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The Buckling of a Thin Plate due to the Presence 
of an Edge Dislocation 

By 

R. SrnMs 1 ), P. DELAVIGNETTE and S. AMELINCKX 

lt is shown that an edge dislocation parallel to the surface of a thin foil causes buckling 
of this foil by an angle of about () = b/t. (b = Burgers vector; t = thickness of the foil). 
The angle () depends on the position of the dislocation. lt is maximum for a dislocation 
in the middle of the foil and it tends to zero as the dislocation approaches to the surface. 
lt is shown that the buckling is responsible for the discontinuous change in contrast along 
a dislocation as observed in transmission electron microscopy. The sense of buckling which 
can be determined by means of Kikuchi lines depends on the sign of the dislocation. The 
effect therefore provides an easy means to determine the sign of edge dislocations. 

Es wird gezeigt, daß eine parallel zur Oberfläche einer dünnen Schicht liegende Stufen­
versetzung zu einer Verbiegung der Schicht um einen Winkel () = b/t Veranlassung gibt 
(b = Burgersvektor, t =Dicke der Schicht). Der Winkel() ist maximal für eine Versetzung 
in der Mitte der Schicht und strebt gegen Null, wenn sich die Versetzung der Oberfläche 
nähert. Es wird gezeigt, daß die Verbiegung für die unstetige Kontraständerung verant­
wortlich ist, die bei elektronenmikroskopischer Untersuchung entlang einer Versetzung 
auftritt. Die Richtung der Verschiebung, die sich mit Hilfe von Kikuchi-Linien bestimmen 
läßt, hängt vom Vorzeichen der Versetzung ab. Dieser Effekt kann ausgenutzt werden, um 
in einfacher Weise das Vorzeichen von Stufenversetzungen zu bestimmen. 

1. Introduction 

EsHELBY [l] has shown that a screw dislocation along the axis of a thin rod 
causes a lattice twist which may become notable in very thin rods, for instance in 
whiskers [2, 3]. The effect is due to the existence of image forces as a consequence 
of the finite size of the body. 

Also, it is easy to see intuitively that an edge dislocation in a thin platelet, 
parallel to its surface, causes buckling. lt is the purpose of this paper to estimate 
the magnitude of the effect andtopresentevidence that it leads to effectsobserv­
a ble in the electron microscope; in particular, the phenomenon explains some 
contrast effects described previously [ 4]. 

Furthermore, it will be shown how detailed information can be obtained by a 
combination of electron microscopy and diffraction. 

2. Estimate of the Angle of Buckling 

lt is easy to make an order of magnitude estimate for the angle () by considering 
the case of a pure symmetrical tilt boundary. The angle of misorientation () is 
given by b/D where bis the Burgers vector of the edge dislocation, and D the di­
stance between dislocations. Taking D = t, the thickness of the plate will yield 
an order of magnitude estimate which is not too bad if the dislocation is in the 
middle of the plate. 

1) Permanent address: K.F.A., Jülich, Institut für Reaktorwerkstoffe 
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This estimate appears justified by the observation that all along the planes, 
perpendicular to the tilt boundary and bisecting the distance between two dislo­
ca tions, the stresses Tx:z and Tyy vanish. The stress Tyx also disappears along these 
planes at a sufficiently large distance from the boundary plane [5]. Let us consi­
der now a bicrystal containing a pure tilt boundary according to the model of 
Fig. 1. There are no far reaching stresses in such a body. Let us now out out a 
platelet limited by the planes x = ± D/2. We have just seen that along these 
planes all stresses vanish; such platelets will therefore have stress-free surfaces, 
except for Tyx in the immediate vicinity of the dislocation. The platelet will be 
buckled over an angle() = b/D. 

A detailed calculation is required if the dislocation is not in the middle of the 
platelet; this is done in the next paragraph. 

