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in the delta-less and delta-full cases. Based on the determined low-energy constants, we
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1 Introduction

Elastic pion-nucleon (πN) scattering has been studied extensively since the middle of the

last century (see e.g. refs. [1, 2]), not only due to the wealth of experimental data, but also

because of its importance for our understanding of chiral dynamics of quantum chromo-

dynamics (QCD). From the theory side, in order to describe such a fundamental process,

dispersion relations for πN scattering have been investigated several decades ago [3–5] and

many phenomenological models and different approaches have been proposed (see, e.g.,

refs. [6–13]). Roy-Steiner equations for the pion-nucleon scattering have been also anal-

ysed recently [14–17]. In the low-energy region a systematic and powerful tool to study πN

scattering is provided by chiral perturbation theory (ChPT) [18–21]. An extension of the

range of applicability of chiral effective field theory (EFT) beyond the low-energy region

has been also suggested in the recent work of ref. [22].

ChPT is the EFT of QCD in the low-energy region, which is widely used in modern

hadronic physics. It has the same symmetries as its underlying theory and is based on an

expansion in powers of small quark masses and external momenta, collectively denoted by

p. According to the power counting rules of ChPT, powers of p are assigned to Feynman

diagrams and used to estimate the relative importance of their contributions in physical

quantities. Hence, low-energy physical quantities, which can not be obtained within per-

turbative QCD, are calculated in a perturbative expansion in powers of p. Purely mesonic

ChPT, the theory of Goldstone bosons only, has been very successful [19, 20]. However,

in baryon chiral perturbation theory (BChPT), which additionally takes baryons into ac-

count, the power counting becomes subtle due to the non-zero baryon masses in the chiral

limit. A first attempt to study elastic πN scattering using BChPT was made in ref. [23].

Therein, the power counting rule was shown to be broken when the baryon propagators are

involved in loop integrals, namely loop diagrams give contributions of orders lower than

assigned by the power counting.

To remedy this power counting breaking (PCB) issue, several approaches were pro-

posed during the last decades. The most well-known approach is to calculate physical

quantities within heavy baryon chiral perturbation theory (HBChPT) [24, 25]. In order

to restore the power counting, a simultaneous expansion in p and in inverse powers of the

baryon mass is performed. Within this framework πN scattering was analysed in detail

up to order O(p3) [26, 27] and later up to order O(p4) [28]. A good description of partial

wave phase shifts has been achieved near threshold. However, the non-relativistic heavy

baryon expansion distorts the analytic structure of the amplitudes, e.g. the location of the
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poles of baryon propagators are shifted, and also convergence problems are encountered in

certain low-energy regions, e.g. for the scalar form factor of the nucleon at t = 4M2
π [29].

It should be noted, however, that the proper analytic structure can be regained if one

includes subleading terms in the heavy baryon propagator, see e.g. ref. [30]. In any case,

it is of interest to treat the PCB problem within covariant BChPT. A pioneering work in

ref. [31] restored the power counting by keeping only the so-called soft parts of the Feynman

diagrams. Successively, a much more elegant approach, known as infrared regularization

(IR), was proposed in ref. [29] and later extended/reformulated in refs. [32–35]. All the

Feynman integrals in the IR regularization scheme are divided into infrared singular parts,

respecting the power counting rules, and infrared regular parts, possibly violating them,

and therefore the latter are discarded by means of absorbing them in (an infinite number

of) the low-energy constants (LECs) of the effective Lagrangian. By making use of the IR

scheme, πN scattering has been studied up to O(p4) order [36] (see also ref. [37] for O(p3)

order calculation). Besides, the analyses of the isospin violation and the SU(3) sector of

BChPT have also been considered in refs. [38] and [39], respectively. However, the IR

regularization has its own drawbacks: the presence of an unphysical u-channel cut [29, 31]

and the prediction of a large discrepancy of the Goldberger-Treiman (GT) relation [37].

All these problems are due to dropping the entire infrared regular parts.

The extended-on-mass-shell (EOMS) scheme, developed in refs. [40–42], is an alterna-

tive approach to solve the PCB problem. It removes the power counting breaking terms

(PCBT) at the level of amplitudes (or observables) by absorbing them into the renormal-

ization of LECs of the effective Lagrangian. This is due to the fact that the PCBTs are

polynomials of momenta and/or quark masses. The EOMS scheme preserves the analytic

structure of the physical quantities, e.g. scattering amplitudes. πN scattering has been

calculated using EOMS scheme in ref. [43] up to order O(p3) and in ref. [44] up to order

O(p4). Contributions to the scattering amplitudes obtained in those works possess the

correct power counting and correct analytic properties. Moreover, the existing results of

partial wave analysis are described well, and remarkably, reasonable predictions for discrep-

ancy of GT relation and the pion-nucleon sigma term σπN are obtained. Nevertheless, as

pointed out in ref. [43], the convergence of the chiral expansion of the O(p3) order πN scat-

tering amplitude within EOMS scheme is questionable when the ∆(1232) is not taken as an

explicit degree of freedom. This implies the necessity of including the ∆(1232) resonances

as explicit degrees of freedom in the effective Lagrangian, together with nucleons and pions.

In this work, we present the full third order (leading one loop) calculation of the pion-

nucleon scattering amplitude in a manifestly Lorentz invariant formulation of BChPT with

explicit deltas. We perform renormalization using the EOMS scheme such that the power

counting violating terms are dealt with properly. The S- and P -wave phase shifts are

extracted from the manifestly Lorentz invariant amplitudes and then fitted to the phase

shifts obtained from the recent Roy-Steiner (RS) equation analysis of πN scattering [17]

such that all involved LECs are determined. Based on the obtained LECs, we predict the

D- and F -wave phase shifts and compare them with the results of the George Washington

University (GWU) group analysis [45]. The threshold parameters are determined for both

the delta-less and delta-full cases. In addition, we discuss the pion-nucleon sigma term and

the strangeness content of the nucleon in SU(3) BChPT.
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This paper is organized as follows. In section 2 we introduce the notations and the

kinematics for the pion-nucleon scattering amplitudes. Terms of the chiral effective La-

grangian that are needed for our third order calculation of the pion-nucleon scattering

amplitude are specified in section 3. Contributions of tree and one loop diagrams in the

scattering amplitude are discussed in section 4. Renormalization of the one loop diagrams

and the definitions of the pion-nucleon, gπN , and pion-nucleon-delta, gπN∆, couplings are

given in section 5. Section 6 contains the extraction of the phase shifts. The baryon sigma

terms and the strangeness content of the nucleon are discussed in section 7. We summarize

our results in section 8 and the appendices contain explicit expressions of various quantities

as well as other technicalities.

2 Formal aspects of elastic pion-nuleon scattering

2.1 Kinematics and the structure of the amplitude

The on-shell Lorentz- and time-reversal invariant T -matrix for the elastic scattering process

πa(q) +N(p)→ πa
′
(q′) +N(p′), with Cartesian isospin indices a′ and a, depends on three

Mandelstam variables

s = (p+ q)2 , t = (p− p′)2 , u = (p− q′) , (2.1)

subject to the constraint

s+ t+ u = 2m2
N + 2M2

π , (2.2)

with mN and Mπ the physical masses of the nucleon and the pion, respectively. In the

isospin limit, the amplitude T a
′a

πN (s, t, u) can be parameterized as

T a
′a

πN (s, t, u) = χ†N ′

{
δa′aT

+(s, t, u) +
1

2
[τa′ , τa]T

−(s, t, u)

}
χN , (2.3)

where τi are the Pauli matrices and χN , χN ′ denote nucleon iso-spinors. Unless stated

otherwise, the argument u is always to be understood as a function of s and t, u(s, t) =

2m2
N + 2M2

π − s− t. The Lorentz decomposition of the invariant amplitudes T± reads

T±(s, t, u) = ū(s′)(p′)

{
D±(s, t, u)− 1

4mN
[/q
′, /q]B

±(s, t, u)

}
u(s)(p) , (2.4)

with the superscript (s′), (s) denoting the spins of the Dirac spinors ū, u, respectively. The

Lorentz decomposition is not unique, a popular alternative form is

T±(s, t, u) = ū(s′)(p′)

{
A±(s, t, u) +

1

2

(
/q
′ + /q

)
B±(s, t, u)

}
u(s)(p) . (2.5)

Furthermore, A± can be related to B± andD± viaA± = D±−νB± with ν ≡ (s−u)/(4mN ).

Nevertheless, it is well known that the decomposition in terms of D and B, i.e. eq. (2.4),

is better suited to perform the chiral expansion of the invariant amplitudes, while there

exists cancellations between power counting violating contributions from A and B.
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The whole T -matrix T a
′a

πN is symmetric under the so-called crossing operation between

the s- and u-channels, i.e. interchanging the incoming pion (nucleon) and the outgoing pion

(nucleon). As a result, due to the crossing symmetry the invariant amplitudes A, B and

D have the following properties:

D±(s, t, u) = ±D±(u, t, s) ,

B±(s, t, u) = ∓B±(u, t, s) ,

A±(s, t, u) = ±A±(u, t, s) . (2.6)

2.2 Partial wave projection and unitarity

The amplitudes with definite isospin quantum number I can be deduced via

AI= 1
2 = A+ + 2A− , AI= 3

2 = A+ −A− , (2.7)

where A ∈ {A,B,D}. All possible elastic πN scattering processes are associated with the

above specified two isospin amplitudes: AI= 1
2 and AI= 3

2 . The partial wave projection of

the isospin amplitudes is given by

AI` (s) =

∫ +1

−1
AI(s, t(s, zs))P`(zs)dzs , zs ≡ cos θ , (2.8)

where θ is the scatting angle in the center-of-mass (CMS) frame and P`(zs) are Legendre

polynomials. Further, t is regarded as a function of s and zs, i. e.

t(s, zs) = (zs − 1)
λ(s,m2

N ,M
2
π)

2s
, (2.9)

where λ(a, b, c) = a2 + b2 + c2 − 2ab − 2bc − 2ca is the Källén function. The physically

relevant partial wave amplitudes f I`±(s) can be constructed from AI` (s) through

f I`±(s) =
1

16π
√
s

{
(Ep +mN )

[
AI` (s) +

(√
s−mN

)
BI
` (s)

]
+(Ep −mN )

[
−AI`±1(s) +

(√
s+mN

)
BI
`±1(s)

]}
, (2.10)

with Ep =
s+m2

N−M
2
π

2
√
s

and the subscript `± is an abbreviation for the total angular momen-

tum J = ` ± 1
2 . One popular notation for all the partial waves is the spectroscopic one,

L2I,2J , with L = S, P,D, F, . . . (corresponding to ` = 0, 1, 2, 3, . . .). In general, below the

inelastic threshold, f I`±(s) obeys the partial wave unitarity:

Imf I`±(s) = q(s)
∣∣f I`±(s)

∣∣2 , or SI`±(s)
(
SI`±(s)

)†
= 1 , (2.11)

where

SI`±(s) ≡ 1 + 2iq(s)f I`±(s) (2.12)

with q(s) = λ(s,m2
N ,M

2
π)/(2

√
s), the modulus of the three-momentum in the CMS frame.

