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ABSTRACT 

We introduce a new method for real-time studying of membrane scaling and biofouling on thin 

film membranes in reverse osmosis, nanofiltration water treatment processes using in-situ small-

angle neutron scattering (SANS). SANS delivers information on nano and microscopic structures 

that support the interpretation of relevant engineering parameters such as membrane permeability 

and water flux. A high pressure SANS flow cell is described, followed by SANS characterization 

of thin-film composite reverse osmosis membranes finding ∼0.5 µm large cavities and ∼300 Å 

diameter large rod-like cavities inside the non-woven polyester and micro-porous polysulfone 

layer, respectively. This is followed by presentation of in-situ desalination experiments in cross-

flow mode at applied pressures of 6 bars and feed flow velocity of 0.2 cm/s. The scattering cross-

section (Σt) derived from the transmission coefficient of non-scattered neutrons became a relevant 

parameter as it is a measure of the total scattered neutrons. The overall enhancement of Σt is 

accompanied by reduced membrane permeability measured in parallel. After finishing the 

process of desalination the membranes showed enhanced scattering from µm large domains of 

mass fractal structure.  
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Abbreviations 

• SANS   small-angle neutron scattering 

• T   transmission coefficient of neutrons 

• µt   sum of linear coefficients of neutron absorption, incoherent and  

SANS scattering 

• A   scattering amplitude   

• dΣ/dΩ    differential macroscopic cross-section 

• Σt   total macroscopic cross-section 

• Σabs   total absorbing macroscopic cross-section 

• ΣSANS   total macroscopic cross-section of SANS 

• Q2   second moment with meaning of the invariant of scattering 

• b   coherent scattering length 

• ρ    coherent scattering length density 

• 2Δρ    scattering contrast 

• ΩM   volume of molecule 

• δ   scattering angle  

• λ   wavelength  of neutron 

• Q   momentum transfer 

• k   wavenumber  

• Rg.   radius of gyration 

• P4    Porod constant 

• α    exponent of power law of dΣ/dΩ at Q > 1/Rg  

• Vp, Sp, Np, Φp  volume, surface, number density, and volume fraction of   

domains exposed to scattering. 

• lC   coherence length of domains 

• DS   thickness of sample 

• HAP   hydroxyapatide 

• PMP   protein mineral particle 
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• RO   reverse osmosis 

• NF   nanofiltration 

• TFC   thin-film composite 

• TMP   trans membrane pressure 

• SSE   simulated secondary effluent 
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1. Introduction 

The strong demand for potable water in arid areas around the globe is leading to an increasing 

number of sea, brackish and wastewater desalination plants using reverse osmosis (RO) and 

nanofiltration (NF) technologies. Despite this vast activity, fresh water supply in many countries, 

especially those that are remote from the sea, is still a serious problem. In these cases, recycling 

of impaired water such as municipal wastewater, to a level of unlimited application is a 

reasonable solution. In fact, this is done today in several locations around the globe such as in 

Singapore, Windhoek (Namibia), Orange County (CA, US) and Kuwait and is considered by 

many other countries. Another, not less important aspect of recycling is protection of the 

environment. Membrane-based technologies are extensively used today in these respects. 

A serious problem in RO/NF desalination of municipal wastewater is biofouling and scaling 

of the membranes, limiting membrane efficiency and lifetime [1,2,3]. Ning et al. [4] reported that 

calcium phosphate and organic matter accumulated on the RO-membrane, suggesting that 

nanoparticles pass through microfiltration and ultrafiltration membranes, ending up on RO-

membranes as a cake-layer fouling. In particular scaling by calcium phosphate in municipal 

wastewater treatment systems is a severe problem as no efficient antiscaling agents are currently 

available [5].  

Calcium-phosphate mineral formation during RO wastewater desalination was studied using 

surface pressure−area isotherms and spectroscopic analyses of a solution simulating the ionic 

profile of domestic secondary-treated wastewater effluents (termed simulated secondary effluent 

- SSE); it was found that calcium phosphate mineralization was accelerated by organic chemical 

groups that are present on biofouled membranes [6]. In this respect the issue of biofouling-

induced scaling is, to a large extent, strongly linked to bio-mineralization [7]. In addition, recent 

small-angle neutron scattering (SANS) experiments by the authors showed strong influence of 

organic molecules present in biofilms on mineralization in a model synthetic salt solution [8,9]. 

Proteins such as BSA, lysozyme and the polysaccharide alginate (AA) added to the solution, 

induced within a few seconds strong precipitation of nearly µm large composite particles 

composed of organic components as well as calcium phosphate and carbonate. In another study 

gold-nanoparticles were used as templates for studying surface mineralization by SANS in model 

solutions for wastewater desalination [9,10]; for example it was found that BSA-gold 
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nanoparticles induced fast precipitates of 0.2 µm that were composed of 50% - 80% minerals, 

identified as calcium phosphate and calcium carbonate. 

In this manuscript we report on developing of a new cell for in-situ SANS studies of fouling 

and scaling of thin film composite (TFC) RO/NF membranes. Application of SANS to polymeric 

TFC membranes appears rational, as static and kinetic properties of polymers are studied with 

neutron scattering methods [11,12]. Similar in-situ SANS experiments on ceramic ultrafiltration 

membranes are reported in [13]. Filtration of aqueous BSA solutions of different pH values was 

explored and compared with the permeate flux. Another in-situ SANS measurements studied the 

formation of a cake layer at the surface of an ultrafiltration membrane which was exposed to a 

0.48% aqueous Laponite solution at a transmembrane pressure of 0.5 bar [14]. 

Currently, several non-invasive real-time methods are presented in literature and 

demonstrated their application in membrane processes. Greenberg and coworkers developed the 

ultrasonic time-domain reflectometry (UTDR), where the membrane surface is monitored by 

sensing the reflection of ultrasonic radiation from the membrane [15]. The UTDR was proved 

efficient in studying membrane characteristics, as well as monitoring membrane fouling and 

biofouling [16,17]. However the detection of biofilm and scaling on membrane surfaces is still a 

significant challenge for UTDR due to the small difference in acoustic properties at the 

fouling/membrane and fouling/feed solution interfaces [16]. Electrical impedance spectroscopy 

(EIS) was also demonstrated as a membrane monitoring and characterization technique, as was 

applied for studying membrane fouling [18,19,20,21,22]. Nevertheless, unlike UTDR or SANS it 

is in essence an invasive technique that requires special arrangements to provide the proper 

electrical connections. SANS might be outstanding with respect to other tools as the just 

mentioned ones that it is enabling basic studies of membrane phenomena and distinguishing 

between inorganic and organic fouling via contrast variation and their evolution during 

desalination on a level of microscopic length scale under most realistic real-time conditions. It is 

the main goal of this effort to elucidating the influence of biofluing on scaling using in-situ 

SANS monitoring at conditions that are close to those prevailing in actual membrane processes.  

