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Studiencetrum voor Kernenergie, Mol 

Surface Effects Associated with Dislocations in Layer Crystals 

By 

R. SrnMs1), P. DELAVIGNETTE and S. AMELINCKX 

Dislocation configurations in thin foils cannot be accurately interpreted unless the effects 
of anisotropy and surfaces on the stresses and energies of edge and screw dislocations are 
known. Expressions for these effects are derived here for a semi-infinite hexagonal crystal 
with dislocations in the basal plane. 

lt is then shown that in plate-like crystals, as used in electron-microscopic investigations, 
the finite thickness of the specimen leads to observable effects on the dislocation patterns. 
In particular, the width of a ribbon decreases as it approaches the surface, due to the re­
duced repulsion between the partials, so that care is needed in deducing stacking fault 
energies from ribbon widths. Also the energy of a dislocation is a function of its distance 
from a surface, so that if it is crossed by a surface step it suffers a "refraction" which, in 
simple cases, follows Snell's law. lt is further shown that dislocations will tend tobe aligned 
with surface steps, artd the interaction energy between a step and a parallel dislocation 
line can thus be derived from experimental data. , 

Finally, a method is suggested for obtaining information on the elastic constants from 
electron microscopic data. 

Für eine richtige Interpretation von Versetzungs-Konfigurationen in dünnen Schichten 
sind Ausdrücke für die Spannungen und Energien von Stufen- und Schraubenversetzungen 
erforderlich, die die Anisotropie und das Vorhandensein von Oberflächen berücksichtigen. 
In der vorliegenden Arbeit werden solche Beziehungen für einen einseitig unendlichen hexa· 
gonalen Kristall mit Versetzungen in der Basisebene abgeleitet. 

Es wird gezeigt, daß bei plattenförmigen Kristallen, wie sie für elektronenmikroskopische 
Untersuchungen verwendet werden, die endliche Dicke zu beobachtbaren Effekten in der 
Versetzungs-Anordnung führt. Insbesondere nimmt die Breite von Stapelfehler-Bändern 
in der Nähe der Oberfläche ab infolge der verminderten Abstoßung zwischen den Teilver­
setzungen. Demzufolge ist bei der Bestimmung von Stapelfehlerenergien aus der Breite der 
Bänder Vorsicht geboten. Da die Selbstenergie einer Versetzung eine Funktion ihres Ab· 
standes von der Oberfläche ist, tritt eine „Brechung" auf, wenn die Versetzung eine Ober· 
flächenstufe kreuzt. Im einfachsten Fall ist das Snellius'sche Gesetz gültig. Es wird ge­
zeigt, daß Versetzungen das Bestreben haben, sich parallel zu Oberflächenstufen auszu­
richten. Die Wechselwirkungsenergie zwischen einer Stufe und einer parallelen Versetzung 
kann experimentell bestimmt werden. 

Es wird eine Methode vorgeschlagen, mit deren Hilfe aus elektronenmikroskopischen 
Beobachtungen Aussagen über die elastischen Konstanten gewonnen werden können. 

1. Introduction 

The question whether the influence of the finite specimen thickness on the geo­
metry of dislocation patterns ohserved in thin foils is important or not, has often 
been raised. The layer structures are a specially convenient medium to study 
quantitatively certain aspects of such influences in a particularly simple geometry. 

1) Permanent address: Institut für Reaktorwerkstoffe, Kernforschungsanlage Jülich 
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The dislocations in most layer structures are all exactly parallel to the basal 
plane, which is usually the specimen plane, if the foil was prepared by cleavage 
or by growth from the vapour phase. Many layer structures show furthermore 
extended dislocations, since the stacking fault energies are usually small. Such 
stacking fault ribbons, if wide enough, are particularly useful "pro bes". The two 
partials are kept together by a constant force y, which does not depend on the 
distance between partials, nor on 'the distance from a free surface. It is numeri­
cally equal to the stacking fault energy if corresponding units are chosen. On 
the other hand, the repulsion between the partials is proportional to the inverse 
of their distance in an infinite isotropic solid. For ribbons in the vicinity of the 
surface of a semi-infinite solid, the repulsion law has to be corrected for surface 
effects. It is desirable, therefore, to obtain analytical expressions for the stress 
fields of edge and screw dislocations parallel to a free surface, taking into account 
these surface effects as well as the anisotropy. This is important if one wants to 
use these ribbons for measurements Of stacking fault energies. 

Analytical expressions for the stress field were given for arbitrary dislocations in 
isotropic semi-infinite media andin plates by DIE'l'ZE and LEIBFRlED [l], in in­
finite anisotropic materials by EsHELBY et al [2] and by SEEGER and ScHOECK [3]. 
For the special casc of dislocations in the basal plane of infinite hexagonal crys­
tals, formulae were given by SPENCE [4] and BAKER et al [5], and for screw dis­
locations in plates of hexagonal materials by SPENCE [6] and by SIEMS [7]. In 
the present paper the stress field will be obtained for screw- and for edge-dislo­
cations with Burgers vectors and dislocation lines in the basal plane of a semi­
infinite hexagonal crystal. As in most practical applications interactions between 
dislocations in the same basal lattice plane are discussed, the stress field in this 
plane will be plotted for several values of the elastic constants. The stress field 
of a dislocation in a plate may be replaced by the expression for the stress field 
of a dislocation in a serni-infinite material if the distances to the nearest surface 
are taken to be equal. The conditions under which this method gives reliable 
results will be discussed after the forrnulae have been derived. 