A commonly used parametric form of the partial wave amplitudes is

SI`±(s) = e2iδI`±(s) ,

– 4 –
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f I`±(s) = q(s)−1eiδ
I
`±(s) sin δI`±(s) =

1

2iq(s)

{
e2iδI`±(s) − 1

}
. (2.13)

Here, the so-called partial wave phase shifts δI`±(s) are real-valued functions and they can

be expressed as

δI`±(s) = Arg{f I`±(s)} =
1

2
Arg{SI`±(s)} . (2.14)

2.3 Extracting phase shifts from perturbative amplitudes

In chiral EFT, the scattering amplitude f(s) can be calculated perturbatively up to certain

order O(pP ) (for simplicity, all indices of the amplitudes are suppressed in this section),

fP (s) = f (1)(s) + f (2)(s) + . . .+ f (P )(s) . (2.15)

The full amplitude f(s) = fP=∞(s) satisfies the partial wave unitarity condition exactly,

however, fP 6=∞(s) does not. The phase shifts can be calculated using

δ(s) = Arctan

{
q(s)

Re [fP (s)−1]

}
. (2.16)

This is equivalent to constructing a unitarized amplitude fU (s) corresponding to fP (s) by

setting

Re
[
fU (s)

]
= N · Re [fP (s)] ,

Im
[
fU (s)

]
= N · q(s) |fP (s)|2 = N · q(s)

[
(RefP (s))2 + (ImfP (s))2

]
(2.17)

and then extracting the phase shifts by substituting the partial wave amplitudes corre-

sponding to fU (s) in eq. (2.14). Here, N is given by the expression

N =

[
[RefP (s)]2

|fP (s)|2 + |q(s)fP (s)|2
]−1

. (2.18)

For all partial waves except P33 we use the following expression

δ(s) = Arctan {q(s)Re [fP (s)]} . (2.19)

For the non-resonant partial waves the phase shifts given by eqs. (2.19) and (2.16) differ

by higher order contributions only.

3 Effective Lagrangian

The chiral effective Lagrangian relevant for our calculation of the pion-nucleon scattering

amplitude up to order O(p3) can be written as

Leff =
2∑
i=1

L(2i)
ππ +

3∑
j=1

L(j)
πN +

2∑
k=1

L(k)
π∆ +

3∑
l=1

L(l)
πN∆, (3.1)

– 5 –
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where the superscripts in brackets correspond to the chiral orders. The first two terms in

eq. (3.1) are sufficient to perform an analysis of the πN scattering without explicit deltas.

For the case including deltas as explicit degrees of freedom, one also needs the last two

terms, which introduce interactions of deltas with pions and nucleons.

We start with the purely mesonic sector for which the required terms are given by [19,

46]1

L(2)
ππ =

F 2

4
Tr(∂µU∂

µU †) +
F 2M2

4
Tr(U † + U),

L(4)
ππ =

1

8
l4〈uµuµ〉〈χ+〉+

1

16
(l3 + l4)〈χ+〉2, (3.2)

where 〈 〉 denotes the trace in flavor space, F is the pion decay constant in the chiral limit,

and l3, l4 are mesonic LECs. The chiral operators, uµ and χ+, are defined as

uµ = i
[
u†(∂µ − irµ)u− u(∂µ − ilµ)u†

]
, U = u2 = exp

(
i τaπa

F

)
,

χ± = u†χu† ± uχ†u , χ =

[
M2 0

0 M2

]
, (3.3)

with M the leading order contribution to the charged pion mass. Further, the Goldstone

bosons πa are incorporated in a 2× 2 matrix-valued field U . In our present calculation the

external sources lµ and rµ can be set to zero, lµ = rµ = 0.

Terms of the effective Lagrangian of the one-nucleon sector of BChPT [27] relevant for

the πN scattering are given as

L(1)
πN = Ψ̄N

{
i /D −m+

1

2
g /uγ5

}
ΨN ,

L(2)
πN = Ψ̄N

{
c1〈χ+〉 −

c2

4m2
〈uµuν〉(DµDν + h.c.) +

c3

2
〈uµuµ〉 −

c4

4
γµγν [uµ, uν ]

}
ΨN ,

L(3)
πN = Ψ̄N

{
−d1 + d2

4m

(
[uµ, [Dν , u

µ] + [Dµ, uν ]]Dν + h.c.)

+
d3

12m3
([uµ, [Dν , uλ]](DµDνDλ + sym.) + h.c.

)
+ i

d5

2m
([χ−, uµ]Dµ + h.c.)

+i
d14 − d15

8m
(σµν〈[Dλ, uµ]uν − uµ[Dν , uλ]〉Dλ + h.c.) +

d16

2
γµγ5〈χ+〉uµ

+
id18

2
γµγ5[Dµ, χ−]

}
ΨN . (3.4)

Here, m and g denote the nucleon bare mass and the bare axial coupling constant, respec-

tively. The notion ‘bare’ will be explained below. The LECs ci and dj have dimension

GeV−1 and GeV−2, respectively. The covariant derivative acting on the nucleon field is

defined as DµΨN = (∂µ + Γµ)ΨN with

Γµ =
1

2

{
u†(∂µ − i rµ)u+ u(∂µ − i lµ)u†

}
. (3.5)

1The fourth order Lagrangain of eq. (3.2) differs from that of ref. [19] by equation of motion terms. In

general this affects the values of low energy constants of the nucleon sector, however this is not relevant for

the current calculation.
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Fields with spin-3/2 corresponding to the delta resonances can be described via the

Rarita-Schwinger formalism, where the field is represented by a vector spinor Ψµ [47]. For

the purposes of our calculation the following Lagrangians are needed [48],

L(1)
π∆ = −Ψ̄i

µξ
3
2
ij

{(
i /D

jk −m∆δ
jk
)
gµν + iA

(
γµDν,jk + γνDµ,jk

)
+
i

2
(3A2 + 2A+ 1)γµ /D

jk
γν +m∆δ

jk(3A2 + 3A+ 1)γµγν

+
g1

2
/ujkγ5g

µν +
g2

2
(γµuν,jk + uν,jkγµ)γ5 +

g3

2
γµ/ujkγ5γ

ν
}
ξ

3
2
klΨ

l
ν , (3.6)

L(2)
π∆ = a1Ψ̄i

µξ
3
2
ijΘ

µα(z)〈χ+〉δjkgαβΘβν(z′)ξ
3
2
klΨ

l
ν , (3.7)

where m∆ and g1, g2, g3, a1 are the bare mass of the delta and bare coupling constants,

respectively. Further, Θµα = gµα + zγµγν , where z is a so-called off-shell parameter.

The isospin-3
2 projection operator is defined as ξ

3
2
ij = δij − τiτj/3. Ψi

µ is a short-

hand notation for Ψµ,α,i,r, which is a vector-spinor isovector-isospinor field, with µ being a

Lorentz vector index, α Dirac spinor index, i an isovector index, and r an isospinor index.

From now on, the Dirac spinor and the isospinor indices will be suppressed for simplicity.

The fields Ψi
µ are related to the physical ∆(1232) states ∆++, ∆+, ∆0 and ∆− by

ξ
3
2
1jΨ

j
µ =

1√
2

(
1√
3
∆0
µ −∆++

µ

∆−µ − 1√
3
∆+
µ

)
,

ξ
3
2
2jΨ

j
µ = − i√

2

(
1√
3
∆0
µ + ∆++

µ

∆−µ + 1√
3
∆+
µ

)
,

ξ
3
2
3jΨ

j
µ =

√
2

3

(
∆+
µ

∆0
µ

)
. (3.8)

The covariant derivative acting on the Rarita-Schwinger fields is defined as

Dµ,ijΨj
ν = (∂µδij − 2iεijkΓµ,k + δijΓµ) Ψj

ν ,

Γµ,k =
1

2
〈τkΓµ〉 = − i

4F 2
εijk(∂µπ

i)πj +
i

48F 4
πaπaεijk(∂µπ

i)πj +O(π4), (3.9)

with Γµ given by eq. (3.5).

Finally, the pion-nucleon-delta interaction part has the form

L(1)
πN∆ = h Ψ̄i

µξ
3
2
ijΘ

µα(z1) ωjαΨN + h.c. ,

L(2)
πN∆ = Ψ̄i

µξ
3
2
ijΘ

µα(z2)

[
i b3ω

j
αβγ

β + i
b8
m
ωjαβiD

β

]
ΨN + h.c. ,

L(3)
πN∆ = Ψ̄i

µξ
3
2
ijΘ

µν(z3)

[
f1

m
[Dν , ω

j
αβ ]γαiDβ − f2

2m2
[Dν , ω

j
αβ ]{Dα, Dβ}

+f4ω
j
ν〈χ+〉+ f5[Dν , iχ

j
−]

]
ΨN + h.c., (3.10)

where the bare pion-nucleon-delta coupling constant at lowest order is denoted by h and

b3, b8, f1, f2, f4 and f5 are bare LECs of higher orders. New off-shell parameters z1, z2 and
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z3 appear in the interaction terms. As discussed later, they do not contribute in physical

quantities. For convenience, the three chiral structures, ωiα, ωjαβ and χk−, are introduced as

building blocks of the Lagrangian. Their explicit expressions are given by

ωiα =
1

2
〈τ iuα〉 = − 1

F
∂απ

i +
1

6F 3
(∂απ

iπaπa − πi∂απaπa) +O(π5) ,

ωjαβ =
1

2
〈τ j [∂α, uβ ]〉 = − 1

F
∂α∂βπ

j +O(π3) ,

χk− =
1

2
〈τkχ−〉 = −2i

F
M2πk +O(π3) , (3.11)

where we expanded them in powers of pion fields to the order needed for our calculations.

4 Calculation of the pion-nucleon amplitude up to NNLO

4.1 Power counting

For diagrams involving only pion and nucleon lines, we use the standard power counting of

refs. [49, 50]. For diagrams with delta lines we apply the power counting of refs. [48, 51],

that is we count the mass difference ∆ = m∆ −mN as of order O(p), although we do not

expand the interaction terms of the effective Lagrangian and the physical quantities in ∆.

The above power counting leads to the dressing of the delta propagator in the resonant

region (for a different point of view, see refs. [52, 53]).

In particular, it is self-consistent to count A−B ∼ pn if A ∼ pn and B ∼ pn, however,

more care has to be taken when dealing with inverse powers of similar differences. From

A ∼ pn, B ∼ pn it does not necessarily follow that 1/(A − B) ∼ p−n. For example, if we

have A = Mπ + aM3
π (a 6= 0) and B = Mπ + bM4

π (b 6= a), by counting A−B as of order p

we overestimate this difference (which causes no problems), however, if we count 1/(A−B)

as of order 1/p, we underestimate this quantity, which is apparently of order 1/p3 and that

leads to inconsistency. Considering the delta propagator appearing in the intermediate

states in the s-channel diagrams Dµν
0 ∼ 1/(s−m2

∆) = 1/(s−m2
N − 2mN∆ +O(∆2)), we

count s −m2
N ∼ p, ∆ ∼ p, however, it would be wrong to conclude that ∼ 1/(s −m2

∆) =

1/(s − m2
N − ∆(mN + m∆)) ∼ 1/p. For s → m2

∆ this propagator diverges, so do all

diagrams with multiple self-energy insertions, therefore we need to sum up these diagrams,

i.e. consider the dressed propagator Dµν(k) ∼ 1/(/k−m∆ −Σ(k)). For /k → m∆ we obtain

Dµν(k) ∼ 1/(−Σ(k)) ∼ 1/p3 as the leading contribution in the self-energy is of order

O(p3). We follow an alternative way of dealing with the problem by using the complex-

mass scheme, specified later, where the undressed propagator contains the width of the

unstable particle and therefore the re-summation is not needed.

