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Abstract. We examine an alternative approach to heteroge-
neous cluster-computing in the many-core era for Earth sys-
tem models, using the European Centre for Medium-Range
Weather Forecasts Hamburg (ECHAM)/Modular Earth Sub-
model System (MESSy) Atmospheric Chemistry (EMAC)
model as a pilot application on the Dynamical Exascale En-
try Platform (DEEP). A set of autonomous coprocessors in-
terconnected together, called Booster, complements a con-
ventional HPC Cluster and increases its computing perfor-
mance, offering extra flexibility to expose multiple levels of
parallelism and achieve better scalability. The EMAC model
atmospheric chemistry code (Module Efficiently Calculating
the Chemistry of the Atmosphere (MECCA)) was taskified
with an offload mechanism implemented using OmpSs di-
rectives. The model was ported to the MareNostrum 3 super-
computer to allow testing with Intel Xeon Phi accelerators
on a production-size machine. The changes proposed in this
paper are expected to contribute to the eventual adoption of
Cluster–Booster division and Many Integrated Core (MIC)
accelerated architectures in presently available implementa-
tions of Earth system models, towards exploiting the poten-
tial of a fully Exascale-capable platform.

1 Introduction

The ECHAM/MESSy Atmospheric Chemistry (EMAC)
model is a numerical chemistry and climate simulation
system that includes sub-models describing tropospheric
and middle atmosphere processes and their interaction with
oceans, land, and human influences (Jöckel et al., 2010). It
uses the second version of the Modular Earth Submodel Sys-
tem (MESSy2) to link multi-institutional computer codes.
The core atmospheric model is the 5th generation European
Centre for Medium Range Weather Forecasts Hamburg gen-
eral circulation model (ECHAM5, Roeckner et al., 2003,
2006).

The EMAC model runs on several platforms, but it is
currently unsuitable for massively parallel computers, due
to its scalability limitations and large memory requirements
per core. EMAC employs complex Earth-system simulations,
coupling a global circulation model (GCM) with local phys-
ical and chemical models. The global dynamical processes
are strongly coupled and have high communication demands,
while the local physical processes are inherently independent
with high computation demands. This heterogeneity between
different parts of the EMAC model poses a major challenge
when running on homogeneous parallel supercomputers.

We test a new approach for a novel supercomputing archi-
tecture as proposed by the DEEP project (Eicker et al., 2013,
2015; Mallon et al., 2012, 2013; Suarez et al., 2011), an in-
novative European response to the Exascale challenge. In-
stead of adding accelerator cards to Cluster nodes, the DEEP
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project proposes to use a set of interconnected coprocessors
working autonomously (called Booster), which complements
a standard Cluster. Together with a software stack focused on
meeting Exascale requirements – comprising adapted pro-
gramming models, libraries, and performance tools – the
DEEP architecture enables unprecedented scalability. The
system-level heterogeneity of DEEP, as opposed to the com-
mon node-level heterogeneity, allows users to run applica-
tions with kernels of high scalability alongside kernels of
low scalability concurrently on different sides of the system,
avoiding at the same time over- and under-subscription.

The Cluster–Booster architecture is naturally suited
to global atmospheric circulation–chemistry models, with
global components running on the Cluster nodes exploiting
the high-speed Xeon processors and local components run-
ning on the highly parallel Xeon Phi coprocessors. By bal-
ancing communication vs. computation, the DEEP concept
provides a new degree of freedom, allowing us to distribute
the different components at their optimal parallelization.

2 Overview of application structure

The EMAC model comprises two parts, the dynamical base
model ECHAM, using a non-local, spectral algorithm with
low scalability, and the modular framework MESSy, linking
local physical and chemical processes to the base model, with
high scalability. While the number of processors used for the
base model is limited by the non-local spectral representation
of global dynamical processes, local physical and chemical
processes described by framework submodels run indepen-
dently of their neighbours and present very high scalability.

2.1 Phases

The ECHAM base model runs in parallel in the distributed-
memory paradigm using the Message Passing Interface
(MPI, Aoyama and Nakano, 1999) library for communica-
tion; the MESSy framework inherits the parallel decompo-
sition defined by the base model. While ECHAM has been
shown to be able to exploit the shared-memory paradigm
using the Open Multi-Processing (OpenMP, 2015) library
(Dagum and Menon, 1998), no such effort had been under-
taken for the MESSy model so far.

