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GRAPHITIC MATRIX MATERIALS
FOR SPHERICAL HTR FUEL ELEMENTS

RESULTS OF MATERIAL DEVELOPMENT
AND IRRADIATION TESTING

Cataldgue of Pictures and Tables

by
R.-E. Schulze, H.A. Schulze, W. Rind

" ABSTRACT

The present report comprises the essential results of material development
and irradiation testing of graphitic matrix materials for spherical HIR
fuel elements and completes the documentation of the irradiation data for
20 matrix materials (Jul-1702).

The main emphasis is given to the matrices A3-3 (standard matrix) and

A3-27 (matrix with synthesized resin), both of which are being used as
structural materials for the fuel elements of the AVR and THTR reactorgt)ln
addition, comparisons are made between 18 A3-variants and the standard
matrix A3-3, which show that three of the variants may be considered as a
further potential for use. Moreover, the possibilities for HTR fuel elements
which are opened up by the introduction of a new technology, warm moulding,
are also illustrated.

The results described were obtained within the framework of the HTR project
"Hochtemperaturreaktor-Brennstoffkreislauf” (High-Temperature Reactor Fuel
Cycle) involving the Gesellschaft fiir Hochtemperaturreaktor-Technik mbH,
Hochtemperaturreaktor-Brennelement GmbH, Hochtemperatur-Reaktorbau GmbH,
Kernforschungsanlage Juilich GmbH, NUKEM GmbH and Sigri Elektrographit GmbH/
Ringsdorff-Werke GmbH. The project is sponsored by the "Bundesministerium
fiir Forschung und Technologie" (Federal Ministry for Research and Technology)
and by the State of North-Rhine/Westphalia.

* for AVR fuel elements: A3-3 and A3-27, for THTR fuel element production: A3-3
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INTRODUCTION

14

A prerequisite for the introduction of high-temperature reactors (HTR) is
the provision of adequate test results for spherical fuel elements -and their
cbmponents, coated fuel particles and graphitic matrix.

A comprehensive programme has been carried out for the development and

irradiation testing of graphitic matrix materials. The development of
materials was performed by NUKEM/HOBEG, Hanau, while irradiations took place

in

the High Flux Reactor (HFR) Petten, the Netherlands, as part of the joint

DRAGON-KFA-EURATOM-RCN/ECN Programme ).

The most significant results of this materials programme are as follows:

1.

The development and irradiation testing of graphitic matrix materials have

"~ furnished the standard matrix A3-3 which is suitable as a structural mate-

rial for HTR’fuel elements. It is being used for the elements of the AVR**)
and the THTR***) reactors and has been proved successfully in AVR reactor
operation. |

The development of variants of the standard matrix with the objectives:

- enlargement of the raw material base

- simplification of fabrication

- improvement of product properties

and the irradiation testing of 18 of these variants have furnished.the ma-

“trix with synthesized resin A3-27 which is also suited for use as a struc-

tural material for fuel elements. Elements fabricated with this material
are already being tested in AVR reactor operation. Three further variants
of the standard matrix (A3-6, A3-5 and A5-2) may be considered as a poten-
tial for technological use.

. Influences by raw material, fabrication and irradiation parameters on ma-

terial properties and their changes under irradiation could be determined.

“Their knowledge enables a good understanding of the material behaviour.

*) Partners involved: OECD-DRAGCON Project, Dorchester, Dorset, England;
Kernforschungsanlage Jilich GmbH; EURATCM; Stichting Reactor Centrum,
Petten, the Netherlands; Stichting Energiecnderzoek Centrum, Petten,
the Netherlands. ‘ '

% N
Arbeitsgemeinschalft Versuchsreaktor GmbH

%% )

Thorium High-Temperature Reactor
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The ﬁresent report illustrates essential results of material development and
irradiation by means of figures and tables, incorporating the knowledge of
materials obtained and irradiation experience acquired.

The main empHasis is given to the matrix materials A3-3 and A3-27,
which are being used as structural materials for AVR fuel elements (A3-3
and A3-27) and THTR fuel element production (A3-3).