We will further obtain expressions for the self-energy of the dislocations. 

Applications to observed effects in a few layer structures will also be mentioned 
briefly, while a rnore detailed. comparison of the theory with the observations will 
be rnade in another paper. 

2. The Width of Dislocation Ribbons in an Infinite Isotropie Solid 

Putting the repulsion forces equal to the attraction exerted by the stacking 
fault, one obtains the following relation which determines the equilibriurn sepa· 
ration 

(1) 

(b is the Burgers vector of the partial dislocation) 

or an equivalent one by interchanging the upper indices 1 and 2. This expression 
is general and also valid in the anisotropic, finite case, provided the right expres­
sions for •xz and iyz are used. The subscripts E and S refer to edges and screws 
respectively, whilst the left indices 1 and 2 refer to partials (1) and (2). The ex-
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pressions for Txz and Tyz have to be taken for z = 0, i. e. in the glideplane. In an 
infinite isotropic solid the expressions for Txz,E and Tyz,s are 

µ b x (x2 - z2) . 
Tx z, E = 2 n (1 - v) • (x2 + z2)2 ' 

(2) 

µb X 

Ty z, S = ~ ' (x2 + z2) • (3) 

From these relations the weil known formula for the distance between partials 
in an infinite isotropic medium is easily obtained 

d = d0 (1 - ~ · cos 2 <1>) ; 
2-v 

d _ µb2 _2-v 
o-8:ny I-v• 

(4) 

(5) 

where <!> is the angle between the total Burgers vector and the direction of the 
ribbon. 

The total width of the symmetrical double ribbon in an isotropic infinite crys­
tal is given by [8] 

W = Wo ( 1 - 2 V V • COS 2 <J>) , 

3µb2 2-v 
w ---·--
0- 4:ny I-v· 

3. Stress Field in an Infinite Anisotropie Crystal 

(6) 

(7) 

W e shall use a system of cartesian coordinates with the z-axis parallel to the 
hexagonal axis; the dislocation is parallel to the y-axis atz= C, x = 0. Using 
the notation of SPENCE [6] we can write the z-plane stress components in the 
form 

b8 x 
Tiy,S = C2. x2+öa(z-C)2' 

for screw dislocations and 

for edge dislocations. The Burgers vector lies in the basal plane. 
In these equations the following abbreviations are used: 

c5 = VC11 . 
1 C33 ' 

c5
2 

= Cu C33 - C~3 - 2~13 C44_ ; 

C33 C44 
U3--, 

C44 
s _ C66. } 

c66 = ~ (c11 - C12) . 

We shall further use LI = c52/c51 ; 

be and bs are the edge- and screw-components of the Burgers vector. 

(8) 

(9) 

(10) 
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From these expressions for Tzy, s and Tzx, E andformula (1) the width of aribbon 
in the c-plane of an infinite anisotropic crystal with hexagonal symmetry can 
easily be found 

(11) 

with 
do = b2 (01 + 02) . (12) 

4y 

This formula is equivalent to that given by BAKER et al [5]. 
For the equilibrium width w of a symmetrical double ribbon, one finds 

W = Wo (1 + ~2 
- ~1 

COS 2 </J) , (13) 
2 + 1 

with 
3 b2 

(01 + 02) (14) 
Wo= 2y • 

4. Stress Field for a Screw Dislocation in a Semi-Infinite Medium 

The stress field for a screw dislocation (see Fig. 1) can be obtained quite easily 
by superposing the stress field of a mirror dislocation of opposite sign 

Tzy, s = C2 bs [x2 + i5ax(z-i;,)2 x2 + i5ax(z + i;,)2] · 

The Tz y, s components cancel at z = 0, making the surface stress-free. Introduc­
ing a new scale factor for the z-direction according to 

z'=Vc53 z; C'=Vc53 C; (15) 
one obtains 

Tzy,s = C2 bs lx2 + (;-i;,')2 - x2 + (; + i;,')2] · 

At points in the plane z = C, i. e. z' = C', this reduces to 

with 

-c = 02 bs [l _ 1 ]- 02 bs [l _ /] 
z y, S X 1 + 4 V' X 

z' ,/1 
- =yV 
X 

Mirror 
Dislocotion 

and - =vv = - . z _ Vv' 
X ()3 

Fig. 1. A dislocation and a mirror 
dislocation on eitller side of tlle 
surface of a semi-infinite solid 

(16) 

(17) 

(18) 



640 R. SrnMS, P. DELAVIGNETT:E and S. AMELINCKX 

5. Stress Field for an Edge Disloeation in a Semi-Infinite Medium 

By superposing the stress field of a mirror dislocation of opposite sign (Fig. 1), 
we may again obtain a surface free of shear stress. The normal stresses, however, 
have the same sign at the surface and, therefore, the Tzz component d.oes not vanish. 