4.2 Tree level contributions

The Feynman tree diagrams contributing to the pion-nucleon scattering amplitude up to

order O(p3) are displayed in figure 1 with chiral orders specified in front of them. The

crossed diagrams are not shown since their contributions can be obtained by using the

crossing relations given in eq. (2.6). The diagrams with mass insertions in propagators,

– 8 –
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(b)(a)

(d) (e) (f)

(g) (h) (i)

3

2 1

1 1

2

1331

1 1

1 3 3 1 2 2

(c)

(j) (k) (l)

1

1 2

O(p1) :

O(p2) :

O(p3) :

O(p3) :

Figure 1. Tree level diagrams contributing to πN scattering up to order O(p3). Dashed, solid and

double lines represent pions, nucleons and deltas, respectively. Circled numbers mark the chiral

orders of the vertices. Crossed diagrams are not shown. The diagrams in the first, second, third

and fourth rows are of O(p1), O(p2), O(p3) and O(p3), respectively.

which are generated by the c1 term in L(2)
πN for the nucleon and a1 term in L(2)

π∆ for the

delta, are not shown either. Their contributions are automatically taken into account if

one replaces the masses in the nucleon and delta propagators by

m → m2 = m− 4c1M
2 ,

m∆ → m∆,2 = m∆ − 4a1M
2 . (4.1)

As can be seen from figure 1, there are three different types of contributions: nucleon-

exchange, contact-interaction and delta-exchange diagrams. The s-channel Born-term con-

tributions of the nucleon-exchange diagrams, namely the sum of contributions of diagrams

(a), (g) and (h), can be written as

D±N (s, t) = − g2
2

4F 2

2mN

s−m2
2

{
(s−m2

N )(m2 +mN )− s− u
4mN

(
s+ 2mNm2 +m2

N

)}
,

B±N (s, t) = − g2
2

4F 2

s+ 2mNm2 +m2
N

s−m2
2

, (4.2)

where g2 ≡ g + 2(2d16 − d18)M2. Here the appearance of m2 is due to the inclusion of

the mass-insertion diagrams to the order we are working. The contact-term contributions,

which are represented by Diagrams (c), (f) and (i), read

D+
C (s, t) = −4c1M

2

F 2
+
c2(16m2

Nν
2 − t2)

8F 2m2
+
c3(2M2

π − t)
F 2

,

D−C (s, t) =
ν

2F 2
+

2ν

F 2

{
2(d1 + d2 + 2d5)M2

π − (d1 + d2)t+ 2d3ν
2
}
,
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B+
C (s, t) =

4(d14 − d15)ν mN

F 2
, B−C (s, t) =

1

2F 2
+

2c4mN

F 2
. (4.3)

The calculation of the delta-exchange diagrams is performed using the Lagrangian

of eq. (3.10), where the off-shell parameters z1, z2 and z3 are involved. As argued in

refs. [54–56], those parameters are redundant in the sense that their contributions in physi-

cal quantities can be absorbed into LECs of other interaction terms. The same applies also

to the g2 and g3 terms in the Lagrangian of eq. (3.6), therefore for the convenience we take

g2 = g3 = z1 = z2 = z3 = 0 . (4.4)

With the above specifications, the LO Born-term contribution of the ∆-exchange is

D+
∆(s, t) =

h2

9F 2m3
∆(m2

∆ − s)

{
FA(s, t)− s− u

4mN
FB(s, t)

}
,

B+
∆(s, t) = − h2

9F 2m3
∆(m2

∆ − s)
FB(s, t) ,

D−∆(s, t) = −1

2
D+

∆(s, t) , B−∆(s, t) = −1

2
B+

∆(s, t). (4.5)

The definition of the functions FA,B(s, t) is given in appendix A. Similarly to the nucleon

case, m∆ should be understood as m∆,2 but we keep using m∆ for short. Tree order ampli-

tudes corresponding to diagrams (d), (e), (j), (k) and (l) are given in appendix A. However,

they are redundant in the sense that their contributions can be taken into account by the

redefinition of h in eq. (4.5) and the LECs in the contact terms, eq. (4.3). By redefining

the πN∆ coupling h as

h→ h+ (b3∆23 + b8 ∆123) + (f1∆23 + f2 ∆123) ∆123 − 2(2f4 − f5)M2 , (4.6)

with

∆123 ≡
M2 +m2 −m2

∆

2m
, ∆23 ≡ m−m∆ , (4.7)

the pole structures in the O(p2) and O(p3) order delta-exchange diagrams are absorbed.

Further, the remaining non-pole parts can be absorbed by making use of

ci → ci + δci , (i = 1, 2, 3, 4) ,

dj → dj + δdj , (j = 1, 2, 3, 5, 14, 15). (4.8)

The explicit expressions for δci and δdj are given in appendix A.

Finally, if the redefinitions of eqs. (4.6) and (4.8) are imposed, the tree contribution

can be summarized as

D±tree(s, t) = D±N (s, t)±D±N (u, t) +D±∆(s, t)±D±∆(u, t) +D±C (s, t) ,

B±tree(s, t) = B±N (s, t)∓B±N (u, t) +B±∆(s, t)∓B±∆(u, t) +B±C (s, t) , (4.9)

where eq. (2.6) has been used.
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1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1

1 1 1 1

1 1 111

2

11 11

1

11111111

111111

111

2

(b) (c) (d)

(e) (f) (g) (h)

(i) (k) (l) (m)

(n) (o) (p) (r)

(s) (t) (u) (v)

Figure 2. One-loop Feynman diagrams without explicit deltas to order O(p3). Dashed and solid

lines represent pions and nucleons, respectively. Circled numbers mark the chiral orders of the

vertices. Crossed diagrams are not shown.

4.3 Leading one-loop contributions

The one-loop Feynman diagrams up to order O(p3), without and with explicit deltas, are

shown in figure 2 and figure 3, respectively. For easier comparison, the labeling scheme for

the delta-less loop diagrams of refs. [43, 44] is followed. For the explicit expressions of the

contributions of the delta-less one-loop diagrams in the amplitudes we refer the reader to

refs. [43, 44]. We have reproduced their results.

Due to the complexity of the spin-3/2 delta propagator, the calculation of the delta-full

loop diagrams in figure 3 is much more complicated. All diagrams have been calculated

using two independent computer codes2 giving identical results. The final expressions are

much too huge to be displayed in the paper.3

5 Renormalization

To calculate the loop diagrams we apply dimensional regularization with d the number of

space-time dimensions. All UV divergences of physical quantities are removed by counter

terms generated by the effective Lagrangian and absorbed in the corresponding LECs. The

2The codes written by the authors are based on Mathematica and FORM [57].
3The large expressions of amplitudes are obtainable from the first author.
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1 1 11 11111111 11

1111

(a1) (b1) (c1)

(f1)

(l)

(d1)

(i1)

(m)

(q1)

(g1)

(n)

(e1)

(j)

(o)

(r)

(h1)

(k)

(p1)

(s)

111

1

1111

(t1)

(u1) (v1)

11 1

1

Figure 3. One-loop Feynman diagrams with explicit deltas to order O(p3). Dashed, solid and

double lines represent pions, nucleons and deltas, respectively. Circled numbers mark the chiral

orders of the vertices. Crossed diagrams, diagrams with the reversed time ordering and diagrams

giving vanishing contributions are not shown.

finite pieces of the subtraction terms are fixed such that the subtracted contributions of

the loop diagrams in physical quantities satisfy the power counting. The required counter

terms are generated by splitting the bare parameters as follows:

X ≡ XR +
δ̄X

16π2F 2
R+

¯̄δX

16π2F 2
, X ∈ {g, h,m,m∆, a1, ci=1,·4} , (5.1)

Y ≡ YR +
δ̄Y

16π2F 2
R , Y ∈ {`3, `4, d1 + d2, d3, d5, d14 − d15, d18 − 2d16} , (5.2)

where XR and YR are renormalized parameters R ≡ 2/(d− 4) + γE − 1 − ln(4π), and γE
is the Euler number.4

Below we first introduce the renormalized and physical masses and wave function

renormalization constants followed by the definitions of the pion decay constant Fπ, the

4Notice that to simplify notations below in tables with numerical values of renormalized LECs we

suppress “R” subscripts.
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(a) (b) (c)

(f)(e)(d)

Figure 4. Tree and one-loop diagrams contributing to the self-energies of the nucleon and the

delta resonance up to the order O(p3).

LO πNN coupling gπN and LO πN∆ coupling gπN∆. In the calculations of gπN and gπN∆

we follow a procedure analogous that of ref. [58]. The πN scattering amplitudes obtained

by using the EOMS scheme are discussed in the end.

5.1 Masses and wave function renormalization constants

5.1.1 Pion

The pions, nucleons and deltas are explicit degrees of freedom in our calculation. Expres-

sions for the pion wave function renormalization constant Zπ and the pion pole mass M2
π

at one-loop order have the form (see e.g. ref. [59])

Zπ = 1− 1

F 2

[
2`4M

2 +
2

3
Hπ
]
, (5.3)

M2
π = M2

[
1 + 2`3

M2

F 2
− 1

2F 2
Hπ
]
, (5.4)

where Hπ is a one-loop integral defined in the appendix together with all loop integrals

which contribute in our calculations. Since in dimensional regularization there are no

power counting violating terms from the loops, the renormalization of the pion mass can

be treated in the standard way of mesonic ChPT by taking `3 ≡ `3R − 3
4

R
16π2 .

The case of the nucleon is more complicated and can be done in the EOMS scheme

so that the PCBTs from loops are dealt properly. We also give the renormalization of the

delta mass and the corresponding wave function renormalization constant.

5.1.2 Nucleon

Defining −iΣN as the sum of one-particle irreducible diagrams contributing to the nucleon

two-point function, the dressed propagator of the nucleon is given as

i SN (p) =
i

/p−m− ΣN (/p)
=

iZN
/p−mN

+ NP, (5.5)

where mN is the nucleon pole mass and ZN is the wave function renormalization constant.

NP stands for the non-pole part (also for the delta propagator below).

The nucleon self-energy up to order O(p3) consists of tree and loop diagrams shown in

figure 4 (a), (b) and (c) and the corresponding expressions are given by

ΣN (/p) = −4c1M
2 + ΣN,loop

A (s) + /pΣN,loop
B (s) , (5.6)
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where s ≡ p2 and the first term is the tree-order contribution. The explicit expressions

for ΣN,loop
A (s) and ΣN,loop

B (s) are shown in appendix D. The pole mass of the nucleon, mN ,

corresponding to eq. (5.6) is given as the solution to the equation

mN = m− 4c1M
2 + ΣN,loop

A (m2
N ) +mN ΣN,loop

B (m2
N ) . (5.7)

The nucleon wave function renormalization constant ZN is given by

ZN =

[
ΣN,loop
B (s) + 2s

∂

∂s
ΣN,loop
B (s) + 2/p

∂

∂s
ΣN,loop
A (s)

]
/p=mN

. (5.8)

Within the on mass-shell renormalization the renormalized mass of a particle is chosen equal

to the pole position of the corresponding dressed propagator. In case of BChPT, where we

want to keep track of the quark mass dependence of physical quantities explicitly, we use the

EOMS scheme [42], that is we choose the renormalized mass of the nucleon as the pole mass

in the chiral limit. In order to cancel the UV divergence and PCBTs from the loop diagrams,

one needs to split the bare parameters m and c1 in eq. (5.7) as specified by eq. (5.1). The

explicit expressions of the counter terms δ̄m, ¯̄δm, δ̄c1 and ¯̄δc1 are given in the appendix E.

5.1.3 Delta

In case of unstable particles the pole of the dressed propagator is located in the complex

plane. We choose the renormalized mass of the delta resonance as the pole position of its

dressed propagator in the chiral limit, that is we apply a generalization of the complex-mass

scheme introduced originally for the Standard Model [60, 61]. Note that the non-trivial

issue of unitarity within the complex-mass scheme has been discussed in ref. [62] and

studied in more details in ref. [63].