It is, however, currently not possible to delegate the whole
MESSy subsystem to full multi-threaded execution as some
physical processes are naturally modelled in a column-based
approach, and are strongly dependent on the system states
at their vertically adjacent grid points. The implementation
of submodels simulating these processes consequently relies
on the column structure inherited from the base model, e.g.
sunlight intensity at lower grid points depending on the ab-
sorption at higher grid points, and precipitation depending on
the flux of moisture from vertically adjacent grid cells.

Figure 1. Phases of EMAC. Green phases run on the Cluster; blue
phases run on the Booster.

Describing gas-phase chemical kinetics, the MESSy
MECCA submodel (Sander et al., 2011) executes indepen-
dently of its physical neighbours and is not limited by vertical
adjacency relations. As more than half of the total run time is
spent in MECCA for a typical model scenario, it seems ad-
equate to concentrate on the MECCA kernel with strong al-
gorithmic locality and small communication volume per task.
As sketched in Fig. 1 the current implementation of MECCA,
developed in the DEEP project, is delegated to the Booster
using a task-based approach, while both ECHAM and the re-
maining MESSy submodels are executed on the Cluster in
the distributed-memory paradigm.

2.2 Scalability dominant factors

Implementing a spectral model of the dynamical state of the
atmosphere, the ECHAM phase comprises six transform and
six transposition operations in each time step. The data in
memory for each time step (data size scales with the square
of the model horizontal resolution) are transposed in an all-
to-all communication pattern, and this phase is dominated by
network bandwidth.

Figure 2 displays one model cycle traced with Ex-
trae/Paraver (Extrae, 2015; Paraver, 2015) starting with the
end of the grid-point calculations of the last time step cal-
culated – in which most processors are already idle (orange)
due to load imbalance and waiting for process 14 (blue) to
finish running. This is followed by the transpositions in the
beginning of a new time step, and Fourier and Legendre
transformations (magenta), which execute simultaneously, as
further analysis showed. After the transpositions a short in-
terval with all processors running (blue) can be identified
with the time-step integration in spectral space, followed by
the inverse transformations and transpositions and transport
calculations in ECHAM.

While the pattern described so far repeats towards the end
of the displayed interval, the major fraction of the time step is
spent without communication, running (blue) or waiting (or-
ange) in calculations in MESSy in grid space. The MESSy
phase comprises some 30 submodels that are tightly cou-
pled by exchanging the atmospheric observables using global
variables. Investigations during the first phase of the project
determined the load imbalance visible in Fig. 2 to be caused
by chemical processes computed in the MECCA submodel.

The observed load imbalance is one of the main factors de-
termining application scalability. It is caused by an adaptive
time-step integrator solving a system of differential equa-
tions. As the stiffness of these equations representing pho-
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Figure 2. Paraver trace of major processor usage of one time step.
Time is along the horizontal and each bar corresponds to a separate
CPU core. Blue colour depicts computation; orange corresponds to
idle time due to load imbalance. The grid-space transpositions and
Fourier and Legendre transformations are shown in magenta.

tochemical reactions varies by up to 2 orders of magnitude
due to changes in the intensity of sunlight, the adaptive inte-
grator demands varying amounts of run time accordingly.

In the MECCA phase the algorithmically complex adap-
tive time-step differential equation integrator operates on
variables representing chemical concentrations of a total data
size of the order of a few kilobytes per grid point. Yet, as ob-
served using Scalasca (Scalasca, 2015), this phase consumes
the major proportion of the total execution time (76 %), and it
is compute-bound and an obvious candidate for offloading to
accelerators. It should be noted though that in a conventional
architecture, accelerating this highly parallel phase will not
eliminate the load imbalance.

To test the model scalability out-of-the-box, the EMAC
application has been ported to the JUDGE cluster at the
Jülich Supercomputing Centre (JSC), and a representative
benchmark with a horizontal resolution of 128 grid points
in the longitudinal direction and 64 grid points in the latitu-
dinal direction with 90 vertical levels and a spin-up period of
8 simulated months has been compiled, frozen, and packaged
to be used for measurements. Table 1 details the experimental
set-up for the results shown in this section. The default E5M2
KPP chemistry batch option, along with model namelist
set-up (NML_SETUP) E5M2/02b_qctm, without dynam-
ics nudging and with the diagnostic submodels D14CO,
DRADON, S4D, and VISO switched off, is used through-
out this work. All disk output channels were turned off for
timing purposes.

