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Abstract
We derive a family of stochastic master equations describing homodyne
measurement of multi-qubit diagonal observables in circuit quantum
electrodynamics. In the regime where qubit decay can be neglected, our approach
replaces the polaron-like transformation of previous work, which required a lengthy
calculation for the physically interesting case of three qubits and two resonator
modes. The technique introduced here makes this calculation straightforward and
manifestly correct. Using this technique, we are able to show that registers larger than
one qubit evolve under a non-Markovian master equation. We perform numerical
simulations of the three-qubit, two-mode case from previous work, obtaining an
average post-measurement state fidelity of ∼94%, limited by measurement-induced
decoherence and dephasing.

Keywords: circuit quantum electrodynamics; stochastic master equation; quantum
non-demolition measurement

1 Introduction
Circuit QED provides a promising avenue for the realization of quantum algorithms, with
recent experiments showing increases in both coherence time and precision of control
[–]. Quantum algorithms are thought to require error correction as a prerequisite [],
and quantum error correction requires non-demolition measurement of joint operators,
most often Pauli operators of low weight [–]. This can be accomplished using an ancilla
register which is prepared in a specific state, interacts with the encoded state, and is then
measured (possibly destructively) [–]. In circuit QED, ancilla measurement has been
accomplished by coupling the qubit to photons passing through a resonator, and observing
the accrued phase using homodyne detection [].

Recent work has begun to consider direct joint measurements in circuit QED, in which
all qubits in the support of the measured operator are coupled to one or more internal
resonator modes, using homodyne detection to observe an output mode, requiring no
ancilla qubit. Difficulty in calculating the reduced qubit dynamics has restricted previous
analysis of direct measurement schemes to systems containing two [–] or three [,
] qubits. In this paper, we simplify this calculation, deriving reduced qubit dynamics for
an arbitrary number of qubits and resonator modes. We then use the resulting stochastic
master equation to extend the analysis of the three-qubit, two-mode scheme presented in
[, ].
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The rest of this paper is organized as follows. We write the multi-qubit, multi-mode
Lindbladian in Section , and incorporate it into a stochastic master equation correspond-
ing to homodyne measurement of the output mode. In Sections  and  we determine
the reduced equations of motion for the resonator and register states, respectively. Using
these equations, we proceed to simulate multi-qubit measurement dynamics in Section .
We discuss what can be done to increase post-measurement state fidelity and conclude in
Section .

2 Parameters
We begin with a set of qubits Q, called the register, and a set of internal resonator modes C.
For convenience, we denote as B the set of / assignments to the register (comprising
n = |Q| bits). We consider a scenario in which the coupling between the internal modes
and the input/output mode is described by the relation

aout =
∑

k∈C

√
κkak . ()

(Recall that the discrepancy in units is explained by comparing the waveguide commuta-
tion relation, [aout(ω), a†

out(ω′)] = δ(ω – ω′), and the cavity commutation relation [ak , a†
k′ ] =

δk,k′ .) A single measurement tone is used, and we describe the dynamics in a frame rotating
at the carrier frequency of this tone.

We consider a model Hamiltonian for the coupled-qubit system that describes the es-
sential aspects of the dispersive-coupling regime, that is, when the qubit frequencies are
far detuned from the cavity frequencies:

HDisp =
∑

k∈C

�ka†
kak +

∑

l∈Q

(
�l


+

∑

k∈C

χk,l

)
σz,l +

∑

l∈Q,k∈C

χk,lσz,la†
kak

+ ε(t)
∑

k∈C

√
κk

(
ak + a†

k
)
. ()

Here, � = , �k � ωk – ω is the difference between the kth resonator mode frequency
and the measurement tone frequency ω, ak (a†

k) is the lowering (raising) operator on the
kth resonator mode, χk,l is the coupling frequency between the kth resonator mode and
the lth qubit, �l +

∑
k∈C χk,l is the Lamb-shifted qubit frequency (with �l being the bare

frequency), and ε(t) is the time-dependent measurement tone amplitude.
We note that if we use a Schrieffer-Wolff analysis to derive the dispersive-coupling

Hamiltonian from an underlying multi-qubit Jaynes-Cummings model [], additional
terms appear, which describe qubit-qubit and resonator-resonator couplings [, ]. In
Appendix A we give a full derivation of this expression. We give arguments for why these
terms can be neglected (within a rotating-wave approximation) or incorporated into par-
ity measurement schemes with straightforward modifications of the analysis described
below. It is also interesting to note that, with a more general starting point provided by
circuit Hamiltonians [], couplings more general than the Jaynes-Cummings form ap-
pear, and some qubit-qubit and mode-mode coupling terms can be arranged to cancel,
as explored in []. We proceed with the model Hamiltonian Eq. (), as it permits a full
and clear exploration of all the issues connected with parity measurement, without the
inessential complicating features introduced by the additional coupling terms.
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We assume that decoherence can be described using a Lindblad master equation, con-
sisting of terms of the form D[L](ρ) = LρL† – 

 {L†L,ρ}. The noise sources we include in
the model, as in previous work [–, ] are resonator photon loss, intrinsic dephas-
ing/amplitude damping of the qubit states, and the Purcell effect []:

ρ̇ = L(ρ)

= –i[HDisp,ρ] + D
[∑

k∈C

√
κkak

]
(ρ) +




∑

l∈Q

γz,lD[σz,l](ρ)