The propagator of the Rarita-Schwinger field corresponding to the Lagrangian of

eq. (3.6) for A = −1 in d space-time dimensions has the form

iSµν0,ij(p) = − i(/p+m∆)

p2 −m2
∆ + i0+

[
gµν − 1

d− 1
γµγν

+
1

(d− 1)m∆
(pµγν − γµpν)− d− 2

(d− 1)m2
∆

pµpν

]
ξ

3
2
ij . (5.9)

Using notations of ref. [64] and defining iΣµν as the sum of one-particle irreducible diagrams

contributing to the delta two-point function, we parameterize the self-energy of the ∆ as

Σµν = Σ1 g
µν + Σ2 γ

µγν + Σ3 p
µγν + Σ4 γ

µpν + Σ5 p
µpν + Σ6 /pg

µν

+Σ7 /pγ
µγν + Σ8 /pp

µγν + Σ9 /pγ
µpν + Σ10 /pp

µpν , (5.10)

where the Σi are functions of p2. The dressed delta propagator has the form

i Sµνij (p) =
−i gµνξ

3
2
ij

/p−m∆ − Σ∆
1 (p2)− /pΣ∆

6 (p2)
+ NP =

−i gµνξ
3
2
ij Z∆

/p− z∆
+ NP, (5.11)
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Figure 5. Tree and one-loop diagrams contributing to the gπN coupling constant up to order O(p3).

where the pole position z∆ of the ∆-propagator is obtained by solving the equation

z∆ −m∆ − Σ∆
1 (z2

∆)− z∆ Σ∆
6 (z2

∆) = 0 . (5.12)

The leading tree-order contribution to the delta self-energy is shown in diagram (d) in fig-

ure 4 and the leading loop contributions are given by diagrams in figures 4 (e) and (f). Sim-

ilarly to the nucleon case, the delta wave function renormalization constant is obtained via

Z∆ =

[
Σ∆,loop

6 (s) + 2s
∂

∂s
Σ∆,loop

6 (s) + 2/p
∂

∂s
Σ∆,loop

1 (s)

]
/p=z∆

. (5.13)

The explicit expressions of Σ∆,loop
1 and Σ∆,loop

6 are given in the appendix D. Renormaliza-

tion of the one-loop delta mass is carried out using eq. (5.1) with the counter terms shown

in appendix E.

5.2 Coupling constants of the leading order interactions

5.2.1 Pion decay constant Fπ

For practical convenience, one often needs to replace the quantities in the chiral limit, F ,

gR and hR by the physical ones, Fπ, gπN and gπN∆, respectively. At one-loop order the

pion decay constant Fπ is given via [19]

Fπ = F

[
1 + `4

M2

F 2
+

1

F 2
Hπ
]
, (5.14)

which is renormalized in the standard way, i.e. `4 = `4R −R/(16π2).

5.2.2 Pion-nucleon coupling constant gπN

In the isospin limit mu = md = m̂, where mu and md are the masses of the u and d quarks,

respectively, the matrix element of the pseudoscalar density evaluated between one-nucleon

– 15 –



J
H
E
P
0
5
(
2
0
1
6
)
0
3
8

1 2 3 1

1 1 1 1 1 1 1

1 11 1 11

1 11

(j)

(a) (b) (c) (d)

(e) (f) (g) (h)

(i)

Figure 6. Tree and one-loop diagrams contributing to the gπN∆ coupling constant up to order

O(p3).

states can be parameterized as

m̂〈N(p′)|P a(0)|N(p)〉 =
M2
πFπ

M2
π − q2

GπN (q2) i ū(p′)γ5τau(p) , (5.15)

where q = p′ − p. GπN (q2) is called the pion-nucleon form factor and its value at q2 = M2
π

defines the pion-nucleon coupling constant gπN = GπN (M2
π). Tree and one-loop diagrams

up to order O(p3) contributing to the πNN vertex function are shown in figure 5. The

result up to leading one-loop order can be written as

gπN =
gmN

Fπ
(1 + g

(2)
πN ) , g

(2)
πN =

2(d18 − 2d16)M2
π

gA
+ g

(2),loop
πN , (5.16)

where g
(2),loop
πN represents the very lengthy loop contribution which is not given explicitly in

this paper (also the loop contributions to gπN∆ coupling, discussed below). The coupling

gπN is renormalized in the EOMS scheme and we have checked that the divergences and

PCBTs from the loop contributions can indeed be canceled by counter terms generated by

g and d18 − 2d16.

5.2.3 Pion-nucleon-delta coupling constant gπN∆

Following ref. [65] we define the “physical” coupling constant gπN∆ by considering the

pion-nucleon-delta vertex function Γ on the complex mass-shell of the delta. Tree and

one-loop diagrams up to order O(p3) contributing in the πN∆ vertex function are shown

in figure 6. With t = q2 = (p′ − p)2, the form factor gπN∆(t) is defined by [31]

ū(p′)Γ(i,µ),a(p, p′, q)uµ(p) = gπN∆(t)ξiaū(p′)qµuµ(p) , (5.17)

where uµ(p) and ū(p′) are the Dirac spinors of the delta and the nucleon, respectively.

We define the πN∆ coupling by taking the external pion on the mass-shell, i.e. gπN∆ =

– 16 –



J
H
E
P
0
5
(
2
0
1
6
)
0
3
8

gπN∆(M2
π). One can redefine h using eq. (4.6) and by that the tree contributions from

Diagrams (b) and (c) in figure 6 can be absorbed. Hence, the final expression of gπN∆ can

be written as

gπN∆ =
h

Fπ
(1 + g

(2),loop
πN∆ ) , (5.18)

with h the redefined parameter (as specified in eq. (4.6)) and g
(2),loop
πN∆ the loop contribution.

Like the renormalization of gπN , UV-divergences and PCBTs are canceled by counter terms

generated by h. As pointed out e.g. in ref. [31], the coupling gπN∆ is a complex-valued

quantity.

5.3 The πN scattering amplitude

According to the LSZ reduction formula, the πN scattering amplitude TπN is related to

the amputated Greens function T̂πN , which has been calculated in the above section, via

TπN = ZπZN ū(p′)T̂πNu(p) , (5.19)

where Zπ and ZN are the wave function renormalization constants of the pion and the

nucleon, respectively.

UV divergences and power counting violating contributions of loop diagrams contribut-

ing to the amplitudes which have to be subtracted are calculated by applying the procedure

outlined in details in refs. [34, 42]. We do not give the expressions of these subtraction terms

due to their large size. As mentioned above these subtraction terms are canceled by counter

terms generated by parameters of the effective Lagrangian, see eq. (5.1) and (5.2). After

taking into account the contributions of the counter terms, we obtain a finite amplitude

respecting the power counting and possessing the correct analytic behavior.

Note that while we give the explicit form of the counter terms for c1 in the appendix,

the ones for c2,3,4 are too lengthy to be shown here. However, one can display them as

ci = ciR +
1

16π2F 2

{
Ci1
◦
HN + Ci2

◦
H∆ + Ci3

◦
Hπ∆(m2) + Ci4

◦
HπN (m2

∆) + Ci5
◦
HπNN (m2, 0,m2

∆)

+Ci6
◦
HπN∆(m2

∆, 0,m
2) + Ci7

◦
Hπ∆∆(m2, 0,m2

∆)

}
, (5.20)

with i = 2, 3, 4 and Cij=1,··· ,7 being the corresponding coefficients. Since the integrals like
◦
HπN (m2

∆) are complex, the c2,3,4 are renormalized to complex quantities. Note that c1

remains real after renormalization in view of eq. (E.8).

Finally, for the sake of practical use, the quantities in the chiral limit contributing to the

πN amplitude at one-loop order, such as M , mR, m∆R, F , gR and hR, can be substituted

by their corresponding physical quantities specified by eqs. (5.4), (5.7), (5.12), (5.14), (5.16)

and (5.18) as this leads to differences beyond the accuracy of the current calculation.

6 Phase shifts and threshold parameters

Based on the πN scattering amplitudes specified in the above section, we calculate the

phase shifts and threshold parameters. In what follows, we first determine the unknown
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LECs involved in the πN scattering amplitudes by fitting to the phase shifts of the S- and

P -waves. Then we predict the D- and F -wave phase shifts and the threshold parameters

using the determined LECs.

6.1 Fitting procedure

For the partial wave analysis of the pion-nucleon scattering amplitudes results of several

groups are available: Karlsruhe [66, 67], Matsinos [68] and GWU [45]. Unfortunately, none

of these groups provide uncertainties of their results. Therefore, we prefer to perform fits

to the phase shifts generated by the recent Roy-Steiner-equation analysis (RS) of the πN

scattering [17], where both the central values and the errors of results are given by Schenk-

like or conformal parameterizations. Note that this analysis also includes the most up-to-

date experimental information on the pion-nucleon scattering lengths. For fitting we extract

the RS phase shifts equidistantly from the threshold Wth = 1078 MeV to W = 1318 MeV

with a step-size of 0.8 MeV. Furthermore, at each fixed energy point, the central value of the

phase shift is generated randomly with a normal distribution N(µ, σ), where the mean value

µ and the standard deviation σ are specified by the results of the RS equation analysis, and

the corresponding error to the central value is assigned to be σ. This procedure generates

a set of simulated data for the chosen energy configuration which is suitable for fitting.

In order to obtain stable values for the LECs one should repeat such a procedure as well

as fitting for a large number of times, which will generate a large number of (central)

values for the LECs and from which the mean values and the statistical errors of the LECs

can be determined. In order to achieve this it is enough in our case to repeat the fitting

procedure 100 times. Note that our results are Gaussian and thus in fact any procedure

using different fitting approaches would lead to the same central values and error bars.

Our interest here is to obtain a value of the χ2 which has the usual interpretation, namely

a good χ2 corresponds to a value close to 1. For fits done directly using the RS equations

a good χ2 would be close to zero.

In the fitting procedure, two S-waves, S31 and S11 and four P -waves, P31, P11, P33,

P13, are taken into account. We use eq. (2.16) to extract the phase shifts for P33 partial

wave, where the Delta resonance is located. For the other partial waves, as discussed in

section 2.3, the difference due to various unitarization procedures appears at higher orders,

and we use eq. (2.19). This is especially advantageous for the P11 partial wave, since there

is a numerical problem when using eq. (2.16) because the real part of the partial wave

amplitude vanishes for some energy close to the threshold.

There are eleven LECs (or independent combinations of them) involved in the πN

amplitudes in total: c1, c2, c3, c4, d1 + d2, d3, d5, d14 − d15, gπN , gπN∆ and g1. We fix

gπN coupling at the central value of g2
πN/(4π) = 13.69± 0.20, which was recently obtained

through the Goldberger-Miyazawa-Oehme sum rule [69, 70]. The renormalized couplings

ci=1,2,3,4 and gπN∆ are complex due to absorption of complex subtraction terms of loop

diagrams. Nevertheless, for convenience, we use real-valued renormalized ci’s in our fitting

procedure and the corresponding imaginary parts of the subtraction terms are retained in
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the loop contributions rather than absorbed in the ci. As for gπN∆, we define

hA = gπN∆Fπ , (6.1)

which is more often used in BChPT and the large-Nc relation yields

hA = (3gA)/2
√

2 ' 1.35 , with gA = 1.27 . (6.2)

Note that our notation differs from the one used in ref. [71] by a factor of 2. Obviously, hA
is also a complex coupling in the calculation up to NNLO. However, one can just choose

the real part Re[hA] as a fitting parameter, and the corresponding imaginary part can be

obtained using eq. (5.18). In practice, the involved loop integrals can be calculated with

all the masses being specified in the next paragraph and hence the imaginary part of hA is

given by (up to higher order corrections)

Im[hA] =

(
1.51F 2

πg
2
πN − 1.84Re[hA]2

)
Re[hA]

160F 2
ππ

2
. (6.3)

Thus we are left with ten unknown real fitting parameters. It is worth noting that hA
appearing in the loop contributions can be substituted by Re[hA] since the difference caused

is of higher order.