 

2. Theoretical Background of SANS. 
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Scattering of photons and, as in our case, neutrons occurs in momentum (P-) space in contrast 

to optical, electron (TEM) and atomic force (AFM) microscopies which are reproducing their 

results in real (R-) space. This implies that scattering methods do not provide pictures of our real 

world but rather of the so-called reciprocal or the momentum space [23]. The coordinates of the 

reciprocal space are formed by the components of the scattering vector Q which corresponds to 

the momentum transfer PΔ  (the symbols Q and PΔ  are representing vectors) of the neutrons and 

are interrelated via the well-known de Broglie relationship P= QΔ h  (h , Planck constant h 

divided by2π ). The absolute value of the scattering vector Q is determined from the scattering 

angle δ and wavelength λ of the neutrons (in the present case, λ = 12.8 Å), according to 

Q=4π/λsin(δ/2) . It is a rule of thumb that scattering from objects of radius R mainly occurs in a 

Q regime of the order of 1/R, i.e. Q ∼ 1/R. 

The scattering techniques of neutrons and photons are well established tools both from 

theoretical and experimental aspects. Scattering occur at domains which differ from their  

 

  
Figure 1. Coherent scattering length densities ρ of water and protein BSA in 
aqueous solution as a function of D2O volume fraction ρ of the crystalline 
minerals hydroxyapatite (HAP) and calcite as well as the polymers of the 
RO-membrane are indicated as short lines when crossing ρ (blue line) of the 
H2O/D2O mixture. 
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surroundings with respect to chemical composition and/or mass density. Examples of those 

domains are precipitates and cavities in solid matrices or colloids in solution. The differences in 

chemical composition and/or mass density are expressed by the scattering contrast. For neutrons 

the scattering contrast is determined by the square of the difference of the coherent scattering 

length density of the domain (P) and its surrounding (S), namely ( )22
P SΔρ = ρ -ρ . The scattering 

length density is defined as the sum of the coherent scattering length of the atoms, bi, of a 

molecule divided by its volume ΩM, that is i M
i

ρ= b /Ω∑  [23,24]. Figure 1 shows the coherent 

scattering length density ρ of molecules of the present study as a function of D2O content of an 

aqueous solution. As seen in the figure the parameter ρ of H2O and D2O shows very different 

values and allows a continuous change of ρ by mixing H2O with D2O. The reason for that is that 

neutrons interact with the nucleus of atoms and therefore deliver individual values of coherent 

scattering length for isotopes as tabulated in [24]. The very different scattering of neutrons at 

hydrogen (bH = - 0.3739×10-12cm) and deuterium (bD = 6.671×10-12cm) is extensively used as a 

tool to enhance scattering contrast or to match scattering for identifying particular domains, as 

also done in the present study.      

The scattering length density ρ of BSA was determined experimentally in [8], whereas ρ of 

the stable polymorphs of calcium phosphate and carbonate was evaluated as compiled in Table 

A1. The observed change of ρ for proteins with the amount of D2O is due to H/D exchange at 

their outer surface [25]. The scattering contrast Δρ2 of the proteins becomes zero in water of 

about 42% D2O content, implying that the protein becomes invisible for neutrons at this D2O 

content. On the other hand, minerals such as hydroxyapatite (HAP) and calcite become invisible 

in water of about 75% D2O content as visualized in Figure 1 by the equality of the corresponding 

ρ’s. The large difference of scattering contrast of proteins and minerals and the possibility of 

their matching in H2O/D2O mixtures offers the opportunity of identifying organic and inorganic 

phases of stable micron-scale protein-mineral particles (PMPs) as observed in a recent study by 

SANS [8]. 

The fact that neutrons are electrically neutral implies that they are penetrable through most 

materials for several tenths of cm without significant attenuation. Taking advantage of this 

property allowed us to build a RO-cell for in-situ studies of reverse osmosis (RO) desalination as 
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will be described in detail below. Small-angle neutron scattering is a quantitative method 

determining structural parameters averaged over macroscopic large volumes of the order of 0.1 

cm3. In this respect it is complementary to TEM in which individual domains are made visible. 

The scattered neutron intensity is measured as a function of the momentum transfer Q and 

determined as differential macroscopic cross-section dΣ/dΩ in units of cm-1 (i.e. scattering per 

cm3 of sample volume). It is referred here to scattering that emerges from individual domains that 

neglect possible coherence effects from ordering of the domains by long range interaction or 

excluded volume interaction. For the analyses of scattering pattern we used the Beaucage 

Equation [26]: 

 ( )( )
α3

2
α

dΣ dΣ(Q) = (0) exp(-u /3) + P erf u/ 6 /Q
dΩ dΩ

⎡ ⎤
⎢ ⎥⎣ ⎦

   (1) 

In this expression, u is the product of Q and radius of gyration Rg.. At Q < 1/Rg, dΣ/dΩ is 

determined by the first term and corresponds to Guinier’s approximation whereas at Q > 1/Rg 

scattering often follows a power law with the exponent α. In many cases α=4 (Porod’s law) is 

valid indicating 3-dimensional domains with smooth interface. The parameters dΣ/dΩ(0) and P4 

of Eq. (1) are expressed as 

  ( ) [ ]2P P P P S
dΣ (Q=0)=Φ 1 Φ V ρ -ρ
dΩ

−   and [ ]24 P P P SP =2 N S ρ -ρπ  , (2) 

and determine volume VP, surface SP, volume fraction ΦP, as well as number density NP of the 

scattering generating domains [23]. An important parameter is determined from the integral 

3
1  dΣ/dΩ(Q) d Q
4π ∫  over the reciprocal space representing the “invariant” Q2. This parameter is 

termed “invariant” as it is independent of domain size and only proportional to the domain 

volume fraction and their scattering contrast as expressed in Eq. (3) [23].  

( )2 2
P PQ2=2π  Φ  1-Φ Δρ      (3) 

A particular scattering law will be needed for analyzing the porous support layer of thin film 

composite (TFC) membranes made of about 40 µm thick polysulfone transporting the effluent via 

small channels of the order of 150 Å average diameters as will be described in more detail below 
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in section 4.1. Since the momentum transfer Q is oriented perpendicular to the axis of the 

channels we find for the form factor of rods the expression 

     [ ]21
dΣ dΣ(Q)= (0) 2J (u) / u
dΩ dΩ

     (4) 

with u=RQ (R radius of a rod) and J1 a Bessel function of the first order [27]. 

Another relevant SANS parameter is the transmission of the primary neutron beam, i.e. 

neutrons which are not scattered but rather go through the sample. Transmission expresses the 

intensity drop of the incoming neutron beam caused by scattering and absorption by the sample. 

The incoming neutron beam is monochromatic (usually with half width of Δλ/λ=0.10, λ is 

wavelength of neutrons) of selected divergence due to velocity selector and collimator. A 

collimator is usually realized by two apertures made from neutron absorbing materials [28]. In 

special cases such as for very-small-angle scattering (VSANS), optical devices such as refractive 

lenses [29] or ellipsoidal mirror [30] focus the neutron beam on the detector. Such a mirror is 

implemented in the instrument KWS3 for the use in the present experiments.  