+
∑

l∈Q

γ–,lD[σ–,l](ρ) + D
[ ∑

k∈C,l∈Q

√
κkλk,lσ–,l

]
(ρ), ()

where κk is the photon loss rate in the kth resonator mode, γz,l is the intrinsic dephasing
rate for the lth qubit, γ–,l is the intrinsic amplitude damping rate for the lth qubit, and λk,l

is an effective Purcell factor for the kth mode interacting with the lth qubit.
Since, as emphasized by the derivation of Appendix A, the factors λk,l can have either

sign, it is perfectly possible to arrange these factors so that the k sum in the final term
of Eq. () is zero for every l. In other words, an effective Purcell filter [] can be cre-
ated by taking advantage of flexibility provided by the multi-mode structure. Given the
ongoing advances in qubit coherence, we believe it is also reasonable to ignore intrinsic
qubit damping, i.e., we can set γ–,l = . Thus, from this point onward, we will ignore qubit
damping effects (but we will retain qubit dephasing terms).

To model the evolution of the state ρ and measurement record j under homodyne mea-
surement, we use the stochastic master equation []:

dρ = L(ρ) dt +
√

ηM
[
e–iφaout

]
(ρ) dW , ()

j(t) dt =
√

η
〈
e–iφaout + eiφa†

out
〉
dt + dW , ()

where M[c](ρ) = cρ + ρc† – tr
(
cρ + ρc†

)
ρ. ()

Here, η ∈ [, ] is the quantum efficiency of the homodyne measurement, φ is the ho-
modyne phase (which we set to , corresponding to measurement of the real part of the
operator aout) and dW is a Wiener increment (a normal variate with mean  and variance
dt) [].

As proved in Appendix B, a family of solutions to Eq. () or Eq. () can be expressed
using pointer states [, ]:

ρ =
∑

i,j∈B

ρi,j(t)|i〉〈j| ⊗
⊗

k∈C

∣∣αk,i(t)
〉〈
αk,j(t)

∣∣. ()

Here, |αk,j(t)〉 is a coherent state (an eigenstate of the lowering operator ak with eigen-
value αk,j(t)) corresponding to the bitstring j. This simplifies the numerical solution of the
(deterministic or stochastic) master equation in the event that the initial state is coherent
(the vacuum is such a state, with αk,j =  ∀k, j), by requiring only a fixed number of coher-
ent state trajectories to be calculated, rather than the full, infinite-dimensional resonator
state.
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In the following sections, we simplify the equations of motion further, by deriving the
equations of motion for the coherent state amplitudes {αk,j}, and incorporating these into
the equation of motion for ρQ, the register reduced state.

3 Resonator equations of motion
Equations of motion for the resonator mode lowering operator ak can be derived using
input-output theory []:

ȧk(t) = i
[
HDisp, ak(t)

]
–

∑

k′

√
κkκk′


ak′ (t) ()

= –i�kak(t) – i
∑

l

χk,lσz,lak(t) – i
√

κkε(t) –
∑

k′

√
κkκk′


ak′ (t). ()

The corresponding equation for α̇k,j(t) can be found as in []:

α̇k,j(t) = –i�kαk,j(t) – i
∑

l

χk,l(–)jlαk,j(t) – i
√

κkε(t)

–
∑

k′

√
κkκk′


αk′ ,j(t), ()

where jl is the value of the lth bit of j. The amplitude of the output of the system is (see
Eq. ()):

αout =
∑

k∈C

√
κkαk,j(t). ()

In the following subsection, we place this system of linear, first-order ordinary differential
equations (ODEs) into a canonical form which can be used for further analysis.

3.1 State-space representation
Systems of first-order linear ODEs with time-invariant coefficients can be represented
using a vector 
x, called the state, a vector 
u(t), called the input, and a vector 
y(t), called
the output. They can be written in a standard form:


̇x(t) = A
x(t) + B
u(t),


y(t) = C
x(t) + D
u(t).
()

This is the popular state-space representation of linear time-invariant (LTI) systems [,
].

For the evolution described in Eq. (), and fixing the register state to a specific bitstring
j, these matrices can be written explicitly:

Ak,k′ = –i
(

�k +
∑

l∈Q

(–)jlχk,l

)
δk,k′ –

√
κkκk′


,

Bk,k′ = –i
√

κkδ,k′ ,

Ck,k′ =
√

κk′δk,,

Dk,k′ = .

()
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The response to a given input can be calculated in the Laplace domain using the transfer
matrix G(s):

Y (s) = G(s)U(s); G(s) = C(s1̂ – A)–B + D. ()

In the following subsection, we use these matrices to tailor the values of the resonator
parameters in order to perform a specific measurement.

3.2 Steady states
In general, the resonator system will exhibit a different response to a given input ε(t) for
every distinct state of the register |j〉, j ∈ B. This is not useful for measurements of joint
degrees of freedom, which should not distinguish between given subsets of B. Consider,
as a first example, measurements of the Hamming weight h(j) (the number of qubits in
the ground state). Given that the system in Eq. () only depends on j through the term
∑

l∈Q(–)jlχk,l in the A matrix, systems with identical Hamming weights have identical (A,
B, C, D) matrices if all χk,l are equal to a single constant χ :

∑

l∈Q

(–)jlχ =
(|Q| – h(j)

)
χ . ()

To perform a parity measurement, it is furthermore necessary for the responses to be
close for all even h and all odd h, with the even and odd responses being different, to
ensure distinguishability. To determine whether this is possible for the three-qubit case,
we analyze the difference between real transfer matrices corresponding to h =  and h = :

Gh=(s) – Gh=(s) =


d(s)

[
a(s) –b(s)
b(s) a(s)

]
, ()

where a(s), b(s), and d(s) are functions of {κk}, {�k} too lengthy to include here. Seeing
that this matrix is full-rank, we determine that there is no complex driving function ε(t)
which results in exactly equal outputs at all time.

