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Abstract

Next-generation sequencing has triggered an explosion of available genomic and transcriptomic resources in the plant
sciences. Although genome and transcriptome sequencing has become orders of magnitudes cheaper and more efficient,
often the functional annotation process is lagging behind. This might be hampered by the lack of a comprehensive enumer-
ation of simple-to-use tools available to the plant researcher. In this comprehensive review, we present (i) typical ontologies
to be used in the plant sciences, (ii) useful databases and resources used for functional annotation, (iii) what to expect from
an annotated plant genome, (iv) an automated annotation pipeline and (v) a recipe and reference chart outlining typical
steps used to annotate plant genomes/transcriptomes using publicly available resources.
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Introduction

Next-generation sequencing has triggered an explosion of avail-
able genomic and transcriptomic resources in the plant sciences
[1]. Since the genome sequence of the model plant Arabidopsis
thaliana was published in 2000 [2], around 180 plant genome se-
quences have been published (http://www.plabipd.de/portal/se
quence-timeline, https://en.wikipedia.org/wiki/List_of_sequenc
ed_plant_genomes). This number is greatly enhanced by includ-
ing plant transcriptome assemblies. As of August 2016, the tran-
scriptome shotgun assembly database of the National Center
for Biotechnology Information (NCBI) lists over 450 plant assem-
blies (https://www.ncbi.nlm.nih.gov/Traces/wgs/?view¼TSA),
whereas the plant 1KP project alone (onekp.com) includes
>1300 plant transcriptomes. This is further complemented by
countless plant transcriptomes found in Supplemental
Materials. This remarkable surge is a testament to the genomics
revolution that has provided us with the tools to quickly se-
quence whole transcriptomes on a relatively modest budget,

which typically can yield sufficient data for a working quality
transcriptomic inventory (‘the transcriptome’).

Generating an assembly for a species is merely the first step
in the elucidation of the genome. Extensive processing and ana-
lysis is necessary before the resource will yield scientific in-
sights. In the case of genome assemblies, a process called
structural annotation is necessary. This process detects genes
including their exon/intron structures within a given assembly.
Although this can rely on extensive ‘extrinsic evidence’ in the
form of RNA sequence (RNASeq) [3], this is often complemented
by sophisticated statistical models of gene structures to find
exon/intron structures in what is termed ab initio discovery.
This process has been covered in detail, and readers are referred
to [4]. Current popular tools to structurally annotate a genome
include the automated pipelines MAKER-P specifically de-
veloped for plants [5] and the generalist BRAKER1 [6].

Assembling RNASeq data to produce high-quality transcrip-
tome assemblies as a shortcut to a ‘functional genome’ [7] is still
not a trivial task, despite these data sets being typically smaller
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and consisting uniquely of gene rich data. Popular transcrip-
tome assembly tools such as TRINITY [8] require significant op-
timization to produce an assembly of reasonable quality. For
recipes and cookbooks in the plant field one can refer to [9–11].

Once the gene structures have been detected, the necessary
next step is to ascribe biological function to the genes in a pro-
cess known as functional annotation. Surprisingly, performing
this task to a degree of accuracy remains challenging, despite
the extensive accrual of knowledge about gene function in
model and crop species. Indeed, there is still a large percentage
of genes, many of which can be found across multiple species,
whose function has not been ascertained.

Within the plant community, A. thaliana remains the best
annotated plant largely because of the tremendous effort of The
Arabidopsis Information Resource (TAIR), which integrates
community-based curations together with annotations from lit-
erature evidence. Over 2800 experimentally supported annota-
tions have been included within the past 2 years alone [12]. This
wealth of data has been adopted and further augmented by
AraPort [13], an open-source resource, which encourages the
community to contribute not only data modules but visualiza-
tion tools and apps. Despite these extensive resources,
published data [14] indicate that still only about 77% of the pro-
tein-coding sequences could be assigned any kind of structured
annotation. This figure is in agreement with data from the
PLAZA database, an online platform that has processed the an-
notations from several plant species into a uniform format [15].

Controlled terms and vocabularies for plant
functional annotations

Homology-based functional annotation is the transfer of exist-
ing knowledge about a gene sequence to another gene sequence
within the same species or to another species. This process es-
sentially depends on the existing knowledge about a gene func-
tion being transferable to genes of a similar sequence and
assumes that this similarity reflects functional homology.
Although an experimentalist working with a non-model species
may likely be content with an annotation such as ‘quite similar
to an Arabidopsis thaliana malic enzyme’, this annotation bears
several difficulties for a sustainable annotation framework.
This also hampers structured analysis of genome-wide data to
answer questions like, ‘how many genes are involved in photo-
synthesis or glycolysis?’. This problem can largely be alleviated
by using controlled vocabularies and functional ontologies [16]
to provide a consistent description of gene products across dif-
ferent species.

The Gene Ontology ontology

The most widely used functional annotation is ‘Gene Ontology’
(GO) that provides defined ‘GO terms’ to enable gene products
to be described by three separate domains: ‘Biological Process’,
which describes the gene in terms of a recognized series of
events or molecular functions, ‘Cellular Component’ describing
the location of a protein (or rather biomolecule) at a cellular
and/or macromolecular level and ‘Molecular Function’ describ-
ing the jobs or abilities that a gene product has on the molecular
level. Besides GO terms, each GO annotation contains an ‘evi-
dence code’, which provides information on how a GO term was
applied to a gene. Evidence codes indicate whether the annota-
tion is based on experimental evidence, computational analysis,
author statements or curatorial statements, all of which are
manually curated. GO annotations also contain evidence codes,

which are used to indicate assignment by automatic/computa-
tional methods. This has the advantage that annotations based
on experimental data can be treated with much higher
confidence than automatic annotations of related proteins.
In addition, by qualifying where such an annotation came from
it is easier to check the respective annotation. In this respect,
curated GO resources such as the one for A. thaliana represent
an invaluable resource.

