virtuality

The analytic continuation to the resonance pole yields the quantity FM
R (ER, |q|). Below, we 

would like to briefly discuss a few conceptual issues, related to the interpretation of this quantity. 
Namely, we wish to know:

• What is the photon virtuality q2 for the resonance form factor, extracted at the pole?
• How should one compare with the experimental results?

In the literature, different statements have been made on this issue so far. We think that a clarifi-
cation is needed at this point.

According to the procedure, which is proposed in the present paper (see also Ref. [31]), the 
finite-volume matrix element is measured at different two-particle energies En(L) and a fixed 
value of |q|. After that, an analytic continuation is performed to the complex resonance pole, 
keeping |q| fixed. Further, the photon virtuality becomes complex at the pole

q2 =
(

ER −
√

m2
B + q2

)2

− q2 . (73)

On the other hand, in Refs. [47,48], where the ρ → πγ ∗ transition form factor is considered, 
the authors simultaneously parameterize the energy- and q2-dependence of the measured matrix 
element by some phenomenological fit function and perform the analytic continuation to the 
complex value of energy at a fixed q2. The quantity q2 is taken real at the pole.

Having two different procedures for the determination of the matrix element at the pole, it 
seems that the result is not unique. In order to show that the form factor can be uniquely defined, 
we note that the residue of the full amplitude at the pole should factorize in the product of the 
resonance form factor and the vertex, describing the transition of a resonance into the final state, 
see Fig. 3. The background becomes irrelevant, which leads to the determination of the form 
factor at the pole in a process-independent manner. From this figure it is clear that the photon 
virtuality, defined through the use of the 4-momentum conservation, coincides with the one given 
in Eq. (73) and thus must be complex. One could of course consider the electroproduction ampli-
tude at a different (even at a real) photon virtuality as well. However, in this case, the background 
does not vanish completely, so the continuation to the pole does not make sense, since the result 
is process-dependent anyway. It should be stressed that this argument equally holds both in the 
analysis of the data from the electroproduction experiments as well as for the results of lattice 
QCD simulations.

Another argument addresses the analytic properties of the amplitudes which are extrapolated 
into the complex plane. We have shown that the irreducible amplitudes are low-energy poly-
nomials in the vicinity of a resonance in the CM energy E, if the photon 3-momentum |q| is 
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fixed (see Ref. [31]). This fact implies that the analytic continuation to the complex energies is 
robust. To the best of our knowledge, no such statement exists in case of the function of two 
independent variables E, q2 that might render the analytic continuation unstable. It remains to 
be seen, whether the information about the analytic properties of the form factors in the variable 
q2 can be reasonably included. This could greatly constrain the fit and would be very useful in 
the analysis of the presently available data, which correspond to different values of q2 (see, e.g., 
Refs. [47,48]).

5. Infinitely narrow width

In this section, for illustrative purposes, we consider the case of a resonance with an infinitely 
narrow width having in mind the hypothetical case of a K∗ pole located above the ηK threshold 
with a very small width. The arguments follow the path of Ref. [31], where the same problem 
has been considered in case of the elastic scattering (see also Ref. [42]). It has been shown there 
that, in the limit of the infinitely narrow width, the matrix element, measured on the lattice, coin-
cides with the infinite-volume resonance form factor up to a constant, which takes into account 
the difference between the normalization of the one- and two-particle states in a finite volume. 
However, the multi-channel case is more subtle, since different two-particle states occur, and the 
relation between the infinite- and finite-volume matrix elements becomes obscure. Still, as we 
will see, the final result has exactly the same form as in the one-channel problem.2

We start with the two-body potential from Eq. (23), which can be written in the following 
form

V = 8π
√

sP −1/2OṼ OT P −1/2 , (74)

where

P = diag (p1,p2) , Ṽ = diag (t1, t2) , O =
(

cε −sε
sε cε

)
. (75)

Suppose that the resonance behavior near the (real) energy E = E0 emerges in the quantity 
t1 = tan δ1, whereas the quantity t2 stays regular in this energy interval. Then, in the vicinity of 
E = E0, one can write

δ1(E) = δR(E) + φ(E) , tan δR(E) = �0/2

E0 − E
, (76)

and assume that a (small) background phase φ(E) stays regular. Further, one may straightfor-
wardly ensure that

cot δ1(E) = EBW − E

�/2
+ · · · , (77)

where

EBW = E0 − �0

2
tanφ(EBW) ,

�

2
= �0

2
(1 + tan2 φ(EBW)) . (78)

This shows that, in the vicinity of a narrow resonance, one can always get rid of the background 
phase by a redefinition of the resonance parameters. We note that the second background phase 

2 Inadvertently, in Ref. [31], the factor V−1/2 was missing on the right-hand side of the counterpart of Eq. (42).
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still remains. The quantities EBW and � are the Breit–Wigner mass and width of the (narrow) 
resonance.