The surface strcmes due to the dislocation and the mirror dislocation are 
M M C (x2 -c\ C2

) 

Tzx = 0; Tzz = - 2 01 bE x4 + 62 x2 c2 + 6~ C4 

Changing the scale of the z-coordinate according to 

z = ffi z; C = ~C, (19) 

and introducing A = /IJ2//IJ1, we obtain 
M M C (x2 -f2

) 
izx = 0; Tzz = -201 bE--·--..=--=-. 

x4+Llx2c2+c4 
(20) 

A compensating stress field has to be superposed having no singularities for 
z > 0, and whose stresses atz= 0 are opposite in sign to those given by (20), i. e. 

r7x=0; r7z(Z=0)=201 bE C(x
2

-C
2

) (20a,b) 
x4+L1x2c2+c4 

Because of the independence of the problem with respect to the y-coordinate, the 
stress field can be derived from a function F(x, z): 

o 82F o o 
1'xx=Fzz=-; 'rxz=-Fxz; Tzz=Fxx· az2 

In this way the equations of equilibrium are fulfilled. The function F has to 
be chosen so that the compatibility conditions be satisfied as well. With a trial 
solution 

F = ei ~ x + ; ~ "z 

these conditions give the allowed values of x as solutions of the equation 

S11 x4 + (2 S13 + S5 5) x2 + S33 = 0 , 
with 

Ski = Ski 811 - 8k2 8;2 

Here the s;k are tbe elastic moduli defined according to 
8u 

8X 

8v 

8y 

&w 

8z 

!3!_+ 8w 
8z 8y 

&w 8u 
e;+az-

~+!3!_ 
ay ax 

The S;k are not the tensor components. 

Tyy 

(21) 

(22) 
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The solutions of equation (22) are 

with 

"2 =-A±.!A2-B= • 1B{-~±v~-1} i,2 V V yB B ' 

and 

Now 
__!:_LI = ~ = Ci.1 C33 - C~a - 2 Cia C44 

2 2 6 ,/ • 
1 2 c44 V c33 c11 

Using the relation between the cik and the sik• it can be proved that 

~ Ll and VB = c51 = vcll VB 2 C33 

With the abbreviation 

2 Ll v~ R1,2 = Z ± 4- 1 , (23) 

one obtains 
(24) 

For LI > 2 (LI = 78 for graphite), R1 and R2 are real numbers which are chosen 
to be positive. The admissible values of the roots of equation (22) are determined 
by observing that the stress function has to give a finite stress for z-+ oo. Thus 
the general stress function can be represented by the following integral (see (21)). 

00 

(25) 
-oo 

The stresses are then given by 
00 

-r?„ = - F.., = i (<\ j {c. ic.i R1 A 1 e-l•IR, z -t- c. ic.i R2 A2 e-1•1 R,z} ei •"'de., (26) 
-oo 

and 
00 

T~z = F "'"' = - J c.2 {A1 e-1•1 R,z + A 2 e-1•1 R,z} ei• x de.. (27) 
-00 

In Appendix I the functions A1(c.) and A2(c.) are determined from the boundary 
conditions (20a, b). 

Introducing these functions into equation (13), changing the limits of integra­
tion and collecting terms, one obtains 

Tc = 01 bE 2 Im f00

{-e-• (R,E + R,z-i z) + e-• (R,C + R,z - i z) 
zz (R -R )2 

2 1 0 

+ e-•(R,E + R,z-iz>-e-•<R,C + R,z-izl} de.. 

Bearingin mind that (R2 -R1)2 =LI - 2, one can express the z-plane components 
of the compensating stress field as follows: 

c 2 01 bE 
Tzx = Ll _ 2 · {112 + 121 - (111 + 122)} , (28) 

and 

c 201bE 1 {(- R2;:) 1 - R23="1 - r (1 J} Tzz=~2 ·--= z+ 1s 12+(z+ 2s) 21-(z+„)· 11+ 22) ,(29) 
LI - f61 



642 

with 

R. SIEMS, P. DELAVIGNETTE and S. AMELINCKX 

1 
liJ = ------­

(Ri C + Riz)2 + z2 

The total stresses are obtained by adding the contributior.s from dislocation, 
mirror dislocation and the compensating stresses 

Tzx = 01 bE X {N- - N + + L1 
2 

2 [112 + 121 - (111 + 122))}, (30) 

Tzz = c~~ {(z-Ö N_- (z + Ö N+ 

+ L1 
2 

2 [(z + E Ri> 121 + (z + E Ri> I12- (z + ö U11+122>J}, (31) 

with 
N = ___ z_2_-_(_z_±_C_)2 __ _ 

± (z ± öl + L1 (z ± E)2 + zl 

6. Discussion of the Stress Formulae 

In Appendix II it is shown that the expressions (16) and (30) go over into the 
corresponding isotropy formulae of DIE'l'ZE and LEIBFRIED [1) if the elastic con­
stants approach the isotropy values. 

as 
Screw Dislocation 

_1_ 
ff 

~-~--'---...L.---'---'--... X 
10 -z· 2 6 8 

Fig. 2. The relative contribution of the mirror dislo­
cation to the stress in the glide plane of a screw 
dislocation as a function of x/z' (x: distance from the 
dislocation, z': reduced distance from the surface) 

In practical problems, the stress field 
is often needed for z = ,, i. e. for obser­
vation points in the glide plane of the 
dislocation. In this case, equation (17) 
reduces to 

CI bE{ 1-4 V 
Tzx = -x- l-1+4Llv+16v2 

2 [ 2 
+ Ll-2 v (Ll + 2) + 1 

1 
(32) 