The GO ontology is structured as a directed acyclical graph
making it possible to infer more general terms from a specific
term. This additionally allows grouping data, e.g. our malic
enzyme might be annotated with the GO term ‘GO:0009763’
‘NAD-malic enzyme C4 photosynthesis’ from which one could
immediately deduce using, e.g., the Amigo browser [17] that the
terms ‘GO:0015979’ ‘photosynthesis’ and ‘GO:0015977’ ‘carbon
fixation’ also apply.

The Kyoto Encyclopedia of Genes and Genomes ontology

Another widely used resource is the Kyoto Encyclopedia of
Genes and Genomes (KEGG http://www.kegg.jp/). This features
a number of databases that aim to link genomic- and molecu-
lar-level information to higher-level functions of the cell, organ-
ism and the ecosystem. Annotation with KEGG is based on
associating molecular function with orthologous groups, which
are defined based on clustering of genes from completed gen-
omes (currently, >4000 genomes), using the KEGG’s internal
‘KEGG Orthology and Links Annotation’ (KOALA) program. The
resulting information is stored in the ‘KEGG Orthology’ (KO)
database, and assignment of KO entry identifier (also called K
numbers) provides the gene annotation. KEGG aims to include
reference to primary literature for each KO entry (76% of around
19 000 KO entries contains this as of September 2015) [18].

CYC and other metabolic resources

In the case of enzymatic reactions, there is also the CYC net-
work, whose plant section is under the Plant Metabolic network
(http://www.plantcyc.org) umbrella [19]. This is mainly used to
describe enzymatic functions, and while it enables one to build
reaction networks [20], it does not cover additional functional
terms. The plant Reactome is a database of plant metabolic and
regulatory pathways which have been curated for the reference
species rice and applied to 58 other plant species [21]. Finally,
the Enzyme Commission numbers [22] (http://www.chem.qmul.
ac.uk/iubmb/enzyme) describe reactions and classify enzymes,
which are also referenced by KEGG, CYC and Reactome.
Although CYC uses citations to the primary literature exten-
sively, the enzymes within CYC are not formally linked to anno-
tations via evidence codes.

The MapMan BIN ontology

One additional ontology resource that is specifically plant
focused is the MapMan BIN ontology. This was originally
devised to visualize omics data on plant pathways [23] but has
grown since and currently comprises around 2000 ontological
terms. The MapMan ontology is modeled in a hierarchical tree
structure with higher-level categories based on biological pro-
cess and leaf categories containing detailed function. The struc-
ture was manually defined by experts in the respective fields,
and changes are applied periodically based on primary litera-
ture. Although MapMan endeavors to assign ‘evidence’ to the
BINs (http://mapman.gabipd.org/web/guest/mapcave), these are
currently updated as new releases are published. As this
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ontology is strictly plant-specific, it lacks non-plant terms fea-
tured by, e.g., GO, KO and the CYC databases.

Common misconceptions

Functional annotation usually depends on the transfer of func-
tional knowledge from one gene to another. This assumes that
the initial functional annotation is not only correct but also of a
‘robust nature’ to allow transfer. There are many pitfalls, which
can occur during this transfer process, and which may, ultim-
ately, lead to either incomplete or missannotation of genes.

The ‘annotatable’ gene space in plants

The number of annotated genes in an assembly is a frequently
used assessment in published data [24]. Before one can assess
the results of this, one needs to first know how many genes can
be annotated. This question is far from easy to answer, as it
varies not only between species but also varies depending on
what is considered as a ‘high confidence’ annotation. The use of
the ontologies mentioned previously highlights that the func-
tion of many genes remain ‘dark matter’. The data shown in
Figure 1 give an upper bound based on the best annotated A.
thaliana genome. When one considers annotations pertaining to
a molecular function or biological process separately, slightly
>50% of the A. thaliana genes can be assigned a GO function
(Figure 1A). Even when asking whether a gene has a molecular

function or a biological process annotated to it, in our test data,
the number reached 64% (Figure 1B). The numbers are naturally
lower when one only considers experimental evidence data and
not electronic annotations, which are often based on homology
transfer. Only in the case of ‘cellular component’ are these
numbers much higher (Figure 1A), as the subcellular localiza-
tion can usually be predicted easily as shown in the section
‘Subcellular localization’ below.

Put in other words, this means that obtaining functional an-
notations (based on Molecular function and Biological process,
Figure 1B) for more than two-thirds of the plant protein-coding
genes analyzed is relatively unlikely, and a number much lower
than this could suggest an incomplete genome or
transcriptome.

Annotation quality can vary

Even in cases when genes have been successfully annotated,
the question about the quality of the annotations needs to be
addressed. One simple pitfall is to take sequence similarity to
annotated proteins at face value. Indeed, any functional anno-
tation derived by simple sequence similarity transfer should be
scrutinized carefully before embarking on a particular hypoth-
esis about this particular protein. Given that proteins generally
consist of one or more distinct domains embedded in generic
regions, annotations that only look at sequence similarity, but

Figure 1. Overview of the number of annotated genes for the genome of the model plant A. thaliana based on analysis of GO terms.