For the masses of the particles and the pion decay constant the following values are

employed throughout our fitting procedure: Mπ = 139 MeV, mN = 939 MeV, z∆ =

(1210− i 50) MeV, Fπ = 92.2 MeV. We take the dimensional regularization scale µ = mN .

Here, z∆ has been identified as the pole position of the dressed delta propagator with its

value given by PDG [72]. Note that one can use Re[z∆] in the loop contributions instead of

z∆ since the difference caused by this approximation is of higher-order, at least order O(p5).

This substitution guarantees that all arguments of the required loop integrals are real (no

arguments with complex momenta) and, therefore, this enables us to calculate all one-loop

integrals using the programs for numerical evaluation OneLoop [73] and LoopTools [74].

The fits below were performed using the Fortran package Minuit [75].

6.2 Results

The fitted LECs for three different cases are given in table 1, where the statistical and sys-

tematic uncertainties are shown in the first and second brackets behind the central values,

respectively. The systematic uncertainties represent the effects of varying the fitting ranges,

which will be discussed later on in this section. The covariance and correlation matrices

between the LECs are given in table 2. They are calculated using the standard formulae

Cor(xi, xj) =
Cov(i, j)√

Cov(xi, xi)Cov(xj , xj)
,

Cov(xi, xj) =
(xi − x̄i)

T · (xj − x̄j)

N − 1
,

where xi is the vector of N central values of the LECs obtained from the fitting of our

pseudo-data as explained before, for our case N = 100. There are strong correlations be-

tween some LECs. Results of our fits are displayed and compared with the phase shifts
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Figure 7. Phase shifts obtained from delta-less BChPT by fitting RS phase shifts in the c.m.

energy range [1082, 1110] MeV (pion laboratory momentum qπ ∈ [36.1, 108.4] MeV). Dots with

error bars correspond to the RS phase shifts, while circles without error bars stand for the GWU

phase shifts. The solid (red) lines represent the results of the current work. The red narrow error

bands correspond to the uncertainties propagated from the errors of LECs using eq. (6.4). The

wide dashed error bands correspond to the theoretical uncertainties due to the truncation of the

chiral series estimated by using eq. (6.5) proposed in ref. [76].
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Figure 8. Phase shifts obtained from BChPT with explicit delta degrees of freedom in the tree

diagrams corresponding to Fit-II. Dots with error bars stand for the RS phase shifts and circles

without error bars represent the GWU phase shifts. The solid (red) line represents the result of Fit

II of the current work. The red narrow error bands correspond to the uncertainties propagated from

the errors of LECs using eq. (6.4). The wide dashed error bands correspond to the theoretical uncer-

tainties due to the truncation of the chiral series estimated by using eq. (6.5) proposed in ref. [76].
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Figure 9. Phase shifts obtained from BChPT with explicit delta degrees of freedom corresponding

to Fit-III. Dots with error bars stand for the RS phase shifts and circles without error bars represent

the GWU phase shifts. The solid (red) line represents the result of Fit III of the current work.

The red narrow error bands correspond to the uncertainties propagated from the errors of LECs

using eq. (6.4). The wide dashed error bands correspond to the theoretical uncertainties due to the

truncation of the chiral series estimated by using eq. (6.5) proposed in ref. [76].

of the RS analysis as well as GWU analysis in figures 7, 8 and 9. The red narrow bands

stand for the uncertainties propagated from the errors of the LECs using

δOLEC =

{[
∂O(x̄i)

∂xi

]2

(δxi)
2 + Cor(xi, xj)

[
∂O(x̄i)

∂xi

] [
∂O(x̄j)

∂xj

]
δxiδxj

} 1
2

, i 6= j , (6.4)

where O is any observable under consideration and the summation over the repeated in-

dices is meant. Note that the contributions from statistical and systematic errors of the

LECs to the error of the observable O are added in quadrature. The dashed wide bands

represent uncertainties estimated by truncation of the chiral series for the central values of

LECs, using the method which was proposed in ref. [76]. To be specific, the uncertainty

δO(n) of a prediction for an observable O up to O(pn) is assigned to be

δO(n)
theo. = max

(
|O(nLO)|Qn−nLO+1, {|O(k) −O(j)|Qn−j}

)
, nLO ≤ j < k ≤ n , (6.5)

with Q = ωq/Λb where ωq and Λb are the pion energy in the center-of-mass frame and the

breakdown scale of the chiral expansion, respectively. For the delta-full case, we choose to

employ Λb ∼ 0.6 GeV following ref. [76], which is lower than the scale of the chiral symme-

try breaking Λχ ∼ 4πFπ ∼ 1 GeV. The lightest particle we do not include explicitly is the

Roper resonance N∗(1440) and its mass differs from the nucleon mass by about 0.5 GeV.

Our choice of Λb is close to that number. Similarly, for the delta-less case, Λb is taken

0.4 GeV due to the nucleon-delta mass difference. For more discussions on the choice of Λb

see ref. [77]. Now let us proceed with the details of the three different fits.
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Fit-I Fit-II Fit-III

LEC N (i.e. /∆) N+LO ∆ N+∆

c1 −1.22(2)(2) −0.99(2)(1) −1.31(2)(1)

c2 3.58(3)(6) 1.38(3)(1) 0.78(4)(2)

c3 −6.04(2)(9) −2.33(3)(1) −2.55(10)(7)

c4 3.48(1)(3) 1.71(2)(1) 1.20(4)(2)

d1+2 3.25(4)(9) 0.14(4)(3) 4.85(68)(64)

d3 −2.88(8)(14) −0.97(8)(15) −0.62(10)(15)

d5 −0.15(6)(14) 0.39(6)(11) −0.93(11)(15)

d14−15 −6.19(7)(12) −1.08(8)(3) 5.54(2.79)(2.01)

gπN 13.12∗ 13.12∗ 13.12∗

hA − 1.28(1)(1) 1.42(1)(1)−
i 0.16(1)(1)

g1 − − −1.21(46)(39)

χ2/dof 272.0(23.7)
216−8 = 1.31(11) 339.8(27.4)

328−9 = 1.07(9) 373.8(29.9)
328−10 = 1.18(9)

Table 1. Values of the LECs for various fits to the RS phase shifts. The ci and dj are in units of

GeV−1 and GeV−2, respectively. The statistical and systematic uncertainties are shown in the first

and the second brackets, respectively.

Fit-I corresponds to the delta-less case and is performed up to Wmax=1.11 GeV. This

maximal energy is chosen according to the following criterions: I) the average χ2 per degree

of freedom (χ2/d.o.f) for the 100-times fits is around 1.0, II) the average χ2 increases rapidly

if one takes larger Wmax. For Fit-I, we get results similar to those obtained by fitting to

the phase shifts of partial wave analysis by GWU group up to 1.13 GeV [43, 44]. There

exist slight differences between our current results and the previous ones [43, 44] due to

the fact that different data (RS data versus GWU data) were fitted and the fitting ranges

are not the same. Besides, they have one more fitting parameter d18, which is related to

gπN by making use of the Goldberger-Treiman relation at NNLO. Our plots for Fit-I are

shown in figure 7. The error bands in P33 and S31 partial waves do not cover the RS and

GWU data beyond the fitting range, which suggests that Λb = 0.4 GeV underestimates the

theoretical errors for these partial waves.

Adding the delta degree of freedom should mostly improve the description of the P33

wave in the ∆-resonance region. We thus performed two fits (Fit-II and Fit-III) using

1.2 GeV as Wmax for the P33 partial wave and 1.11 GeV for the other five partial waves -

the same value as for Fit I. Fit II is done by adding the LO Born-term contribution of the

delta-exchange diagrams to the delta-less case and serves only the purpose of estimating

the effect of the loop diagrams. Our plots for Fit-II are shown in figure 8. Since only the
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Fit-I c1 c2 c3 c4 d1+2 d3 d5 d14−15

c1 6 83 35 −10 −14 −18 24 16

c2 7 12 −22 28 28 −29 16 −20

c3 2 −2 4 −62 −73 19 13 65

c4 1 1 −2 2 26 −8 −4 −19

d1+2 −1 4 −6 1 14 −4 −37 −77

d3 −3 −8 3 −1 −1 65 −91 27

d5 3 3 2 1 −8 −42 32 6

d14−15 3 −5 10 −2 −21 15 3 51

Fit-II c1 c2 c3 c4 d1+2 d3 d5 d14−15 Re[hA]

c1 6 80 36 −16 −17 −17 25 19 17

c2 6 12 −26 31 31 −28 14 −25 −27

c3 2 −2 7 −72 −78 18 17 74 80

c4 −1 2 −3 2 42 −10 −10 −38 −56

d1+2 −2 4 −9 3 16 −3 −39 −80 −64

d3 −3 −8 4 −1 −1 64 −90 25 18

d5 3 3 3 −1 −9 −41 33 10 11

d14−15 3 −7 16 −5 −25 16 4 60 63

Re[hA] 1 1 1 1 −1 1 1 2 1

Fit-III c1 c2 c3 c4 d1+2 d3 d5 d14−15 Re[hA] g1

c1 6 67 −7 7 18 −8 −4 −16 5 −18

c2 7 19 −44 56 27 −20 −7 18 −61 −25

c3 −2 −19 91 −93 −86 −37 68 −88 51 91

c4 1 9 −33 14 73 26 −55 72 −64 −77

d1+2 30 80 −562 186 4650 44 −85 87 −11 −97

d3 −2 −8 −34 9 284 90 −79 55 15 −50

d5 −1 −3 68 −22 −609 −79 110 −73 −3 81

d14−15 105 213 −2339 752 16597 1456 −2142 77827 −11 −97

Re[hA] 1 −1 2 −1 −4 1 1 −16 1 15

g1 −19 −50 403 −133 −3053 −219 393 −12474 4 2142

Table 2. Correlation and covariance coefficients for the fits. The upper and lower triangles corre-

spond to the correlations (in unit of 10−2) and covariances (in unit of 10−4), respectively.

tree order contributions of the delta are included, hA is a real parameter and meanwhile g1

does not show up in Fit-II. Compared to the strategies in refs. [43, 44], in the current work

the complex pole position of the delta propagator rather than the real mass is incorporated

in a systematic way and hence the effect of the delta width is included explicitly. We obtain

better results with smaller uncertainties than the previous studies, for instance, the large

errors in d14 − d15 are substantially reduced.

Fit-III is done (up to 1.2 GeV for P33 and up to 1.11 GeV for the other waves) with the

full contributions of pions, nucleons and deltas up to NNLO. The obtained LECs of Fit-III
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are different from those of Fit-II due to the inclusion of contributions of loop diagrams

involving delta lines. Note that all the ci and most of the higher order LECs are of natural

size. Our plots for Fit-III are shown in figure 9. Compared to the plots in figure 8, although

both fits describe well the phase shifts in the fitting range, Fit-III improves the predictions

beyond fitting ranges in most of the partial waves, especially for the S11 wave. The larger

theoretical error in figure 9 compared to figure 8 is due to the large contributions of delta-

loop diagrams, which are not taken into account in estimation of the theoretical error of

Fit-II using eq. (6.5).