The EMAC strong scaling was benchmarked with differ-
ent numbers of processors on JUDGE in order to determine
the run-time behaviour of the total application. As shown
in Fig. 3, the application scales up to 384 processes (16
nodes× 24 MPI processes each); at higher numbers, the per-
formance decreases. Parallel execution speed is determined
by the balance of three factors: computation, communica-

Table 1. Experimental set-up for JUDGE scalability test out-of-the-
box.

Number of columns 8192 columns with 90 levels

Number of grid points 737 280 grid points
Number of chemical species 139 species in 318 reactions
Spectral resolution T42L90MA

No. of nodes

t 
da

y
-1

Figure 3. Wall time for 1 simulated day vs. the number of nodes on
JUDGE.

tion, and load imbalance. The benchmarking set-up for the
JUDGE cluster can be seen in Table 2. While the compu-
tational resources increase with additional processors and
therefore increase the application performance, communica-
tion demands diminish the positive effect of the additional
processors. Additionally, increasing the granularity of the to-
tal workload also increases the load imbalance.

While the number of processors used for the distributed-
memory part of the code is limited by the scalability of the
non-local representation of global dynamical processes in
ECHAM, the local processes in MESSy running indepen-
dently of their neighbours scale very well. The MESSy sub-
system has not been designed for multi-threaded execution,
though, and contains non-local code due to characteristics
of the physical processes and algorithmic design decisions.
Some physical processes are naturally modelled in a column-
based approach, because they are strongly dependent on the
system states at vertically adjacent grid points, e.g. sunlight
intensity at lower grid points depending on the absorption at
higher grid points, and precipitation depending on the flux
of moisture from vertically adjacent grid cells. Sub-models
simulating these processes consequently rely on the column
structure implemented in the current model.

In the existing distributed-memory parallel decomposi-
tion, the three-dimensional model grid is split horizontally
using two run-time parameters, setting the number of pro-
cesses in the latitudinal and longitudinal directions. As work
is distributed independently for each direction, a rectangular
decomposition is obtained. In ECHAM5, two such rectangu-
lar sets of grid points, symmetric with respect to the Equator
and balancing the load distribution between the Earth’s hemi-
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Table 2. System set-up details for the analysis done on the JUDGE
system.

Backend compiler version Intel 13.1.3

MPI run-time version Parastation/Intel MPI 5.0.27
Compilation flags -O3 –fp-model source –r8 –align all
MPI processes per node 24

Figure 4. Column-maximum MECCA kernel execution wall time
in microseconds for a single time step. The adaptive time-step inte-
grator shows a non-uniform run time caused by stratospheric pho-
tochemistry and natural and anthropogenic emissions.

spheres, are assigned to one processor. Further, the first trans-
position in the dynamical core reorders the variables assigned
to a processor to rectangular stripes extending along the full
latitudes. Assigning the two run-time parameters mentioned
above so that the rectangular sets are elongated in the latitu-
dinal direction reduces the inter-processor communication in
the first transposition.

The physical load imbalance, caused by photo-chemical
processes in the lower stratosphere and natural and anthro-
pogenic emissions (lightning, soil bacteria, fuel combustion–
motor vehicles, industrial, and utility), appears in the run
time spent for each grid point when examining the bench-
mark calculations. In Fig. 4 the maximal MECCA kernel ex-
ecution wall time for one grid point in each column differs
by up to a factor of 4. The load imbalance is caused by the
adaptive time-step integrator solving the differential equa-
tions that describe the chemical equations computed in the
MECCA submodel.

At high levels of parallelization, the load imbalance be-
comes a limiting factor, and the factors determining scala-
bility in absolute numbers in Fig. 5 are both communica-
tion and computation. For the ECHAM phase (blue), when
scaling to beyond eight nodes, the communication demands
of the underlying spectral model involving several all-to-all
communication patterns start to dominate. Computing time
for MESSy is still decreasing and the computing time for

Figure 5. Run time of each phase of EMAC, when running on
MareNostrum 3.

Figure 6. Percentage of run time of each phase of EMAC, when
running on MareNostrum 3.

MECCA decreases more strongly than MESSy (note the log-
arithmic scale and the distinction of MECCA from MESSy).
For reference, the MareNostrum 3 heterogeneous compute
nodes each have 2× 8 CPU cores (MPI) and 2× Xeon Phi
accelerators.