1 01 j i 
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1 1 ( -
------------t----------
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Fig. 1. Diagram illustrating the relation 
between a symmetrical tilt boundary in an 
infinite solid and a platelet containing a 
single edge dislocation (full line) parallel to 

the surface 

3. Calculation of the Angle of Ruckling 

Let an edge dislocation be situated a distance ; under the surface of a plate of 
isotropic material. We ask for the angle() = 2 e (Fig. 2) through which the plate 
is bent due to the presence of the dislocation. This angle is given in terms of the 
difference Llv in displacement (in the y-direction) between the upper and lower 
surfaces: 

. Llv 
@::::::; sm0=-t . (1) 

According to Hooke's law for the case of plane stress 
ÖV 1 
öy = 2 µ {-ryy (1 -v) -v ixx}. (2) 

The problem of the stress field around a dislocation in a plate was treated. by 
DIETZE and LEIBFRIED [6]. They started with the stress field of a dislocation in 
infinite material and compensated the surface value of the Txy component of this 
stress field by an infinite series of mirror dislocations (see Fig. 3). 

The stress field due to these dislocations can be given in a closed form. The 
components Txx remaining at the two surfaces are 

with 

X= Ü: 

X= f: 

X=n!.-, 
t 

0 
{ 1 Y sinh Y } } 

•xx = K cosh Y - cos E- (~osh Y _:cos E)2 ' 

'Tf.:x = _ K 1 _ Y sinh Y 
{cosh Y + cos E (cosh Y + cos E)2} ' 

K b µ n . ~ 
=----s1n.::;,. 

2n 1 -v t 

(3) 
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Fig. 2. Buckling of thin p!ate due to the 
presence of an edge dislocation. The drawing 
illustrates the notations used. The dashed 
line is the unbm1t plate whilst the full line 

is the stress free bent plate 

Fig. 3. Some of the mirror dislocations used 
to calculate the stress field due to an edge 

dislocation in a thin platelet 

.l. 
T 

.l 1 

.J.X 

T 

.l 
T 

423 

So far, because of the symmetry of the arrangement in Fig. 3, there is no bending· 
To make the surfaces tress-free, a stress field has to be superposed which com­
pensates the surface stresses (3). This stress field is responsible for the bending. 
lt is derived from a stress function F which has to obey the bipotential equation 
LILIF = 0. This is ensured by expressing F in terms of two potential functions 
X and w. 

F = x Xx - X + (t - x) Wx + w . (4) 

As X and w are potential functions, they may be written in the form 

00 00 

x= f c(m)sinhm(:n:-X)eimYdm, w = J d(m) sinh m X eimY dm. 
-00 -00 

c(m) and d(m) are so chosen that the surface stresses (3) are compensated. In 
this way DIETZE and LEIBFRIED obtain integral expressions for X and w: 

x(X, !
00 

• 8 {sinh m (n - E)} 8 { sinh m E} smhm:n- +mn-
Y) = A t 8m sinh m n 8m sinh m n 

sinh2 m n - (m :n)2 
-00 

sinh m (n - X) Y d x cos m m, 
mn 

w(X, J
oo . h 8 { sinh m E } 8 {sinh m (:n - E)} s1n mn- +mn-

Y) = A t 8m sinh m n 8m sinh m n 

sinh2 m n - (m :n)2 
-00 

sinhm X 
X cos m Y dm, 

mn 

where A is given by A 
b µ 

2:nl-i" 

28 physica 

(5) 
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These expressions could not be integrated to obtain the stresses 2
). We could, 

however, obtain an expression for the asymptotic (y ~ oo) value of the angle e. 
According to equation (2) 

y 

Llv( Y) = vO( Y) - vt( Y) = -
1 

_!_ J {(l -v) LITyy -v Ll'l'xx} dY. 
2µ n 

0 

lntroducing for - 'l'xx the values from (3) we obtain 

tfy t[ y y ] - Llr. dY = -K - + . ; 
n xx n cosh Y - cos E cosh Y + cos E 

0 

(6) 

The only contribution to the bending is therefore contained in the first term of 
(6). According to (4) 

Tyy = Fxx =X Xxxx + Xxx + (t- x) Wxxx - Wxx• 
i.e. 