The transmission T represents an integral number of scattered neutrons over the whole space 

angle Ω of the Ewald sphere and is expressed by the total scattering cross-section 

tΣ = dΣ/dΩdΩ∫  times the thickness DS of the sample in Eq. (5). A decrease or increase in  

t t sT exp{ } exp{ D }= −µ = −Σ     (5)  

transmission denotes an increase or decrease of scattering intensity, respectively. The parameter 

t t sDµ = Σ  represents the sum of linear coefficients of neutron absorption, incoherent and small-

angle scattering as discussed in [31]. In the RO-cell there is strong contribution of SANS 

scattering from the membrane as will be shown later and only a small contribution is expected 

from precipitation and fouling at the membrane surface. Therefore, it is important to consider the 

transmission in conjunction with the scattered beam. As already mentioned in context with Eq. 

(5) the transmission is mainly determined by the total scattering Σt. The cross-section from small- 

( ) ( )SANS 22
4π 4π

dΣ 1 dΣΣ = dΩ= Q d
d k dΩ

Q Q
Ω∫ ∫    (6) 
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angle scattering, ΣSANS, is determined from the integral over the total space angle 2
2dΩ= d Q/k  

with the wavenumber k=2π/λ (λ neutron wavelength) (Eq. (6)). In case of isotropic scattering Q 

becomes a scalar and one gets 

     ( )SANS 2
0

dΣΣ = Q Q  d
Ω

π Q
k d
2 ∞

∫ .    (7) 

Accordingly, one can evaluate the transmission coefficient from the experimental dΣ/dΩ(Q)  for 

comparison with the experimental transmission coefficient (Eqs. (7) and (5)). 

In summary, structural information of colloids in the feed as well as of precipitates and 

cavities inside the membrane is provided from fitting the scattering laws (Eqs. (1) and (4)) to the 

experimental macroscopic scattering cross-section dΣ/dΩ(Q) . The knowledge of scattering 

contrast 2Δρ obtained from contrast variation allows identification the domains, whereas the so-

called invariant Q2 in Eq. (3) delivers the domain volume fraction Φp. Another important 

parameter is the neutron transmission coefficient T which is helpful in determining the total 

scattered cross-section Σt. 

 

3. Experimental 

Real-time SANS desalination experiments were performed with a flat-sheet XLE-440 RO 

membrane from Dow Filmtech (Minneapolis, MN, USA). Water permeability was determined 

with deionized water and with SSE solution mentioned above. SSE is a model solution for the 

mineral components of secondary-treated domestic wastewater in desalination with 80 - 85% 

recovery of a Shafdan (Israel) municipal wastewater treatment plant prospective desalination 

plant. Its composition is given in details in [6]. Scattering was taken from membranes while in air 

and also in salt-free water with varying degree of D2O content in order to determine size and 

scattering contrast of the scattering centers as explained above.  

Despite its small thickness (140 µm), the above TFC membrane surprisingly showed strong 

scattering for neutrons which to large extent is created by cavities inside the polyester non-woven 

supporting material as its scattering length density ρ is large (see Table A1). This is a serious 

disadvantage that can be greatly overcome by equilibrating the membrane with a H2O/D2O salt 

solution using a ratio matching the scattering length density of the membrane polymers. In 
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practice, the scattering from any pristine membrane is determined before exposing the membrane 

to salt solutions as a reference for the treated membrane.  

 

 3.1. Design of a Pressure Cell for in situ SANS Studies of Membrane Processes 

We constructed a cell for in-situ explorations of TFC membrane structural properties as well 

as membrane fouling during reverse osmosis (RO) desalination using SANS. Such a cell has to 

fulfill several conditions: (i) It should allow running the RO process either as cross-flow or dead-

end mode (preferably cross-flow) under suitable pressures and the use of different types of 

membranes. (ii) It should be guaranteed that the strength of neutron scattering from the fouling 

materials at the membrane's surface is sufficiently strong in comparison with scattering from the 

other components in the neutron beam track. This demand was difficult to achieve as neutrons 

also have to penetrate through the membrane and supporting spacer as well as the cell’s structural 

material. The schematic diagram of the RO flow-cell in Figure 2 shows a cross-sectional view in  

  

 
Figure 2. Schematic design of the RO flow-cell for in-situ small-angle neutron scattering 
(SANS). Distance between the sapphire windows 0.15 cm. 

 



13 

 

the direction of the neutron beam. The neutrons enter and leave the cell via sapphire windows of 

3 cm in diameter, which are transparent to neutrons with negligible diffraction and allowing feed 

pressure up to 6 bar. There are three circular windows on each side for neutron passage in order 

to allow studies at different positions along the membrane. The window's diameter was set 

according to the beam area at the instrument KWS3 for very-small angle neutron scattering 

(VSANS).  

Figure 3 gives a close-up look at the RO cell and a photograph of the experimental setup. 

The thicknesses of the sapphire windows at the two sides are not equal in order to properly 

support the membrane against the stainless steel sieve as seen in Figure 2, thus keeping it flat. In 

the present experiments we exposed only the central window out of the three and membrane to 

neutrons.  

 

a) 
  b) 

Figure 3. a) A photograph of the SANS RO-cell. b) RO-cell setup. The three sapphire windows mark possible positions 
for the neutron beam to pass the cell.  

 

The membrane dimensions exposed to the flowing solution are 11 by 4.5 cm and the feed 

channel height is 0.14 cm. This channel is packed with a standard polyester mesh spacer taken 

from a RO module. There are two tubes at the bottom of the cell as inlet for the SSE as the feed. 

The two inlet tubes are necessary for a more homogeneous flow distribution over the width of the 
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membrane in the cell. DI water or SSE solution were applied to the feed channel at a linear flow 

rate of 0.2 cm sec-1 by a centrifugal pump.  At the top of the cell there is another tube for the 

concentrate outlet. A pressure adjusting valve is connected to this tube, which can be closed 

thereby allowing switching between dead-end and cross-flow modes. The permeate outlet is 

located at the bottom of the cell in order to avoid a water layer on the pathway of the neutrons at 

the permeate side.  

 

3.2 Neutron Background Scattering of the RO-Cell  

In this section we present scattering patterns from a dry cell with and without a spacer and a 

membrane as depicted in Figure 4. The measurements were performed in the low Q range of the 

VSANS instrument KWS 3. The scattering pattern from the empty cell is rather flat in the range 

of 10 to 103 cm-1 as expected from scattering of the two sapphire windows along the beam  

 
Figure 4. Scattering pattern in low Q range for the empty RO-cell, with a polyester 
spacer and spacer plus RO membrane. Strong contribution of the membrane showing 
scattering centers of different size (indicated by the two Rg’s) is demonstrated. The 
statistical error bar of the spacer and membrane scattering are smaller than the symbol 
size.  