The GoSlim annotations were downloaded from the TAIR Web site (ftp://ftp.arabidopsis.org/Ontologies/Gene_Ontology/ATH_GO_GOSLIM.txt—downloaded July 2016).

For each of the three main GO domains, the respective annotations were categorized according to the evidence code. The ‘Experimental’ category includes genes anno-

tated with evidence codes IDA (inferred from direct assay), IMP (inferred from mutant phenotype), IGI (inferred from genetic interaction), IPI (inferred from physical

interaction) or IEP (inferred from expression profile). ‘Curated’ includes those which had evidence codes IC (Inferred by Curator), NAS (Non-traceable Author

Statement) and TAS (Traceable Author Statement) but lacking any annotation covered by the ‘Experimental’ category. ‘Electronic’ includes genes annotated with evi-

dence codes ISS (Inferred from Sequence or Structural Similarity), ISO (Inferred from Sequence Orthology), ISM (Inferred from Sequence Model), IBA (Inferred from

Biological Aspect of Ancestor), RCA (Inferred from Reviewed Computational Analysis) or IEA (Inferred from Electronic Annotation), but lacking any annotation from the

‘Experimental’ or ‘Curated’ categories. (A) The three aspects are shown separately. (B) The best annotation from multiple domains is shown, with the combination of

Molecular Function and Biological Process on the left, and all three domains combined on the right.
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do not take into account that certain domains are necessary to
exert a function, might lead to an incorrect annotation.

Absence of annotation does not mean absence
of function

Furthermore, absence of a specific annotated gene in a plant
genome/transcriptome does not necessarily mean that the
plant cannot perform a particular function. Functional annota-
tion is highly dependent on complete gene models, so in cases
of partial or incomplete gene models, as is frequently seen with
transcriptome assemblies, the tools used might not be sensitive
enough to ascribe (the correct) function on a partially assembled
gene. Thus, caution needs to be exercised when posing hypoth-
eses based on gene or even pathway loss. Such scenarios need
to be carefully validated using manual approaches. A first step
would be to analyze the genome/transcriptome specifically for
this function by using, e.g., BLAST [25] or searching for a neces-
sary domain using, e.g., HMMER3 [26] using the resources listed
in Table 1. In the case of no good candidates, more sophisticated
and even experimental methods would need to be used to dem-
onstrate the absence of a gene function beyond reasonable
doubt.

In conclusion, one should keep in mind that functional an-
notations should be treated with care and taken as working
hypotheses that might or might not need to be verified by biolo-
gical experimentation.

Functional annotations using generic tools and
ad hoc pipelines

Given the current levels of plant genome annotation, it is per-
haps unsurprising that frequently, the sole annotation process
used is based on sequence similarity to the well-annotated
plant A. thaliana. Indeed, often a simple BLAST search is per-
formed using the genome/transcriptome as a query and the A.

thaliana proteome as a subject. This is because of the well-
maintained and annotated A. thaliana genome. In addition to A.
thaliana, a selection of plant protein reference files can be ob-
tained from Phytozome [27] and/or Ensembl Plants [28], with
manually curated data sets for all species available from
UniProtKB/Swiss-Prot [29].

Many functional annotation tools require that the input data
are protein sequences, and some tools, which can accept either
nucleotide or protein sequence, show superior results when
protein sequences are submitted. Thus, extracting high-quality
protein sequences is often the first step in functional
annotation. The genome structural annotation pipeline from
AUGUSTUS/BRAKER1 [3] provides auxiliary scripts (http://augus
tus.gobics.de/binaries/scripts/), which will conveniently out-
put the protein sequences after genome annotation into a
FASTA file.

Finding coding regions in transcriptome assemblies

De novo transcriptome assemblies, however, pose additional
challenges, as coding sequences need to be identified and
frameshift mutations corrected before protein conversion.
ESTScan [30, 31], a program which can detect coding sequences
in DNA, has been developed to perform this task but needs to be
trained with examples before it is used on a specific data set.
This program exploits bias in nucleotide usage found in coding
sequences relative to noncoding sequences. Other heuristics
such as identifying the longest open reading frame (ORF) or by
searching for frames that code for functional domains using
TransDecoder (https://github.com/TransDecoder) [32] present
alternative approaches. FrameDP [33] and GenemarkS-T [34]
perform a similar function, but use sophisticated methods,
which remove the need for the training steps. FrameDP was de-
veloped to discover coding sequences in transcripts or tran-
script fragments, such as ESTs and is part of the TRAPID [35]
integrated tool (discussed further below). GenmarkS-T provides
an algorithm, which is somewhat robust against assembly
errors, and has been shown to compare favorably with other
existing tools. Despite showing superior performance when
tested by the authors against Transdecoder and ESTScan, the
authors noted problems arising when RNASeq-based assem-
blies gave rise to the transcript models. This is because the
underlying transcript models contained multiple errors leading
to concomitant problems in coding region finding [34].