To obtain an approximate three-qubit parity measurement for large measurement times,
it is sufficient to set the steady-state responses equal for h =  and h =  (equality of the
h =  and h =  responses follows by symmetry). In order to accomplish this, we note
that:


yss = G()
uss =
(
–CA–B + D

)
uss. ()

A can be expressed as the sum of a diagonal matrix and a rank-one matrix. This allows
us to invert it analytically, using the Sherman-Morrison formula []:

A = A′ + 
v
vᵀ,

where A′
k,k′ = –i

(
�k +

∑

l∈Q

(–)jlχk,l

)
δk,k′

and 
vk = i
√

κk


, ()
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∴ A– = A′– –
A′–
v
vᵀA′–

 + 
vᵀA′–
v , ()

A–
k,k′ = i

δk,k′

�̃k
–

√
κkκk′

�̃k�̃k′ ( – i
∑

k′′
κk′′

�̃k′′ )
, ()

where �̃k = �k + (|Q| – h(j))χ .
The output corresponding to the steady state of the resonator system is:

αoutss =
–i

∑
k

κk
�̃k

i + 

∑

k
κk
�̃k

εss. ()

To match steady states in the |Q| =  parity measurement from [], we impose the fol-
lowing condition on the detunings of the two resonator modes (�, �):

�

χ
=

√

κ

κ
,

�

χ
= –

√


κ

κ
. ()

In order to constrain κ , we maximize the difference in Re(αout) between the h =  and the
h =  cases. This is achieved when κ = κ = χ .

The exact matching in the steady state implies that low-amplitude measurement pulses
sustained over a long time will produce high-fidelity measurements. This is prohibited
in experiment, however, by the presence of time-dependent sources of decoherence. To
limit measurement time while still approaching the steady state, we use the pulse shown in
Figure , which produces the state-dependent response shown in Figure . In the following
section, we incorporate this response into deterministic and stochastic master equations
for the evolution of the register state.

Figure 1 Piecewise-quadratic input pulse, described by ton/toff (times at which the measurement is
turned on and off), σ (the rise/decay time of the pulse), and εss , the steady-state amplitude. For the
remainder of the article, we set (ton , toff ,σ ,εss) = ( 1.5χ , 8.5χ , 3χ , 0.4811√

χ ). An additional time 3.5
χ is appended, to

allow photons to exit the resonator.
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Figure 2 Resonator responses to pulse in Figure 1. Markers point in the direction of increasing time. The
same output is seen in the steady state for bitstrings of identical parity, but the distinguishable transients
reveal additional information about the Hamming weight.

4 Register equations of motion
The most economical equation for simulating the desired homodyne measurement is a
reduced master equation acting only on the qubit register. Obtaining and solving such an
equation has been the strategy of previous works [–, ]. Here, we provide a simplified
derivation of the reduced master equation. We begin by expressing the register state using
a partial trace acting on the state ansatz given in Eq. ():

ρQ � trC(ρ) =
∑

i,j∈B

ρi,j
∏

k∈C

〈αk,j|αk,i〉|i〉〈j|, ρQi,j = ρi,j
∏

k∈C

〈αk,j|αk,i〉. ()

In order to determine the dynamics of this reduced state, we use the integral representa-
tion of the partial trace over the harmonic oscillator []:

trC(ρ) =


π |C|

[∫


α∈C|C|

〈
α∣∣ρ
∣∣
α〉

d 
α
]

. ()

Being a dummy variable, the vector of amplitudes 
α in the integral above does not depend
on time or on the Wiener increment, resulting in a simple expression for the reduced
master equation:

dρQ =


π |C|

∫


α∈C|C|

〈
α∣∣L(ρ) dt + M[aout](ρ) dW
∣∣
α〉

d 
α. ()

We evaluate the deterministic and stochastic terms separately in the following subsec-
tions.

4.1 Deterministic
Before calculating the partial trace of the deterministic Lindbladian L, we note that, for
an operator R supported only on the resonator Hilbert spaces, the partial trace acting on
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a commutator or dissipator annihilates it:

trC
(
[R,ρ]

)
=

∑

i,j∈B

ρi,j|i〉〈j| × tr

([
R,

⊗

k∈C

|αk,i〉〈αk,j|
])

= , ()

trC
(
D[R](ρ)

)
=

∑

i,j∈B

ρi,j|i〉〈j| × tr

(
D[R]

(⊗

k∈C

|αk,i〉〈αk,j|
))

= . ()

Also, for any operator Q supported only on the register, the partial trace acting on a com-
mutator or dissipator is expressed in terms of inner products of coherent states, similar to
the partial trace of ρ in Eq. ():

trC
(
[Q,ρ]

)
=

∑

i,j∈B

ρi,j
[
Q, |i〉〈j|] × tr

(⊗

k∈C

|αk,i〉〈αk,j|
)