4v R~ + 1 

(33) 

with v = z2/x2 • 

lt is seen from equations (17) and (33) 
that the factors by which the infinite 
material stress field has to be multiplied 
to give the stress for the semi-infinite 
medium are 1 - f or 1 - g. - gk, respec­
tively. In Fig. 2 and 3 the terms f from 
equation (17) for screw dislocations and 
g. and gk from equation (33) for edge 
dislocations are plotted as functions of 
l/JIV' = x/z' or lfVv = x/z, respectively, 
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'°I 
1,0 1,0 

Ll=2 Ll =4- Ll=78 
(!sotropyJ (6raphite) 

gs 

as 0,5 a5 

J__ _}5_ _}__= .5_ 

0 
rv- z 

0 
w z 

0 
8 10 8 10 2 10 

-aJ -at gk - 0, 1 
gk 

-0,2 -0,2 -0,2 

-0,3 -(,),3 ~a1 

Fig. 3. The relative contributions of the mirror dislocation (g 8 ) and of the compensating field (gk) to the stress in the 
glide plane of an edge dislocation as a function of x/z (x: distance from the dislocation, z: reduced distance from the 

surface) 

7,0 

0,8 

0,6 

0.4 

0,2 

00 

Correcrion focror 

Screw Oistocation 

2 4 6 8 10 1!. 
z 

Fig. 4. Correction factors (1-f) and (1- Yk - g8 ) 

for the stresses in the glide planes of an edge- and of 
a screwdislocation in isotropic material versus x/z 
(x: distancc !rom the dislocation, z: distance from 

the surface) 

1,0 
Correction foctor 

-------, 
''-. . ...fdge DistocaTion 

--,,,',,_ --
Screw Distocafion - , _ 

09 

08. 

0.7 

06 

0.
5 

0 2 4 6 ß 10 12 14 16 18 20 22 X z 
Fig. 5. Corrcctiou factors (1 - f) and (1 - Yk - g8 ) 

for the stresses in the glide planes o! an edge- and of 
a screwdislocation in graphite versus x/z (x: distance 
from the dislocation, z: distance from the surface) 

for various values of L1. W e notice that the influence of the compensation stresses 
becomes the less important the larger the anisotropy, i. e. the larger the constant 
L1. For graphite (Ll = 78), for example, (fk is always less than 3 %. For less an­
isotropic materials, however, the contribution of the compensation stresses may 
become larger than 30%. The position of the maximum of gk depends only very 
little on L1. lt is located at values of xfz between 1 and 2. 

In Fig. 4 and 5 the correction factors 1 - f and 1 - g. - gk are plotted for 
isotropic materials and for graphite as functions of x/z. For materials of moderate 
anisotropy, the correction factor for edge dislocations may be considerably smaller 
than the factor for screw dislocations. As a consequence, at a certain distance from 
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the surface, the repulsion between two screw dislocations may be stronger than 
that between edge dislocations, especially for materials for which the effective 
Poisson's ratio, given by 0 2/01 = 1 - y [8] is close to zero. In this case, screw 
ribbons will be wider than edge ribbons. 

7. The Elastic Energy of Dislocations 

The elastic stress field of a dislocation can be produced by removing the material 
from a cylinder of radius Ri R> b around the straight line z = C, x = 0, cutting 
the medium along the plane z = C from x = R;, to infinity, and displacing the 
two sides of the out over a distance b relative to each other. The work necessary 
to perform this operation is obtained by integrating f b r along the cut2). 

For screw dislocatfons one obtains from equation (16) 

b~ [ Joo dx2 Joo dx2 ] i] b2 { z'2} 
E = 02 ~ ~ - x2 + 4 z'2 = ~ ln 1 + 4 Rf . 

R~ Rf 

As z' ~ Ri in practical cases, one can neglect the first term in the logarithm 

E = 02 b§ 1 2 ~ = 02 b~ [1 ~ 2_ l ~ ] a) (34) 
2 n R· 2 n R· + 2 n u3 . 

' ' 
For edge dislocations, on the other hand, one obtains from equation (30), by 

introducing U = x2jz2, i. e. X dx = + z2 du; 

E _ C1 b];: 1 u-4 
--4- J {-;-1i2+4Llu+I6 

R~ r 
00 

~ 

+ 2 ( 2 
Ll-2 L1+2+u 

1 

Performing the integration and assuming z ~ R;, yields 

E = 01 b}: [21n 2 z + 2_ VL1 + 2 ln ~ L1 + 2 i. LJ_:_± __ 4 _ ln L1 + 2] . 
4 R; 2 L1-2 2L1-2yL12_4 Ll-2 4 

(35) 

As in the case of the screw dislocation, the nifference in energy of two disloca­
tions at distances z1 and z2 from the surface depends on the elastic constants 
only through 01 

E - E - Cl bj;; 1 Z1 
1 2--- n-

2 z2 

For isotropy (LI__.,.. 2), expression (35) becomes 

E = µbj;; [1n~ 2_1 
4 n (1 - v) R; + 2 . 

(36) 

2
) The work performed at the inner surface is hereby neglected. 

3
) To obtain a consistent model, we may ask for a stress-free inner surface. lt is con­

venient to cut out an elliptic cylinder around the dislocation. If the z-axis of the generat-

ing ellipse is made equal to Ri/y°J; and the x-axis equal to R; (with arbitrary R·) this inner 
surface is stress-free. The energy is, in this case, given by equation (34). ' 
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For very anisotropic materials (d ~ 2), on the other hand, the following expres­
sion is obtained 

0 b}: [ 2 z ( 2) l E = T 2 ln Ri + 1 - LI ln LI + ln 151 . '(37) 

The last two terms, which contain only anisotropy contributions, may represent 
a considerable fraction of the total energy. For a dislocation at a distance z = 
=200Ri"" 200 b underthe surface, in a material withLI = 78and151 = 5 (graphite), 
the first term in the brackets is equal 12, the second 4.35, and the third 1.6, i. e. 
the two "anisotropy terms" contribute about 1/ 3 of the total elastic energy. 