Sequencing errors carried over from the assembly to the
annotation process might create artificial amino acid mutations
or insert stop codons in ORFs, shortening existing or creating
non-expressed peptides. Proteomics experiments are vital in ex-
perimentally validating gene models originating from

Table 1. Available resources for protein family- or domain-based functional identifications

Resource Version Families Web address Comments

PFAM 30.0 16 306 http://pfam.xfam.org/
TIGRFAM 15.0 4488 http://www.jcvi.org/cgi-bin/

tigrfams/index.cgi
PANTHER 11.0 13 096 http://pantherdb.org
SMART 7.1 1312 http://smart.embl-heidelberg.de/ License necessary
EggNOG 4.5 190 648 (37 127 plants) http://eggnogdb.embl.de/#/app/home
INTERPROSCAN 58.0 >40 000 integrated

entries
https://www.ebi.ac.uk/

interpro/search/sequence-search
Meta engine including all other

resources except EggNOG but not
necessarily the most recent
version at all times

CDD 3.15 52 411 (11 474
from CDD curation)

http://www.ncbi.nlm.nih.gov/cdd/ Uses RPS-BLAST and includes
partly older versions of PFAM,
SMART and TIGRFAM
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transcriptome assemblies by comparing the expressed/meas-
ured peptides with the in silico database, as described in [36, 37].
However, functional annotation can frequently deal with an in-
accurate ORF as long as most of the true coding region is re-
tained. This is because similarities can still be identified based
on slightly truncated regions.

Annotation based on profile hidden Markov models

Tools that specialize in identifying domains within a sequence
have advantages over simple similarity comparisons, as domain

sequences typically are highly conserved between genes.
Domains are frequently represented as profile hidden Markov
models (HMMs), which are deduced from multiple sequence
alignments stemming from several species, thus capturing typ-
ical sequence diversity at individual residues. This provides a
more sensitive way to approach the sequence annotation prob-
lem. Table 1 provides a list of the main tools, which use protein
family models often in the form of profile HMMs. PFAM [38] is
likely the best known resource in this area and can currently
identify >16 000 families. TIGRFAM [39] is a manually curated
resource, which provides HMMs for full-length proteins and
shorter regions. PANTHER’s [40] distinguishing feature is that it
splits families into subfamilies allowing for a fine-grained anno-
tation. SMART focuses on regulatory domains, which are often
more difficult to tackle [41]. Finally, the EggNOG database [42]
provides access to precomputed orthologous groups including
plant-specific ones, along with functional annotations.

Even though these resources do not necessarily attribute a
specific function to a protein, they do provide valuable evidence
or hints toward the function of the protein. In addition to these
standalone resources, HMMs used by many of these tools can
be downloaded (in some cases, after having applied for a li-
cense) and used with the HMMER software suite [26].

The integrated InterProScan resource

Many of the protein family databases mentioned in the previous
section contain overlapping information (e.g. the NAD-binding
domain of a malic enzyme would be identified both by the
PFAM HMM PF03949 and the SMART HMM SM00919). Thus, it is
often beneficial to use InterProScan [43], as this platform brings
such ‘redundant’ information from the different protein fami-
lies under one common umbrella (for the malic enzyme NAD-
binding domain regardless of whether it was identified via
SMART, PFAM or both, it would assign the InterPro Identifier
IPR012302 ‘Malic enzyme, NAD-binding’). InterProScan addition-
ally can assign GO terms by mapping from InterPro identifiers
to GO term(s) using a cross-mapper called Interpro2GO [44].
Even though InterProScan does not always support the latest
version of all the databases, a single tool that offers a diverse
range of databases is of great benefit to users. A notable non-
HMM-based reference database offered by InterProScan is the
Conserved Domain Database (CDD) [45], which like PFAM com-
prises protein domains, but also features full length protein
alignments. CDD relies on RPS-BLAST and, thus, ultimately on
position-specific scoring matrices [46] to identify sequence
similarity. From a user’s perspective, it is interesting to note
that CDD also incorporates data from PFAM, TIGRFAM and
SMART offering another tool that incorporates several sources
such as InterProScan. CDD offers the advantage of a simpler
setup scenario than InterProScan, as it is based on RPS-BLAST.

Using genome-scale orthology finding

To increase or improve functional annotations, genome-scale
draft-quality orthology detection is frequently incorporated.
This also helps in exploring protein family relationships and
comparative genomic approaches. In the simplest case, this
could be a reciprocal best BLAST hit, which offers a quick and
easy way to obtain a one-to-one relationship table. Tools such
as Inparanoid [47], Orthofinder [48] and OrthoMCL [49] use
BLAST and clustering algorithms in a convenient pipeline. Each
offers different benefits, and the performance of several tools
has recently been compared by Altenhoff et al. [50]. However, it
should be noted that incomplete transcriptomes/genomes can
lead to misdetection of orthologs, as the proper ortholog might
be missing in the incomplete transcriptome/genome. Also, es-
pecially for reconstructed transcriptomes, it is not possible to
generate full-length sequences for all contigs. This leads to add-
itional decreases in ortholog detection accuracy, which need to
be accounted for.

In the case of closely related species, one can refine orthol-
ogy prediction further if full-genome information is available by
making use of synteny, i.e. that gene order remains conserved
across species [51]. The online tool CoGe [52] offers an auto-
mated pipeline to perform this task. However, this is a special-
ized step that lies downstream of typical functional annotation.

Adding information

In addition to gene function (captured by ‘molecular function’
or ‘biological process’ in the GO ontology), it can be useful to
gain an insight into the topological considerations for plant pro-
teins as well as their subcellular localization and potential post-
transcriptional modification.

Transmembrane domains

One approach for adding protein topology is predicting trans-
membrane domains based on the protein sequence. TMHMM
[53] offers a simple Web-based solution for alpha helix detection
and can also be downloaded as a standalone tool for academic
use. The free tool TOPCONS [54], which is actively being de-
veloped, combines a selection of prediction tools to provide a
consensus result. This has demonstrated better performance,
but its local installation is slightly more complex than TMHMM
because of software dependencies. A comprehensive listing of
transmembrane domain prediction tools is available in the
Aramemnon transmembrane database [55] and in a recent re-
view [56] (Table 2).