=
∑

i,j∈B

ρi,j
[
Q, |i〉〈j|] ×

∏

k∈C

〈αk,j|αk,i〉

=
∑

i,j∈B

ρQi,j
[
Q, |i〉〈j|] = [Q,ρQ], ()

trC
(
D[Q](ρ)

)
=

∑

i,j∈B

ρi,jD[Q]
(|i〉〈j|) × tr

(⊗

k∈C

|αk,i〉〈αk,j|
)

=
∑

i,j∈B

ρi,jD[Q]
(|i〉〈j|) ×

∏

k∈C

〈αj,k|αi,k〉

=
∑

i,j∈B

ρQi,jD[Q]
(∣∣i〉〈j∣∣) = D[Q](ρQ). ()

The only partial trace which does not benefit from these simplifications is trC([σz,la†
k′ak′ ,

ρ]). To write it succinctly, we introduce modified density matrices ρ(Ok′ ) and ρQ(ok′ ),
where Ok′ is an operator on the kth resonator space, and ok′ is a scalar:

ρ(Ok′ ) �
∑

i,j∈B

ρi,j|i〉〈j| ⊗
⊗

k∈C,k<k′
|αk,i〉〈αj,k| ⊗ Ok′ ⊗

⊗

k∈C,k>k′
|αi,k〉〈αj,k|, ()

ρQ(ok′ ) �
∑

i,j∈B

ρi,j|i〉〈j| ×
∏

k∈C,k<k′
〈αk,j|αk,i〉 × ok′ ×

∏

k∈C,k>k′
〈αk,j|αk,i〉, ()

noting that Ok′ and ok′ may also depend on the register basis state |j〉, or on other variables.
The commutator and its partial trace can now be easily expressed:

[
σz,la†

k′ak′ ,ρ
]

= ρ
(
(–)il a†

k′ak′ |αk′ ,i〉〈αk′ ,j| – |αk′ ,i〉〈αk′ ,j|(–)jl a†
k′ak′

)
, ()

trC
([

σz,la†
k′ak′ ,ρ

])

= ρQ

(

π

∫

αk′ ∈C
〈αk′ |((–)il a†

k′ak′ |αk′ ,i〉〈αk′ ,j|

– |αk′ ,i〉〈αk′ ,j|(–)jl a†
k′ak′

)|αk′ 〉dαk′
)

. ()
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Permuting terms, we write the integral in Eq. () as a matrix element of the state of the
k′th resonator mode:


π

∫

αk′ ∈C
〈αk′ |((–)il a†

k′ak′ |αi,k′ 〉〈αj,k′ | – |αi,k′ 〉〈αj,k′ |(–)jl a†
k′ak′

)|αk′ 〉dαk′

= 〈αj,k′ |
[


π

∫

αk′ ∈C

(
(–)il ᾱk′αi,k′ – (–)jl ᾱj,k′αk′

)|αk′ 〉〈αk′ |dαk′
]
|αi,k′ 〉. ()

We use the resolution of polynomials in the raising and lowering operators [], Sec-
tion ..:

∑

m,n
cm,nama†n =


π

∫

α∈C
cm,nα

mᾱn|α〉〈α|dα. ()

The integral in Eq. () reduces to:

〈αj,k′ |((–)il a†
k′αi,k′ – (–)jl ᾱj,k′ak′

)|αi,k′ 〉
=

(
(–)il – (–)jl

)
ᾱj,k′αi,k′ 〈αj,k′ |αi,k′ 〉. ()

We substitute back in:

trC
([

σz,la†
k′ak′ ,ρ

])

=
∑

i,j∈B

ρi,j|i〉〈j|
∏

k∈C

〈αj,k|αi,k〉
(
(–)il – (–)jl

)
ᾱj,k′αi,k′

= P̃k′ ◦ [σz,l,ρQ], ()

where [P̃k]i,j � ᾱj,kαi,k . ()

Here, (A ◦ B)i,j � Ai,jBi,j defines the elementwise (or Hadamard) matrix product.
We write the unconditional master equation by transforming the qubit-only Lindbla-

dian, and adding on a term which accounts for the qubit-resonator coupling (see Eqs. (),
()-(), and ()):

ρ̇Q = –i[HQ,ρQ] +



∑

l∈Q

γz,lD[σz,l](ρQ) – i
∑

k∈C,l∈Q

χk,lP̃k ◦ [σz,l,ρQ], ()

where HQ = 

∑

l∈Q(�l +
∑

k∈C χk,l)σz,l .
In order to simulate evolution under this master equation, it is convenient to eliminate

fast-rotating terms by expressing the master equation in a frame rotating with HQ. This
has the effect of eliminating HQ from the Lindbladian:

ρ̇Q �→ 


∑

l∈Q

γz,lD[σz,l](ρQ) – i
∑

k∈C,l∈Q

χk,lP̃k ◦ [σz,l,ρQ]. ()

.. Markovianity
It is interesting to note that the coupling Lindbladian in Eq. (), though it generates a
completely-positive trace-preserving map, is non-Markovian. This is not surprising, since
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the Markov approximation is the result of a weak-coupling assumption, and fast quantum
measurement requires strong coupling. This has been confirmed in the case of a single-
qubit measurement. The coupling Lindbladian, though it can be written in explicit Lind-
blad form, has a decay rate associated with the dephasing operator which is not necessarily
positive []. In this section, we prove non-Markovianity of the coupling Lindbladian in
the general case, and we examine the consequences of this property of the Lindbladian by
numerical simulation.