 

pathway. The cell with a polyester spacer shows a stronger scattering, following a power law 

with an exponent slightly larger than 3, whereas the membrane generate a further two orders of 

magnitude increase of scattering. The scattering from the membranes show a bimodal size 
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distribution with radii of gyration of 0.87 µm and 0.20 µm and a Q-4 power law at large Q 

according to the Porod law (Eq. (2)) [23]. The amplitude of Porod’s law (P4) is a measure of the 

total surface area of the scattering domains (N4×SP) per unit cm3 of sample volume (Eq. (2)). As a 

result, we find strong undesired scattering from the spacer and the membrane, which is expected 

to overlap with scattering from any organic and inorganic fouling components formed during the 

filtration process. Scattering from protein-mineral particles at Q = 0 induced by BSA in SSE 

solution in our former work was of the order of 3×103 cm-1 [8]. This implies that the measuring 

signal is in the range of parts per thousand with respect to background scattering from spacer and 

membrane. This suggests that for these experiments, membranes that are made of a nonwoven 

support of less scattering than polyester (e.g. polypropylene) are preferable. 

 

4. Results and Discussion 

 

4.1. Out-of-Cell SANS Measurements with RO TFC Membranes 

In this section we present SANS experiments on TFC RO-membrane samples that were 

exposed to air and to salt-free water. These measurements are required as reference for studies of 

membrane fouling in the high pressure cell. 

 

4.1.1. TFC RO-Membrane in Air 

Typically, TFC RO-membranes are composed of an aromatic polyamide film of 100 to 250 

nm thickness on top of a ∼ 40 µm thick micro porous polysulfone layer. These two layers are 

supported by a third layer – either polypropylene or polyester – consisting of a ∼100 µm thick 

non-woven fabric. The aromatic polyamide skin layer is highly cross-linked whereas the fraction 

of the cross-linked polyamide repeating units from total polyamide units is about 65% [32,33, 

34]. Figure 5 shows a schematic drawing of such a composite membrane which in our case had 

athickness of 140 µm. The neutron flux is directed perpendicular to the membrane surface 

implying that the momentum transfer Q is oriented in parallel to the membrane surface as shown 

by the red arrow in Figure 5. This implies that structures only in direction to Q, namely, 

perpendicularly to the flow direction of the neutrons, give rise to scattering. This is understood 
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from the phase factor of the scattering amplitude which is a complex number according to 

( ) iQ r
3

V

A(Q)= d r ρ r e
S

∫ (VS volume of sample and ( ) 2
d /d Q A(Q)Σ Ω ∝ ); the scalar product of 

Q  and r  shows that diffraction is determined by the structure in direction of Q [24]. A scattering 

pattern of such a membrane in air is shown in Figure 6 (a). The data show the typical shape from 

scattering centers of two different sizes. The data therefore were fitted with two superposed 

Beaucage expressions (Eq. (1)) whose results are shown by the red solid line describing the data 

at Q smaller than 10-2 Å-1. It has to be mentioned that the data were obtained at two SANS  

  

 

instruments, namely the KWS 3 and the pinhole KWS 2 covering a Q range of three orders of 

magnitude from 10-4 to 10-1 Å-1. These data were corrected with respect to background scattering 

and normalized in absolute units by a secondary standard and the thickness of the membrane 

sheet of 140 µm. Two radii of gyration (Rg) could be determined, namely, 0.86 and 0.22 µm, 

which, if representing scattering centers of spherically shaped entities such as cavities would 

correspond to mean diameters of 2.2 and 0.57 µm, respectively. At larger Q the intensity follows 

 
Figure 5. Schematic design of a thin film composite RO membrane as related to neutron scattering. The 
three layers are of aromatic polyamide (100-200 nm thick), porous polysulfone (about 40 µm thick), and 
polyester (about 100 µm thick). The overall thickness of the present membrane is ~140 µm.  



17 

 

the Q-4 Porod law characteristic for three dimensional domains with sharp interfaces whose 

amplitude P4 determines the total domain surface area per cm3 (Eq. (2)). At Q larger than 10-2 Å-1 

we observe weak deviation from the Q-4 power law. This deviation of scattering is depicted in 

Figure 6b showing an oscillatory shape. The origin of this scattering is interpreted as coming 

from the porous structure of the polysulfone layer. This scattering was fitted with the form factor 

of the cylinder in Eq. (4) giving a diameter of nearly 300 Å which is about a factor of 2 smaller 

than given for the average pore diameter (700 Å) in the polysulfone layer of a TFC membrane 

studied by Singh et al. [34]. For simplicity we assumed mono-dispersed single rods. 

Polydispersity of the rods in combination with instrumental resolution smear out the oscillatory 

behavior of the form factor at larger Q in consistence with the scattering data.  

 

 

Figure 6. a) Thin film composite membrane in air; b) Porod scattering (Eqs. (1) and (2); P4×Q-4) 
subtracted from membrane scattering whose difference is interpreted as caused by the porous structure 
of the polysulfone layer. 

 

10-3

100

103

106

109

10-4 10-3 10-2 10-110-4

10-2

100

102

104

Rg = 0.22 µm
 

 

dΣ
/d
Ω

 (Q
) [

cm
-1

] RO Composite Membrane

Q-4

Rg = 0.86 µm

(a)

(b)

Q-4

Λ ∼ 460 Å

R = 143±2 Å

 
 

Δ
dΣ

/d
Ω

 (Q
) [

cm
-1
]

Q [Å-1]



18 

 

The corresponding scattering length densities ρ of polysulfone and polyester are given in 

Table A1; in an aqueous solution of nearly 40% volume (39.91% mole fraction) content of D2O 

the scattering of cavities in the two support layers would be near zero, i.e. become matched with 

the solvent. The thinner polysulfone layer is made compact with rod like channels of small 

diameter (∼300 Å) in order to resist the external pressure field. It seems therefore reasonable to 

conclude that the main component of scattering has its origin from the large fraction of cavities in 

the non-woven part of the support material. This conjecture gets support from the data in Figure 6 

and the second moment Q2 (Eq. (3)) of the rod scattering, which has a value of about 6.1×10-5 

cm-1 Å-3 and corresponds to a volume fraction of 0.7%. More information on this issue is 

obtained from contrast variation experiments presented in the next section. 

 

4.1.2. Composite RO-Membranes in Salt-free Water – Equilibration and Matching 

In a next step scattering of neutrons from TFC membranes after equilibration with salt-free 

mixtures of H2O/D2O in standard quartz cuvettes was determined. This experiment is important 

because it determines the mean scattering length density, i.e. the average scattering contrast of the  

   
Figure 7. Scattering patterns of RO-membranes in salt-free water (70% D2O) at 
various time intervals. After about 3 hours the membrane showed constant 
scattering.  
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membrane scattering domains in water and determines the mixture of H2O/D2O with the lowest 

scattering from the membrane for an optimized condition of the desalination  experiments under 

the prescribed conditions. Figure 7 depicts a selection of scattering data from a reference 

membrane as a function of equilibration time in salt-free water with 70% D2O. These 

experiments were performed at the VSANS instrument KWS 3 in order to determine the size of 

the larger scattering centers as well. A small increase of scattering is observed during the first 

hours of exposure before becoming stable after about 3 hours. Constant scattering indicates 

reaching equilibration, i.e. completion of filling the pores of the polysulfone and non-woven 

support of the membrane with water. 

