Mitglied der

Efficient parallel implementation of the ChASE library on distributed CPU-GPU architectures

JLESC, Kobe, December 1st | E. Di Napoli, A. Schleife

Outline

Motivation

The eigensolver: Chebyshev Accelerated Subspace Iteration (ChASE)

Distributed CPU/GPU: a simple and efficient parallelization

Experimental tests and outlook

Topic

Motivation

The eigensolver: Chebyshev Accelerated Subspace Iteration (ChASE)

Distributed CPU/GPU: a simple and efficient parallelization

Experimental tests and outlook

Two-particle excitation and Bethe-Salpeter Eq. (BSE)

Figure: Optical absorption

- Electron from valence band excited into conduction band
- Electron-hole attraction (screened Coulomb potential) Ξ
- Macroscopic dielectric function: Local-field effects

Bethe-Salpeter equation for optical polarization

$$P = P_0 + P_0 \left(2\bar{\nu} - \Xi\right) P$$

BSE is an eigenvalue equation

Eigenvalue equation

 $H(\mathbf{k}) X(\mathbf{k}) = E X(\mathbf{k})$

Excitonic effects: Solution of the Bethe-Salpeter equation

- Leads to dense eigenvalue problem (excitonic Hamiltonian)
- Nested k-point grids for different energy ranges
- Computationally challenging: LARGE matrices, Size ~ O(100k) (e.g. n = 360k for In₂O₃ i.e. up to about 1 TB)
- Size of matrices are inversely proportional to number of k-points and energy cut-off
- Excellent description of the optical properties of the oxides
- \implies Predictive power (e.g. for In2O3, Ga2O3, ...)

BSE is an eigenvalue equation

Eigenvalue equation

 $H(\mathbf{k}) X(\mathbf{k}) = E X(\mathbf{k})$

- Needed: O(100) lowest eigenvalues (exciton binding energies);
- Current eigensolver is based on Kalkreuther-Simma Conjugate-Gradient (KSCG) algorithm;
- Parallelized for distributed memory (MPI);
- Needed: increase parallel efficiency, scalability and performance;
- Desired: exploit many-core platforms (e.g. GPUs on Blue Waters)

A computational example

k-points	size (n)	nnz	CPU time	Memory	nodes
10945	82499	6.8 10 ⁹	1.5 hours	50.7 GiB	8
12713	96399	9.3 10 ⁹	2 hours	69.2 GiB	8
16299	124281	1.5 10 ¹⁰	2 hours	115.1 GiB	16
25367	195281	3.8 10 ¹⁰	5.5 hours	284.1 GiB	16

A Convergence test for exciton-binding energy w.r.t. number of k-points

- only four atoms in a unit cell;
- calculations run on BlueWater;
- cost increases enormously as k-points number increases;
- however, we just barely achieve convergence.

Topic

Motivation

The eigensolver: Chebyshev Accelerated Subspace Iteration (ChASE)

Distributed CPU/GPU: a simple and efficient parallelization

Experimental tests and outlook

$$AX = X\Lambda$$
 ; $X = (x_1, \ldots, x_n)$ $\Lambda = (\lambda_1, \ldots, \lambda_n)$

Direct solvers.

Iterative solvers.

$$AX = X\Lambda$$
 ; $X = (x_1, \ldots, x_n)$ $\Lambda = (\lambda_1, \ldots, \lambda_n)$

Direct solvers.

Iterative solvers.

$$AX = X\Lambda$$
 ; $X = (x_1, \ldots, x_n)$ $\Lambda = (\lambda_1, \ldots, \lambda_n)$

Iterative solvers.

$$AX = X\Lambda$$
 ; $X = (x_1, \ldots, x_n)$ $\Lambda = (\lambda_1, \ldots, \lambda_n)$

$$AX = X\Lambda$$
 ; $X = (x_1, \ldots, x_n)$ $\Lambda = (\lambda_1, \ldots, \lambda_n)$

ChASE

Subspace iterations with Rayleigh-Ritz

- Choose an initial system of vectors $X^0 = [x_1, ..., x_m]$.
- Perform successive multiplication $X^k := AX^{k-1}$.
- Every once in a while orthonormalize column-vectors in X^k.
- Compute Rayleigh-Ritz quotient
- Solve reduced problem

ChASE Eigensolver

- Substitute $A^k X \longrightarrow p(A) X$.
- Chebyshev filter improves the rate of convergence.