In the vicinity of a narrow resonance, the scattering amplitude Eq. (19), which can be repre-
sented on the first Riemann sheet as

T = 8π
√

sP −1/2OT̃ OT P −1/2, T̃ = diag (eiδ1 sin δ1, e
iδ2 sin δ2), (79)

becomes

Tαβ = bαbβ

sBW − s − i
√

sBW �
+ regular terms at E → EBW , (80)

where sBW = E2
BW . Here, the quantities b1, b2 are given by

b1 =
√

8πsBW�

p1
cε , b2 =

√
8πsBW�

p2
sε , (81)

and the regular terms emerge from the contribution of t2.
In order to find a complex pole on the second Riemann sheet, one has to solve the secular 

equation, Eq. (59), h(ER) = 0. Recalling that t1, t2 are single-valued functions and using the 
explicit representation of t1 from Eq. (77), at E = ER we get

t1(ER) = �/2

EBW − ER

= i(t2 + i) − 2is2
ε t2

t2 + i − 2is2
ε

∣∣∣∣
E=ER

. (82)

5.1. Real axis

On the real energy axis, one can introduce the infinite-volume quantities (“form factors”), 
which parameterize the imaginary parts of the decays amplitudes AM

1 , AM
2 in the vicinity of the 

Breit–Wigner resonance. We denote these volume-independent matrix elements as FM
A (E, |q|). 

In analogy to the one-channel case (see, e.g. Refs. [33,34,42]), we consider the resonance ex-
change mechanism at tree level, as shown in Fig. 4. Consequently, the amplitudes AM

1 , AM
2 near 

E = EBW read

AM
α (E, |q|) = bαFM

A (EBW , |q|)
E2

BW − E2 − iEBW�
+ · · · , α = 1,2, (83)

where the ellipses stand for the terms emerging from the regular contributions in Eq. (80). Setting 
further E = EBW , we get the imaginary parts of the AM

α

ImAM
1 (EBW , |q|) =

√
8π

p1�
FM

A (EBW , |q|)cε + O(1) ,

ImAM
2 (EBW , |q|) =

√
8π

p2�
FM

A (EBW , |q|)sε + O(1) . (84)

Note that the leading terms in this expression are of order �−1/2, and the sub-leading O(1) terms 
emerge from the regular contributions.

Further, comparing Eqs. (47) and (84), we see that the following condition has to be satisfied 
at the Breit–Wigner pole E = EBW :

uM(EBW , |q|) = O(1), (85)
2
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Fig. 4. Decay amplitudes AM
α , α = 1, 2, in the vicinity of the infinitely narrow K∗ . The quantities bα, α = 1, 2, denote 

the couplings of the K∗ to the respective channels at E = EBW .

while for the amplitudes uM
1 (EBW , |q|) one has

uM
1 (EBW , |q|) = √

p1cε ImAM
1 (E, |q|)∣∣

En→EBW
+ √

p2sε ImAM
2 (E, |q|)∣∣

En→EBW
, (86)

or

uM
1 (EBW , |q|) =

√
8π

�
FM

A (EBW , |q|) + O(1) = O(�−1/2) . (87)

Consequently, in the limit � → 0, the leading contribution to the AM
α comes from uM

1 .
However, the amplitudes uM

α , α = 1, 2 are not low-energy polynomials in the vicinity of E =
EBW . In order to establish quantities, which have such a property, we first note that in case of 
a very narrow resonance, the function cotδ1(E) is a polynomial in E (see Eq. (77)). It can be 
further assumed that the mixing parameter sε(E) and cot δ2(E) are also low-energy polynomials 
in the vicinity of the resonance. Furthermore, even if the radius of convergence of the modified 
effective range expansion, Eq. (52), is assumed to be much larger than the width �, it is still 
limited from above by the distance to the nearest threshold. Since the limit � → 0 is considered 
here, it is natural to assume that the mixing parameter sε(E) and cot δ2(E) are also low-energy 
polynomials in the vicinity of the resonance. It is then straightforward to check that the functions

ũM
α = uM

α

sin δα

(88)

are low-energy polynomials. Indeed, the irreducible amplitudes F̄M
α , α = 1, 2, diverge at E =

EBW , due to the propagation of the bare K∗ in the s-channel (see Ref. [31]). According to 
Eqs. (48) and (88), this divergence is exactly canceled in the amplitudes ũM

α , α = 1, 2. Conse-
quently, they can be safely expanded in the vicinity of the narrow resonance. This property, in 
particular, is important, if one considers an analytic continuation into the complex plane.