In addition, comparisons are made between all variants and the standard

- matrix, using the falling strength*);-corrosion raték)and irradiation be-
hayiour as criteria. Apart from the matrix with synthesized resin A3-27,

the materials A3-5, A3-6 and A5-2 have proved to be of technological interest.
Compared with the standard matrix they exhibit at least 40 % higher falling
strengths and up to 45 % lower corrosion rates along with sufficiently good
irradiation behaviour. '

#).Definition see page 46
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2 GRAPHITIC MATRIX FOR SPHERICAL HTR FUEL ELEMENTS

Application

The graphitic matrix constitutes the structural material for the spherical
fuel elements of high-temperature reactors. In the inner fuel zone of the
elements the matrix serves as a homogeneous envelopment for the coated fuel
particles (Figure 2.1). This fuelled zone has a diameter of 50 mm and is
enclosed in a 5 mm thick fuel-free shell. The same matrix material is used
for the inner and outer zones of the elements,

Two different matrix materials are currently being applied. The standard
matrix A3-3 has been successfully tested for some time already in AVR reactor
operation., This material is also used for fuel e]emenfs of the THTR reactor.
A further material being tested in the AVR reactor is the matrix with synthe-
sized resin A3-27 developed more recently as a variant of the standard matrix.

Tasks and Requirements

7

:

The graphitic matrix has to fulfill a number of essential tasks in the fuel
element, from which the general material requirements are derived (Figure
2.2).

The matrix in spherical HTR fuel elements

- acts as a moderator for the fission neutrons, with the carbon density ’
being of essential influence; ’

- performs heat transfer from the coated fuel particles to the surface

- of the fuel element and must therefore exhibit a good thermal con-

ductivity;

- must guarantee protection against external forces, to which the fuel
element is subjected in the core, and must therefore exhibit a .high
mechanical strength.

Beyond these requirements closely coupled to the tasks of the matrix the
following features are of essential significance:

1



good resistance to corrosion caused by impurities in the coolant gas,

high dimensional stability during irradiation with fast neutrons to
ensure the pneumatic transfer of fuel elements in the fuelling system.



Application of Graphitic Matrix
in Spherical HTR Fuel Elements

Structural material for the fuel elements of the AVR and THTR
reactors

- Fuelled zone:

Graphitic matrix used
as a homogeneous
envelopment of the
coated fuel pariicles

Fuel-free zone:

Graphitic matrix used as a shell
of the fuel element

Used in AVR fuel elements: ”g
— Standard matrix A3-3
— Matrix with synthesized resin A3-27

Provided for THTR fuel elements:
— Standard matrix A3-3

2.1
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Tasks of Graphitic Matrix in
Spherical HTR Fuel Elements

Moderation of fission neutrons

Heat transfer from the coated particles
to the surface of the fuel element

Protection of the coated pa&icles against
external forces

Demands on the Graphitic
Fuel Matrix

High density

High thermal conductivity
High mechanical strength
Low Young’s modulus
Good corrosion- resistance

Small thermal expansion

“connected with low anisotropy

'Good dimensional stability under

irradiation with fast neutrons

Nuclear purity

2-2 .




3. PROGRAMME FOR THE DEVELOPMENT AND IRRADIATION
TESTING OF GRAPHITIC MATRIX MATERIALS
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Material Development
Fabrication Method

Irradiation Experiments for Materials Testing
- Tested Behaviour of Materials
- Irradiated Matrix Materials
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3 PROGRAMME FOR THE DEVELOPMENT AND IRRADIATION TESTING
OF GRAPHITIC MATRIX MATERIALS

Programme Qutline

Figure 3.1 gives an outline of the programme carried out for the development
and irradiation testing of graphitic matrix materials.

Materials Development

The development and optimization of matrix materials by NUKEM/HOBEG was
performed in two phasesl) (Figure 3.2). Based on the general requirements
to be met by the fuel element, phase I comprised

- the selection of raw materials,

- the introduction of quasi-isostatic. cold moulding,

- the development of matrix materials from the raw material components
natural graphite, artificial graphite and phenolic resin binder

{partly also using soot).