To show that the coupling Lindbladian is non-Markovian, we note that the action of
a Markovian Lindbladian on a density matrix in an N-dimensional Hilbert space can be
expressed as [, ]:

Lρ = –i[H ,ρ] + {G,ρ} +
N–∑

i,j=

ai,j

‖Fi‖‖Fj‖FiρF†
j , ()

where the coefficients ai,j
‖Fi‖‖Fj‖ form a Hermitian, positive-semidefinite matrix, and the

operators Fi form an orthogonal basis under the Hilbert-Schmidt inner product, with
F = 1̂√

N . In the remainder of this section, we will derive a minimal set of operators Fi for
our coupling Lindbladian, and show that the resulting coefficient matrix is non-positive,
precluding a true Lindblad representation.

In order to express the Hadamard product from Eq. () in the form given by Eq. (), we
use a dyadic product formula (see [] for further applications of Hadamard and dyadic
products to Lindbladians). The term of interest is given by:

LcρQ = –i
∑

k∈C

∑

l∈Q

χk,lP̃k ◦ [σz,l,ρQ]. ()

The matrix P̃k given in Eq. () is a dyadic product, so we can rewrite the elementwise
product as a conjugation by diagonal matrices:

P̃k ◦ [σz,l,ρQ] = α̂k[σz,l,ρQ]α̂†
k , ()

where α̂ki,j = αk,iδi,j, and we have used Eq. () from []. We can now express the action of
the Lindbladian in terms of a non-orthonormal set of operators:

LcρQ = –i
∑

k∈C,l∈Q

χk,l
(
α̂kσz,lρQα̂

†
k – α̂kρQσz,lα̂

†
k
)

= –i
∑

k∈C

α̂k σ̄z,kρQα̂
†
k – α̂kρQσ̄z,kα̂

†
k , ()

where σ̄z,k �
∑

l∈Q χk,lσz,l . We now show the non-positivity of the coupling Lindbladian in
the case of a single mode (dropping the index k). To put Eq. () in the form of Eq. (),
we decompose the operators α̂ and α̂σ̄z in terms of 1̂, F and F:

α̂ = F + tr(α̂)
1̂

N
, ()

α̂σ̄z = F + tr(α̂σ̄z)
1̂

N
+ tr

(
α̂σ̄zF†


)
F. ()
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Substituting into Eq. (), we can derive the elements of the coefficient matrix:

–iα̂σ̄zρα̂† + iα̂ρσ̄zα̂
†

= –i
(

F + tr(α̂σ̄z)
1̂

N
+ tr

(
α̂σ̄zF†


)
F

)
ρ

(
F†

 + tr(α̂)∗
1̂

N

)

+ i
(

F + tr(α̂)
1̂

N

)
ρ

(
F†

 + tr(α̂σ̄z)∗
1̂

N
+ tr

(
α̂σ̄zF†


)∗F†



)
. ()

Therefore,

a,

‖F‖ = –i
(
tr
(
α̂σ̄zF†


)

– tr
(
α̂σ̄zF†


)∗) =  Im

(
tr
(
α̂σ̄zF†


))

� x, ()

a,

‖F‖ = , ()

a,

‖F‖‖F‖ = –
a,

‖F‖‖F‖ = –i. ()

Diagonalizing, we see that the eigenvalues are x ± √
x + ; the matrix has one negative

eigenvalue, since x is real. This, in turn, implies that the coupling Lindbladian is always
non-Markovian for |C| = , as long as |Q| > .

Note, however, that if only one qubit is present, the operators F, F and F derived above
are always linearly dependent. Therefore, the above argument is inapplicable in the one-
qubit case. However, we observe that the coefficient of the dissipator term of the single-
qubit pseudo-Lindblad equation can be negative in some time intervals during transient
evolution, showing that the one-qubit evolution also has non-Markovian features [].
We expect that non-Markovianity will be the general case for multi-mode coupling Lind-
bladians, since the sum of multiple coefficient matrices with negative eigenvalues is not
necessarily positive.

To see the effect of this non-Markovianity on the performance of the measurement, we
introduce two parity eigenstates:

|ψ+〉 =


(|〉 + |〉 + |〉 + |〉),

|ψ–〉 =


(|〉 + |〉 + |〉 + |〉)

()

and simulate their evolution under the deterministic master equation (Eq. ()), subject
to a piecewise-quadratic input pulse, detailed in Figure . Markovian dynamics produce
a trace distance ( 

 tr(
√

(ρ+(t) – ρ–(t))†(ρ+(t) – ρ–(t)))) between the time-dependent states
corresponding to initial states |ψ±〉 which is monotonically decreasing []. Plotting this
quantity in Figure , we see that, as the pulse is turned off, there is a clear increase, indicat-
ing non-Markovian behaviour. Since the trace distance is a measure of state distinguisha-
bility, this increase implies that the ability of this measurement to produce high-accuracy
post-measurement states is higher than an otherwise-identical Markovian measurement
would allow.
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Figure 3 Increase of trace distance between ideal post-measurement states as a result of pulse
turn-off, in the three-qubit parity measurement described in [17, 18]. Pulse is shown in Figure 1. System
parameters are, in units of χ : �0 =

√
3, �1 = –

√
3, κ0 = κ1 = 2. No intrinsic sources of decoherence have

been included.