y 00 

t J A J __ m2 n2 _!___ {sinh m (n - E) + sinh m E} 
~ LJ'l'yydY=A h h ,. t (sin m n - m n) om sin m n 

0 -00 

{
sinh m n l} sin m Y d 

X + t m. 
mn mn 

This integral has to be evaluated for large values of Y. Now 
b 

lim J sin m y f(m) dm= {f(O) 
Y-oo nm 0 

a 

for ab< 0 
for ab> 0. 

sinm Y. 
For m ~ 0 the factor of --- m the above integrand approaches the value 

mn 

12 A n . ~ ( ~ - 1) = 12 A n · f ( ; - 1) . 
From equation (6) we obtain 

Llv = ~ b • 41-(1--1). J- 4 t t 

The bending angle {i) = 2 @ is then '= 6 t~ ~ (; - t) . (7) 

The average relative depth from the nearest surface is i_ = ~. Fora dislocation 
t 4 

in this position we obtain 

(8) 

2) The integrals for X and w do not converge because of the singularity of the integrands 
at m = 0. This is, however, not a serious handicap, as the expressions for Fx and Fy 
obtained by formal differentiation under the integral sign are finite and the stresses obtained 
therefrom have the correct values at the surfaces. 
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Remark 

At first glance it may, perhaps, seem strange that the bend angle for a dislocation 
in the middle of a plate is larger than the bend angle b/t for a low angle boundary 
with dislocation spacing D = t. 

One may, however, see that this result is reasonable. Bending by an angle b/t 
can be produced by cutting the plate normal to the surface and inserting a wedge 
of height t and thickness b (Fig. 4a). 

b b 

~t~t 
Fig. 4. Intuitive picture to show why the hending angle is 
somewhat !arger for a thin plate containing an edge disloca­

tion than for the corresponding tilt boundary. 

a) A triangular wedge of which the base has length bis in­
serted in the gap and produces the bending angle 61 ff b/t as 

in the tilt boundary -V-
b) A small block of thickness b and heigth t/2 is inserted. This 
is the situation valid for a platewith adislocation in the middle 
c) Displacement of the interface on deforming the wedge 
shaped insert of (a) into the block shaped insert of (b). 

Notice that the bent angle increases 

(a) (b) 

The bending due to a dislocation in the middle of the plate, on the other hand, 
is produced by cutting the plate only half way through and inserting a sheet of 
material of height t/2 and thickness b (Fig. 4b). In Fig. 4c the movement of the 
right boundary upon deformation of the inserted piece from wedge to sheet is 
indicated. One observes that the average motion in the upper half is to the right, 
in the lower part to the left. This corresponds to an increase in bend angle. 

4:. Contrast due to the Ruckling 

4.1 Non-absorbing crystals 

We will now show that the sudden change in shade observed in many electron 
micrographs of layer crystals as shown in Fig. 5 is due to the buckling effect 
described in the previous section. First, the change in 8 required to give optimum 
contrast will be estimated, andin the second place it will be shown that the angu­
lar difference between crystal blocks on both sides of the dislocation is sufficient 
to cause the required change is 8. 

Apart from a constant factor, the intensity 1 diffracted by a perfect crystal foil 
of thickness t is given, in the dynamical two-beam approximation, by the following 
expression 

(9) 

where 8 is the "interference error" ; it is a small vector measuring the distance of 
the center of gravity of the reciprocal lattice point to the Ewald sphere; t0 is the 
extinction depth. A graph of ]8 versus 8, for a typical value of t/t0 = 3, is shown 
in Fig. 6a. 

The zero's of this function, which are at the same time the minima, are given by 

81,k = ± [k2/t2 
- l/t!J1i2

, (10) 
where k is an integer. 