As one can see from table 1, the imaginary part of hA from Fit-III is small compared

to the corresponding real part Re[hA] and our determination for Re[hA] is close to the

large-Nc prediction (6.2). The obtained g1 for Fit-III is nearly consistent (within the error

bars) with the corresponding large-NC result, |g1| = 9gA/5 ' 2.28. As noted in ref. [78],

g1 appears only in the loop contribution, hence a precise determination of its value is not

to be expected.

All the above three fits are done with their own preferred Wmax. However, following

ref. [79], one can change those maximal energies around the preferred Wmax and redo the

fits to see the influence on the obtained LECs. For Fit-I, we made fits with Wmax =

1.11 ± 0.004 GeV, 1.11 ± 0.008 GeV, 1.11 ± 0.012 GeV and 1.11 ± 0.016 GeV in order to

produce such kind of systematic errors to the LECs. For Fit-II and Fit-III, we keep the

maximal energy at 1.2 GeV for the P33 partial wave but vary it for the other waves as is the

case for Fit-I. A demonstration of how to obtain the systematic errors is given in figure 10

for the case of Fit-I and analogous figures are obtained for other three fits. The obtained

systematic errors to the LECs are shown in the second bracket in table 1.

Note that all the presented fits have been done with the energy steps of 0.8 MeV. We

have checked that the influence of varying the energy step on the central values of the

LECs is essentially negligible. Also the statistical errors decrease when the fitting range is

extended keeping the energy step the same, see figure 10, or more fitting points are added

in the same fitting range. However, we do not estimate such systematic uncertainties here.

Using the LECs obtained by fitting to the phase shifts of S- and P -waves, one can

predict the phase shifts of higher partial waves. In figure 11 we show the phase shifts of

D and F partial waves obtained using the parameters of Fit-I and Fit-III compared to the

results obtained by the GWU group [45]. As expected, the predicted phase shifts of higher

partial waves are indeed small. Except for D33 channel, our predictions agree qualitatively

with the GWU results and the predictions of the delta-full theory are somewhat better

than those of the delta-less theory.

Finally, in order to demonstrate how well eq. (2.16) extracts phase shifts from pertur-

bative amplitudes, we draw the so-called Argand plot for the P33 partial wave in figure 12

by using the LECs of Fit-III. In figure 12 the red solid and the magenta dashed lines cor-

respond, respectively, to the full contribution (π+N+∆) and the contribution of the pion

and nucleon (π +N) alone. As we can see, the inclusion of the ∆ contribution has a huge

influence on improving the unitarity constraints. The unitarized amplitude based on the

full contribution is represented by the blue dotted line, which is located on the unitary

circle (broad cyan solid circle), as expected. The energy corresponding to the 15th point is
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Figure 10. Demonstration of the effect of varying the fitting range on the fitted LECs. The solid

(blue) line and inner (cyan) band indicate the central value and the statistical error which come

from the preferred fit with Wmax = 1.11 GeV. The outer (blue) band is yielded by adding the

systematic uncertainty which is generated by the scatter of all results with different fitting ranges.

The error bars correspond to statistical errors of the fitting procedure.
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Figure 11. Phase shifts of the D and F partial waves obtained from the delta-less and delta-full

BChPT using the parameters of Fit-I (red line extending up to 1.16 GeV) and Fit-III (blue line

with band extending up to 1.2 GeV), respectively. The circles correspond to phase shifts by the

GWU group [45].
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Figure 12. Argand diagram for the P33 partial wave for the LECs of Fit-III. For a detailed

description see the text.

W15 = 1314 MeV and the interval between two adjacent points on the same line is 16 MeV.

The effect of eq. (2.16) is to move the points of the full NNLO perturbative amplitudes to

the closest positions on the unitary circle.

6.3 Scattering lengths and volumes

At low energies, one can predict the threshold parameters based on the above determined

LECs. For the partial wave with angular momentum ` the general form of the effective

range expansion is given by

|p|2`+1cot[δI`±] =
1

aI`±
+

1

2
rI`±|p|2 +

∞∑
n=2

vIn,`±|p|2n , (6.6)

where p is the three-momentum of the nucleon in CMS frame, a is the threshold parameter

(e.g. scattering length for the S-wave and scattering volume for the P -wave), r is the

effective range parameter, and vn are the shape parameters. Using eq. (6.6) one can obtain

the threshold parameters as

aI`± = lim
|p|→0

tan δI`±
|p|2`+1

= lim
|p|→0

Ref I`±(s)

|p|2` . (6.7)

The second equality holds true due to the fact that the imaginary parts of the partial wave

amplitudes vanish faster at threshold. As Ref I`±(s)/|p|2` can not be computed numerically

exactly at the threshold we calculated its values for energies very close to the threshold

and then obtained the threshold parameters by extrapolating to the threshold. Results of

the threshold parameters corresponding to the three different fits are presented in table 3,

together with the determinations from the Roy-Steiner equation analysis [17] (and the

input from the analysis of pionic hydrogen and deuterium atom data). The errors in the
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Threshold Para. Fit-I Fit-II Fit-III RS [17]

a+
0+ [10−3M−1

π ] −0.6(7)(3.4) −1.1(7)(3.0) −0.5(7)(7.1) −0.9(1.4)

a−0+ [10−3M−1
π ] 85.7(5)(3.3) 85.8(4)(1.1) 85.8(3)(1.0) 85.4(9)

a+
1− [10−3M−3

π ] −49.8(1.0)(15.9)−52.5(4)(4.7) −51.0(5)(6.7) −50.9(1.9)

a−1− [10−3M−3
π ] −9.7(3)(9.5) −11.3(3)(3.2) −9.5(2)(1.7) −9.9(1.2)

a+
1+ [10−3M−3

π ] 139.9(1.8)(11.6)131.0(4)(4.0) 131.5(5)(8.8) 131.2(1.7)

a−1+ [10−3M−3
π ] −84.0(6)(4.0) −80.3(1)(1.4) −80.4(2)(2.3) −80.3(1.1)

Table 3. Scattering lengths and volumes. The numbers in brackets correspond to the errors

propagated from the uncertainties of LECs and the theoretical errors, respectively.

first brackets are propagated from the uncertainties of the LECs, while the ones in the

second brackets are obtained via eq. (6.5). After taking the errors into consideration, all

the obtained results agree well with those of the Roy-Steiner equation analysis, especially

for Fit-III.

7 Baryon sigma terms and the strangeness content of the nucleon

Sigma terms are interesting observables and important for understanding the sea-quark

structures of baryons. In particular, for the nucleon there are many studies of the πN σ-

term, e.g., see refs. [15, 80, 81], and of the strangeness content, see refs. [83–86] for instance.

A high-precision determination of the σπN was done from RS-equation analysis based on

the improved Cheng-Dashen low-energy theorem and σπN = (59.1±3.5) MeV was reported

in ref. [15]. In this section we discuss the σπN based on our fitted results obtained above.

In order to estimate the strangeness content of the nucleon, we perform the corresponding

calculation in SU(3) BChPT. As byproducts, the baryon sigma terms are also given.

7.1 πN sigma term

The πN sigma term σπN can be obtained from the nucleon mass by applying the Hellmann-

Feynman theorem,

σπN = m̂
∂mN

∂m̂
, m̂ =

(mu +md)

2
. (7.1)

For practical convenience, using the expression of the nucleon mass mN given in sec-

tion 5.1.2, one can express σπN as

σπN = −77.28 c1︸ ︷︷ ︸
LO

+ (−11.72) g2
A + (−6.55) Re[hA]2︸ ︷︷ ︸

NLO

, (7.2)

where the involved loop integrals have been computed numerically. Notice that the last

term in this expression does not contribute in the calculation of the sigma terms of Fit-I

and Fit-II.
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Fit-I Fit-II Fit-III RS [15]

LO 94.3 76.5 101.2 −
NLO −19.5 −19.5 −32.7 −
Sum 74.8(2.2)(11.4) 57.1(1.9)(7.0) 68.5(1.9)(7.6) 59.1(3.5)

Table 4. The pion-nucleon sigma term in units of MeV. The numbers in brackets correspond to

the errors propagated from the uncertainties of LECs and the theoretical errors, respectively.

The results for the pion-nucleon sigma term σπN based on the different fitting results

in the above section are shown in table 4, where contributions from different orders are

also shown. The error in the first bracket is propagated from the uncertainties of the fitted

LECs using eq. (6.4). The error in the second bracket is theoretical uncertainty estimated

using eq. (6.5) and we employ Q = Mπ/Λb with Λb = 400 MeV for the delta-less case

and with Λb = 600 MeV for the delta-full case. Note that here for Fit-II the theoretical

error originating from the delta-loop contribution is also taken into account. For easy

comparison, the recent determination of the pion-nucleon sigma term from the Roy-Steiner

equations [15] is also given.

Our prediction for Fit-I, σπN = 74.8(2.2)(11.4) MeV, is marginally consistent with

the RS determination when the large uncertainties are taken into account. For the delta-

full case with LO delta contribution, applying the same unitarization as in ref. [81], we

obtain σπN = 60.1(1.6)(6.2) MeV based on Fit-II. On the other hand, by including the

explicit delta width rather than generating it by unitarization as in ref. [81], we obtained

σπN = 57.1(1.9)(7.0) MeV based on Fit-II, which appears to agree with the RS determi-

nation very well. As for Fit-III, our prediction σπN = 68.5(1.9)(7.6) MeV improves the

delta-less result and within the error it overlaps the value of the RS analysis, however

the central value still remains larger than that of refs. [15, 81] (see also ref. [82] for re-

lated discussion). The large estimated theoretical error comes from the delta-loop diagram

contributions by using eq. (6.5).

7.2 The strangeness content of the nucleon and the sigma terms of baryons

from SU(3) BChPT

Similarly to σπN one can obtain the nucleon expectation value of the operator mss̄s using

the Hellmann-Feynman theorem,

σsN = ms
∂mN

∂ms
, (7.3)

where ms is the mass of the strange quark. However, the nucleon mass mN in the above

equation should be calculated in SU(3) BChPT. We calculated the masses of the baryon

octet in SU(3) BChPT also including the baryon decuplet as explicit degrees of freedom

up to third order. Details of this calculation are specified in the appendix F. The other

baryon sigma terms are also obtainable by using formulas similar to eqs. (7.1) and (7.3)

but with the nucleon mass being replaced by mΣ, mΛ or mΞ.
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The strangeness content of the nucleon y is defined through

y =
2m̂

ms

σsN
σπN

, (7.4)

and the nucleon expectation value of the operator ūu+ d̄d− 2s̄s (see e.g. [84]) is given by

the following equation

σ0 = σπN (1− y). (7.5)

In order to determine the strangeness content of the nucleon and the sigma terms spec-

ified above, we first need to pin down the unknown LECs involved in the SU(3) calculation.

Therefore, we fit to the experimental values for mN , mΣ, mΛ and mΞ (taken from PDG [72])

as well as the RS determination of σπN , as given in the last column of table 4.5 There are

the following five unknown LECs: the octet mass in the chiral limit M0, the LECs corre-

sponding to the NLO mass splitting operators b0, bD and bF , and the LO Goldstone-boson-

octet-decuplet coupling constant C . For the other parameters we use the following values

D = 0.80, F = 0.46, Mπ = 0.139 GeV, MK = 0.494 GeV,

MB = 1.151 GeV, MD = 1.382 GeV, (7.6)

with MB and MD being the averages of the physical masses of the octet and decuplet,

respectively. The mass of the η meson is obtained from the Gell-Mann-Okubo relation:

3M2
η = 4M2

K −M2
π . Furthermore, Fφ = 1.17Fπ with Fπ = 92.2 MeV is used.