4.2 Stochastic
The stochastic master equation governing homodyne measurement differs from the de-
terministic master equation only in the term M[aoute–iφ](ρ) dW , given in Eq. (). Upon
tracing out the resonator, the stochastic term in the master equation becomes:

trC
(
M

[
aoute–iφ]

(ρ)
)

dW

= trC
(
aoute–iφρ + ρa†

outeiφ –
〈
aoute–iφ + a†

outeiφ 〉
ρ
)

dW . ()

Since the third term contains a full trace, we calculate it first:

〈
aoute–iφ + a†

outeiφ 〉

=
∑

k

√
κk trQ

(
trC

(
aoute–iφρ + ρa†

outeiφ))

= tr
((

cQ + c†
Q
)
ρQ

)
, ()

where cQ � e–iφ
∑

k

√
κkαk,i|i〉〈i|.

This is also the expected value of the photocurrent in Eq. (). We calculate the other two
terms simultaneously, using the notation of Eq. () for concision:

trC
(
e–iφaoutρ + eiφρa†

out
)

=
∑

k

√
κkρQ

(
tr
(
e–iφak|αk,i〉〈αk,j| + eiφ |αk,i〉〈αk,j|a†

k
))

=
∑

k

√
κk

∑

i,j

(
αk,ie–iφ + ᾱk,jeiφ)

ρQi,j|i〉〈j|

= cQρQ + ρQc†
Q. ()



Criger et al. EPJ Quantum Technology  (2016) 3:6 Page 13 of 21

We see that trC(M[aoute–iφ](ρ)) = M[cQ](ρQ). Since cQ is diagonal, it commutes with the
Hamiltonian, and is identical in the rotating frame, yielding the following stochastic mas-
ter equation:

dρQ =



∑

l∈Q

γz,lD[σz,l](ρQ) dt – i
∑

k∈C,l∈Q

χk,lP̃k ◦ [σz,l,ρQ] dt

+
√

ηM[cQ](ρQ) dW . ()

In the following section, we numerically integrate the stochastic master equation, using
the resulting state fidelity as a measure of performance.

5 Simulation
In order to assess the accuracy with which joint measurements can be made directly, we
focus on the three-qubit parity measurement from [, ]. We set the resonator parame-
ters according to Eq. () (with both κ and κ set to χ ).

5.1 Methods
We simulate the evolution of ρQ over the interval [t, t + dt] in two steps: we first de-
termine the time-dependent amplitudes {αk,j(t)} through numerical integration, using a
th/th-order adaptive Runge-Kutta stepper, using the pulses detailed in Figure . We then
use these values of {αk,j(t)} to formulate the time-dependent reduced master equation
(Eq. ()), and use an order-. stochastic Runge-Kutta method [] to integrate it. We
repeat this for  uniformly-spaced timesteps on the interval [, τ ], where τ is the total
measurement time (taken to be .

χ
throughout).

In order to verify the correctness of the above simulation, we calculate the mini-
mum/maximum eigenvalues, traces, deviations from hermiticity (‖ρ – ρ†‖∞) and purities
(tr(ρ)) for a typical trajectory. In order for these quantities to be meaningful when plotted
for a single trajectory, the algorithm used has to be strong (in the terminology of stochas-
tic differential equations []). Deviations from hermiticity on the order – are typical,
as are deviations from unit trace on the order –, likely caused by numerical rounding
error. For the simulations discussed in this paper, the remaining checks are satisfied to
within ∼–.

5.2 Figure of merit
To calculate the performance of the continuous measurement, we evaluate its ability to
produce one of two definite-parity entangled states, projected from an initial state |+++〉,
and to produce a measurement record which correctly identifies the parity of the final
state. To this end, we calculate the quantum state fidelity:

F± =
√〈ψ±|ρQ|ψ±〉, ()

where |ψ±〉 is one of the parity eigenstates from Eq. (). This fidelity is calculated for a
post-selected ensemble determined by the signal s(τ ), which is a weighted integral of the
measurement record:

s(τ ) =
∫ τ


f (t)j(t) dt. ()
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Figure 4 The approximate matched filter given by Eq. (58), for use in obtaining a measurement signal
s(τ ) given a photocurrent time trace j(t). The filter function can be thought of as assigning an importance
to the photocurrent emitted at time t; this filter function assigns high importance during the steady-state
phase of the measurement, and low importance at other times.

If this signal is positive (negative), we infer that the parity of the post-measurement state
is even (odd).

The choice of filter function f (t) has a significant impact on the performance of the
measurement. Though it has no effect on the post-measurement states themselves, it can
increase or decrease the probability of an incorrect assignment of states to ensembles,
affecting the fidelity indirectly. We compare (in Figure ) the distributions of s(τ ) corre-
sponding to the uniform filter (f (t) = ) and a matched filter (a filter function proportional
to the measurement record, see [, ]), shown in Figure .

This matched filter is derived from a simplified model of the dynamics, in which we
assume that the state immediately collapses to a uniform mixture of the computational
basis states from one of the parity eigenspaces. The filter is then the expected value of the
nominal photocurrent in the even-parity subspace, normalized to have a mean value of :

f (t) =
j+(t)∫ τ

 j+(t′) dt′ , ()

where j+(t) = tr((cQ + c†
Q)�+) (see Eq. ()). Here, we have defined �± to be projectors

onto the even/odd parity subspaces of B, and we have taken advantage of the fact that
tr((cQ + c†

Q)�–) = – tr((cQ + c†
Q)�+). In the following section, we use the post-selected state

fidelity to examine the performance of a nominal measurement.