28* 
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Fig. 5. n) Striking discontinuous changes in transmitted intensity both sides of a dislocation in tin disulfide. (The con­
trnst of the negative has been considcrably suppressed on reproduction) 

b) a nd c) DiHraction pattern taken lcft and right of the dislocation. The pattern in (b) was taken to reveal the Kosscl­
ltlöllenstedt fringes and allows to determinc the foil thickness. The shiit of the Kikuchi lines is also shown, it is excep­

tionally !arge here because the foil was thin; this was the reason why the photograph was selected 

l'ig. 6. Diffracted am! transmitted intensity as a fnnction 
of s t0 for a crystal plate of thickness t = 3 t,, taking into 
account neither anomaJous absorption nor normal absorption 

a) diffracted intensity, 
b) transmitted intensity 
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· The maxima are determined as solutions of the equation x = tg x; for not too 

small values of 8 (or x), the solutions are approximately x = (2 k' + l)~ where 
k' is an integer, or 2 

82,/~ ± [(2 k' + 1)2/(4 t2 - 1/1~)]1/2. (11) 

The point 8 = 0 may correspond as well to a minimum as to a maximum, depend­
ing on the ratio t/t0 • 

Since all minima, except perhaps the one at 8 = 0, are zero, and since further­
more the maxima decrease in magnitude, the optimum contrast between the two 
regions will be obtained if for one region thc value of 8 corresponds to the first 
maximum, whereas in the other region the 8-values correspond to a zero. The 
smallest possible L18 value giving rise to maximum contrast corresponds thus to 
the next zero. 

Considering as a specific case t = t0 , one finds that the first maximum occurs 

for 81 t0 = + v'5 whereas the following minimum is for 82 t0 = v'3. Fora changeof 

t0 L18 = t0 (82 - 81 ) = 0.62 the contrast will be optimum. For other values of t, 
t0 L18 values of the same order of magnitude are found. 

The relation between the change in orientation () and L18 can be deduced imme­
diately from 

L18 = ()fdhkl 
or, taking for () = b/t we obtain 

t0 L18 = t0 ()/dhkl = b t0 /t dhkl . (12) 

For t0/t of order 1 and b/dhkl ,....., 1, it is clear that t0 L18 should also be of order 
unity. lt turns out that a change in 8 required for optimum contrast can easily 
occur in a foil of thickness t0 • With increasing thickness, smaller changes in 8 t0 

are sufficient to cause optimum contrast, since the minima of the curve of Fig. 6a 
become more closely spaced. However, a thickness increase also results in a de­
crease of the angle of buckling. Since the spacing of the minima goes roughly as 
l/t (for large K) and hence the t0 L18 required for optimum contrast as t. Since, 
on the other hand, the bending angle goes as l/t, the contrast will not depend 
strongly on the thickness, according to the approximation used here. 

The effect of using high-order reflections results in a decrease in dhkl and an 
increase in t0 , and t0 L18 therefore increases for the same (). One can therefore con­
clude that high-order reflections will produce a more pronounced contrast. 

Visible contrast can therefore, of course, be obtained for a large number of 
combinations of 8-values; it is sufficient that for one side of the dislocation the 
8-value corresponds approximately to zero intensity, whilst at the other side it 
gives rise to a reasonable diffracted intensity, i.e. is not too far from a maximum. 

4.2 Influence of absorption 

In thicker crystals the anomalous absorption may be important [7]. In this case 
the transmitted intensity is given approximately by the following expression [8]: 

Jt = [ COSh -;O Vl-: t(S to)2- + -v'l : t;S to)2 • sinh To ~; l :t (s to)2 J 
t ------

sin2 n -- v1 + (s to}2 
to (13) 
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t Jexp.pz 
4 

-st;, 

0 

b 

Fig. 7. Diffracted and transmitted intensity as a function 
of s t, for crvstal plate of thickness t = 3 10 taking into 
account anoillalous absorption, but not normal absorption 

·1'a) diffracted intensity, 
.V b) transmitted intensity 

where r
0 
~ 10 t

0 
is the absorption length; higher powers of t0/r0 have been neg­

lected as well as the quantity 

to 1 sto ·sin2:n_t_yl+(st
0

)2 • 

r 0 l+(st0 )
2 yt+(st0 )2 to 

lt is clear that expression (13) is asymmetrical in s, i.e. positive and negative 
s-values of the same magnitude produce quite different transmitted intensities, 
A typical curve, valid for a crystal of thickness t = 3 t0 is shown in Fig. 7 a. 
A change ins t