ChASE pseudocode

INPUT: Hamiltonian *H*, TOL, DEG — OPTIONAL: approximate eigenvectors Z_0 , extreme eigenvalues $\{\lambda_1, \lambda_{\text{NEV}}\}$. OUTPUT: NEV wanted eigenpairs (Λ, W) .

I Lanczos DoS step. Identify the bounds for the **eigenspectrum interval** corresponding to the wanted eigenspace.

REPEAT UNTIL CONVERGENCE:

- **2** Chebyshev filter. Filter a block of vectors $W \leftarrow Z_0$.
- **3** Re-orthogonalize the vectors outputted by the filter; W = QR.
- **4** Compute the **Rayleigh quotient** $G = Q^{\dagger}HQ$.
- **5** Compute the primitive Ritz pairs (Λ, Y) by solving for $GY = Y\Lambda$.
- **6** Compute the approximate Ritz pairs $(\Lambda, W \leftarrow QY)$.
- 7 Check which one among the Ritz vectors converged.
- B Deflate and lock the converged vectors.

END REPEAT

The core of the algorithm: Chebyshev filter

Chebyshev polynomials

A generic vector $v = \sum_{i=1}^{n} s_i x_i$ is very quickly aligned in the direction of the eigenvector corresponding to the extremal eigenvalue λ_1

$$v^{m} = p_{m}(H)v = \sum_{i=1}^{n} s_{i} p_{m}(H)x_{i} = \sum_{i=1}^{n} s_{i} p_{m}(\lambda_{i})x_{i}$$
$$= s_{1}x_{1} + \sum_{i=2}^{n} s_{i} \frac{C_{m}(\frac{\lambda_{i}-c}{e})}{C_{m}(\frac{\lambda_{i}-c}{e})}x_{i} \sim \boxed{s_{1}x_{1}}$$

E. Di Napoli, A. Schleife

The core of the algorithm: Chebyshev filter In practice

Three-terms recurrence relation					
$C_{m+1}(t) = 2xC_m(t) - C_{m-1}(t);$	$m \in \mathbb{N},$	$C_{0}\left(t\right) =1,$	$C_{1}\left(t\right)=x$		

$$Z_m \doteq p_m(\tilde{H}) Z_0$$
 with $\tilde{H} = H - cI_n$

For: $i = 1 \rightarrow \text{deg} - 1$

xGEMM

END FOR.

ChASE time profile

$$Au_{98}Ag_{10}$$
 - $n = 8,970$ - 32 cores.

Topic

Motivation

The eigensolver: Chebyshev Accelerated Subspace Iteration (ChASE)

Distributed CPU/GPU: a simple and efficient parallelization

Experimental tests and outlook

Parallelization of the Chebyshev filter

Targets

- A simple and efficient scheme for data distribution and communication using MPI
- An economic paradigm that successively performs

$$C \leftarrow \alpha AB + \beta C, \quad B \leftarrow \alpha AC + \beta B.$$
 (1)

using CuBLAS on multiple GPUs

Desired features

- Develop a scheme for parallelization of the 3-terms recurrence relation Chebyshev filter.
- It would be nice to harness the power of GPUs.
- Limited GPU memory ⇒ multiple GPU nodes
- Minimize communication and redistribution of data.

Matrix distribution

The matrix *A* is tiled and distributed among computing nodes.

$A_{1,1}$	$A_{1,2}$	$A_{1,2}$		$A_{1,n}$	
$A_{2,1}$	$A_{2,2}$	A _{2,3}		$A_{2,n}$	
	 • • 		·	÷	
$A_{m,1}$	$A_{m,2}$	$A_{m,3}$		$A_{m,n}$	

• Each node gets the appropriate part of *C* and *B*.

• Each node gets the appropriate part of *C* and *B*.

MPI scheme

Step 1

Calculate AB on the GPU, return it to CPU and save in temporary C_{tmp}.

MPI scheme

Step 2

Perform reduction (summation) on nodes in each row. Then save $\alpha C_{mp} + \beta C$ in *C*.