5.3 Results and discussion
We simulate the action of the measurement in the presence of decoherence from the mea-
surement itself and qubit dephasing noise. Selecting χ as the natural scale for frequency,
we take γz to be χ

 , as in []. If χ ∼  × π MHz, this would correspond to a dephasing
time of ∼ μs.
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Figure 5 Histogram of 10,010 integrated photocurrents corresponding to the input pulse in Figure 1.

Figure 6 Histogram of 5,031 post-selected state fidelities corresponding to events in which odd
parity is detected (s(τ ) < 0). State fidelity of the average post-selected state (given by the root mean square
of the distribution above) is ∼94%.

A histogram of integrated photocurrents is given in Figure . The separation between
the two Gaussian peaks therein is visibly greater when using the approximate matched
filter from Eq. (), indicating that the probability of incorrect assignment is decreased.
The resulting state fidelities are given in Figure . To understand the features of the fidelity
distribution, we plot (in Figure ) the expected fidelity for a simplified model of measure-
ment in which the state immediately collapses to one of the parity eigenstates, and is then
subject to both intrinsic and measurement-induced decoherence.

In order to compare this average state fidelity with known performance thresholds for
error-correcting architectures [], we calculate the post-measurement state fidelity ob-
tained by performing a circuit-based measurement []. This measurement uses the cir-
cuit in Figure .
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Figure 7 State fidelity for a simplified model of measurement, in which the state immediately
collapses to the ideal post-measurement state, and is then acted upon by intrinsic decoherence
and/or the coupling Lindbladian. The decay in the fidelity of the state 1√

3
(|100〉 + |010〉 + |001〉) without

the coupling Lindbladian (solid black line) coincides exactly with the case in which the coupling Lindbladian
is present (black circles). The initial state 1

2 (|100〉 + |100〉 + |100〉 + |111〉) produces a markedly different effect,
its fidelity decaying much more quickly when the coupling Lindbladian is present (solid blue line) than when
it is absent (dashed black line).

Figure 8 A measurement circuit for the operator ZZZ, similar to the
four-qubit circuit used in [12].

We assign to each operation in the circuit (state preparation, memory, CNOT and
single-qubit measurement) a failure probability p. Failure corresponds to:

• unintentional preparation of the |〉 state on the ancilla qubit,
• insertion of a random one-qubit Pauli operator (X , Y , or Z) after a memory operation

with probability 
 ,

• insertion of a random two-qubit Pauli operator (IX , IY , . . . , ZZ) after a CNOT
operation with probability 

 , and
• an incorrect ancilla measurement outcome

for the four basic operations, respectively. The resulting state fidelity can be calculated
exactly:

F±(p) =
[

 –



p +
,


p –
,


p +

,,
,

p –
,,

,
p

+
,,

,
p –

,,
,

p +
,,

,
p –

,,
,,

p

+
,,
,,

p
] 


. ()



Criger et al. EPJ Quantum Technology  (2016) 3:6 Page 17 of 21

Figure 9 State fidelity F± =
√〈ψ±|ρ|ψ±〉 for the gate-based measurement acting on the initial state

|+++〉. Inset: small p regime, in which F± ∼ 1 – 4p.

Plotting this fidelity in Figure , we see that a state fidelity of % corresponds to an error
rate of .-.%, and that an output state fidelity of -% would match the performance
of the gate-based model close to the error-correction threshold. This indicates that, given
the parameters for existing state-of-the-art transmon/cavity systems, multi-qubit mea-
surements of quality near that required for fault-tolerant error correction could be per-
formed, but that further improvements in control design and/or hardware parameters
would be needed for threshold error rates to be attained.

6 Conclusions and future work
The formalism presented in this article facilitates the design of a class of quantum mea-
surement devices, with applications in fault-tolerant quantum computing architectures
and remote entanglement preparation. Using a pulse with few free parameters, and an ap-
proximate matched filter, it is possible to limit transient-induced decoherence, achieving
a high state fidelity, comparable to error models studied in the fault tolerance literature
operating slightly above the fault-tolerance threshold. Further advances in the design of
quantum hardware, such as decreases in the dephasing rate, will permit higher-fidelity
implementations of this protocol. In addition, there are several purely theoretical avenues
to be explored, which can inform the feasibility of this idea.

In future work, we will attempt to eliminate or minimize the decoherent portion of the
coupling Lindbladian, by selecting a control pulse optimally. Such a control pulse can have
a quadrature-phase component, unlike the pulse used in this manuscript. Decreasing this
decoherence will permit stronger driving, which in turn enables shorter measurement
times, reducing the effective strength of intrinsic decoherence. We will also attempt to
minimize or correct unwanted rotations, which occur as a result of the ac-Stark shift
and the non-zero imaginary part of cQ. It is known that non-linear filtering of the out-
put photocurrent and multi-qubit gates can be used for this purpose [], but the perfor-
mance of a scheme involving efficient filters and single-qubit gates has yet to be exam-
ined.
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7 Remarks
Numerical simulations were performed using the libraries http://github.com/bcriger/
homodyne_sim/ and http://github.com/bcriger/sde_solve/, available on Github.