0 
of the order unity, in the neighbourhood of s = 0, produces maxi-

• mum contrast. 
The Fig. 7b shows the scattered intensity which is given by 

. h2 n t . 2 n t ,/ 
sm + sm - r 1 + ( 8 to)2 

r 0 y1 + (s t0 )2 t0 

ls = 1 + (s to)2 

This curve is symmetrical ins. In order to demonstrate that absorption is impor­
tant in causing the phenomenon, we observed the contrast for s > 0 and s < 0 
in both bright and dark field (1120). In the brightfield image, the same region 
(Fig. 8) is darker for both cases, whilst in the dark field image light and dark 
regions interchange. This is in accord with the curves of Fig. 7 but it would be 
difficult to explain this behaviour on the basis of the curves of Fig. 6, where no 
absorption was taken into account. 

5. Quantitative Study of the Buckling 
A detailed verification of formula (7) would require the knowledge of the foil 

thickness t, of the position of the dislocation ~, as well as a determination of the 
angular difference () and of the direction of the Burgers vector. lt is also necessary 
to verify the sense of buckling as compared to the sign of the dislocation. 

Unfortunately there is no convenient means to determine ~. Should such a 
method become available, the formula (7) would provide a means of determining 
the magnitude of the Burgers vector. 

5.1 Determination of the foil thickness 

For metals one can make use of slip traces left by moving dislocations: such 
slip traces are localized at the upper and the lower face of the foil. If the orien­
tation of the foil and the indices of the slip plane are known, the thickness t can 
be deduced from the width w of the slip trace. If <p is the angle between the normal 
to the foil and the normal to the slip plane, one has t = w tg rp. 

For layer structures this method cannot be applied, since the glide planes are 
strictly parallel to the foil plane. There is a purely electron-optical method which 



The Buckling of a Thin Plate 429 

Fig. 8. Area containing several dislocations with edge character, taken under different contrast conditions: 
81 > O; s2 < 0 

a) bright field s = s1 
b) bright field s = s, 
c) dark field s = s1 
d) dark field s = s, 

Notice that the bright and dark sides are inverted for s-values of different sign in the dark field image, but not in 
the bright field image 
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is useful in such cases. The method makes use of the so-called Kossel and Möllen­
stedt fringes [9] which are due to the fine structure of the diffraction spots des­
cribed by (9). The fine structure is best revealed when admitting a slightly non­
parallel beam of electrons, by increasing the size of the condensor aperture. The 
single Ewald sphere is now replaced by a set of Ewald spheres corresponding to 
the different incident directions, and the whole intensity distribution along the 
reciprocal lattice rod is explored. A striking example of such a pattern obtained 
for graphite is shown in Fig. 9. The relation between L18 as measured along the 
rod and L1x, the distance along the plate, is to a good approximation 

L'.18 = L1x/(drn-#- L), 

where L is the effective distance specimen-plate, and dhkl is the spacing of the 
lattice planes. This relation allows to measure the L'.18 values directly on the plate. 
lt is sometimes a good approximation to use the kinematical theory, the equation 
then reduces to 

!(8 t) ,...., sin
2 

n t~ 
' - (ns)2 • 

(14) 

The minima of this function are zero and they are equally spaced: 

L'.18 = l/t, (15) 

a determination of L'.18 for two successive fringes is thus equivalent to a thickness 
measurement. This approximation is only valid far enough from the center of 
gravity of the diffraction spot. 

In the dynamical case, the minima are no longer equally spaced, and the deter­
mination of k (in (10)) becomes necessary. This can be done by determining the 
8-values 81, 82, 8 3 corresponding to three successive minima. 