Subcellular localization

To predict subcellular localization, and, thus, the third GO do-
main ‘cellular component’, the general tool TargetP [57] or the
secretory signal peptides predictor SignalP [58] are frequently
used. These, however, tend to perform poorly in the case of
plants [59, 60], so other plant-specific tools such as Plant-mPLoc
[61], AtSubP [60] or, for N-terminal targeting sequences, the tool
Predotar [62] may produce superior results (Table 2).

However, finding an adequate performance evaluation is
often difficult. To avoid biased results, one needs to validate the
predictions on a data set, which was not used for training of the
predictors [63], and it might be advisable to rely on several tools
as is done in the curated reference database for A. thaliana pro-
tein localization SUBA3 [64].
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Posttranslation modifications

In the case where one is interested in signaling, one can predict
phosphorylation sites using four plant tools at the moment,
namely PHOSFER [65], PhosPhAt [66], PlantPhos [67] and Musite
[68]. In terms of performance, the latter three tools have re-
cently been compared, and it seemed that for serine/threonine
predictions, at least in the model A. thaliana, Musite performed
best. It was, however, noted that for tyrosine phosphorylation,
the sensitivity can be lower for Musite at certain specificity
ranges [69] (Table 2).

Predicting function based on expression behavior

Finally, one might venture into functional prediction using
nonsequence-based data. A prime example is the ‘guilt by as-
sociation’ approach, whereby one assumes that a gene to be
annotated might exert function X (‘guilt’) if it is co-expressed
(‘associated’) with one or several genes of the same known
function X [70–73]. The underlying idea is that if several genes
consistently show the same expression, there is a good chance

that they are co-regulated, as they are needed for the same
process or pathway. Insightful examples are macromolecular
complexes such as ribosomes, or the cellulose synthesis com-
plex where this guilt-by-association approach works well [74].
Although this approach usually requires many transcriptomic
data sets, tissue-specific data sets are often available in gen-
ome and/or transcriptome projects, which might prove to be
sufficient. Indeed, tissue-specific data might even be helpful
to unravel tissue-specific processes, as has been done for A.
thaliana seed coat mucilage [75, 76]. In the case where meta-
bolic data are available, this might be used to complement the
guilt-by-association approach using protocols described re-
cently [77, 78].

Caution needs to be taken, as the guilt-by-association prin-
ciple is not always reliable and must be evaluated critically. The
approach depends on the number of reliably annotated genes
within a network. Indeed, even though it works well in cases
where queries are restricted to cases similar to the ones listed
above (few genes in a well-annotated network), the usefulness
of the method decreases when the procedure is scaled up [79].

Table 2. Available resources to complement functional annotation

Resource Web address Comments

TMHMM http://www.cbs.dtu.dk/services/TMHMM/ Can be downloaded and installed locally for academics. Online
version allows the submission of 10 000 sequences at most

TOPCONS http://topcons.net/ Can be downloaded and installed freely (GPL v2). Online version
allows the submission of 100 MB sequence data at most

TargetP http://www.cbs.dtu.dk/services/TargetP/ Can be downloaded and installed locally for academics. The online
version allows the submission of 2000 sequences at most

Plant-mPLoc http://www.csbio.sjtu.edu.cn/bioinf/plant-
multi/

At time of writing problem with multifasta submission

AtSubP http://bioinfo3.noble.org/AtSubP/ Up to 2000 predictions
Predotar https://urgi.versailles.inra.fr/predotar/predo

tar.html
Only N-terminal signals for mitochondria and chloroplasts

PHOSFER http://saphire.usask.ca/saphire/phosfer/
index.html

Free for academic use only

PhosPhAt http://phosphat.uni-hohenheim.de/phos
phat.html

PlantPhos http://csb.cse.yzu.edu.tw/PlantPhos/Predict.
html

Uploads <2 MB

Musite http://musite.net/ �100 predictions; can be downloaded and installed locally freely
(GPL v3)

TAIR/Protein
Interaction Data

https://www.arabidopsis.org/download/
index-auto.jsp?dir¼%2Fdownload_files
%2FProteins%2FProtein_interaction_data

Arabidopsis Predicted
Interactome and
Arabidopsis interactions
Viewer

ftp://ftp.arabidopsis.org/home/tair/Proteins/
Protein_interaction_data/Interactome2.0/
or http://bar.utoronto.ca/interactions/
cgi-bin/arabidopsis_interactions_
viewer.cgi

Downloadable from TAIR, these are the data for interactome v2.0
(also available at the Arabidopsis Interactions viewer). In total,
70 000 predicted interactions and 3000 experimentally deter-
mined interactions

IntAct http://www.ebi.ac.uk/intact/ Interactions from literature curations or user submissions; part of
the IMEx consortium

AtPIN http://atpin.bioinfoguy.net/cgi-bin/atpin.pl Incorporates data from: IntAct, BioGRID, TAIR, Predicted
Interactome for Arabidopsis, AtPID

ANAP http://gmdd.shgmo.org/Computational-
Biology/ANAP

Integrates 11 interaction databases

M.I.N.D https://associomics.dpb.carnegiescience.edu/
Associomics/Home.html

In total, 12 102 high-confidence protein–protein interactions, based
on split-uniquitin system in yeast; in addition, >3000
Arabidopsis membrane proteins in a separate screen are
included

PPIM http://comp-sysbio.org/ppim/ Contains predictions and information form literature
PRIN http://bis.zju.edu.cn/prin/ Predictions based on interlogs in various model organisms, where

studies have been carried out
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Protein interaction databases