Scattering of the membrane shows strong change when exposed to water of varying D2O 

content. The reason is the large difference of coherent scattering length density ρW of H2O and 

D2O as shown in Figure1. The membrane was tested in water of varying H2O/D2O content as 

depicted in Figure 8a, showing the scattering patterns in H2O as well as in mixtures of different  

 

 a)   b) 
Figure 8. a) Selection of SANS patterns of a thin film composite RO-membrane in salt-free water of various D2O 
fractions (given in [%] as noted by the colored symbols). b) Second moment Q2 of small and large scattering centers 
of the membranes versus D2O content. 

 

D2O content in the range 0 to 100%.  The solid lines represent a fit of the data with Eq. (1). The 

second moments Q2 of the large and small scattering centers were determined from the fitted 
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scattering curves and plotted versus D2O content in Figure 8b (the corresponding numerical 

values are compiled in Table A2 in Appendix A). Q2 is a robust parameter as it represents an 

integral number of the scattering curve and it only depends on volume fraction and scattering 

contrast of the scattering domains according to Eq. (3), with [ ]P W = ρ Δ -ρρ  (coherent scattering 

length densities are plotted in Figure 1 and compiled in Table A1). We could not use the 

scattering data of the 100% D2O solution for analysis as scattering became too strong, implying 

that the scattering contrast is too large and dominating by multiple scattering. The Q2 values in  

     ( )2

2

D O min const.Q2= A× φ -φ +Q2    (8)  

Figure 8b were fitted with the expression of Eq. (8) (see also Eq. (3)). The corresponding 

parameters for the large and small domains of the membrane are compiled in Table 1. The 

parameters 
minϕ  and A are determined as ( ) ( )2 2 2min Mem H O D O H O= ρ -ρ / ρ -ρϕ  and 

( )
2 2

2 2
D O H O P PA=2π (ρ -ρ ) ×Φ 1-Φ , respectively in case of a two-phase system with the volume 

fractions ΦP and ΦC = (1-ΦP) of the membrane polymers and cavities, respectively. We may 

interpret the parameter Q2const as the secondary moment from closed cavities and/or precipitates 

and which is within error bar the same. 

 

Table 1. Parameters from the fit of the second moment Q2 in Figure 8b.  

Conditions Domains minϕ  A [10-3 cm-1 Å-3] Q2const [10-4 cm-1 Å-3] Memρ  [1010 cm-2] 

Background 

scattering 

in salt-free 

water 

Small 0.36±0.01 9.56±0.46 3.9±0.4 1.93±0.06 

Large 0.23±0.03 10.7±2 3.1±1.2 1.03±0.21 

 

The scattering centers of 0.21 µm average Rg (Table A2) show a minimum at 36% D2O 

content (i.e. ( ) 10 2
Memρ 1.93 0.06 10 cm−= ± × ) which is in correspondence with the scattering length 

density of polyester and polysulfone (Table A1). On basis of the above discussion we identified 

the smaller “domains” as cavities located in the non-woven polyester support layer. The larger 
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scattering centers of 0.77 µm average Rg (Table A2) show their matching condition at the smaller 

D2O content of 23%. The different values for matching of the larger and smaller scattering 

centers are strong indication that they belong to different layers of the membrane, i.e. the larger 

ones should be part of the polyamide - polysulfone composite layers. The scattering length 

density of ρ = 1.03×1010 cm-2 (Table 1) of the larger scattering centers may be represented by 

polyamide domains (ρ = 3.14×1010 cm-2) protruding into the polysulfone (ρ = 2.08×1010 cm-2) 

layer (thereby forming precipitates) whose scattering is determined by the square of Δρ = 

1.06×1010 cm-2 as determined from the difference of ρ from both components. 

After identification of the scattering cross-sections and determining the SANS parameters as 

compiled in Tables 1 and A2 we evaluated the structural parameters of the membrane as 

summarized in Table 2. For this analysis we have chosen the SANS data obtained for the 

membrane measured in air with no water involved. The second and 3rd columns from the left 

show the coherent scattering length density as determined in Table 2 as well as the radius of 

gyration Rg directly determined from the fit of Eq. (1) and (2). The domain volume VP was 

determined from the ratio of dΣ/dΩ(0)  and Q2 of Eqs. (2), (3), which eliminates volume fraction 

as well as scattering contrast. For spherical shape domains the determined radius R is consistent 
 

Table 2. Parameters derived from the SANS parameters in Table A2 for the measurement in air 
for a non-woven polyester fabric 

Sample 
ρ 

[1010 cm-2] 
Rg [µm] VP [10-14 cm3] ΦP×(1-ΦP) 

NP  

[1012 cm-3] 

NP ×SP 

 [104 cm-1] 

Polyester 

non-woven 

fabric 

2.02 0.26±0.02 
4.6±0.9 

 (R=0.22±0.02 µm) 
0.28×0.72 6.2±1.2 

4.97±0.27 

(R=0.25 µm) 

Polyamide/ 

polysulfone 
1.03 0.83±0.01 

323±17 

(R=0.92±0.02 µm) 
0.4×0.6 (7.4±0.4)×10-2 

0.78±0.18 

(R=0.92 µm) 

 

with Rg. The 5th row presents the domain volume fraction as derived from Q2 in Eqs. (3) and (8) 

and 2 2Δρ =ρ in the first column. As the non-woven fabric is about 100 µm thick out of total 
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membrane thickness of 140 µm we had to multiply the product ( )P PΦ 1-Φ with 1.4 in order to 

adjust the sample thickness of dΣ/dΩ(0)  to the non-woven part only. Identifying ΦP = 0.28 as 

volume fraction of polyester we determined a domain number density P P PN =Φ / V  according to 

the values in column six. The total surface per unit volume cm3 is shown in the last column. The 

Porod constant P4 in Eq. (2) divided by the scattering contrast is delivering this number. 

Considering NP and assuming again spherical shape domains one gets again consistent values 

with respect to the radius R.  

The polyamide/ polysulfone scattering domains are consistently determined with respect to 

their size and number density. However, the volume fraction of these domains is of the order of 

50% even though distributed over total membrane volume. This is from our comprehension a 

strange result as these domains should only form in the neighborhood of the much smaller 

polyamide/ polysulfone interface. SANS studies of polyamide - polysulfone composite layers and 

in particular its polyamide skin part were previously reported by Singh et al. [35]. The authors 

measured in a Q range between 0.018-0.35 Å-1 being sensitive to domain sizes from about 20 to 

300 Å. They found that the polyamide skin layer was built up of about 240 Å large compact 

blocks. A comparison of the RO polysulfone – polyamide composite and of the neat polysulfone 

gave weak scattering from the polyamide skin layer showing strong correlation between domains 

of about 140 Å size and volume fraction of 0.7 in consistence with the block units found in 

aqueous solution. The scattering was dominated by the polysulfone layer because of its much 

larger thickness.  