The result of material optimization in this first phase is the standard matrix
A3-3 which has the following raw material composition:

64 wt % natural graphite

16 wt % petroleum coke graphite

20 wt % phenolic resin binder,

In phase Il of the development, a broad selection of variants of the standard
matrix was developed taking into account the specific requirements for the
THTR. These variants are subdivided into three groups with different objec-
tives:

variants for the enlargement of the raw material base,
variants for simp1ifying'fabrication,

variants for improving product propert1es

espec1a11y strength.

The following raw material variations were carried out for the
first group:

- The natural graphite of the standard matrix was replaced by another
natural graphite. )
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- The artificial graphite of the standard matrix was exchanged for three
other different artificial graphites,

- Instead of the highly graphitized artificial graphite of the standard
matrix a low-graphitized artificial graphite of the same type of
material was used.

The second group is based on the following fabrication variations:

- The final high-temperature treatment of the standard matrix, which
formally had been carried out at 1800°C and later on at 1950°C, toock
place at 1600°C.

- The prefabricated resin binder was replaced by a binder synthesized
during the fabrication process, involving also a modification of the
binder type.

The third group comprised variations of material composition as well as

material components, involving 7

- a changed ratio of the filler components natural graphite and artificial
graphite,

- an increased binder content,

- a modification of the binder type by the addition of a hardener,

- the use of natural graphite of smaller grain size,

- a simultaneous variation of the binder type and grain size of natural
graphite

as compared to the standard matrix.

The matrix with synthesized resin A3-27 can be regarded as the result of this
second phase of development. It has emerged from the second group of variants.
and does not only permit simplified fabrication, but also exhibits improved
strength and corrosion properties as compared to the standard matrix.

Detailed information about the composition, fabrication, material properties:
and irradiation behaviour of the two matrix materials A3-3 and A3-27 used
for fuel elements is compiled in Chapter 4,

Fabrication Method

Parailel to the development of matrix materials the method for fabricating
spherical fuel elements was further developed and standardized by HOBEG.
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This method was also used to produce the fue]-f}ee matrix spheres from which .

the specimens for irradiation experiments were taken. Only the process steps
concerning the fuel particles were omitted (Figure 3.3).

The process comprises three main steps:

1. preparation of the raw material mixture,

Z2. moulding of the fuel-free or fuelled spheres,
3. heat treatment of the spheres.

The pre-mixed filler components natural graphite and petroleum coke graphite
are kneaded with the dissolved phenolic resin binder, dried and ground in

a hammer mili. This process stap is simplified for producing the matrix with
synthesized resin: the filler components are warm-mixed with the binder raw
materials, phenol and hexamethylenetetramine, while kneading and drying is
omitted.

For the fabrication of fuel elements the coated fuel particles are overcoated
with resinated powder prior to pressing in a.rotating drum,.-in order to avoid
damage due to pressing (typical overcoating thickness e.g. for THTR fuel
elements: 100 um).

The quasi-isostatic cold-moulding operation, in which dies made of silicon

rubber are used, consists of two‘steps:

1. pre-moulding of the fuelled zone of the sphere at a low moulding pres-
sure of 0.3 kN/cmz,

2. final moulding of the sphere at a moulding pressure of 30 kN/cm
the fuelled zone has been embedded in resinated powder for the sphere
shell, '

2 after

Moulding is followed by mechanical machining of the spheres: Iathing
to specified size. This is followed by a two-stage heat treatment consisting
of carbonization at 800°C and residual degasification at 1800 or 1950°C.

Irradiation Experiments for Material Testing

Within the scope of thé overall matrix programme (Figure 3.1), material tests
were carried out in the HFR-Petten for testing the matrix materials under

i*

W
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irradiation with fast neutrons. The tests comprised isothermal irradiation

experiments with intermediate measurements at regular 1nterva152)3)

as well as experiments for the determination of creep dataa)s)

3.4).