In Fig. 6 the point at which communication and computa-
tion require equal times around 8 nodes is clearly apparent;
this ultimately limits the maximum number of cores that can
be used with high efficiency and 16 nodes (equivalent to 256
cores) are commonly used in production runs of the EMAC
atmospheric model as a scientific application to balance effi-
ciency and total required wall time.

3 Model developments

3.1 Intranode taskification

The EMAC model atmospheric chemistry code (MECCA)
was taskified using OmpSs (Bueno et al., 2011, 2012; Duran
et al., 2011; Sainz et al., 2014) directives. OmpSs allows the
user to specify inputs and outputs for blocks of code or func-
tions, giving enough information to the Nanos++ run-time
system to construct a dependency graph. This dependency
graph reflects at all moments which tasks are ready to be
executed concurrently, and therefore the programmer does
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not have to explicitly manage the parallelization. The con-
cept of tasks and task dependencies has also been adopted
in the OpenMP 4.0 standard (OPENMP 4.0, 2013). Since
in MECCA each grid point is computed independently of
its neighbours, this part of the code is in principle embar-
rassingly parallel, with no communication or inter-task de-
pendencies involved. The MECCA submodel was refactored
through the creation of computational kernels for intran-
ode parallelization with shared-memory tasks. All changes
are in the automatically generated MESSy MECCA KPP
source code and no additional changes are needed in the
MESSy submodel interface layer (SMIL) or in the core layer
(SMCL). Since the source is automatically generated, the
changes have to be propagated to the generator after the KP4
mechanism runs (applied in order to remove the indirect in-
dexing and expand the original KPP code by an additional
dimension to enable a better performance due to better cache
usage). The propagation is still a work in progress and falls
outside the scope of this paper.

The new integration subroutine performs identical func-
tions to the kpp_integrate subroutine but on unique elements:
!$OMP TARGET DEVICE(SMP) COPY_IN(k,

temp, press, cair, khet_st, khet_tr,
jx, time_step_len, atol, rtol, icntrl,
rcntrl) COPY_INOUT(conc)
SUBROUTINE kpp_integrate_kernel (k,

conc, temp, press, cair, khet_st,
khet_tr, jx, dt, atol, rtol, icntrl,
rcntrl)

The statements COPY_INOUT and COPY_IN refer to the
OmpSs specification and declare memory dependence and
declare task dependencies. These dependencies are used by
the Nanos++ run-time system to construct a dependency
graph which ensures that the tasks are executed concur-
rently when their dependencies are met and there are free
threads. The OmpSs pragma targets symmetric multipro-
cessing (SMP), symmetric multiprocessor system hardware
and software architecture where each identical processor unit
connects to a single, shared main memory and has full access
to all I/O devices.

The new version of EMAC, running ECHAM with MPI
processes and MECCA with shared-memory OmpSs tasks,
outperforms the old EMAC using pure MPI, and continues
to scale beyond the region where the original implementa-
tion scaling performance plateaus. This can be seen in Fig. 7,
which shows the performance using multi-threading on the
DEEP Cluster.

3.2 Internode taskification

In DEEP, OmpSs has been extended to support offloading
tasks to remote nodes (Beltran et al., 2015). This mimics the
behaviour of other accelerator APIs that move data from the
host to the device, compute in the device, and return the re-
sults to the host. However, OmpSs adds two very important

Figure 7. Performance of OmpSs threading in the DEEP Cluster.

features: (i) it allows offloading to remote nodes, not just
locally available coprocessors/accelerators, which is a key
functionality to effectively use the Booster; and (ii) it allows
use of the Booster as a pool of coprocessors, so tasks can be
offloaded to any Booster node with enough free cores. The
latter enables one to eliminate the load imbalance caused by
sunlight gradients in MECCA. The second source of imbal-
ance by heterogeneous reactions is also automatically allevi-
ated by the dynamical load balance using the massive paral-
lelization in the Booster. Our proposed solution is agnostic to
the specific origin of load imbalance in the chemistry calcu-
lation.