Such strong scattering cannot be caused by clean (i.e. homogeneous phase) and compact 

micro-porous material. Appreciable volume fraction of chemical heterogeneities (that may be 

also referred to as precipitates) must exist within and at the interface of the micro-porous 

membrane layer in order to explain the scattering of neutrons observed by the authors of ref 

[35,36] as well as the determined scattering length density of the larger domains in the present 

study (Figure 8). Such heterogeneities were indeed observed from SEM and TEM by Freger [37]. 

 

4.2. SANS membrane characterization in the RO-Cell  
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In this section real-time SANS experiments on a TFC RO membrane mounted in the RO 

pressure cell are presented. The feed is a simulated secondary effluent (SSE) as outlined in our 

previous studies [8,9,10]. The scattering length density ρ of the SSE solution was adjusted by 

using 40% of D2O mixture of water in order to minimize scattering from cavities in particular 

from the smaller ones of the membrane (Figure 8b). In parallel to the SANS experiments the 

permeate flux through the membrane was determined. 

  

4.2.1. Neutron total Scattering Cross-section and Permeate Flux 

Figure 9 shows the linear coefficient (µt = - ln(T)) derived from the SANS transmission 

coefficient T (Eq. (5)), the accumulated volume of the permeate and the permeate flux of a TFC  

 

 
Figure 9. Total scattering cross-section Σt derived from neutron transmission 
(top) and permeate accumulated volume  and permeate flux  (bottom) as a 
function of time. Water composition was 40% D2O and 60% H2O and transmembrane 
pressure ΔP = 6 bar. 
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RO-membrane at 6 bar over a period of 45 hours. During the first 30 hours the SSE solution was 

used as feed which was then replaced by a fresh SSE solution that contained 5 mg/L of BSA. 

Before starting the experiment the membrane was equilibrated in the cell with SSE for 12 hours 

at ambient pressure. During the first 6 hours of the experiment the permeate flux shows a 

continuous decline of nearly 33%, that is from 0.52 to 0.35 L/m2h and between 7 and 16 h a 

hump with a maximum of 0.46 L/m2h before it stabilizes at about 0.33 L/m2h. The 33% decline 

of permeability during the first 6 hours may be caused by accumulation of some colloids from the 

SSE at the membrane surface or from compaction of the membrane (which is less likely due to 

the rather low applied pressure). The linear coefficient (µt) declines during the first 2 hours 

before showing two distinct time intervals of fairly constant values, namely of 2.12±0.01 and 

2.166±0.006 below 7.5 h and above 16.5 h, i.e. above 16.5 h an enhancement of Δµ = 

(4.6±0.03)×10-2 is found which corresponds to a stronger scattering of ΔΣ = 3.29±0.02 cm-1 

considering the membrane as the origin of enhanced scattering (DS = 140 µm). The 

correspondence of the peaks of µt and permeate flux between 11-13 hours should be noted. 

We also measured µt in absence of trans-membrane pressure (cross-flow valve was fully 

open) before applying 6 bar and after 30 hours as indicated by the horizontal dashed dotted lines 

in Figure 9 (top). Both values of µt show an enhancement of Δµ = 0.08 or ΔΣ = 5.71 cm-1 larger 

than Δµ above 16.5 h at 6 bar. The increment of ΔΣ indicates changes of the membrane itself 

caused by irreversible scaling and/or internal fouling during the 30 hours exposure of the SSE 

feed. The corresponding differential scattering cross-section dΣ/dΩ(Q) is shown below in Figure 

10b.  

A further observation is the nearly reversible enhancement and decline of µt by about 14 and 

12%, respectively, when applying and relaxing 6 bar as indicated by the two green arrows in 

Figure 9. We interpret the pressure induced enhancement of scattering by compression of the 

polyester non-woven layer whose structural parameters are collected in Table 2. The product of 

the volume fractions of polymer and cavity ( )P PΦ 1-Φ  determined as 0.28×0.72=0.2 is 

proportional to scattering intensity (Eqs. (2) and (3)). The increase of µt could be explained by a 

14% enhanced value of the product of the volume fractions according to 0.35×0.65=0.228. It is 

reasonable that this value corresponds to a decrease of cavity volume alone as the volume of 
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polyester should not be affected by pressure. The reduction of volume leads to a reduction of the 

polyester layer thickness from 100 µm to ∼ 80 µm. Other effects such as the small increase of 

SSE volume (ca 1.4%) and compressibility of the feed (0.1%) are negligible. 

The blue symbols in Figure 9 show the resulting effects of the BSA containing SSE solution. 

Surprisingly, the addition of BSA continuously enhances the permeate flux for about 10 hours to 

a maximum value of 0.60 L/m2 h, i.e. doubling the permeate flux before it is starting to decline 

again as well as the corresponding µt to an overall enhancement from 2.166±0.005 to 2.3±0.001. 

Both, the permeate flux and the corresponding µt could be specified by the Boltzmann equation 

(Appendix B, Eq. (B1)) as shown from the two fits in Figure 9, depicted as solid grey lines, 

delivering a time constant of τ = 1.6±0.3 h and τ = 2.1±0.4, respectively. Above 10 hours after the 

addition of BSA the permeate flux declines whereas the scattering further increases to a µt = 

2.35±0.003. Within experimental error the time constants for permeate flux and neutron 

scattering intensity expressed by Δµ are the same and are an indication of correlated behavior. It 

should be noted that scattering of the scaling layer is dominated by the calcium minerals as BSA 

has a very low scattering contrast because of the 40% volume fraction of D2O of the SSE feed 

(Figure 1). 

 A similar effect of membrane cleaning was observed by R. Higgin et al. [38] for the behavior 

of silica fouling in the presence of alginate. In their case, a 20% flux reduction was almost totally 

recovered by the addition of alginate.  

 

4.2.2. SANS Scattering Data 

Figures 10 and 11 show Q dependent scattering data accumulated in the course of 

desalination of the SSE feed in the SANS RO-cell, and correspond to the linear coefficient µt or 

neutron cross-section Σt and permeate flux data of Figure 9 at distinctive times. Whereas the total 

scattering cross-section ΣSANS (Eq. (6)) as part of Σt represents the integral of the total scattered 

neutrons the differential scattering cross-section dΣ/dΩ(Q)  such as those depicted in Figure 10 is 

determined as a function of Q over the finite Q interval of 2×10-4 and 2.5×10-3 in units of Å-1. 

This range of Q is sensitive for scattering from domains of dimensions between 0.1 and 1µm 

which appeared within the relevant length scale of the membrane micro-structures (section 4.2) 
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and domains forming membrane scaling [8,10]. The parameter ΣSANS provides important hints 

about scattering occurring somewhere in Q, whereas the differential cross-section, dΣ/dΩ(Q)  

allows determination of detailed quantitative parameters of the scattering domains. We have to 

mention again that scattering from cavities in polysulfone as well as in polyester non-woven 

fabric and BSA is fairly well matched in SSE with 40% D2O content. 