A similar approach can be followed using the gene product, the
protein, where one searches for interacting proteins. The data
repositories of TAIR (Arabidopsis.org) contain such an approach,
as well as links to a number of protein interaction resources
such as the Arabidopsis interactions viewer [80], IntAct [81],
AtPIN [82] and ANAP [83] (Table 2). In addition, GabiPD [84] and
PhosPhAt [66] databases hold some information on kinases and
their phosphorylation targets, while in the case of membrane
proteins, the Membrane-based Interactome Database (M.I.N.D)
[85] can be used. The latter is particularly interesting because
unlike databases containing various types of curated or pre-
dicted data M.I.N.D. rely on experimental results from several
rounds of testing using the split-ubiquitin system. The effort for
establishing interaction databases is moving onto other plant
species, as can be seen in the Protein–Protein Interaction net-
work for Maize (PPIM) [86] and a predicted rice interactome net-
work (PRIN) [87]. A combination of co-expression and
interaction data can improve the reliability of the functional
prediction [88].

microRNA and target predictions

In addition to protein-coding genes, other prominent genomic
features that regulate gene expressions include noncoding
RNAs. This includes a diverse set of plant RNA molecules re-
viewed in [89, 90], which are transcribed, but never translated
into proteins. Next-generation sequencing of these RNA species,
which is typically performed using specialized RNASeq libraries
targeting small RNAs, has necessitated the development of
tools, which can quickly and easily deal with these data sets. An
in-depth discussion of all small RNA (sRNA) tools would itself
warrant a complete review, so for the purposes of this article,
we will restrict our discussion to tools relevant to detection and
analysis of microRNA (miRNA) with reference to sRNAtoolbox
[91], which offers a selection of user-friendly tools from expres-
sion profiling to target gene prediction.

miRNAs are a class of RNA that are involved in gene regula-
tion. Though similar in many respects to small interfering RNA,
miRNA can have many target mRNAs and acts as a gene regula-
tor (inhibitor) rather than in gene silencing. To disambiguate
the two, guidelines for the annotation of plant miRNAs have
been proposed by [92].

One of the main repositories of knowledge for miRNA is
miRBase [93]. The most recent release of the database contains
28 645 entries representing precursor miRNAs, expressing
35 828 mature miRNA products, in 223 species. miRBase add-
itionally serves as a registry for newly discovered miRNAs and
provides a naming service for miRNA genes. Aside from provid-
ing annotations and references for all published miRNA, a
‘Target’ pipeline is provided to predict the targets. However, as
this is only aimed at animal miRNA, plant researchers are best
referred to a recent benchmark [94] comparing many different
plant pipelines. Unfortunately, the outcome was that for species
other than A. thaliana, the accuracy was generally not too high.
It was, therefore, suggested [94] to use a union of predictions
stemming from Targetfinder [95] and psRNATarget [96] to maxi-
mize finding potential targets at the cost of identifying many
false targets. Alternatively, highly confident predictions at the
cost of losing many true targets were possible by only using
those predictions made by both psRNATarget and Tapir in hy-
brid mode [97].

Automated functional annotation pipelines

Given the dramatic increase in genome and transcriptome
sequencing, it is not surprising that the demand has grown for
fast automated annotation pipelines that quickly provide
meaningful biological data from these data sets. Many of the
early large-scale genome projects had specific annotation
groups assigned to carry out this task, e.g. TIGR for A. thaliana [2]
and ITAG for Solanum lycopersicum [98]. These frequently fea-
tured a combination of computational or automated annota-
tions coupled with manual curations. Several recent genome
projects have to a greater extent used automated pipelines,
which may reflect the increasing quality of the tools available. It
should of course be noted that many of the automated pipelines
incorporate data, which was manually curated in many of the
earlier genomes. Taken together, this also shows that plant gen-
ome analysis benefits from the time gain offered by automated
tools and increases the focus on analyses of more and different
data sets.

In general, these tools can be partitioned based on the
underlying ontology used. Probably, the best known tool to infer
GO annotations is BLAST2GO [99], which can also incorporate
InterProScan and KEGG data. BLAST2GO provides a user-
friendly and well-integrated interface featuring locally installed
software offering graphical outputs, maps, etc. However, some
of these features are not available in the free and academic ver-
sion but require a license. An alternative, which is aimed at
plant researchers who would like to apply GO terms, is provided
by the fully integrated TRAPID plant-specific pipeline. TRAPID
offers a Web-based analysis platform and alleviates the need to
install software [35]. As TRAPID also uses gene families, it usu-
ally should provide good annotation performance.

To apply the KO entries (or K numbers) from the KEGG data-
base to a gene set, the popular online tool KEGG Automatic
Annotation Server (KAAS) [100] provides a user-friendly inter-
face. This service relies on BLAST searches and either on unidir-
ectional hits or on bidirectional hits together with some
heuristics. Recent updates to KEGG have introduced the
BlastKOALA and GhostKOALA online tools, which allow users to
exploit data from KEGG’s internal annotation tool (KOALA)
[101]. Both tools target the nonredundant pangenomic data set
generated from KEGG’s genes database, with GhostKOALA using
the GHOSTX search algorithm, which is considered more appro-
priate for metagenome annotation. The result from these tools
can be used as input for the other KEGG modules (e.g. KEGG
pathways).

The MapMan ontology can be inferred using the online tool
Mercator [102]. This allows annotation of both protein and DNA
sequences and incorporates BLAST and CDD searches as well as
an optional InterProScan annotation. In the case of DNA se-
quence submission, the file is simply analyzed in all six frames
for domain searches, and the annotations merged with the ex-
pectation that the correct frame will return the best result.
Users can optionally choose a selection of well-annotated plant
genomes to be included in the analysis.

