Efficient parallel implementation of the ChASE library on distributed CPU-GPU architectures

JLESC, Kobe, December 1st | E. Di Napoli, A. Schleife

Outline

Motivation

The eigensolver: Chebyshev Accelerated Subspace Iteration (ChASE)

Distributed CPU/GPU: a simple and efficient parallelization

Experimental tests and outlook

FORSCHUNGSZENTRUM

Topic

Motivation

The eigensolver: Chebyshev Accelerated Subspace Iteration (ChASE)

Distributed CPU/GPU: a simple and efficient parallelization

Experimental tests and outlook

Two-particle excitation and Bethe-Salpeter Eq. (BSE)

Figure: Optical absorption

- Electron from valence band excited into conduction band
- Electron-hole attraction (screened Coulomb potential) Ξ
- Macroscopic dielectric function: Local-field effects

Bethe-Salpeter equation for optical polarization

$$
P=P_{0}+P_{0}(2 \bar{v}-\Xi) P
$$

BSE is an eigenvalue equation

> Eigenvalue equation
> $H(\mathbf{k}) X(\mathbf{k})=E X(\mathbf{k})$

Excitonic effects: Solution of the Bethe-Salpeter equation

- Leads to dense eigenvalue problem (excitonic Hamiltonian)
- Nested k-point grids for different energy ranges
- Computationally challenging: LARGE matrices, Size $\sim \mathcal{O}(100 k)$ (e.g. $n=360 k$ for $\mathrm{In}_{2} \mathrm{O}_{3}$ i.e. up to about 1 TB)
- Size of matrices are inversely proportional to number of \mathbf{k}-points and energy cut-off
- Excellent description of the optical properties of the oxides
\Longrightarrow Predictive power (e.g. for $\ln 2 \mathrm{O} 3, \mathrm{Ga} 2 \mathrm{O} 3, \ldots$)

BSE is an eigenvalue equation

Eigenvalue equation

$$
H(\mathbf{k}) X(\mathbf{k})=E X(\mathbf{k})
$$

- Needed: $\mathcal{O}(100)$ lowest eigenvalues (exciton binding energies);
- Current eigensolver is based on Kalkreuther-Simma Conjugate-Gradient (KSCG) algorithm;
- Parallelized for distributed memory (MPI);
- Needed: increase parallel efficiency, scalability and performance;
- Desired: exploit many-core platforms (e.g. GPUs on Blue Waters)

A computational example

k-points	size (n)	nnz	CPU time	Memory	nodes
10945	82499	6.810^{9}	1.5 hours	50.7 GiB	8
12713	96399	9.310^{9}	2 hours	69.2 GiB	8
16299	124281	1.510^{10}	2 hours	115.1 GiB	16
25367	195281	3.810^{10}	5.5 hours	284.1 GiB	16

A Convergence test for exciton-binding energy w.r.t. number of \mathbf{k}-points

- only four atoms in a unit cell;
- calculations run on BlueWater;
- cost increases enormously as k-points number increases;
- however, we just barely achieve convergence.

Topic

Motivation

The eigensolver: Chebyshev Accelerated Subspace Iteration (ChASE)

Distributed CPU/GPU: a simple and efficient parallelization

Experimental tests and outlook

Eigenproblems and Eigesolvers

$$
A X=X \Lambda \quad ; \quad X=\left(x_{1}, \ldots, x_{n}\right) \quad \Lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

Direct solvers. Iterative solvers.

Eigenproblems and Eigesolvers

$$
A X=X \Lambda \quad ; \quad X=\left(x_{1}, \ldots, x_{n}\right) \quad \Lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

Direct solvers.

$\left[\begin{array}{llllll}* & * & * & * & * & * \\ * & * & * & * & * & * \\ * & * & * & * & * & * \\ * & * & * & * & * & * \\ * & * & * & * & * & * \\ * & * & * & * & * & *\end{array}\right]$

Eigenproblems and Eigesolvers

$$
A X=X \Lambda \quad ; \quad X=\left(x_{1}, \ldots, x_{n}\right) \quad \Lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

Direct solvers.

$$
\left[\begin{array}{llllll}
* & * & * & * & * & * \\
* & * & * & * & * & * \\
* & * & * & * & * & * \\
* & * & * & * & * & * \\
* & * & * & * & * & * \\
* & * & * & * & * & *
\end{array}\right]
$$

$$
\begin{gathered}
\left|\lambda_{1}\right|>\left|\lambda_{2}\right|>\left|\lambda_{3}\right|>\ldots \\
A x_{j}=\lambda_{j} x_{j} \\
v=\sum_{j} \gamma_{j} x_{j}
\end{gathered}
$$

$$
A v=\sum_{j} \lambda_{j} \gamma_{j} x_{j} \Rightarrow A^{k} v=\sum_{j} \lambda_{j}^{k} \gamma_{j} x_{j}=\lambda_{1}\left[x_{1}+\sum_{j \geq 2} \frac{\lambda_{j}}{\lambda_{1}} x_{j}\right]
$$

$$
\text { Rate of convergence } \rightarrow \text { magnitude of }\left|\frac{\lambda_{j}}{\lambda_{1}}\right|
$$