The data in Figure 10a show scattering curves measured before applying pressure across the 

membrane (Red dots; SSE feed no BSA added) and after 30 hours, when finishing the 

desalination process (blue triangles). The corresponding linear coefficients are depicted as 

horizontal dashed-dotted lines in Figure 9. Both curves represent scattering from the membrane  

 

 a)  b) 

Figure 10. SANS results in the absence of applied pressure. a) Scattering before and after 
30 h of exposure of SSE at 6 bar. The transmission coefficients of both curves are depicted 
as red arrows in the left part of Figure 9. b) Difference from both scattering patterns 
showing enhanced scattering from membrane after 30 hours of SSE exposure.  

 

only and a possible scaling layer formed during 30 hours of desalination. The scattering of the 

membrane at both conditions is similar in shape with respect to the scattering from the membrane 

measured in 40% D2O salt free water (Figure 8a). Subtraction of both curves shows that the 

desalination treatment indeed led to an enhanced scattering by about 5% at Q = 2×10-4 Å-1, i.e. it 

induced a positive ΔdΣ/dΩ  as depicted in Figure 10b. The parameters of this analysis are 

compiled in Table 3. The first moment (Eq. (7)) of ΔdΣ/dΩ  was evaluated as 0.145 cm-1Å-2 from 

which the cross-section ΔΣSANS = 3.78 cm-1 and Δµ = 0.053 (DS = 140 µm) was derived. The 

corresponding linear coefficients derived from transmission (dashed dotted lines in Figure 9) 
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deliver a slightly larger ΔΣSANS = 5.64 cm-1 (Δµ = 0.08) indicating additional scattering from 

smaller particles outside the range of Q in Figure 10. The radius of gyration of the formed  

 

Table 3: Parameters of RO-membrane obtained from SANS data in Figure 10. 

Time [h] 
dΣ/dΩ(0) 

[107 cm-1] 
Rg [µm] Pα [10-5 cm-1 Å-

α]; (α) ΣSANS [cm-1] +) Δµ 

0 5.67±0.12 0.71±0.07 9±0.8 (3.2±0.02) -------- -------- 

30 h 6.16±0.10 0.73±0.06 10.2±0.8 (3.2±0.01) --------- -------- 

ΔdΣ/dΩ  after 

30 h 
0.69±0.18 1.08±0.1 (2.54±0.17)×10-4 (2.6) 3.78 0.053 

 

scattering domains is of the order of 1 µm and these domains show scattering following a power 

law of α = 2.6 at large Q. The exponent α of such power laws is characteristic for the shape of 

domains as it determines their fractal dimension such as the exponent α = 2.6 characterizing an 

open mass fractal structure [23].  

The increment of dΣ/dΩ(Q)Δ when no pressure is applied to the membrane has its origin from 

scaling and/or internal fouling of the membrane alone as no concentration polarization and 

reversible compression of the membrane takes place. The situation is different for the other two 

dΣ/dΩ(Q)Δ in Figure 11a and b measured during the process of desalination at 6 bar and 

subtracted with the same dΣ/dΩ(Q) measured at ambient pressure. Figures 11a and b show 

dΣ/dΩ(Q)Δ  after 2 and 13 hours of treatment the SSE feed and at 1 and 9 hours after adding 5 

mg/L BSA to the SSE, respectively. The increase of scattering at 2 hour is mainly caused from 

membrane compaction as discussed in the former section whereas the further increase of 

dΣ/dΩ(Q)Δ  at 13 hours results from membrane scaling. This result supports the interpretation of 

the data in Figure 9 showing a maximum in permeate flux and total cross-section.  
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a) b) 

Figure 11. SANS results obtained during RO experiment from membrane exposed to SSE 
feed at 6 bar. a) Membrane after treatment for 2 and 13 hours. The increase of scattering in 
corresponds to the minimum of transmission on the left side of Figure 9. b) dΣ/dΩ(Q)Δ at 2 
and 9 hours after addition of 5 mg/L BSA to the SSE feed. 

 

On the other hand 9 hours after adding BSA to the SSE solution an overall decline of 

scattering by roughly a factor of 2 is observed in the measured Q range (Figure 11b), 

corresponding to the maximum of permeate flux in Figure 9b. The decline of dΣ/dΩ(Q)Δ  gives 

the information that µm large scattering centers diminished and disappeared from the volume of 

the feed exposed to neutron irradiation. This observation appears consistent with the observed 

increasing permeate flux in Figure 9. On the other hand the linear coefficient in Figure 9 (right 

side) shows an increment of Δµ = 0.13. This means that enhanced scattering must occur at some 

Q larger than 2×10-3 Å-1 outside the Q range of our experiment, i.e. these particles must be 

smaller in size. It is known from former work [8], that in a first stage BSA induces mineralization 

of organic-inorganic composites of about Rg = 0.5 µm. Nevertheless, these phenomena 

demonstrate again the strong relationship between the membrane permeability and fouling 

behavior and its response to transmission/scattering of neutrons. 

In searching for an explanation of the data from the last two sections it has to be admitted 

that the origin of the permeate flux hump at 7-16 h in Figure 9 (left side) is not yet clear. It may 

be caused by partially detaching of rather large scale mineral particles from the membrane 

surface due to drag forces exerted by the flowing solution. It is more likely to have this happen at 

the low pressure level used in this study as the adherence of any fouling layer (scale, biofilm etc.) 
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to the membrane surface cannot be that strong as well as the layer itself may be less compact 

compared to those obtained at the standard operative pressures of these membranes. This action 

may partially clean the membrane, resulting in a temporal increase of permeate flux. This 

explanation is supported by the associated maximum of µt at 12 h due to enhanced scattering by 

these large scale domains in Figure 11a. This rationalization is also supported by the behavior in 

the presence of BSA as described on the right side of Figure 9. The enhancement of flux after the 

addition of BSA is also associated with a significant enhancement of µt (from 30 to 40 h). 

Likewise, the enhanced flux may be caused by rather large scale domains detached from the 

membrane surface. However, the diffraction data in Figure 11b show a decline by a factor of 2 

from scattering of µm large particles. This observation is consistent with the picture of correlated 

enhanced flux and detachment of large particles from the membrane surface; however, it is in 

contrast to enhanced µt indicating that scattering domains of smaller size must exist at larger Q 

outside the experimental range.  

 

5. Summary and Outlook 

The goal of the present study was to demonstrate the use of SANS in following in-situ 

scaling and fouling of TFC membranes during RO wastewater desalination close to realistic 

conditions. A special RO-cell was designed to enable collecting SANS spectra and permeate flux 

data simultaneously at pressures up to 6 bar. The results show a complex situation because the 

neutrons have to pass through several sections of the cell such as feed, the three layers of the TFC 

membrane, the spacer, as well as a possible layer formed by fouling and scaling at the membrane 

surface. The signal from the membrane may deliver valuable information on the internal 

membrane structure and fouling if the scattering contrast of the membrane is properly adjusted by 

the D2O content of the feed (Figure 8), or by separating scattering from the individual layers of 

the membrane [35].  