A rigorous treatment of the dislocation core would yield stresses at the surface 
of the small cylinder around the dislocation, which are probably different from 
those given by equations (16), (30) and (31). The work due to the stresses at this 
surface is not contained in equations (34) and (35). Taking the boundary stresses 
at this surface into account would change the last term in equation (34) and the 
second and third terms in equation (35). 

8. Application of the Semi-Infinite Space Formulae to Dislocations in a Plate 
The equations derived above are expected to give a good approximation for 

the stress field in a plate under the following condition: if one takes for the sur­
face of the semi-infinite space that side of the plate which is farther away from 
the dislocation, at the point in question the corrective terms (f in equation (17) 
and g, + gk in equation (33)) must be small as compared to the leading term. 

The quantity !; to be introduced into the expressions for the stress field is then 
the distance to the nearest side of the plate. If a plate is so thick that a disloca­
tion ribbon of a certain kind in its central plane has the width characteristic for 
the infinite medium, then the forces between the partials of any ribbon of this 
kind in this plate can be calculated by means of the above formulae. 

9. Determination of Ratios of Elastic Constants from Observation 
of Dislocations in the Electron Microscope 

As the stress field of dislocations in an anisotropic solid depends on the elastic 
constants of the material, one can determine the values of certain combinations 
of these constants from dislocation configurations observed in the electron micro­
scope. These configurations are mainly extended dislocations at the boundary 
of a stacking fault. 

The evaluation is carried out by introducing the observed geometrical data into 
the equations of equilibrium for the respective dislocation arrangements. In this 
way only the ratios of elastic constants are obtained, and not their absolute 
values. This is evident: an increase of all elastic constants and of the stacking 
fault energy by the same factor would not change the o bserved arra y of dislocations. 

For hexagonal crystals, the system of elastic constants is given by the following 
matrix: 

Cu C12 C13 0 0 0 

Cu C13 0 0 0 

cik = C33 0 0 0 

C44 0 0 

C44 0 

+ (C11-C12) • 
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As one can only hope to determine the ratios of the five independent constants, 
at least four independent experimental values are needed. On the other hand, 
in the expressions for the stress field of a screw dislocation ((17) and (18)) and for 
an edge dislocation (32), the following five combinations of the elastic constants 
appear: 

As the stacking fault energy y is not known in advance, the absolute values of 
0 2 and 0 1 cannot be determined: one obtains only their ratio C2/C1 = 1-v. So 
there are four exp:irim:-mtal dah available, just sufficient to determine the four 
ratios of the elastic constants. 

The stress field of a dislocation can be probed if an extended dislocations is 
observed, meeting a surface slightly inclined with respect to the basal plane. From 
the periodicity in contrast along the dislocation lirie, the distance from the surface 
of each point along the dislocation can be inferred. The ratio 0 2/01 = 1 - v is 
most conveniently determined from curved ribbons far away from the surfaces of 
thick plates [8]. 

10. The "Refraction" of Dislocation Lines at Surface Steps. Snell's Law 

Consider a dislocation line which is not too far away from a surface which con­
tains a step. In the region at the one side of the step the dislocation is appreciably 
closer to the surface than in the region at the other side (see Fig. 6a). Because 
of the difference in elastic energy, a "refraction" of the dislocationsis observed. 
A relation between the two angles 81 and 82 (see Fig. 6b) will be derived. 

Region1 Region2 
f/77/77/777 77 

;r 7,..,;....,7-r1 ~7 ?~1~;~;~; ,~;~;~;-.J; „ Dislocation /me 

A X 

Region 1 8
1 Region 2 

Dislocation line 

The fine structure of the dislocation 
line in the immediate vicinity of the 
surface step (i. e„ of the point P) will 
not be discussed, which means that 

a} the vertical dimensions (step height h 
and distance z of the dislocation from 
the nearest surface) are small as com­
pared to any horizontal dimensions. In 
this case, we may assign two line ener­
gies e1 and e2 to the dislocation in the 
two regions. These line energies are, in 
general, functions of the orientation of 
the dislocation lines with respect to the 

b) Burgers vectors, i. e. e1 = e1(y') and 
e2 = ez(y'). 

The total energy of the dislocation 
between points A and B is then 

Xp 

E = J e1(y')yl + y' 2 dx 

Fig. G. "Refraction" of a dislocation passing beneath a 
snrface step 

Xß 

+ J e2(y') yl + y' 2 dx. (38) 
a) cross section, Xp 
b) as seen from above. 