Rewriting the two-channel Lellouch–Lüscher formula in terms of ũM
α , we get

∣∣FM(En, |q|)∣∣ = V−1

√
8πE

(
a1ũ

M
1 + a2ũ

M
2

)∣∣∣∣
E=En

, (89)

where the quantities a1, a2 are given by

a2
1 = t2

1
t2 + τ2 − s2

ε (τ2 − τ1)

f ′(E)

∣∣∣∣
E=En

,

a2
2 = t2

2
t1 + τ1 + s2

ε (τ2 − τ1)

f ′(E)

∣∣∣∣
E=En

. (90)

Evaluating the quantities a1, a2 in the limit of the infinitely narrow width is somewhat less triv-
ial than in the one-channel case. In order to proceed further here, let us first recall the line 
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of reasoning used in the one-channel case. In this case, the Lüscher equation has a simple 
form

δ1 + ϕ1 = nπ , n ∈ Z , tanϕ1 = τ1 . (91)

For sufficiently small �, this equation will have a solution at En = EBW +O(�). At this energy, 
the quantities t1, τ1 are of order O(1). However, the derivatives of t1 and τ1 behave differently 
at En → EBW . One has t ′1 = δ′

1/ cos2 δ1 and τ ′
1 = ϕ′

1/ cos2 ϕ1, where cos2 δ1 = cos2 ϕ1, due to 
the Lüscher equation. According to Eq. (77), the derivative of the phase shift δ1 diverges as �−1

whereas ϕ′
1 stays finite as En → EBW , since it is a kinematical function that does not contain 

any small scales of order �. Consequently, as En → EBW and � → 0, one may neglect τ ′
1 as 

compared to t ′1.
A similar argument can be carried out in the two-channel case, rewriting the Lüscher equation 

in the form

δ1 + ϕ1 = nπ , tanϕ1 = τ1(t2 + τ2) + s2
ε t2(τ2 − τ1)

t2 + τ2 − s2
ε (τ2 − τ1)

. (92)

The function ϕ1 is not purely kinematical as it contains t2. However, it still does not contain small 
scales of order �. Consequently, the derivatives of ϕ1 are finite and the quantities τ ′

1, τ
′
2 are of 

order O(1), while t ′1 = O(�−1).
Next, retaining only the most divergent terms in f ′(En) at En → EBW , one gets

f ′(En → EBW) = t ′1
(
t2 + τ2 − s2

ε (τ2 − τ1)
)∣∣

En→EBW
+ · · · . (93)

Consequently, the quantities a2
1, a2

2 take the values

a2
1 = t2

1

t ′1

∣∣∣∣
En→EBW

= �

2
+ O(�2),

a2
2 = t2

2

t ′1
t1 + τ1 + s2

ε (τ2 − τ1)

t2 + τ2 − s2
ε (τ2 − τ1)

∣∣∣∣
En→EBW

= O(�). (94)

Hence, it follows that the leading contribution to the matrix element FM(En, |q|) in the limit 
� → 0 comes only from the term, proportional to ũM

1 , whereas the second term is sub-leading. 
As a result, we obtain

∣∣FM(En, |q|)∣∣ = V−1

√
2En

∣∣FM
A (En, |q|)∣∣ + O(�1/2), En = EBW + O(�). (95)

As seen, the Lellouch–Lüscher formula has a fairly simple form in the vicinity of the Breit–
Wigner resonance: the infinite-volume quantities FM

A (EBW , |q|) are equal to the current matrix 
elements FM(EBW , |q|), measured on the lattice, up to a normalization factor (note that, in 
Ref. [31], a different normalization of the states has been used). The form factors can be found 
from Eq. (13).

5.2. Complex plane

The values of the form factors at the resonance pole in the infinitely narrow width limit can be 
determined along the same lines, as discussed above. We again express the final result Eq. (68)
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through the amplitudes ũM
1 , ũM

2 to get

FM
R (ER, |q|) = 1√

4π

(
r1ũ

M
1 + r2ũ

M
2

)∣∣
E=ER

. (96)

Here, the quantities r1, r2 read

r2
1 = t2

1
t2 + i − 2is2

ε

h′(E)

∣∣∣∣
E=ER

,

r2
2 = t2

2
t1 − i + 2is2

ε

h′(E)

∣∣∣∣
E=ER

. (97)

Since the functions ũM
α are low-energy polynomials in the vicinity of the Breit–Wigner pole, one 

can analytically continue them from the real axis to the pole. Consequently, in the limit � → 0, 
their values at the pole and at the real axis are equal, up to the terms of order O(�). We note that 
this procedure cannot be applied to the uM

α . Calculating the quantities r1, r2 at ER → EBW , we 
get

r2
1 = t2

1

t ′1

∣∣∣∣
ER→EBW

= �

2
+ O(�2) ,

r2
2 = t2

1

t ′1
t2 + i − 2is2

ε

t1 − i + 2is2
ε

∣∣∣∣
ER→EBW

= O(�). (98)

As on the real axis, the leading contribution to the FM
R is dominated by the ũM

1 term in Eq. (96). 
The final expression takes the form

FM
R (ER, |q|)∣∣

�→0 = FM
A (EBW , |q|) + O(�1/2). (99)

As expected, for infinitely narrow resonance, the form factors FM
A (E, |q|) and FM

R (E, |q|), de-
fined on the real energy axis and complex plane, respectively, coincide.