The outcome of this study can be summarized in three sections:  

(i) In a first step scattering from a TFC membrane exposed to air and salt-free water was 

analyzed by contrast variation SANS technique (Figures 6-8). Scattering from two types 

of domains were identified, namely cavities (Rg= 0.2 µm) of the nonwoven polyester 
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support layer (Figure 8b and Table A1) and polyamide precipitates (Rg= 0.9 µm) in the 

polysulfone layer. However, the volume fraction of the polyamide precipitates came out 

far too large occurring only in the limited part of the polysulfone layer. At large Q (Figure 

6) weak scattering from rod-like cavities of ∼300 Å diameters were identified being a 

relevant part of the micro-porous polysulfone layer [34]. 

(ii) Permeate flux, SANS scattering cross-section (ΣSANS) derived from neutron transmission, 

as well as diffraction data (dΣ/dΩ(Q)) are the outcome of our real-time desalination 

experiments (Figures 9 to 11). The linear coefficient µSANS = ΣSANS × DS shows an overall 

enhancement accompanied by a reduced membrane permeability (Figure 9). The 

appreciable enhancement of membrane permeability after the addition of BSA to the feed 

might be emphasized. The corresponding diffraction data in Figure 11b show a decline of 

scattering by a factor of 2 as interpreted from detachment of large particles from the 

membrane surface. On the other hand the enhancement of µt is a strong indication of 

enhanced scattering from smaller particles at larger Q outside of our Q window. 

(iii) Upon completion of the desalination process after 30 h, SANS was measured in the 

absence of applied pressure and compared with data just taken before starting 

desalination. In this way we eliminated effects from concentration polarization and 

membrane compressibility and were only sensitive to changes of the membrane alone. 

The enhancement of scattering, ΔdΣ/dΩ(Q) , is depicted in Figure 10b and shows 

particles of the order of 1 µm radius of gyration with an open mass fractal structure 

according to the power law exponent of α = 2.6.  

In summary, the presented study with the in-situ RO-SANS setup is a first demonstration of using 

SANS for exploring membrane performance and fouling at RO conditions. It became clear from 

the present experiments that additional measurements have to be performed at larger Q in order to 

become sensitive to even smaller particles. Furthermore, improvements are necessary such as the 

ability to distinguish between the scattering signals from feed, fouling layer and membrane. One 

step in this direction will be to measure the feed separately in a second cell implemented in the 

cross flow circle.  
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7. Appendices 

 

A. Relevant SANS Parameters 

In this section we present relevant parameters for SANS such as the coherent scattering 

length density of water, molecules of the TFC membranes, and minerals. 

 

Table A1  
SANS relevant parameters of membrane polymers and minerals which could be formed at the 
surface of the membrane during desalination 

Molecule Chemical formula 
Mass 

density 
[g/cm3] 

Molar weight 
[g/mol] ρ [1010 cm-2 ] Φmatch 

Water H2O/D2O 1/1.107 18.02/20.03 
2

ρ = 0.560 6.933− + ×ΦWater D O  --- 

Polysulfone C27H22O4S 1.24 442.54 2.08 0.38 

Aromatic 
Polyamide N2C14H12O2 1.44 238 3.14 0.53 

Polypropylene C3H6 0.91 42.08 - 0.325 0.034 

Polyester C17H18O4 1.103 268 1.75 [39] (2.02 [40]) 0.33 
(0.37) 

Calcium 
phosphate 

(HAP) 
Ca5(PO4)3(OH) 3.16 502.31 

2D O
4.19+0.391 Φ×  0.73 

Calcite CaCO3 2.72 100.09 4.76 0.77 
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Table A2 
SANS parameters of reference XLE-440 TFC RO-membrane as measured in the present study. 

Sample 
dΣ/dΩ(0) 

[106 cm-1] 
Rg [µm] 

P4 

[10-6 cm-1 Å-4] 

Q2 

[10-3 cm-1 Å-3] 
R* [µm] R** [µm] 

Small Scattering Centers 

H2O 2.63±0.25 0.22±0.01 1.58±0.05 1.66 0.195 0.11 

Air 2.64±0.48 0.26±0.02 0.91±0.05 1.14 0.222 0.13 

10% D2O 1.62±0.18 0.23±0.01 0.92±0.03 0.98 0.198 0.112 

20% D2O 0.99±0.12 0.23±0.01 0.59±0.02 0.62 0.196 0.11 

30% D2O 0.35±0.05 0.19±0.01 0.42±0.03 0.39 0.162 0.097 

40% D2O 0.55±0.02 0.19±0.04 0.52±0.03 0.50 0.173 0.10 

50% D2O 0.53±0.06 0.19±0.01 0.48±0.01 0.46 0.176 0.10 

70% D2O 3.24±0.24 0.26±0.01 1.28±0.03 1.51 0.216 0.124 

100% D2O Strong multiple scattering 

Large Scattering Centers 

H2O 105±2 0.82±0.01 0.197±0.01 0.755 0.87 0.40 

Air 83.0±1.6 0.83±0.01 0.052±0.012 0.507 0.938 1.02 

10% D2O 89.1±2.2 0.87±0.01 0.078±0.006 0.53 0.925 0.712 

20% D2O 69.3±2.5 0.91±0.01 0.078±0.003 0.447 0.90 0.60 

30% D2O 53.2±1.4 0.84±0.01 0.107±0.002 0.503 0.793 0.492 

40% D2O 64.9±1 0.91±0.01 0.24±0.04 0.90 0.698 0.393 

50% D2O 42.0±0.66 0.73±0.01 0.150±0.004 0.60 0.691 0.419 

70% D2O 74.5±0.67 0.56±0.01 1.04±0.033 2.83 0.499 0.285 

100% D2O Strong multiple scattering 

*) Radius R determined from the ratio of dΣ/dΩ(0) and Q2, delivering according to Eq.(2) and (3) the domain volume. R was 
evaluated on basis spherical shape domains.   
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B. Analysis of Linear Coefficient from Neutron Transmission and Permeate Flux of RO-

Membrane exposed to BSA-SSE 

Permeate flux and linear coefficient (determined from neutron transmission) are depicted in 

Figure 9 after 30 hours exposition of SSE at 6 bar. The enhancement of both parameters could be 

fitted with the Boltzmann equation  

( )
1 2

2
0

P -PP(t)= +P
1+exp t-t /τ⎡ ⎤⎣ ⎦     (B1) 

whose parameters and results are compiled in Table B1 and depicted as solid gray lines in Figure 

9, respectively. The time constant τ of neutron and permeate flux measurements are within error 

bars the same indicating that permeate flux and SANS are measuring the same process. 

 

Table B1 

Parameters of Eq. (B1) describing membrane permeate flux and neutron linear coefficient 

 τ [h] P1 P2 t0 [h] 

Permeate Flux [L/m2h] 1.63±0.21 0.283±0.023 0.602±0.006 33.6±0.3 

Neutron Linear 

Coefficient 
2.14±0.41 1.77±0.43 2.3±0.004 29.7±2.7 
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