W e can then write 

1 + (81 t0)
2 = (k - 1 )2 (t0/t)2

, l 
1 + (82 t0)2 = k2(t0 /t)2 , 

1 + (83 t0)2 = (k + 1 )2 (t0/t)2 • 

When combining these three equations, one obtains 

t = y2(8~ + 8:- 2 8:)-1/2. 

(16) 

(17) 

For a uniform spacing, this formula reduces evidently to relation (15) of the 
kinematical case. 

Further one finds 2 k + 1 = (8: - 8:) t2 (18) 

and a similar relation 2 k- 1 = (8: - 8n (2, (19) 

or even 4 k = (8: - 8n t2 . (20) 

Knowing t from (17) and determining k from (18), (19) or (20) leads to a value 
for.t0 from one of the relations (16). lt should be noticed that k has tobe an integer. 
Th1s enables to reduce the error on k, since one can choose the nearest integer 
from a number of relations like (18), (19) and (20). 

In practice one may try to find first a value fort by the use of relation (15) by 
determining the spacing L18 sufficiently far from the center of gravity of the reci­
pro.cal lattice po.int, where the kinematical theory should be applicable. This can 
be Judged expenmentally if a uniform spacing is found. From t one can then pro­
ceed in the way outlined above. 
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.Fig. 9. Kossel-1\löllenstedt type fringes in a graphite flake to illustrate their usc for thickness determinations. Thc 
spacing of the fringes in the different spots is inversely proportional to the distancc from thc ccnter of thc diagrnm of 

the considcred spot. Thc crystnl plate shown has a thickness of 1650 A 

5 .2 The determination of f) in 1nagn"itttde und sign 

E'or the measurement of f) use is made of selected a-ea diffraction on both sides 
of the dislocation line. When moving the selected area across the dislocation line, 
a sudden shift LI c of the Kikuchi lines is noticed. The shift is largest for the Kikuchi 
lines parallel to the dislocation line. An example is seen in E'ig. 10. füg. 10 c 
shows the pattern at one side of the dislocation, and füg. lOd shows a similar 
pattern at the other side. The angle f) can be deduced directly from the shift 
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of the lines indicated with K: it is given by e = ~ . The measurement of L is 

usually avoided by the use of the following formula 

Llc·Ä e = , 
G. d1tkt 

(21) 

where G is the distance of the diffraction spot h k l to the center as measured on 
the plate. For the example shown, e turns out to be 1.2 x 10-a rad. The sense 
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of buckling follows directly from the sense of movement of the Kikuchi lines in 
going from one side of the dislocation to the other. This is shown schematically 
in Fig. 14. 

5.3 Deterniination of the Burgers vector in direction and sense 

The procedure used in determining the direction of the Burgers vector is based 
on the absence of contrast forg · b = 0 [10]. A practical method has been descri­
bed previously for layer structures [11]. The dislocation shown in Fig. 10, which 
refers to SnS2, is found to be pure edge. The dislocation goes out of contrast for 
a (lloO) type reflection, it is therefore concluded that it is perfect. The length of 
the shortest lattice vector having its direction in that plane is 3.64 A; this is, 
therefore, the probable value of lbl. 

In order to show that the buckling is in the sense required by the model, one 
must prove that the supplementary half plane of the edge dislocation is at the 
convex side of the foil. Making use of the one-sided nature of dislocation contrast, 
this can be done by comparing the sign of s with the image side of the dislocation. 
KELLY has applied such a procedure to the determination of the character of 
dislocation loops [12]. 

5.3.1 Determination of the sign of s 

lt is clea,r that if s = 0 for a given reflection (h k l) the Kikuchi line due to the 
same reflection will pass exactly through the center of the corresponding spot 
(h k l), which will strongly light up (Fig. ll a). 