Appendix A: Full dispersive Hamiltonian and Purcell term
Written in the laboratory frame, the multi-qubit, multi-mode Jaynes-Cummings Hamil-
tonian is

HJC =
∑

l∈Q

��l


σz,l +

∑

k∈C

�ωka†
kak +

∑

l∈Q

∑

k∈C

�gk,l
(
a†

kσ
–
l + σ +

l ak
)
. ()

This expression introduces the mode- and qubit-dependent couplings gk,l . Recall that a
Rotating Wave Approximation (RWA) has already been made in the form of the mode-
qubit coupling.a

Applying the standard canonical-transformation (or Schrieffer-Wolff) analysis to this
Hamiltonian in the dispersive regime, i.e., |gk,l| � |�l – ωk| for all k and l, one obtains the
effective Hamiltonian, to second order in gk,l

�k,l
[]:

HJC,d =
∑

l∈Q

�

(
�l


+

∑

k∈C

g
k,l

�k,l

)
σz,l +

∑

k∈C

�

(
ωk +

∑

l∈Q

g
k,l

�k,l
σz,l

)
a†

kak

+
�


∑

l,l′∈Q
l �=l′

(∑

k∈C

gk,lgk,l′ (�k,l + �k,l′ )
�k,l�k,l′

)(
σ +

l σ –
l′ + σ +

l′ σ
–
l
)

+
�


∑

k,k′∈C
k �=k′

(∑

l∈Q

gk,lgk′ ,l(�k,l + �k′ ,l)
�k,l�k,l′

σz,l

)(
a†

kak′ + a†
k′ak

)
. ()

Here �k,l � �l – ωk . We note the following differences between Eq. () and our model
Hamiltonian Eq. () in the text:

• In the first (Lamb shift) and second (dispersive shift) terms, we identify the parameter
χk,l with g

k,l/�k,l ; this is perfectly conventional.
• The third term is a new qubit-qubit coupling term []. As we discuss in the text, the

parity measurement is compatible with all the qubits being far apart (many χ ) in
frequency; thus it is normal to invoke an RWA to neglect this term.

• The final term is a new conditional mode-mode coupling term.
This last term requires some further discussion. Note that since this term commutes with
σz,l , it is compatible with a nondemolition measurement of the qubit states; more than that,
its form is compatible with the view that the state of the qubits determines the value of
the ‘dielectric constant’ of the linear resonator system, whose frequency can be probed by
the phase shift of scattered coherent radiation. From this point of view, this mode-mode
coupling does not alter the fundamental strategy, or the basic formalism, of the parity-
measurement setup.

However, this term does produce some new complications. The response is now not
only determined by the χk,l parameters, but depends separately on the g and � param-
eters. The response is not automatically determined by only the Hamming weight of the

http://github.com/bcriger/homodyne_sim/
http://github.com/bcriger/homodyne_sim/
http://github.com/bcriger/sde_solve/
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state of the qubits; but the difference in the response of states with the same Hamming
weight can be made weak if the overall detuning is large compared with the differences of
qubit frequencies. If the κ parameters of the two modes are made significantly different,
then, according to Eq. (), the bare resonator frequencies can be made significantly dif-
ferent; this in turn will make the influence of the mode-mode coupling term very small, in
accordance with another RWA.

We will report in a forthcoming publication [] on the re-optimization of the parity
measurement with all the effects of this Hamiltonian Eq. () taken into account. It is
especially worthwhile to do this, in light of the fact that a similar analysis of the dissipative
terms shows that we can design a structure which both does a good parity measurement
and has built-in protection against Purcell decay. The relevant decay term can be written
[]:

D
[∑

l∈Q

(∑

k∈C

gk,l

�k,l

√
κk

)
σ –

l

]
(ρ). ()

The inner sum over the cavity modes gives the opportunity for cancellation of the coeffi-
cient of each σ –

l term, since the g factors can be set to have either sign. Our preliminary
work indicates that this indeed can be done, in a way that is consistent with satisfying the
conditions for the parity measurement. We will provide the details of this analysis in an
upcoming publication.

Appendix B: Pointer state solution
Here we sketch the proof that the pointer states in Eq. () constitute a family of solutions of
the multi-qubit multi-mode master equation (Eq. ()), when no qubit damping is present
γ–,l = λk,l = . First, one establishes by direct substitution that the ‘diagonal states’

ρ = |i〉〈i| ⊗
⊗

k∈C

∣∣αk,i(t)
〉〈
αk,i(t)

∣∣, ()

are a solution to Eq. (), where the functions αk,i(t) are the solutions to Eq. (). This is
established by observing that the entire right-hand side of the equation commutes with
σz,l . The form of the remaining terms (involving the off-diagonal qubit operator |i〉〈j|) does
not follow from any simple linearity argument. However, we can seek an extended solution
having these new terms,

ρ =
∑

i

ρii|i〉〈i| ⊗
⊗

k∈C

∣∣αk,i(t)
〉〈
αk,i(t)

∣∣ +
∑

i,j,i�=j

|i〉〈j| ⊗ Ôi,j(t). ()

Here Ôi,j(t) is an undetermined operator on the Hilbert space of the resonators, which is
a function of the register states |i〉 and |j〉, as well as being an undertermined function of
time. Ô is fixed by positivity; it can be shown (details in []) that ρ ≥  forces Ôi,j(t) to be
of the form

Ôi,j(t) = ρij(t)
⊗

k∈C

∣∣αk,i(t)
〉〈
αk,j(t)

∣∣. ()
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This confirms Eq. (), with the added information that the diagonal coefficients are in-
dependent of time, which is a property of the equation of motion that we subsequently
derive for ρQ (Eq. ()).
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