(Figure

Material testing in the tést series was performed at a maximum of 8 tem-
perature steps in the irradiation temperature range between 400 and 1450°C
up to the full THTR operation time dose of 3.5 x 1021 ¢n™2 EDN and partly
beyond this. The series consisted of a maximum of 10 part-experiments
with measurements of so-called basic data, i.e. specimen dimensions and
physical properties, being performed out of pile between the intervals
(Figure 3.5).

The irradiation specimens for measuring the basic data were cut out of
the inner zone of fuel-free matrix spheres parallel and perpendicular
to the equatorial plane (Figure 3.4). The specimens for creep experiments
also taken out of the inner zone were of a dumb-bell shape. ‘

Figure 3.6 gives a compilation of the matrix materials irradiated in the
isothermal test series as well as information about the respective irradiation
temperature range, the accumulated fluence *) and the number of irradiated
specimens. This tabulation contains a breakdown of variants of the standard
matrix according to their development groups. The materials used for fuel
elements are marked in red. The materials representing a potential for
technological use are marked in green. ' '

*
)Most of the qucimﬁns have accumulated the full THIR operation time
dose (3.5.10°" cm © EDN), only a few reached the minimum or maximum

fluences
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Programme for Development and Irradiation
Testing of Graphitic Matrix Materials
for Spherical HTR Fuel Elements

Material development: NUKEM/HOBEG, Hanau

Irradiations:

" Partners involved:

Test reactor:

Measurements:

Data analyses:

Results:

Applications:

Potential:

Within the framework of the common
DRAGON-KFA-EURATOM-RCN/ECN
irradiation programme

OECD-DRAGON Project, Dorchester, England
Kernforschungsanlage Jilich GmbH

EURATOM, Bruxelles, Belgique _
Stichting Reactor Centrum, Petten, Nederland (RCN)
Stichting Energieonderzoek Centrum, Petten,
Nederland (ECN)

High Flux Reactor (HFR)-Petten, The Netherlands

RCN/ECN-Petten
KFA Jdlich, Institut fir Reaktorwerkstoffe

KFA Jdlich, Institut fir Reaktorwerkstoffe

1. Development of the standard matrix A3-3
2. Irradiation testing of the standard matrix A3-3
3. Development of modifications of the standard matrix

4. Irradiation testing of 18 matrix variants derived from
standard matrix

Use of 2 proven matrix materials for the spherical fuel
elements of the reactors

— AVR (standard matrix and matrix with synthesized resin)
— THTR (provided: standard matrix) '

* Further materials for technological use

3.1
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Development of Graphitic Matrix Materials
for Spherical HTR Fuel Elements

Phase |

Raw Materials: Natural graphite
Petroleum coke graphite

Phenolic resin binder

Fabrication:

Preparation of the raw material

mixture

Quasi-isostatic cold moulding
Heat treatment up to 1800 or 1950°C

v
Standardimatrix§A3:3

\4

Phase Il

Modifications of the standard matrix

Targets of development
1. 2. 3.
Enlargement Simplification Improvermnents
of of of
raw material base fabrication product properties

Parameters varied

@® Type of natural

® Heat treatment

@ Filler composition

graphite temperature
. S : @ Binder content

® Typeh‘c;f artificial @® Synthesis of resin

graphite binder and @ Binder type
@ Degree of graphiti- binder type o

zation of the petroleum ® Grain size of _

coke graphite natural graphite

v
Matzixgwith
resinfA3Z27

3.2
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Irradiation Experiments for Testing
Graphitic Matrix Materials

® Irradiation experiments
— Isothermal test series in the HFR Petten

— Creep experiments in the HFR Petten and in the
DRAGON Reactor

® Measurements
— out of pile between the irradiation intervals

— Determination of the changes of dimensions and
physical properties

— Determination of creep data

® Irradiation specimens

— for measurements
of basic data

cut out of fuel-free
matrix spheres parallel [
and perpendicular to

the equatorial plane

— for measurements of creep data

dumb-bell shaped specimens cut out of
fuel-free matrix spheres

I

o

%
L
Iz

3.4




Investigated Behaviour of Graphitic
Matrix Materials under
Fast Neutron Exposure

@ Linear dimensional change
® Young's modulus

@ Thermal conductivity

) Specéﬁc electrical resistance
® Geometrical density

® Coefficient of linear thermal
expansion (for A3-3)