In a shared-memory taskification the data are already
shared between threads, and no memory copies are neces-
sary. However, in DEEP, to leverage the Booster, these data
have to be copied to the Booster nodes. Keeping that in mind,
the new task-based MECCA implementation was optimized
and the memory and network footprint of the distributed-
memory offloading were reduced by 3 orders of magnitude.
To minimize the memory footprint for offloaded tasks, the
number of computational grid elements issued to MESSy is
further split into individual elements for each task, by rear-
ranging the grid-point arrays in each time step to implement
data locality at the grid-point level, resulting in a reduction
of the total memory footprint from 2.7 MB down to 6.3 KB
for each task. This was the result of refactoring both the data
and code structures in MECCA.

In order to create multiple threads integrating the chemi-
cal equations simultaneously, all data describing the state of
a single grid point have been identified and separated into lo-
cal variables. Using these variables an integrator kernel has
been created that can be offloaded onto threads running on
the main processor or hardware accelerators. The integrator
kernel needs the variables describing the local state of the
atmosphere and the integrator parameters defining the solu-
tion of the chemical equations. As the chemical mechanism
is compiled by the Kinetic PreProcessor (KPP) (Damian et
al., 2002), some module variables contain the data of a set
of grid points that is accessed using the index K inside the
integrator. In order to maintain the code for the integration of
different chemical mechanisms created by the KPP compiler,

www.geosci-model-dev.net/9/3483/2016/ Geosci. Model Dev., 9, 3483–3491, 2016



3488 M. Christou et al.: EMAC Earth system model on heterogeneous systems

these input variables are passed in their original size together
with the column grid-point index K:
!OMP TASK FIRSTPRIVATE (k) INOUT (conc

(k, :) ) IN (temp, press, cair, khet_st,
khet_tr, jx, time_ step_len, atol, rtol,
icntrl, rcntrl) ONTO ()

The keywords INOUT and IN refer to the OmpSs spec-
ification and declare task dependencies. ONTO sets the of-
fload target – left blank it targets any available accelerator
device. The input arrays have been reduced in the dimen-
sion of NBL (see below), and now carry the memory of
a single grid point. The only two-dimensional array left is
conc, and only one slice (k,:) is passed to and from contain-
ing the concentrations of all chemical species. Prior to pass-
ing each element all two-dimensional arrays above are trans-
posed in the outermost dimension, to have sequential mem-
ory regions, as in the Fortran language specification. The
compiler directives are implemented as pragmas (comments
in the source code), automatically controlled with definitions
at compile time (being invoked only if SMP/Mercurium is
present); thus, no additional user input is required. The kernel
data sizes depend on parameters in the EMAC environment
NBL=KPROMA×NLEV. The block length NBL corre-
sponds to the vector length used in the ECHAM base model
for grid-point calculations. A block in ECHAM comprises
all grid points in a slice of the model grid extending along
a virtual longitude of length KPROMA and all model levels
NLEV. KPROMA is a run-time parameter and NLEV corre-
sponds to the model vertical resolution. The vector length in
the integrator kernel is defined by the user based on the ca-
pabilities of the hardware at compile time. The total size of
data available to a single shared-memory task depends on the
KPP control parameters and number of species (NSPEC). As
an example, using the benchmark parameters for the chemi-
cal mechanism, each task has access to 2.7 Mbytes of shared
main memory.

When offloading tasks, to maximize massive paralleliza-
tion, the parameter NBL is reduced at run time to NBL= 1,
by redefining the grid-point arrays, resulting in a total mem-
ory footprint of just 3588 bytes for each task. At the bench-
mark resolution of T42L90MA a total number of 737 280 in-
dependent tasks is generated in each time step, resulting in
a total data size of 2.5 Gbytes. Creating the tasks requires all
this memory to be transferred from the Cluster to the Booster.

At a typical parallelization of 256 processes for the less-
scaling spectral parts of the model, each MPI process cre-
ates NBL= 2880 tasks and transfers 9.9 Mbytes per process
in each simulation time step. The data returned from the
OmpSs tasks are smaller in size as they only comprise the
concentrations of each chemical species in the CONC array.
For the benchmark chemical mechanism with NSPEC= 139
this amounts to 1112 bytes per task. The corresponding total
amount of data per time step is 782 Mbytes, with each MPI
process receiving 3.0 Mbytes.