6. Conclusions

In this work, we have studied the extraction of the B → K∗ transition form factors on the 
lattice. We have taken into account, in particular, the possible admixture of the ηK to πK final 
states. To this end, we have applied the non-relativistic effective field theory in a finite volume 
and reproduced the two-channel analogue of the Lellouch–Lüscher formula, which allows to 
extract the B → K∗l+l− decay amplitude in the low-recoil region.

Since the K∗ is a resonance, the corresponding current matrix elements are properly defined 
and free of process-dependent ambiguities only if the analytic continuation in the complex energy 
plane to the resonance pole position is performed. Consequently, we have set up a framework for 
the determination of the form factors at the K∗ pole. This is a generalization of the one-channel 
formula, which has been derived in Ref. [31]. In addition, we have discussed in detail the consis-
tent determination of the photon virtuality at the resonance pole.

Finally, we have considered the limit of an infinitely small width in our results. The equations 
in the multi-channel case are more involved and this limit cannot be performed in a straight-
forward manner. Nevertheless, we have demonstrated that, even in the multi-channel case, the 
current matrix element measured on the lattice is equal to the one in the infinite volume, up to a 
normalization factor that does not depend on the dynamics. This result represents a useful check 
of our framework.



A. Agadjanov et al. / Nuclear Physics B 910 (2016) 387–409 407
Acknowledgements

We thank R. Briceño and M. Mai for useful discussions. We acknowledge the support by the 
DFG (CRC 16, “Subnuclear Structure of Matter” and CRC 110 “Symmetries and the Emergence 
of Structure in QCD”) and by the Bonn-Cologne Graduate School of Physics and Astronomy. 
This research is supported in part by Volkswagenstiftung under contract no. 86260, and by 
the Chinese Academy of Sciences (CAS) President’s International Fellowship Initiative (PIFI) 
(Grant No. 2015VMA076).

Appendix A. The B → K∗ form factors in rest frame of the B meson

Since the πK–ηK system is in the P-wave, it is preferable to extract the finite-volume energy 
spectrum in the reference frame, in which the K∗ has non-zero 3-momentum. Consequently, as 
an alternative to the case considered in the main text, we also consider the following kinematics:

p = 0, k = −q = 2π

L
d, d = (0,0, n) . (A.1)

The current matrix elements of Eq. (13) in this moving frame take the form

〈V (k,+)|J (+)|B〉 = −2imB |q|V (q2)

mB + mV

,

〈V (k,0)|i(mB − EV )JA + |q|J (0)
A |B〉 = −2imB |q|A0(q

2),

〈V (k,+)|J (+)
A |B〉 = −i(mB + mV )A1(q

2),

〈V (k,0)|i(mB − EV )J
(0)
A − |q|JA|B〉 = 8mBmV A12(q

2),

〈V (k,+)|i(mB − EV )I (+) + |q|I (+)
0 |B〉 = 2imB |q|T1(q

2),

〈V (k,+)|i(mB − EV )I
(+)
A + |q|I (+)

0A |B〉 = −i(m2
B − m2

V )T2(q
2),

〈V (k,0)|I (0)
A |B〉 = − 4mBmV

mB + mV

T23(q
2), (A.2)

where EV =
√

m2
V + q2 is energy of the K∗ meson, which is treated as a stable particle. As 

seen from Eq. (A.1) (see, e.g., also Ref. [60]), the matrix elements should be measured in the 
irreps E and A1 of the little group C4v . However, because K∗ is not at rest now, the S- and 
P-waves mix in the irrep A1. Consequently, only the form factors V , A1, T1, and T2 could be 
extracted by applying formulas that are similar to the ones given in the previous sections. For 
other form factors A0, A12, T23 one should either assume that the mixing is small, or use more 
general equations, derived in Ref. [41], which include it.

Further, one applies the following operators to create the states 〈V (k, ±)|, 〈V (k, 0)| from the 
vacuum:

O(±)
E

(k, t) = 1√
2

∑
x

eikx(O1(x, t) ∓ iO2(x, t)
)
, O(0)

A1
(k, t) =

∑
x

eikxO3(x, t). (A.3)

When the K∗ becomes unstable, the mass mV should be replaced by the CM energy value E∗
n

of the two-particle state in a finite volume. Then, the matrix elements Eq. (A.2) are functions of 
E∗

n and |q|. Analogously, in order to keep |q| fixed at different values of energy E∗
n , one could 

resort to asymmetric volumes of type L × L × L′ or twist the s-quark.
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