Fig. 11. Relation between the position of a 
-diffraction spot and the position of the Ki· 

knchi line due to the same reflection: 

a) s = o. The reciprocal lattice point is on 
Ewald's sphere, if the Kikuchi line passes 

through the spot 
b) s > 0. The reciprocal Jattice point is in· 
.side Ewald's sphere if the Kikuchi Jine is 

further from the center than the spot 
-c) s < O. The reciprocal lattice point is out­
'!ide the reflecting sphere if the Kikuchi line 

is closer to the center than the spot 

1 
1 

,., 1 
K 

{a) (b) (c) 

A rotation of the lattice in such a sense that the reciprocal lattice point moves 
out of Ewald' s sphere will bring the Kikuchi lines nearer to the center of the diffrac­
tion pattern, and vice versa. Fig. 11 shows schematically the relative position of 
diffraction spot and Kikuchi lines for different situations: s has been called 
positive if the reciprocal lattice point is inside the sphere. The figure shows also 
the rotation S which turns the crystal into the Bragg condition. 

The magnitude of s follows directly from the distance x measured on the plate; 
-0ne has to a good approximation 

X.). 

8 = 2 ' dhkl# G 
(22) 
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where). is the wavelength of the electrons and x is the distance (h k l) spot-Kikuchi 
line. 

5.3.2 Determination of the image side 

In the layer lattices it is easy to obtain double images due to two reflections 
producing contrast on opposite sides of the dislocations. The real position of the 
dislocation is elearly in between. One can also pass an extinction contour over the 
dislocation; the image then changes side. lt is hence possible to determine the 
image side either by producing a double image or by comparing pictures with the 
image at different sides of the dislocation line, using surface features as reference 
marks. 

5.3.3 The sign of b 

Combining the information from 5.3.1and5.3.2, one can determine the position 
of the supplementary halfplane by reference to Fig. 12 and 13. 

The sign of s for the contrast-producing reflection tells us in which sense the 
lattice has to rotate in order to approach the Bragg condition. Suppose, for in­
stance, that in the neighbourhood of the dislocation s is positive for a reflection 
to the right of the diffraction pattern; the sense of rotation of the lattice has then 
tobe as shown by the arrow in Fig. 11 b. Fig. 12, on the other hand, shows the 
lattice rotation produced by edges and screws of both signs. 

lt is clear that the side of the dislocation where the senses of the two rotations 
coincide will be the image side. Applying this, for instance, to the positive edge 
dislocation shows that the image should be at the right. This type of reasoning 
allows to deduce the sign of the dislocation and hence the sense of the Burgers 
vector in all cases. 
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~ Fig. 12. Relation between the sense of rotation of the lattice 
planes in the vicinity of the dislocatlon and the image side. The 
arrow S indicates the sense in which the lattice is rotated into 
the Bragg condition. S has tobe deduced by the use of Fig. 11 

a) positive edge dislocation 
b) negative edge dislocation 
c) positive screw dislocation 
d) negative screw dislocation. 

The dislocation configurations are drawn as projected on 
ABCD. The images are represented as projected on ABl•'E 

of Fig. 13 

Fig. 13. Illustrating in space the meaning of Fig. 12. The edge 
dislocation e and the screw dislocation s are both shown in 

Fig. 12 projected on the plane ABCD T 
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6. Observations 

The considerations exposed above have been applied to dislocations in tindisul­
fide and tinsulfose.lenide platelets grown by sublimation. The crystals are usually 
rather perfect; isolated dislocations in undeformed regions, as required for the 
investigation, can easily be found. The crystals contain mostly ribbons, but also 
sometimes unextended dislocations. We reproduce here the observations neces­
sary to make all the required measurements. A dislocation is chosen which is 
more or less parallel to the tilt axis of the specimen holder, since this simplifies 
the reasoning. We shall describe in detail one specific example for each measure­
ment, but the experiment was made on several dislocations. 

6.1 Direction of the Burgers vector 

From the lack of contrast for a (llOO) reflection, the Burgers vector can be 
determined; it is as indicated (Fig. lOb). Obviously the dislocation is almost pure 
edge. 

6.2 Thickness of the foil 

The fringes of Fig. 5 b allow to determine the foil thickness in the particular 
case shown: t = 1.6 x 10-5 cm. 