Additionally, the distributed-memory offloading code was
redesigned to exploit shared memory within the Xeon Phi
many-core processors by nesting an OmpSs shared-memory
region within Cluster-to-Booster tasks encompassing a vari-
able, run-time-defined number of individual grid-point cal-
culations. The run-time parameter can be tweaked to change
the total memory required by the number of grid points per
task to fit within the device shared memory, to minimize run-
time overhead (avoiding many tasks spawned over the net-
work, which has a huge penalty). Thus, the number of tasks
to be sent to the Booster can be controlled and optimized for
each architecture, and host-specific configuration allows for
optimum task size based on bandwidth, reducing task com-
munication overheads.

With this approach, the specifics of the DEEP system ar-
chitecture, and in particular the hardware present in MIC
coprocessors, are exploited by massively parallelizing the
chemistry calculations at the grid-point level and offload-
ing to the Booster, exposing a significant amount of thread
parallelism. At the same time the load imbalance observed
in MECCA is automatically alleviated through OmpSs’ dy-
namic load balancing by selecting a sufficiently fine task size
and decoupling the model-domain location of the grid point
from the task execution on the physical CPU.

3.3 Kernel refactoring

The computational kernel of MECCA conceptually accesses
several single elements of the global arrays describing the
state of the atmosphere. In order to create data locality, in
a first step the module variables used in the current ver-
sion of MECCA to represent the model state were refac-
tored within the mecca_physc function to be passed explic-
itly to the kpp_integrator routine that computes the chemical
equations of one vector of grid points. Subsequently, to in-
crease memory adjacency, some fields were transposed from
the memory order optimized for vectorization along longi-
tudes as given by the ECHAM core model to arrays with
adjacent elements representing chemical concentrations and
reaction rate constants. In a third step, the computation of
the equations of a single grid point were encapsulated in a
new kpp_integrator_kernel function that calls the functions
update_rconst and integrate, which are created automatically
by the KPP compiler. This innermost routine is called in a
loop over all grid points in a vector along the virtual longi-
tude defined by the ECHAM infrastructure:
DO k = 1, vl_glo
CALL kpp_integrate_kernel (conc (:,

k), temp (k), press (k), cair (k),
khet_st (:, k), khet_tr (:, k), jx (:,
k), time_step_len, atol, rtol, icntrl,
rcntrl, wtime (k))
END DO
By maintaining the interfaces both to the MESSy infras-

tructure and the code implementing the KPP integrator, the
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Figure 8. Time per simulated day in DEEP using a pure MPI ap-
proach, and a theoretical performance with offloading to Xeon Phi,
based on the metrics collected on MareNostrum 3. The theoretical
MPI+OmpSs offload data are based on a fixed configuration on the
Cluster using eight nodes and scaling the number of Booster nodes.

changes to the EMAC code base were kept minimal, and a
transfer of the changes to other MESSy submodels using the
KPP integrator should be feasible.

4 Attainable performance

At the time of writing this paper, the DEEP Booster is in
the bring-up phase, and is not available to users. In order
to project the performance of the full DEEP system, Xeon-
based measurements on the DEEP Cluster were combined
with Xeon Phi-based measurements on MareNostrum 3. The
“Pure MPI” nominal time on the DEEP Cluster for all phases
(red line), the time for each phase, and the theoretical perfor-
mance when offloading to the Booster are shown in Fig. 8.
The DEEP Cluster reference data weighted by the relative
factors for each phase derived from the metrics measure-
ments exhibit a performance maximum for the base model
(ECHAM) and MESSy (excluding MECCA) at eight nodes
(light blue line), representing a good estimate for the optimal
parallelization of that phase on the Cluster. This estimate of
375 s per simulated day for the low-scaling Cluster phases
was used to extrapolate the attainable performance (green
line), merging this result at eight nodes, with the Xeon Phi
data retrieved from MareNostrum 3, where benchmarks us-
ing one node had been run with varying numbers of process-
ing elements within one Xeon Phi processor.

While the number of Booster nodes required to attain simi-
lar performance to the original distributed-memory based im-
plementation corresponds to regular accelerator architectures
with individual boosters directly attached to cluster nodes,
the projected DEEP performance (green line) scales beyond
the optimal performance achieved so far. The EMAC atmo-
spheric chemistry global climate model seems therefore well
suited to exploit an architecture providing considerably more
hardware acceleration than provided by regular systems. To
find the attainable performance time Tattainanle when running
the ECHAM+MESSy on the Cluster and MECCA on the
Booster, varying the number of Booster nodes, the following
equation is used:

Tattainable = T min
ECHAM+MESSy+ T Booster

MECCA.