@ Creep coefficient (for A3-3)

3.5
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Graphitic Matrix Materials
Irradiated in Isothermal Test Series in the HFR-Petten

Desig- Irradiation Accumulated Number
Matrix material bl temperature fluence ** of
(°C) (10*' cm™ EDN) | specimens
e | A3-3 | 400-1450 | 22-82 | 60
standard matrix
Variants A3-4 450 - 1350 08 -6.3 18
for the enlargement | [FASS6IN(II460/ =400 | 2 =asn 2
of the raw material A3-10 740 - 1370 1.2 - 4.7 11
base A3-11 600 - 1340 21 =79 17
A3-15 650 - 1400 1.7—=583 15
Variants A3-7 430 - 1380 1.3-4.0 1
for simplification A3-26 450 - 1390 14 -6.6 14
of fabrication A3-27/1 430 - 1340 1.2 -6.6 14

Variants

for improvements
of product
properties, esp. of
strength

A3-8 600 - 1350 1.3-55 12
A3-13 430 - 1350 15-82 11
A3-16 420 - 1350 0.8 - 10.0 16
A3-17 680 - 1400 1.7-84 19
A3-18 840 - 1350 21-70 4**
A3-21 900 - 1300 27-74 6
A5-1 410 - 1320 1.0-73 11

* identical with the matrix with synthesized resin, A3-27, being used for AVR fuel elements

** most of the specimens have accumulated the full THTR operation time dose (3.5 - 10?" cm™ EDN),
only a few reached the minimum or maximum fluences

** the few results are not reliable enough

3.6




4. GRAPHITIC MATRIX MATERIALS USED FOR THE
FUEL ELEMENTS OF THE AVR AND THTR REACTORS:
STANDARD MATRIX A 3-3 AND MATRIX
WITH SYNTHESIZED RESIN A 3-27

Composition and Fabrication
Properties of Materials
Summary of lrradiation Testing

irradiation Behaviour of the Standard Matrix A 3-3
Neutron-induced Change

- of Linear Dimension

- of Young’'s Modulus

- of Thermal Conductivity

® Irradiation Behaviour of the Matrix with Synthesized
Resin A 3-27
Neutron-Induced Change
- of Linear Dimension
- of Young’s Modulus



-25-

4 GRAPHITIC MATRIX MATERIALS USED FOR FUEL ELEMENTS OF
THE AVR AND THTR REACTORS:
STANDARD MATRIX A3-3 AND MATRIX WITH SYNTHESIZED
RESIN A3-27

Composition and Fabrication

In Figure 4.1 the most imporkant data concerning raw materials and their
composition as well as fabrication are compared for the two matrix materials
A3-3 and A3-27 used for the fuel elements of the AVR and THIR reactors. Both
materials are based on the same filler components - natural graphite and
artificial graphite - and are of similar composition. The essential
difference lies in the binder and its processing or its synthesis.

Whereas prefabricated resin binder is processed together with the filler
components for fabricating the standard matrix, synthesis of the binder only
takes place during the fabrication process for producing the matrix with
synthesized resin (cf. Chapter 3). The two phenolic resin binders exhibit
differences with regard to the binder type and cross-1inking, The phenolic
resin binder used for the standard material and produced from phenol and
formaldehyde is thermoplastic, and the polymers are cross-linked chiefly

two-dimensiona]]ys)

. In contrast, the binder which is synthesized from the
raw materials phenol and hexamethylenetetramine for the matrix A3-27 is
duroplastic, and the polymers are cross-linked chiefly three-dimensiona]]yy).
Consequently, the binder cckes forming from the resin binders during heat

treatment are of different structure.