Next step:

Repeat the previous steps for $\alpha AC + \beta B \Longrightarrow$ requires redistribution of *C*

A _{1,1}	<i>A</i> _{1,2}	$A_{1,2}$		$A_{1,n}$		C_1
$A_{2,1}$	$A_{2,2}$	$A_{2,3}$		$A_{2,n}$	~	C_2
		÷	•			
$A_{m,1}$	$A_{m,2}$	$A_{m,3}$		$A_{m,n}$		C_m

Next step:

Redistribution of *C* is avoided thanks to the simple observation that $A = A^{H}$

Repeat the previous steps for $\alpha A^H C + \beta B$

MPI scheme

Step 3

Calculate AC on the GPU, return it to CPU and save in temporary B_{tmp} .

MPI scheme

Step 3

Calculate AC on the GPU, return it to CPU and save in temporary B_{mp} .

Step 4

Perform reduction on nodes in each column. Then save $\alpha B_{mp} + \beta B$ in *B*.

MPI scheme: recap

- Steps 1-4 describe two cycles of Chebyshev iteration.
- Performing 3-terms recurrence relation within the Chebyshev iterations relies on alternating between both kinds of cycles.
- Cycle 1: Perform $A \times B$, and then reduce across every row of the processing grid.
- Cycle 2: Perform A^{*} × C, and then reduce on every column of the processing grid.
- Most of the communication is spent in a MPI_Allreduce.

Multi-GPU matrix multiplication schemes

Guiding principle

- The distribution of A_{i,j} on GPUs plays a guiding role
- The distribution of B_j and C_i is a result of the distribution of A_{i,j}.

Example: 4 devices on one computing node There are 3 simple distribution schemes for $A_{i,j}$:

- Vertical distribution (VER)
- Horizontal distribution (HOR)
- Mixed distribution (HV)

Topic

Motivation

The eigensolver: Chebyshev Accelerated Subspace Iteration (ChASE)

Distributed CPU/GPU: a simple and efficient parallelization

Experimental tests and outlook

Experimental tests setup

Existing C++ implementation of ChASE

- EleChASE Elemental (MPI) parallelization for distributed memory
- MTBChASE Simple multi-threaded parallelization for shared memory
- CUChASE CUDA parallelization to one GPUs (full or filter offload)
- BLASX+ChASE Parallelization to multiple GPUs (per node)

Tests were performed on the JURECA cluster for only the Chebyshev filter.

- 2 Intel Xeon E5-2680 v3 Haswell Up to 0.96 ÷ 1.92 TFLOPS DP÷ SP;
- 2 x NVIDIA K80 (four devices) Up to $2 \times 2.91 \div 8.74$ TFLOPS DP \div SP.
- 4 GB of GDDR5 memory (12 GB per GPU);
- 480 GB/sec memory bandwidth per board;
- Artificial matrices generated on the fly for benchmark purposes

Communication vs computation

Computing node geometry

- MPI communication is heavily influenced (expected) by computing grid;
- Binary and (especially) squared grids are preferred.

Weak scalability test

- Volume of memory per GPU device occupied by A_{i,j} fixed (~ 10 GB);
- Communication increases only as log(#nodes).

Some observations

Very simple parallelization

- Using only GPUs for filter
- Once integrated CPU cores could execute some other ChASE overlapping tasks;
- B and C are very tall and skinny matrices: tiling or cyclic block distribution could improve performance at the cost of having to redistributed across filter iterations;
- 4 BLASX could (theoretically) be used at the node level in order to use concurrently both GPUs and CPUs

Some noticeable advantages for ChASE

- Compute bound
- Performance portable (need optimizing for few linear algebra kernels)
- Templating ChASE for SP ⇒ up to 4 times the performance on GPUs

Outlook

Next steps

- Templating ChASE filter for SP (the rest of ChASE is already templated);
- MPI can be tweaked to reduce latency.
- Reconfigure VASP BSE package to initialize matrices in DP;
- Refine node-level parallelism with multiple GPUs together with CPU cores ⇒ modify BLASX;
- Implementing a distributed CPU/GPU parallelization for the remaining ChASE inner functions (QR, Rayleigh-Ritz, etc.);
- Computing Lanczos DoS step redundantly on each computing node..

For more information

```
e.di.napoli@fz-juelich.de
```

```
http://www.jara.org/hpc/slai
```