We performed two fits:

• Fit A: the octet baryon mass in the loops is fixed at MB, and the mass of the decuplet

baryons to mD.

• Fit B: the octet baryon mass in the loops is set as the chiral limit mass M0, and the

mass of the decuplet baryons to mD.

If the chiral series of the baryon masses and the sigma terms converges well, these two fits

should differ slightly since the differences are of high order. However, we obtain results

with sizable differences (see y and σ0 together with the fitted parameters in table 5) which

implies that the higher-order contributions are large. Only when the theoretical errors,

which is due to the truncation of the chiral series using eq. (6.5) with Q = Mπ/Λχ, are

taken into account, these fit results overlap. The previous determinations are as follows:

y = 0.15(10) and σ0 = 33(5) of the NLO calculation [83], y = 0.21(20) and σ0 = 36(7) of

the NNLO calculation within HBChPT [84], y = 0.02(23) and σ0 = 58(8) of the NNLO

calculation within Covariant BChPT [85]. We therefore conclude that to this order in the

chiral expansion, one is not able to make a precise statement about the strangeness content

of the nucleon. Likewise, various values of y calculated either directly in Lattice QCD, or

indirectly using the octet baryon masses and sigma terms obtained in Lattice QCD, are

very different. Therefore we do not compare to those results.

5Note that the experimental error, as specified in PDG, for mΛ is extremely small and we assign an error

of 0.1 MeV to mΛ in our fitting program in order to balance the χ2 contribution with those originating from

the other masses.
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M0 (GeV) b0 bD bF C y [%] σ0 [MeV]

Fit-A 0.654(1) −1.155(1) 0.122(1) −0.359(1) 1.495(5) 1.2(6)(12.1) 58.4(4)(9.0)

Fit-B 0.622(2) −0.956(1) 0.082(1) −0.368(1) 2.289(20) 20.2(6)(6.5) 47.2(4)(5.2)

Table 5. LECs and strangeness content of the nucleon. Results are obtained with z = −1 and

µ = 1 GeV. The numbers in brackets for y and σ0 correspond to the errors propagated from the

uncertainties of LECs and the theoretical errors, respectively.

mN mΛ mΣ mΞ

Fit-A 939.2(5.0)(61.8) 1115.7(4.5)(77.1) 1186.0(4.5)(87.7) 1327.4(4.3)(97.6)

Fit-B 939.2(6.1)(33.7) 1115.7(5.6)(51.7) 1186.0(5.5)(55.6) 1327.4(5.4)(71.7)

expt. 938.925(645) 1115.683(6) 1193.15(4.30) 1318.28(3.43)

Table 6. Masses of octet baryons obtained with the LECs given in table 5. The numbers in

brackets correspond to the errors propagated from the uncertainties of LECs and the theoretical

errors, respectively.

Fit-A Fit-B

σπN 59.1(2)(5.5) 59.1(2)(3.6)

σπΛ 46.9(2)(5.5) 45.8(2)(3.6)

σπΣ 38.6(2)(5.7) 40.7(2)(3.7)

σπΞ 30.5(2)(5.6) 30.0(2)(3.7)

σsN 8.5(4.4)(86.6) 144.7(4.6)(45.9)

σsΛ 166.0(3.7)(106.3) 297.2(3.8)(69.1)

σsΣ 203.6(3.9)(122.3) 355.4(4.0)(75.2)

σsΞ 342.5(3.4)(133.9) 479.0(3.4)(95.3)

Table 7. Sigma terms obtained with the LECs given in table 5. The numbers in brackets correspond

to the errors propagated from the uncertainties of LECs and the theoretical errors, respectively.

We also predict the octet baryon masses and sigma terms in table 6 and table 7,

respectively. The errors for the masses and the ones in the first brackets for the sigma

terms are propagated from the uncertainties of the LECs. For the sigma terms we also

estimated the theoretical errors, which are shown in the second brackets in table 7. As

we can see, the theoretical errors for σsN are very large due to the bad convergence of the

chiral series in SU(3) BChPT. Note also that determinations of σsN by different Lattice

QCD collaborations vary in a large range, see e.g. refs. [87–96].
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8 Summary and conclusion

In this paper we presented the O(p3) order calculation of the pion-nucleon scattering ampli-

tudes in the framework of BChPT including pions, nucleons and deltas as explicit degrees

of freedom. There are tree and one-loop diagrams contributing at this order. We applied

the EOMS renormalization scheme to loop diagrams involving pion and nucleon lines only.

For diagrams with the delta lines in loops we used the complex-mass scheme which is a

generalization of the on-mass-shell scheme for unstable particles. That is we subtracted the

divergent pieces and the power counting violating contributions of the loop diagrams by

canceling them by counter terms generated by splitting the bare parameters of the effective

Lagrangian in renormalized couplings and counter terms.

We fitted the renormalized coupling constants to the S- and P -wave phase shifts, which

are randomly generated by using the results of the Roy-Steiner equation analysis of ref. [17]

and hence are normally distributed simulations. Both the phase shifts extracted from the

RS equation analysis and the GWU group analysis [45] are well described up to 1.11 GeV

for the delta-less case. For the delta-full case, the P33 partial wave is fitted up to 1.20 GeV

while the other partial waves up to 1.11 GeV.

Based on the obtained LECs, we predicted the D- and F -wave phase shifts and com-

pared them with the results given by the GWU group. We found that our prediction

for D33 wave differs from the determination of the GWU group while the predictions for

other D and F waves agree well. Considering the Argand plot for the P33 partial wave we

checked that the unitarized amplitude, from which we extracted the phase shifts, is a good

approximation to the amplitude obtained by our perturbative calculation. At low energies,

we extracted the threshold parameters and compared to the corresponding results of the

Roy-Steiner equation analysis obtaining satisfactory agreement.

In addition, we calculated the pion-nucleon sigma term. Our extractions of σπN based

on the fitted LECs of Fit-I and Fit-III are consistent with the result of RS analysis σπN =

(59.1± 3.5) MeV taking into account the large errors of our determination.

In the end, we also studied the strangeness content of the nucleon y in SU(3) BChPT.

We first fixed all the involved SU(3) LECs by fitting to the experimental octet baryon

masses as well as the RS result σπN = (59.1± 3.5) MeV [15]. Two different strategies were

used. In principle, they should only slightly differ from each other since the differences are

due to higher-order contributions. However, because of the bad convergence properties of

the SU(3) BChPT for these quantities, we obtained two sets of predictions with rather large

discrepancies from each other. Nevertheless, when the large uncertainties are taken into

account, they are consistent with each other. Hence at the order one is working here, we

unfortunately cannot disentangle a small from a large value of y. Similar picture appears

when one takes an overall view on the previous determinations from BChPT [83–85] and

Lattice QCD [87–97]. Within these two strategies, we predict all the octet baryon sigma

terms as well.
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A Tree amplitudes of delta-exchange

In what follows, the amplitudes corresponding to tree-order delta-exchange diagrams are

given explicitly here.

• Born-terms of O(p1) diagram (g):

A+
g (s, t) =

h2

9F 2m3
∆(m2

∆ − s)
FA(s, t), A−g (s, t) = −1

2
A+
g (s, t),

B+
g (s, t) = − h2

9F 2m3
∆(m2

∆ − s)
FB(s, t), B−g (s, t) = −1

2
B+
g (s, t). (A.1)

• Born-terms of O(p2) diagrams (h+i):

A+
hi(s, t) =

2h

9F 2m3
∆(m2

∆ − s)

{
b3 GA(s, t) + b8

(s−m2
N −M2

π)

2mN
FA(s, t)

}
,

B+
hi(s, t) = − 2h

9F 2m3
∆(m2

∆ − s)

{
b3 GB(s, t) + b8

(s−m2
N −M2

π)

2mN
FB(s, t)

}
,

A−hi(s, t) = −1

2
A+
hi(s, t), B−hi(s, t) = −1

2
B+
hi(s, t). (A.2)

• Born-terms of O(p3) diagrams (j+k):

A+
jk(s, t) =

2h

9F 2m3
∆(m2

∆ − s)

{
−f1

s−m2
N −M2

π

2mN
GA(s, t)

+

[
−f2

(s−m2
N −Mπ)2

4m2
N

+ 2(2f4 − f5)M2
π

]
FA(s, t)

}
,

B+
jk(s, t) = − 2h

9F 2m3
∆(m2

∆ − s)

{
−f1

s−m2
N −M2

π

2mN
GB(s, t)

+

[
−f2

(s−m2
N −Mπ)2

4m2
N

+ 2(2f4 − f5)M2
π

]
FB(s, t)

}
,

A−jk(s, t) = −1

2
A+
jk(s, t), B−jk(s, t) = −1

2
B+
jk(s, t). (A.3)

• Born-terms of O(p3) diagram (l):

A+
l (s, t) =

1

9F 2m3
∆(m2

∆ − s)

{
b23HA(s, t) + 2b3b8

s−m2
N −M2

π

2mN
GA(s, t)
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+b28
(s−m2

N −M2
π)2

4m2
N

FA(s, t)

}
,

B+
l (s, t) = − h2

9F 2m3
∆(m2

∆ − s)

{
b23HB(s, t) + 2b3b8

s−m2
N −M2

π

2mN
GB(s, t)

+b28
(s−m2

N −M2
π)2

4m2
N

FB(s, t)

}
,

A−l (s, t) = −1

2
A+
l (s, t), B−l (s, t) = −1

2
B+
l (s, t). (A.4)

Here the F , G and H functions are defined as

FA(s, t) = (mN +m∆)m2
∆

[
2(s−m2

N ) + 3(t− 2M2
π)

]
+(s−m2

N +M2
π)

[
(s−m2

N +M2
π)mN + 2m∆M

2
π

]
,

FB(s, t) = m2
∆

[
4mN (mN +m∆) + (4M2

π − 3t)

]
+(s−m2

N +M2
π)

[
(m2

N − s−M2
π)− 2mNm∆

]
, (A.5)

GA(s, t) = mNm∆

[
(s−m2

N )2 −M2
π

]
+ (s−m2

N )(s−m2
N +M2

π)2

+m2
∆

[
(s−m2

N )2 + 3(s−m2
N )(t− 2M2

π) +M4
π

]
,

GB(s, t) = −m∆

[
(s+M2

π)2 − 4m2
N (s+M2

π) + 3M4
N

]
+ (4M2

π − 3t)m3
∆

+mN (s−m2
N +M2

π)2 +mNm
2
∆

[
2(s−m2

N ) + 3(t− 2M2
π)

]
, (A.6)

HA(s, t) = 2m∆(s−m2
N )2(s−m2

N +M2
π)−mN (s−m2

N )(s−m2
N +M2

π)2

+m2
∆(m∆ −mN )

[
3(s−m2

N )(t− 2M2
π) + 2M2

π

]
,

HB(s, t) = 2mNm∆[2(s−m2
N ) +M2

π ](m2
N − s−M2

π) + 6mNm
3
∆(2M2

π − t)

+m2

[
3t(s+m2

N )−4M2
π(s+2m2

N )

]
+(s+m2

N )(s−m2
N+M2

π)2. (A.7)

B Redefinition of the LECs

For simplicity, the following abbreviations are used:

Σ23 = m+m∆, ∆23 = m−m∆, Y(a, b) ≡ 2am+ bΣ23,

∆(b3,b8,f1,f2) ≡ 2mY(b3, b8) + ∆23Σ23Y(f1, f2). (B.1)