Eigenproblems and Eigesolvers

$$
A X=X \Lambda \quad ; \quad X=\left(x_{1}, \ldots, x_{n}\right) \quad \Lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

Eigenproblems and Eigesolvers

$$
A X=X \Lambda \quad ; \quad X=\left(x_{1}, \ldots, x_{n}\right) \quad \Lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

ChASE

Subspace iterations with Rayleigh-Ritz

- Choose an initial system of vectors $X^{0}=\left[x_{1}, \ldots, x_{m}\right]$.
- Perform successive multiplication $X^{k}:=A X^{k-1}$.
- Every once in a while orthonormalize column-vectors in X^{k}.
- Compute Rayleigh-Ritz quotient
- Solve reduced problem

ChASE Eigensolver

- Substitute $A^{k} X \longrightarrow p(A) X$.
- Chebyshev filter improves the rate of convergence.

ChASE pseudocode

INPUT: Hamiltonian H, TOL, DEG — OPTIONAL: approximate eigenvectors Z_{0}, extreme eigenvalues $\left\{\lambda_{1}, \lambda_{\text {NEv }}\right\}$.
OUTPUT: NEV wanted eigenpairs (Λ, W).
1 Lanczos DoS step. Identify the bounds for the eigenspectrum interval corresponding to the wanted eigenspace.

Repeat Until convergence:

2 Chebyshev filter. Filter a block of vectors $W \longleftarrow Z_{0}$.
3 Re-orthogonalize the vectors outputted by the filter; $W=Q R$.
4. Compute the Rayleigh quotient $G=Q^{\dagger} H Q$.

5 Compute the primitive Ritz pairs (Λ, Y) by solving for $G Y=Y \Lambda$.
6 Compute the approximate Ritz pairs $(\Lambda, W \leftarrow Q Y)$.
7 Check which one among the Ritz vectors converged.
8 Deflate and lock the converged vectors.
End Repeat

The core of the algorithm: Chebyshev filter

Chebyshev polynomials

A generic vector $v=\sum_{i=1}^{n} s_{i} x_{i}$ is very quickly aligned in the direction of the eigenvector corresponding to the extremal eigenvalue λ_{1}

$$
\begin{aligned}
v^{m}=p_{m}(H) v & =\sum_{i=1}^{n} s_{i} p_{m}(H) x_{i}=\sum_{i=1}^{n} s_{i} p_{m}\left(\lambda_{i}\right) x_{i} \\
& =s_{1} x_{1}+\sum_{i=2}^{n} s_{i} \frac{C_{m}\left(\frac{\lambda_{i}-c}{e}\right)}{C_{m}\left(\frac{\lambda_{1}-c}{e}\right)} x_{i} \sim s_{1} x_{1}
\end{aligned}
$$

The core of the algorithm: Chebyshev filter

In practice
Three-terms recurrence relation

$$
C_{m+1}(t)=2 x C_{m}(t)-C_{m-1}(t) ; \quad m \in \mathbb{N}, \quad C_{0}(t)=1, \quad C_{1}(t)=x
$$

$$
Z_{m} \doteq p_{m}(\tilde{H}) Z_{0} \quad \text { with } \quad \tilde{H}=H-c I_{n}
$$

FOR: $i=1 \rightarrow$ DEG -1

$$
\mathrm{xGEMM}
$$

End For.

ChASE time profile

$$
\mathrm{Au}_{98} \mathrm{Ag}_{10}-n=8,970-32 \text { cores. }
$$

Topic

Motivation

The eigensolver: Chebyshev Accelerated Subspace Iteration (ChASE)

Distributed CPU/GPU: a simple and efficient parallelization

Experimental tests and outlook

Parallelization of the Chebyshev filter

Targets

- A simple and efficient scheme for data distribution and communication using MPI
- An economic paradigm that successively performs

$$
\begin{equation*}
C \leftarrow \alpha A B+\beta C, \quad B \leftarrow \alpha A C+\beta B . \tag{1}
\end{equation*}
$$

using CuBLAS on multiple GPUs

Desired features

- Develop a scheme for parallelization of the 3-terms recurrence relation Chebyshev filter.
- It would be nice to harness the power of GPUs.
- Limited GPU memory \Rightarrow multiple GPU nodes
- Minimize communication and redistribution of data.

Matrix distribution

The matrix A is tiled and distributed among computing nodes.