The notation used in the text is indicated This energy has to be minimized. 
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Let us assume that the position of the point P were already known. Then both 
integrals in equation (38) may be minimized separately. As the integrand is a 
function of y' only, y' is constant in each of the two regions. The dislocation con­
sists, therefore, of two straight lines. In this case, the line energy is constant over 
the whole length of each of the two parts, and the total energy is given by 

E = s1s1 + s2s2 = yx~ +Y~ s1 + 1lx~+y~s2 • jxAj + jxBj = L = const. (39) 

That value of XB has tobe determined which minimizes Ein equation (39). The 
line energy e on either side of the step is the sum of the line energies of the screw­
and edge-parts 

e = es cos2 <P + eE sin2 <P , 

where es and eE are the energies of the dislocation in screw and edge position (see 
chapter 5). Introducing the afl:gles () and 'lfJ, according to <P = () - <p, and substi­
tuting 

and cos () = yx2 +1J2 ' 
one obtains 

Y2a x2b xyc 
Se= + +----

jlx2 + y2 yx2 + y2 yx2 + y2 ' 

for each of the two lines, with 

a = es cos2 <p + eE sin2 <p; b = es sin2 <p + EE cos2 <p; c = (es - eE) sin 2 <p. 

Substituting this into the minimum condition for E 

8 
-E=O 
8XA ' 

we obtain, upon introducing again the angles ()1 and ()2 

sin ()2 [- a2 cos2 ()2 + b2 sin2 ()2 + 2 b2 cos2 ()2] + c2 cos3 ()2 

= sin ()1 [- a1 cos2 ()1 + b1 sin2 ()1 + 2 b1 cos2 ()1] + c1 cos3 ()1 • 

Introducing u = sin (), one obtains 

1 1 
2 L'2 U2 + l12f( U2) = 2 L1 U1 + l11f( Ui) 

with 

(40) 

f(u) = (: - u2) u cos 2 <p- (l -u2) 312 sin 2 <p; iJ = EE- es; .E = eE +es· 

For certain values of the elastic constants, the energies of edge and screw dis­
locations may be equal in both regions. In this case, Ll1 = L1 2 = 0, and equation 
(40) reduces to Snell's law of refraction 

s1 sin ()1 = e2 sin ()2 • 

The products of the sines of the "angles of incidence" times the line energies are 
equal. The "index of refraction" is the ratio of the self-energies in the two regions. 
The energies s1 and i;2 usually differ not very much as a consequence of the loga­
rithmic dependence on z. A visible effect will nevertheless result if the angle of 
incidence is not too small and if the change in distance to the nearest surface is 
appreciable. 

43 physica 
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11. Attaehment of a Dislocation to a Surface Step 

Dislocations crossing a surface step are sometimes observed to cling to the step 
for a certain distance (see Fig. 7). lt is concluded from this observation that the 
energy of the dislocation in the immediate vicinity of the steps is decreased, prob­

ably due to the proximity of the extra 
surface at the step. In other words: there fJJJIJllJJJJI 

n n n , , ; 7 n , ; ; r. Dislocotion line 
a) is a potential trough for the dislocation 

in the neighbourhood of the step. 

A 

b) 

The width of this potential trough is 
assumed tobe small as compared to hori­
zontal dimensions. The energy of the 
dislocation at the bottom of the trough is 
denoted by "K· The same abbreviations as 
in chapterf9 are used. 

The position of point P1 which leads to a 
minimum of the total energy is given by 

oE 8 
-=-eK+-e1s1=0. oX oX 

This yields 
1 

ex= 21:1 U1 + L11f(u1) · 

Thus the angle (} is given as a function 
of material constants, of the angle q;, and 

Fig. 7. "Capture'' of a dislocation at a surface step of the distance z of the dislocation in re-
Step 

8 

a) Cross section • 
b) as seen from above. gion 1 from the surface. For a dislocat10n 

The notation used in the text is indicated line anchored at two point A and B, the 
position of points PI and P 2 is uniquely 

determined. If the straight line connecting A and B encloses a large angle with 
the step the above derivation might yield the point P2 to be to the left of 
point PI. In this case the treatment of chapter 8 applies; the dislocation is then 
crossing the potential trough without being captured. 

12. Observations 
We shall now discuss a few observations which sbow unambigously that the 

corrections discussed above may become appreciable causing interesting effects. 
The observations were made on platelets of tin disulfide and tin sulfoselenide 
grown by sublimation. 

12.1 Crystal structure 

Tin disulfide and tin sulfoselenide belong to the hexagonal system: they have 
the cadmium iodide structure. The succession of layers in the c-direction can be 
described by means of the symbol 

aybaybayb„ .. 

The latin letters represent sulfur or selenium, wbilst the greek letters represent 
tin. The close-packed layers of tin atoms are sandwiched between two close­
packed sulfur layers; they occupy the octahedral interstices. The binding between 
tin and sulfur (selenium) is probably stronger than between the two sulfur layers. 
Glide, therefore, takes place preferentially between two close-packed sulfur layers. 
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Consequently, the dislocations can dissociate into Shockley partials. The stacking 
fault between the two partials has the cadmium chloride structure. The stacking 
fault energy is small, and hence the ribbons are wide; in sufficiently thick crystals 
the width is about 0.25 µ. 

l•'ig. 8. Scqucnce of ri bbo ns in t in disulfi de s ingle crysta l. Th e wid th of thc double riUbon is o nl y thrce timcs wider 
thnn tl iat of the sing!e oncs 

43• 
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0.1 µ 

Fig. 9. Ilibbon in tin sulfosclenide interseclcd by a sequencc of clcavagc steps. Thc width of the ribbon clecrcases at 
cach step 
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12.2 Change in width of 1·ibbons close to the surf ace 

From the expressions (17) and (33) and from Fig. 4 and 5 it follows that the 
repulsion between partials becomes appreciably smaller thanin an infinite crys­
t al if the distan ce to the nearest surface is comparable to, or smaller than , the 
ribbon width. For very anisotropic substances like graphite, (LI = 78) the effect 
is small and the ribbon has to be very close to the surface in order to see any 
effect. Fora material withintermediate anisotropy and which shows wide ribbons, 
i. e. has a small stacking fault energy, an appreciable variation of the ribbon widt.h 
is to be expected , depending on the dist ance to the surface . 