Performing annotations using locally installable
resources

For the more computation savvy researcher who has access to
decent computing resources, Trinotate (https://trinotate.github.
io) offers a comprehensive annotation suite, which extends the
popular Trinity RNASeq assembly pipeline [8]. It comprises a
BLAST search against the manually assigned SWISSPROT data
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set, HMMER searches against the PFAM database as well as find-
ing signal sequences and predicting subcellular localization
using TMHMM [53] and SignalP [58], respectively. In addition, it
allows inclusion of the RNAmmer [103] tool which is used to
identify rRNA transcripts and integrates a selection of annota-
tion databases (KEGG, EggNOG and GO). An alternative is the
plant-specific AHRD pipeline (https://github.com/groupschoof/
AHRD), which provides a consensus annotation based on a set
of input gene descriptions obtained by sequence similarity
searches. The annotations are the result of scoring the input
gene annotations according to both their frequency and the
reputation of the database from which it was derived.

The sets of tools described in the previous two sections
using controlled terms or annotations are often preferred, given
the ease with which the results can be compared against other
similarly annotated genomes. Prominent examples that use
these tools include the melon genome, which used KAAS [104],
the peanut ancestor genome, which used AHRD [105], and the
genome of the wild tomato, which used Mercator [106].

An example of annotation pipelines using rapeseed
proteins

Table 3 provides a small survey of the integrated tools by anno-
tating 1476 rapeseed proteins using the automated annotation
pipelines. It is evident that the tools relying on their own

infrastructure generally deliver results quickly. In addition, the
annotation rate ranges from 26% for the KEGG-based tools,
likely based on KEGG’s stronger focus on metabolism, to 56% for
GO or MAPMAN-based terms. The latter value compares with
the annotation rate of about 51% (from the downloaded refer-
ence) when counting any GO term (including ‘cellular compo-
nent’). In contrast, BLAST2GO reaches a higher annotation rate
of 78% but requires 10�more time when run on a typical work-
station type laptop (e.g. i7 Quadcore). As noted above, such a
high annotation rate (especially as it is higher than the refer-
ence) could result from aggressive (and thus sensitive) standard
settings, which potentially should be further tuned when anno-
tating plant genomes. Nevertheless, BLAST2GO might provide
valuable leads into less likely functions, and as was the case for
TAIR, most annotations were for the ‘Cellular Component’ do-
main, as for 70% of the genes a cellular component domain GO
term could be determined. It is noteworthy that both plant-
specific pipelines (TRAPID and Mercator) reach similar annota-
tion rates, which is likely because of their specific fine tuning to
plant-derived proteins.

Integrating the output from several pipelines has been
shown to be beneficial, such as in the case of the potato crop
[107]. In this pipeline, the authors used Trinotate, BLAST2GO,
OrthoMCL together with other tools to produce an Ensemble
classifier by counting how many different pipelines a certain
GO term was detected. Interestingly, by using even simple

Table 3. Integrated tools for the functional analysis of plant genomes

Resource Time taken Annotation
rate (%)

Comments

Reference — 51 At least one GO term assigned including cellular component
Blast2GO 8 h 23 min 78 BLAST is performed locally or as WebBLAST via NCBI; InterProScan is performed as a

Web service at the European Bioinformatics Institute (EBI)
KAAS 10 min (only single-

directional best hit (SBH)
was used as a survey
sample of sequence)

29 Runs as a Web service, no user resources needed

GhostKOALA 28 min 26 Runs as a Web service, no user resources needed
Mercator 5 min 56 Runs as a Web service, no user resources needed
TRAPID 5 min 56 Runs as a Web service, no user resources needed

Note. For the analysis, the first 1476 proteins from the Brassica proteome version 5 were downloaded from http://www.genoscope.cns.fr/brassicanapus/data/ alongside

their GO annotations, representing exactly 10 000 lines of text and submitted to the various services, where available searches were limited to plant data sets. In the

case of Blast2GO, WebBLAST was used. We have rounded the values, as annotations are subjected to updates, and time taken will depend on server loads. Therefore,

these values should be seen as a general orientation.

Table 4. Tools and Web sites useful in annotating large protein families

Resource Function Web address

CoGe Compares genomes, find synteny https://genomevolution.org
PlantTFDB Plant Transcription Factor families http://planttfdb.cbi.pku.edu.cn/
Potsdam plntfdb Plant Transcription Factor families http://plntfdb.bio.uni-potsdam.de/v3.0/
P450 Database P450 protein families http://drnelson.uthsc.edu/CytochromeP450.html
CAZy Enzymes acting on carbohydrates http://www.cazy.org/
Aramemnona Plant membrane proteins http://aramemnon.uni-koeln.de/
Merops Database Peptidases http://merops.sanger.ac.uk
PLAZA Generalist Plant Family database http://bioinformatics.psb.ugent.be/plaza
GreenPhylDB Generalist Plant Family database www.greenphyl.org/

Note. aAlso lists a comprehensive set of tools for transmembrane domains, subcellular localization and lipid modifications.
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Ensembles, they increased the concordance with literature an-
notations. A similar multiple site data retrieval strategy was
used for the wheat database dbWFA [108], which provides a
data warehouse strategy and, thus, allows querying and com-
bining different annotations per wheat gene to provide a more
comprehensive picture.