The projected attainable performance that outperforms the
pure-MPI conventional cluster paradigm at higher core count
(depicted here as the number of Booster nodes, while keep-
ing the ECHAM/MESSy MPI part on eight Cluster nodes
for optimal performance T min

ECHAM+MESSy) is also shown in
Fig. 8.

5 Conclusions

The ECHAM/MESSy Atmospheric Chemistry (EMAC)
global climate model is used to study climate change and
air quality scenarios. The EMAC model is constituted by a
non-local dynamical part (ECHAM) with low scalability, and
local physical (MESSy) and chemical (MECCA) processes
with high scalability. The model’s structure naturally suits
the DEEP architecture using the Cluster nodes for the non-
local part and the Booster nodes for the local chemistry pro-
cesses. Different implementations of the code’s memory and
workload divisions were developed and benchmarked to test
different aspects of the achievable performance on the pro-
posed architecture. The use of the OmpSs API largely frees
the programmers from implementing the offloading logic
and, given that EMAC is developed and used in a large com-
munity working on all aspects of the model, can facilitate
adoption of the concept in the MESSy community.

The chemistry mechanism was taskified at the individual
grid-point level using OmpSs directives. The chemistry code
was refactored to allow for memory adjacency of vector el-
ements. The OmpSs taskification with remote offload allows
for massive task parallelization and the implementation of
optional two-stage offload to control Cluster–Booster task
memory size and optimum bandwidth utilization.

The computational load imbalance arising from a photo-
chemical imbalance is alleviated at moderate parallelization
by assigning grid points with differing run times to each pro-
cess and distributing the load over all processes. Due to the
physical distribution of sunlight this load balancing does not
require an explicit algorithm at moderate parallelization; in-
stead, the implicit assignment of the model grid in rectan-
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gular blocks suffices for this purpose. At higher numbers of
processors this implicit load-balancing decreases and the re-
sulting load imbalance has to be solved by active balancing.
The dynamic scheduling provided by the OmpSs run-time
system balances the computational load without a possible,
but expensive, prediction for the current time step.

With these approaches, the specifics of the DEEP system
architecture, and in particular the hardware present in MIC
coprocessors, can be exploited by massively parallelizing the
chemistry calculations at the grid-point level and offloading
to the Booster, exposing a significant amount of thread par-
allelism. At the same time the load imbalance observed in
MECCA will be automatically alleviated through dynamic
load balancing by minimizing the individual task size to one
grid box and decoupling the model-domain location from the
task execution on the physical CPU, and transferring it to any
available core on the Booster.

Benchmark projections based on available hardware run-
ning the DEEP software stack suggest that the EMAC model
requires the large numbers of Xeon Phi accelerators avail-
able in the DEEP architecture to scale beyond the current op-
timal performance point and exploit Amdahl’s law with the
highly scalable grid-point calculations while capitalizing on
the high performance and fast communication for the spec-
tral base model on Intel Xeon processors.

In the longer term, when the optimal speedup of the chem-
ical kinetics computation is approached, the overall parallel
speedup of EMAC will be limited by the remaining non-
accelerated submodels. To achieve further speedup, addi-
tional computationally expensive submodels like the aerosol
submode GMXe could be addressed. GMXe is column-
bound and calls KPP up to four times during one time step
(for grid-/subgrid-scale liquid/ice clouds), with load imbal-
ance caused by the distribution of clouds over the model do-
main. In principle, the MECCA implementation is directly
applicable to the case of SCAV. The actual performance gain
would be dependent on the exact set-up and remains to be
tested.

The changes proposed in this paper are expected to con-
tribute to the eventual adoption of MIC accelerated architec-
tures for production runs, in presently available implementa-
tions of Earth system models, towards exploiting the poten-
tial of a fully Exascale-capable platform.

6 Code availability

The Modular Earth Submodel System (MESSy) is continu-
ously further developed and applied by a consortium of in-
stitutions. The usage of MESSy and access to the source
code are licensed to all affiliates of institutions which are
members of the MESSy Consortium. Institutions can be-
come a member of the MESSy Consortium by signing the
MESSy Memorandum of Understanding. More information
can be found on the MESSy Consortium website (http://

www.messy-interface.org). Changes to the source code to
implement system-level heterogeneous offloading are cur-
rently specific to the Mercurium compiler, Nanos++ run
time, and proprietary Parastation MPI, and are hosted on the
DEEP project version control repository.
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