$A_{1,1}$	$A_{1,2}$	$A_{1,2}$	\ldots	$A_{1, n}$
$A_{2,1}$	$A_{2,2}$	$A_{2,3}$	\ldots	$A_{2, n}$
		\vdots	\vdots	\ddots
				\vdots
	$A_{m, 1}$	$A_{m, 3}$	\ldots	$A_{m, n}$

node $_{n+2}$
node $_{n+3}$

node $_{2 n}$

- Each node gets the appropriate part of C and B.

- Each node gets the appropriate part of C and B.

MPI scheme

Step 1

Calculate $A B$ on the GPU, return it to CPU and save in temporary $C_{\text {tmp }}$.

MPI scheme

Step 2

Perform reduction (summation) on nodes in each row. Then save $\alpha C_{t m p}+\beta C$ in C.

Next step:

Repeat the previous steps for $\alpha A C+\beta B \Longrightarrow$ requires redistribution of C

Next step:

Redistribution of C is avoided thanks to the simple observation that $A=A^{H}$

Repeat the previous steps for $\alpha A^{H} C+\beta B$

MPI scheme

Step 3

Calculate $A C$ on the GPU, return it to CPU and save in temporary $B_{\text {tmp }}$.

MPI scheme

Step 3

Calculate $A C$ on the GPU, return it to CPU and save in temporary $B_{\text {tmp }}$.

Step 4

Perform reduction on nodes in each column. Then save $\alpha B_{t m p}+\beta B$ in B.

MPI scheme: recap

- Steps 1-4 describe two cycles of Chebyshev iteration.
- Performing 3-terms recurrence relation within the Chebyshev iterations relies on alternating between both kinds of cycles.
- Cycle 1: Perform $A \times B$, and then reduce across every row of the processing grid.
- Cycle 2: Perform $A^{\star} \times C$, and then reduce on every column of the processing grid.
- Most of the communication is spent in a MPI_Allreduce.

Multi-GPU matrix multiplication schemes

Guiding principle

- The distribution of $A_{i, j}$ on GPUs plays a guiding role
- The distribution of B_{j} and C_{i} is a result of the distribution of $A_{i, j}$.

Example: 4 devices on one computing node There are 3 simple distribution schemes for $A_{i, j}$:

- Vertical distribution (VER)
- Horizontal distribution (HOR)
- Mixed distribution (HV)

HV Scheme

Topic

Motivation

The eigensolver: Chebyshev Accelerated Subspace Iteration (ChASE)

Distributed CPU/GPU: a simple and efficient parallelization

Experimental tests and outlook

Experimental tests setup

Existing C++ implementation of ChASE

- EleChASE - Elemental (MPI) parallelization for distributed memory
- MTBChASE - Simple multi-threaded parallelization for shared memory
- CUChASE - CUDA parallelization to one GPUs (full or filter offload)
- BLASX+ChASE - Parallelization to multiple GPUs (per node)

Tests were performed on the JURECA cluster for only the Chebyshev filter.

- 2 Intel Xeon E5-2680 v3 Haswell - Up to $0.96 \div 1.92$ TFLOPS DP \div SP;
- $2 \times$ NVIDIA K80 (four devices) - Up to $2 \times 2.91 \div 8.74$ TFLOPS DP \div SP.
- 4 GB of GDDR5 memory (12 GB per GPU);
- $480 \mathrm{~GB} /$ sec memory bandwidth per board;
- Artificial matrices generated on the fly for benchmark purposes

Communication vs computation

Computing node geometry

- MPI communication is heavily influenced (expected) by computing grid;
- Binary and (especially) squared grids are preferred.

Weak scalability test

Weak scalability of Chebyshev filter

- Volume of memory per GPU device occupied by $A_{i, j}$ fixed ($\sim 10 \mathrm{~GB}$);
- Communication increases only as \log (\#nodes).

Some observations

Very simple parallelization

1 Using only GPUs for filter
2 Once integrated CPU cores could execute some other ChASE overlapping tasks;
$3 B$ and C are very tall and skinny matrices: tiling or cyclic block distribution could improve performance at the cost of having to redistributed across filter iterations;

4 BLASX could (theoretically) be used at the node level in order to use concurrently both GPUs and CPUs

Some noticeable advantages for ChASE

- Compute bound
- Performance portable (need optimizing for few linear algebra kernels)
- Templating ChASE for SP \Rightarrow up to 4 times the performance on GPUs

Outlook

Next steps

- Templating ChASE filter for SP (the rest of ChASE is already templated);
- MPI can be tweaked to reduce latency.
- Reconfigure VASP BSE package to initialize matrices in DP;
- Refine node-level parallelism with multiple GPUs together with CPU cores \Longrightarrow modify BLASX;
- Implementing a distributed CPU/GPU parallelization for the remaining ChASE inner functions (QR, Rayleigh-Ritz, etc.);
- Computing Lanczos DoS step redundantly on each computing node..

For more information

$$
\begin{gathered}
\text { e.di.napoli@fz-juelich.de } \\
\text { http://www.jara.org/hpc/slai }
\end{gathered}
$$