In tin clisulfide and tin sulfoselenide, t he widths of the ribbons are variable; 
even in the same specimen and for the same angle between Burgers vector and 
ribbon, the width may be different. In the same family of parallel ribbons t he 
widths are usually equal, because the ribbons are also lying in t he same glide plane 
(Fig . 8). 

The double ribbons, consisting of three partials with the ame Burgers vector, 
which are often observed in these substances, have a width which is only about 
three times that of single ribbons (Fig. 8) . 
I sotropie theory predicts that, in an 
infinite solid, double ribbons should be 
about six timcs wider than single ones 
(equation (6) and (7)). 

All thesp, observations suggest that the 
ribbon widths are in t he range where, for 
crystals of a thickness such tha t they can 
be examined in the electron microscope, 
surface effect s become appreciable. 

This could be checked directly by obser­
ving the changes in width with varying 
distance to the surface. Fig. 9 shows a 
ribbon in tin sulfoselenide intersected by 
cleavage st eps. It is quite clear that the 
width decreases as the foil thiclrness, and 
hence the dist ance of the ribbon to the 
surface, diminishes. 

Some of the crystals of sulfoselenide 
have smoothly sloping edges covered with 

~-- -]d ____ \ 

a) 

v ...-
/ 
......... ..._ r-_ 

b) 
Fig . lO a . Cross scction of tapered crystal 

grown by sublimation 
l' ig . l Ob. Top view of ribbon cmcrging in thc 

growth st eps, shown in cross section in tapercd part 

1~\ 
l'ig . 11. JliblJon crossed by seqnences of growth steps, 1, 2, 3, 4. Thc r ibbon graduall y dccreases in width and finally 

the two partinls coalcscc 
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Fig. 10. Ribbons emerging in this tapered part become gradually narrower as 
they approach the surface. An example of this is seen in Fig. 11. Fig. 12 shows 
a double ribbon approaching gradually the surface, and finally emerging in it ; 
its width decreases progressively. Fig. 13 finally shows single ribbons and one 
asymmetrical double ribbon c.rossed by growth steps along AB. 

For a quantitative verifi0ation , the distance from the surface of each part of 
the ribbon has tobe known. In principle, it is possible to measure this by making 
use of the alternating left-right contrast at dislocations which are oblique with 
respect to the surface [9, 10). A striking example of this type of contrast is shown 

- ' 
flg . 12. Double ribbon crossed by a widc scqucncc _of small stcps. The wid th decreascd vcry graduall y, finall y it 

ern crgcs m thc surfacc 
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l 91 

~ 

1 

Fig. 13. Various ribbons crosscd by a growth stcp a long AB 

in Fig. 14, together with the wedge fringe::>. The depth periodicity of this contrast 
is the same as that of the wedge fringes. For known contrast conditions, the depth 
of the dislocation below the surface can be calculated from this periodicity. Such 
measurements will be published in a separate paper. 

12.3 'l'h e 1•ef1•a ction cffect 

A particularly striking example of the refraction effect , observed in tin sulfo­
selenide, is reproduced in Fig. 15. A family of ribbons is crnssed obliquely by two 
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steps one along AB, the other along CD. The change in direction at AB is accom­
panied by a change in width. 

In region I the ribbons are widest, which means that their distance from the 
surface is larger there than in region II. This is in agreement with the observation 

~ig. H .. 1,Jisloca~ions appr?achi.ng grad uall y the surface, and exhibit ing left right alternati ng contrast. Notice that 
m any gncn reg1on the penod1 c1ty of t11c left-~ 1gh t contrast is the sa mc as that of the wedge fringes. This phenomenon 

can be used to dctermme the depth of a dislocation bclow the surfacc 
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Fig. 15. "Refraction" of a fam ily of ribbon and of unextended dislocations by two sequences of steps AB and CD. 
On refraction the r ibbon width changes as weil 
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I•' ig. 16. Rcfraction of an isolated ribbon n.t a growth step; the wid th changcs on "refraction". Notice the tendcncy 
ol the partials to align with thc stcp 

that in region I the angle between the r ibbons and the normal to the step is also 
larger than in region II. 

Fig. 16 shows an isolated ribbon which is refracted by the step XY; notice the 
tendency to align with t he steps. 

12.4 Inte1·actiou of dislocatio11s with S'ln1'c1ce steps 

Fig. 17 shows finally an example of the effect discussed in chapter 11 . A family 
of undissociated dislocations is deflected by a sequcnce of steps in the band AB. 
At first the dislocations are refracted, but finally the angle of incidence becomes too 
close to 90°, and the dislocations now cling to the steps over a considerable length. 



Fig. 17. Refraction of a set of undissociated dislocations by a wide sequence of steps along AB. F inally the angle 
of incidence becomes t.oo !arge and the dislocations now follow the step direction 
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13. Conclusions 

Expressions are derived for the stress fields of edge and screw dislocations in 
the basal plane of hexagonal semi-infinite crystals. The self-energies of such dis­
locations are calculated as well; they depend on the distance of the dislocation 
from the surface. The theory predicts a visible change in width for ribbons coming 
close to the surface. Observations confirm this. 