Potential pitfalls and difficult gene families

Generally speaking, the high-throughput tools mentioned above
use methods, which can quickly identify the general gene func-
tion. This frequently relies on identifying the protein family
based on the aforementioned HMMs. Although this is often suf-
ficient, there are many cases where a finer-grained approach is
necessary. Plant genomes are renowned for containing large
gene families such as transcription factors, which can easily
number in the thousands. The Cytochrome P450 family of genes
is known to be large in many organisms, and it is frequently the
target of scientific interest in plants given their prominent role

in secondary metabolite biosynthesis, which is particularly im-
portant to medicinal plants. Indeed, the two large projects
PhytoMetaSyn [109] and Medicinal Plant Genome Resource [110]
are dedicated to the transcriptome analysis of medicinal plants.

In cases of large or difficult gene families, it is often neces-
sary to analyze data in detail by building gene family trees,
which first require careful multiple sequence alignments. This
dismantles large groups of genes into individual genes or
smaller clades allowing distinct functions to be applied. An al-
ternative and/or complementary approach could involve ana-
lyzing syntenic relationships using the CoGE resource [111].
There are many resources available that are dedicated to anno-
tating difficult gene families such as PlantTFDB and Potsdam
PlnTFDB for plant transcription factors [112–114], the P450 data-
base for P450 enzymes [115], CAZy for carbohydrate active en-
zymes [116], Merops for peptidases [117] and Aramemnon for
plant membrane proteins [55], which are summarized in
Table 4. These are complemented by the more generalist plant
family database PLAZA [15] and GreenPhylDB [118]. On a

Figure 2. Flowchart for the annotation of plant genomes/transcriptomes.
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broader level, using detailed phylogenetic information in the
genomic era brings in phylogenomics tools whose use is re-
viewed in [119].

Recipe

Based on the discussion above and focusing on the use of online
resources, one could annotate a plant genome almost automat-
ically following the steps below (Figure 2):

(i) Generation of protein sequences: The first question one
should ask is whether protein sequences are available (which is
typically the case in a genome project) or not (which is typically
the case in a transcriptome project). If protein-coding sequences
are not available, these should be generated from transcript se-
quences using, e.g., FrameDP or the AUGUSTUS/BREAKER1 pipe-
line for genome assemblies. Other tools to perform this task are
discussed in the section ‘Finding coding regions in transcrip-
tome assemblies’. This would provide a common input for the
subsequent annotation regardless of the starting approach.

(iia) Annotation: One would then submit the resulting pro-
tein sequences as one file to the following three online re-
sources. As all these services make use of their own high-
performance computing pipelines and are free for academic
users, they can be run in parallel.

• KAAS can be used to infer KEGG terms.
• The TRAPID pipeline can be used for GO terms.
• Mercator can be used for MapMan terms.

At this stage, one could also use BLAST2GO to infer GO anno-
tations; however, this is only possible if one either has a license
or is an academic user. It should be considered, however, that
BLAST2GO has a much longer run-time, which could impede
subsequent genome annotation analysis tasks. Thus, a decision
is needed if the additional time is worth the extra annotations,
which are potentially not provided by annotation alternatives
like TRAPID.

(iib) (optional) Validation of annotations: In cases where
local computational resources are available, one should add-
itionally run EggNOG scans on the side, to further validate and
compare the derived functional annotations. To test if this pro-
cedure is feasible using the available equipment, we recom-
mend running a truncated sample of, e.g., 100–1000 protein
sequences first.

The above two steps provide a fast solution to arrive at a
plethora of terms, which can be easily combined using even
simple tools like MS Excel, where one could add the different
ontologies into separate rows for inspection. Even though the
different ontologies cannot be directly compared with each
other, they help in understanding the genome in their own
right.

This would already provide a good working annotation for
many research topics and could be used to answer questions
such as Are certain processes occurring or not? Or do we see
more genes in secondary metabolism than in related plants?

(iii) Additional information: One can annotate transmem-
brane domains using TMHMM and/or TOPCons (the online ver-
sions of both were relatively easy to use in our hands, but the
online TMHMM tool was significantly faster). For TMHMM, one
might have to split the protein sequence file obtained from Step
(i) into several batches. In the simplest case, one could do this
by hand in a text editor such as Notepadþþ on Windows or
TextWrangler on MacOS.

(iv) Similarly, as for transmembrane domains (i.e. after split-
ting of the file from Step (i)), subcellular localization can be pre-
dicted using the online tools TargetP and/or AtSubP.

(v) Finally, one could use the PhosPhat and PHOSFER online
tools for a prediction of phosphorylation sites.

After the annotation process is complete, it is advisable to
look at a selection of these annotations to verify whether they
are correct. A good choice for a more experiment-oriented re-
searcher would be to focus on the genes or gene families, which
one works with in the laboratory. This verifies that the expected
annotations are present and that no wrong annotations had
been added. Alternatively, or in addition, manually comparing
genes described in the literature with their automatically
derived annotations are highly recommended.

Key Points

• Annotating plant genomes should (also) rely on ontol-
ogies, and there are several complementary resources
available.

• Generally, large-scale annotation relies on homology
transfer, and it is complemented by finding domains
and protein families.

• Annotation can be further complemented by add-
itional predictions such as transmembrane domains,
subcellular localization and phosphorylation sites.

• Plant genome annotation can be performed automat-
ically using the plant-specific tool Mercator as well as
the generalists TRAPID (which features a special plant
module), KAAS/BlastKOALA and Blast2GO without any
significant computational resources.

• It is important to quality check the annotation and to
remember that all annotations should be treated as
hypotheses.
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