In order to absorb the non-pole parts of the contributions of the O(p2) and O(p3) order

delta-exchange diagrams, the following redefinition of the LECs in the contact terms are

needed

ci → ci + δci, dj → dj + δdj , (B.2)
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where the shifts of the ci have the form

δc1 = 0 , δc2 =
1

9m2
∆

{
2h∆(b3,b8,f1,f2) +

∆23

4m2
∆2

(b3,b8,f1,f2)

}
,

δc3 =
m2

∆

m2
δc2 , δc4 =

m2
∆

2m2
δc2 , (B.3)

and the shifts for the dj read

δdL =
1

18mm∆

{
2h [2b8m+ Σ23Y(f1, f2)]− [Y(b3, b8)− 2b8∆23]Y(b3, b8)

}
,

δd3 =
1

36m2
∆

{
2h [−2b8m+ Σ23Y(f1, f2)] + [Y(b3, b8)− 4(b3 + b8)m]Y(b3, b8)

}
,

δdT = − h

36m2m2
∆

{
2m[2mY(b3, b8)− b8m∆(Σ23 + 2m∆)]

+(2m3 −m2m∆ + 3m3
∆)Y(f1, f2)

}
,

− 1

m2m2
∆

{
Y(b3, b8)

[
(2∆23 −m∆)Σ23Y(b3, b8)− 2b8m∆(Σ23 + 2m∆)∆23

]}
,

δd5 =
h

72m2m2
∆

{
−8b3m

3 − Σ23(m+ Σ23) [2b8m−∆23Y(f1, f2)]
}

− 1

144m2m2
∆

∆23Y(b3, b8) {(m+ ∆23)Y(b3, b8) + 2b8m∆Σ23} , (B.4)

where dL ≡ d14 − d15 and dT ≡ d1 + d2.

C Definitions of the one-loop integrals

Using notations similar to ref. [98], the one-loop n-point integrals are defined by

Hµ1···µP
a1···an =

(2πµ)4−d

iπ2
(C.1)

×
∫

ddk kµ1 · · · kµP[
k2 −m2

a1
+ iε

] [
(k + p1)2 −m2

a2
+ iε

]
· · ·
[
(k + pn−1)2 −m2

an + iε
] ,

with aj ∈ {π,N,∆}, j = 1, · · · , n. The results of integrals can be written in terms of the

external momenta pi as (we need up to 4-point functions)

Hµ1···µP
a1

, Hµ1···µP
a1a2

(p2
1) , Hµ1···µP

a1a2a3
(p2

1, (p2 − p1)2, p2
2) ,

Hµ1···µP
a1a2a3a4

(p2
1, (p2 − p1)2, (p3 − p2)2, p2

3, p
2
2, (p3 − p1)2) . (C.2)

Scalar integrals correspond to P = 0 and for the tensor integrals P 6= 0.

The Passarino-Veltman decomposition expresses the tensor integrals in terms of

Lorentz structures depending on the metric tensors and external momenta, for example

for the one-point functions we have

Hµa1
= 0 , Hµνa1

= gµνH(00)
a1

, · · · , (C.3)
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and for 2-point functions

Hµa1a2
= pµ1H(1)

a1a2
, Hµνa1a2

= gµνH(00)
a1a2

+ pµ1p
ν
1H(11)

a1a2
,

Hµνρa1a2
= (gµνpρ1 + gµρpν1 + gνρpµ1 )H(001)

a1a2
+ pµ1p

ν
1p
ρ
1H(111)

a1a2
, · · · . (C.4)

The above decompositions are needed for the self-energies in the following section, and we

refer the reader to ref. [98] for the higher rank tensors and more-point functions.

We denote loop integrals with removed UV-divergent parts (multiples of R) by H̄ and

loop integrals in chiral limit (i.e. for M2 → 0) without divergent pieces are labelled by
◦
H.

For example,
◦
Hπ = 0 ,

◦
HπN (m2) =

{
H̄πN (m2)

}
M2→0

. (C.5)

D Self-energies of the nucleon and the delta

The self-energy of the nucleon at leading one-loop order reads

ΣN,loop
A (s) =

3g2

4F 2
π

{
HN +M2HπN (s) + (s−m2)H(1)

πN (s)
}

+
(d− 2)h2

2(d− 1)F 2
πm

2
∆

×
{

(s−m2
∆ − 3M2)Hπ − 2(H(00)

π −H(00)
∆ ) + λπ∆(s)

[
Hπ∆(s) +H(1)

π∆(s)
]}

,

ΣN,loop
B (s) =

3g2m

4F 2
π

{
HN +M2HπN (s)

}
+

(d− 2)h2

2(d− 1)F 2
πm∆

{
(s−m2

∆ − 3M2)Hπ

+(s−M2 +m2
∆)H∆ − λπ∆(s)Hπ∆(s)

}
, (D.1)

where λπ∆(s) ≡ λ(s,m2
∆,M

2) and the self-energy of the delta is

Σ∆
1 (s) = −h

2m

F 2
π

H(00)
πN (s) +

5g2
1

12(d− 1)F 2
πm∆

{
−(d− 1)m2

∆

[
H∆ +M2Hπ∆(s)

]
−

+(d− 2)
[
H(00)

∆ +M2H(00)
π∆ (s)

]
+ 2

[
H(00)
π + (s+m2

∆)H(00)
π∆ (s)

]}
,

Σ∆
6 (s) = − h

2

F 2
π

{
H(00)
πN (s) +H(001)

πN (s)
}

+
5g2

1

12(d− 1)F 2
πm

3
∆

{
4m2

∆H(00)
π∆ (s)

−(d− 1)m2
∆

[
H∆ +M2Hπ∆(s) + (s−m2

∆)H(1)
π∆(s)

]
+(d− 2)

[
H(00)

∆ +M2H(00)
π∆ (s) + (s−m2

∆)H(001)
π∆ (s)

]}
. (D.2)

E Counter terms in the EOMS scheme

In general, all LECs generate counter terms in the EOMS scheme as follows:

X = XR +
δ̄X

16π2F 2
R+

¯̄δX

16π2F 2
, X ∈ {g, h,m,m∆, a1, ci=1,··· ,4} ,

Y = YR +
δ̄Y

16π2F 2
R , Y ∈ {`3, `4, d1 + d2, d3, d5, d14 − d15, d18 − 2d16} . (E.1)

We have derived all counter terms explicitly and most of them turn out to be too lengthy

to be shown here. Hence, we only show the counter terms for the parameters involved in

the nucleon and delta mass renormalization.
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The infinite parts of counter terms for m, m∆, c1 and a1 are

δ̄m = −m
2
R

(
h2
R

(
m3
R + 2m2

Rm∆R − 2mRm
2
∆R − 6m3

∆R

)
− 9g2

RmRm
2
∆R

)
6m2

∆R

, (E.2)

δ̄m∆ =
110g2

1Rm
3
∆R + 9h2

R

(
6m3

R + 2m2
Rm∆R − 2mRm

2
∆R −m3

∆R

)
216

, (E.3)

δ̄c1 = −mR

(
9g2
Rm

2
∆R + 2h2

RmR(2mR + 3m∆R)
)

24m2
∆R

, (E.4)

δ̄a1 = −50g2
1Rm∆R + 9h2

R(3mR + 2m∆R)

432
. (E.5)

The finite parts of counter terms for m, m∆, c1 and a1 are

¯̄δm =
(2− d)h2

R

◦
H∆

(
dm4

R + 2dm3
Rm∆R − 2(d− 2)m2

Rm
2
∆R + 2dmRm

3
∆R + dm4

∆R

)
4(d− 1)dmRm2

∆R

−3g2
RmR

◦
HN

2
+

(d− 2)h2
R(mR −m∆R)2(mR +m∆R)4

◦
Hπ∆(m2

R)

4(d− 1)mRm2
∆R

, (E.6)

¯̄δm∆ =
h2
R(mR −m∆R)2(mR +m∆R)4

◦
HπN (m2

∆R)

8(d− 1)m3
∆R

− 5((d− 2)(d− 1)d− 2)g2
1Rm∆R

◦
H∆

6(d− 1)2d

−h
2
R

◦
HN

(
dm4

R + 2dm3
Rm∆R − 2(d− 2)m2

Rm
2
∆R + 2dmRm

3
∆R + dm4

∆R

)
8(d− 1)dm3

∆R

, (E.7)

¯̄δc1 =
(d− 2)h2

R(mR +m∆R)2
(
d
(
m2
R +m2

∆R

)
− 2gRmR

) ◦
Hπ∆(m2

R)

16(d− 1)mRm2
∆R

+
3(d− 2)g2

R

◦
HN

16(d− 3)mR
− (d− 2)h2

R

◦
H∆

(
d(mR +m∆R)2 − 2mRm∆R

)
16(d− 1)mRm2

∆R

, (E.8)

¯̄δa1 =
5((d− 2)d+ 2)g2

1R

◦
H∆

48(d− 1)2F 2m∆R
− h2

R

◦
HN

(
d(mR +m∆R)2 − 2mRm∆R

)
32(d− 1)F 2m3

∆R

+
h2
R(mR +m∆R)2

(
d
(
m2
R +m2

∆R

)
− 2mRm∆R

) ◦
HπN (m2

∆R)

32(d− 1)F 2m3
∆R

. (E.9)

F One loop contributions in the baryon octet self energy

We use the definitions and notations of ref. [99] and the LO meson-octet-decuplet inter-

action term is taken from ref. [84] with the coupling constant C . Contact interaction and

one loop diagrams contributing to the octet masses are shown in the first line of figure 4,

where the solid, dashed and double lines correspond to the octet brayons, mesons and the

decuplet baryons, respectively.

The contributions of NLO contact interactions to the octet baryon masses can be found

e.g. in ref. [99] and the one loop order contributions to the octet self energy are specified

below. Σab
oct corresponds to the diagram with octet baryon propagators in the loop and Σab

dec
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to the one with decuplet baryon propagators. Summation over repeated indices is implied.

Σab
oct =

imB

8π2F 2
φ

(
M2
dB0

(
m2
B,m

2
B,M

2
d

)
+A0

(
m2
B

))
(Dddca + iFfdca)(Ffdbc − iDddbc),

Σab
dec =

[
Tr
{
λaλb

}
Tr
{
λdλd

}
− Tr

{
λaλdλdλb

}]
×
{
−C 2

(
(mB −mD)2 −M2

d

) (
(mB +mD)2 −M2

d

)2
B0

(
m2
B,m

2
D,M

2
d

)
1536π2F 2

φmBm2
D

+
C 2A0

(
m2
D

) (
−M2

d +m2
B −mBmD +m2

D

) (
−M2

d +m2
B + 3mBmD +m2

D

)
1536π2F 2

φmBm2
D

+
C 2A0

(
M2
d

) (
M2
d

(
3m2

B + 2mBmD + 2m2
D

)
−M4

d + (mB −mD)(mB +mD)3
)

1536π2F 2
φmBm2

D

+
mBC 2

9216π2F 2
φm

2
D

[
−4mBM

2
d (2mB + 3mD)− 3M4

d + 2m4
B + 4m3

BmD

−4m2
Bm

2
D − 12mBm

3
D + 3m4

D

]}
. (F.1)

We renormalize these loop contributions by applying the EOMS scheme without expanding

in powers of mD −mB, i.e. we expand in powers of the meson masses and absorb terms of

order zero in the renormalization of the mass in the chiral limit and the order two terms in

the renormalization of contact interactions. We checked that this renormalization indeed

can be carried out self-consistently.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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