The dependence of the energy of a dislocation on its distance from the surface 
is demonstrated directly by observing the "refraction" of dislocations where they 
cross growth or cleavage steps. To a first approximation this "refraction" follows 
Snell's law, the index of refraction being the ratio of the energies on both sides of 
the step. 

Dislocations tend to align on growth steps; this effect is due to interaction with 
the vertical step surface. 

A method is indicated to measure in particular cases the distance of a dislo­
cation from the surface, it is based on the periodic left-right contrast at dislocations. 
The periodicity of this type of contrast is shown experimentally to be the same as 
that of the wedge fringes. 

The effects described here demonstrate that if one wishes to use the ribbon 
widths for measuring stacking fault energies, corrections for finite foil thickness 
have in general tobe applied. 

Appendix 1 

Determination of the stress field which satisfies the bounda1·y conditions (20) 

From equation (26) and boundary conditions (20a), the following relation 
between A1 and A2 is obtained 

Thus the stresses can be expressed in terms of A 2 alone 
00 

T~x= -i Vö1 R2 Ja [a[A2 (e--l•lllf.R1z_ 6-l•IV~R,z) ei•xda, (Al) 
-oo 

CO 

T~z = _[ a 2 A 2 (~: e-1•1 ff. R,z - e-1•1 ff. R,z) ei. x da . (A2) 

Forz= 0 one obtains from boundary condition (20b) 

i. e. 
CO CO 

2 A ( ) (R2 ) 1 J B . 2 C bE r J x2 - C2 a 2 a R - 1 = 2 Tz z e-' • x dx = - - i ~ - -- -- - - - =- e- i • x dx . 
i n 2 n x4 + L1 x2 c2 + C4 

-
00 

-
00 (A3) 

A2(a) will be obtained by complex integration. The integrand has simple poles at 

X = i c RI ' X = - i c RI ' X = i E R2 ' X = - i c R2 ' 

where R 1 and R2 are given by equation (23). 
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For i:x < 0 the path of integration is taken to be the real axis andin the upper 
half plane a half circle whose radius is going to infinity. The value 11 of the 
integral in equation (A3) is4 ) 

11 = 2ni (Res i!; R1 +Res il; R2) = - 1 - eCR,. - _z _ eCR, • . - -- n [R2 + 1 - R 2 + 1 - l 
' ( R~ - R:) R1 R2 

From the definition of R1 and R 2 (equation (23)), one obtains 

and 

Thus 

11 = ~ __ l_[eCR1•-etR,.]. 
<:, R1-R2 

(A4) 

(A5) 

For a > 0 the path of integration is taken in the lower half plane. Bearing in 
mind that the path of integration is now described clockwise, we obtain in this 
case 

1~ = ~ 1 [e-CR1• -e-CR,•]. 
~ ' R1 - R2 

The following formula is valid for positive and negative values of <X-i · 

1 = !!._ 1 [e-E R, l•I _ e-~ R, 1•1]. 
C R1 - Rz 

The two functions A1(a) and A 2(a) are 

A -~~~ - - J ~'12(a) = ,/ [e-C R, l•I _ e-C R, l•I 
Gt2 (R2 - R1)2 y<51 

a.nd 

Appendix II 

The stTess f ormula in the limit of isotropy 

In the isotropic case, the elastic constants are given by the scheme 

.?. .?. o o 0 

.?.+2µ .?. 0 o o 
.1.+2µ 0 0 0 

µ 0 0 
µ 0 

µ 

(Aß) 

In terms of A and µ, Poisson's ratio can be expressed as 'V = A/2 (A + /t). The 
values of the parameters defined in equation ( 10) are then 

o1 = 1 , ö2 = 2 , ös = 1 , 
/l 1 µ 

.d = 2 ' C1 = -2 -1 - ' C2 = -2 • n -v n 

4) The residue of the integrand at a point x is denoted by Res x. 
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Thus, for isotropy one has 
z'=z=z. 

The equation for the stress due to a screw dislocation (equation (16)) then becomes 

ixy = ;n [ x2 + (=- C)2 - aT+<~+ ,)Z) ' (A
7

) 

which is identical with the fornrnla for the isotropic case given by DIETZE and 
LEIBFRIED [1). . 

The corresponding formula for the edge dislocation is obtained from equation 
(30) by taking the limit 

Then one finds 

The terms N ± in equation (30) are transformed jnto 

N± = [x2 - (z ± C)2
] • [x2 + (z ± C)2r2; 

and the terms lii into 

1 J e(C+z)(±C±z)+~[(±C±z}2 +(C+z}2] 82 (C+z}2(±C±z)2l 

Iij = A l 1 - A + A2 f' 
with 

A = (C + z)2 + x2. 

For i =!= j the variables C and z have opposite sign, for i = j they have the same 
sign. Introducing these expressions into equation (30) yields 

µbEx { (z-,}2-x2 (z+C}2-x2 3(C+z)2-x2} 
izx = 2 n (1-v) - [(z - C)2 + x2]2 + [(z + C)2 + x2]2 - 4 C Z [(z + C}2 + x2]3 

in full agreernent with DIETZE and LEIBFRIED's formula. 
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