6.3 Real position of the dislocation 

Fig. lOb shows for instance, a dislocation in double contrast with two different 
reflections operating: (1120) and (0330). By tilting it is easy to show that the 
image at the left is due to (1120) and the image at the right to (0330). Left and 
right are to be understood for an observer looking along the dislocation in the 
indicated sense. The corresponding diffraction pattern, oriented in the correct 
way with respect to the image, is shown as inset. The actual position of the dislo­
cation is somewhere in between, in particular it is possible to conclude that the 
image due to the (0330) reflection is at the right. 

6.4 Relation image side-sign of s 

From the diffraction pattern it is clear (Fig. lOe) that the Kikuchi line is further 
from the center than the spot (0330), i.e. we are in the case (b) ofFig. 11, and the 
sense of S is clockwise, as indicated. By consulting Fig. 12 it is found that the 
image will be at the right for a dislocation with supplementary half plane above 
the glide plane as in Fig. 12 a. 

6.5 Sense and magnitude of orientation difference 

Fig. lOc and lOd show the diffraction pattern immediately to the left and the 
right of the dislocation. The Kikuchi lines parallel to the dislocation, in particular, 
those indicated with arrows, shift discontinuously in passing the selection aperture 
over the dislocation. This can be judged from their position relative to the nearby 
spots. The Kikuchi line for the right part (II in Fig. 14 and 10) is clearly shifted 
to the left; i.e. we have the situation pictured in Fig. 14a. The sense of buckling 
is concave downward in agreement with the sign of the Burgers vector. Theorien­
tation difference as computed from the shift corresponds within the limits set by 
the absence of a measured value for ~ to the theoretical value. Fig. 5a illustrates 
a more striking example where the buckling was very pronounced as a consequence 
of the small value of t = 1.6 x 10-5 cm, as deduced from the Kossel-Möllenstedt 
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~ 
Fig. 14. Relation between the sense of buckling of the 
crystal plate and the relative position o! the Kikuchi lines 
in rcgion I and II, both sides o! the dislocation. F'rom their 

1 
top ff~ f top ff 

~~ 

relative position the sense o! buckling can be deduced 

boftom J c bottom 
1 ,---

ll I ll I I 11 I Jl 
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fringes (Fig. 5b). Tbe orientation difference as computed from the shift of the 
Kikuchi lines is 4.5 X 10-3 rad, whilst the maximum theoretical value for ~ = t/2 
is about 3.5 X 10-3 rad, which is evidently somewhat too small. This is probably 
due to some continuous bending, superposed on the discontinuous buckling. 

Fig. 15 shows a particularly instructive observation: a dislocation line in a cry­
stal of SnSSe. The dislocation is in the basal plane, but the surface is inclined at 
a very small angle with respect to the c-plane. The dislocation ends in the surface 
and goes gradually deeper at its other end. It is clear from Fig. 15a that as long 
as the dislocation is near to the surface there is no shade difference. Y et if the same 
contour is swept along the dislocation to the adjacent region, where the dislocation 
line goes deeper below the surface, the shade difference becomes rapidly more pro­
nounced. This is evidently in agreement with the qualitative behaviour predicted 
by the formula (7). 

Fig. 15. Dislocation entering graclually dccper into the crystal, the dislocation is in thc c-plane 
but the upper sur!ace of the crystal is slightly inclined with respect to the c-planc. ' 

a) Emergence point in the surface 
b) A small distance in the crystal; the contrast starts to become visible 
c) At a sufficient distance in the crystal to producc a markcd contrast 
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7. Conclusion 

All the observations reported here are consistent with the given picture. lt 
now becomes possible to determine the sign of the dislocations from the sense of 
buckling of the foil, i.e. by simple inspection of the sense of displacement oll Ki­
kuchi lines as the selection aperture passes over the dislocation. 

The edge character can be recognized at the shade difference. Fig. 16 'fhows 
e.g. two sets of crossing dislocations with edge character. At a simple glance one 
can deduce that the edge component of the two sets have opposite sign. On cros­
sing dislocations of set 1 the background becomes darkerwhengoing from bottom 
to top of the photograph; the reverse is true for set 2. 
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