The process step of isostatic cold moulding is the same for both matrix
materials {cf. Chapter 3). Final high-temperature treatment originally took
place at different temperatures. Earlier fuel element reload batches for the

. .AVR reactor, which ‘had been. produced with A3-3, as well as.matrix spheres. .

for taking out irradiation specimens for material tests were subjected to
a heat treatment at 1800°C. For Tlater AVR reload batches and for the THTR
production the temperature was increased to 1950°C in order to improve
corrosion resistance.
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Heat treatment of the fuel elements fabricated with A3-27 was performed
exclusively at 1950°C. Only a few fuel elements for high flux tests and
some matrix spheres for material testing (pre-production material A3-27/1)
were treated at 1800°C.

Material Properties

In Figure 4.2 the material properties of the matrix with synthesized resin
A3-27 are compared with those of the standard matrix A3-3. Two sets of data
result for the standard matrix, depending on the temperature of 1800°C or
1950°C applied during final heat treatment.

" A comparison of these two data sets for the standard matrix shows that an
. improvement of the corrosion rate is achieved by increasing the temperature
during heat treatment from 1800 to 1950°C. '

A data comparison between standard matrix and matrix with synthesized resin
reveals that the two materials - even when subjected to the same high-tem-
perature treatment - clearly differ in falling strength*) and corrosion
rate*), the matrix with synthesized resin exhibiting the better material
behaviour.

Material investigations have confirmed that the corrosion resistance of matrix
materials is influenced both by the type of binder and by the temperature

of heat treatments). This finding helps to explain the different corrosion
rates of the materials A3-318000 and A3-31950o as well as A3-319500 and

R3-27.

Summary of Irradiation Testing

In order to illustrate the scope of irradiation testing of the fuel element
matrix materials A3-3 and A3-27, Figure 4.3 shows

- the ranges of irradiation temperature and the flux of fast neutrons for
which changes of the basic data were determined,

- the minimum and maximum fluences accumulated in this connection
(cf. footnote p. 12 ).

*)

The characterization tests are described in Chapter 5.
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Irradiation Behaviopr of the Standard Matrix A3-3

The behaviour of the standard matrix during irradiation with fast neutrons
is illustrated in Figures 4.4, 4.5 and 4.6. They show the changes in linear
dimension, Young's modulus and thermal conductivity as a function of the
fluence. The changes of these basic data are represented as regions limited

in each case by the outer isothermsz)g). . '

As can be seen in F1gure 4.4, the standard matrix is dimensionally most
stable at 900 and 1100°C ). Material shr1nkage increases both at lower tem-
peratures (Figure 4.4, left) and higher temperatures (Fig. 4.4, right).
Shrinkage of 2 % is reached in connection with the THTR operation time dose
at temperatures around 450 and 1250°Cz); shrinkage is 2.7 % at the extremely
high temperature of 1430°C. As a general result it was found that the
standard matrix still is of good dimensional stability and behaves 1so-.

-~

tropically even under extreme irradiation conditions.

‘Young's modulus for graphitic matrix materials steeply rises at low-fluences
and decreases again after having passed a maximum, Rise and decrease depend

on temperature. An increase in irradiation temperature reduces the initial
rise, lowers the maximum value of relative change and intensifies the

2)10). In the case of the standard matrix values between 82 % at 430°C
and 33 % at 1430°C were measured for the maxfmum change of Young's modulus.

The fractional change for the THTR operation time dose ranges between +72 %

at 430°C and -3 % at 1430°C (Figure 4.5).

decrease

The thermal conductivity of the standard matrix decreases monotonously with
the fluence in the temperature range between 440 and 1090°C {Figure 4.6).

At the 10west measured temperature of 440°C a fluence of 2.5 x 1021 K EDN
was accumu1ated and a change in thermal conductivity of -70 % was determined.
In the irradiation temperature range between 1240 and 1360°C thermal con-
ductivity rises again after an initial reduction, and the values reached are
up to 5 % higher than prior to irradiation.

*
)No data are available for 1000°C.
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Irradiation Behaviour of the Matrix with Synthesized Resin A3-27

The dimensiona]‘chénge of the matrix with synthesized resin as a function

of fluence is shown in Figure 4.7 for irradiation temperatures between 630
and 990°C as well as between 1140 and 1420°C. Data for temperatures below
600°C are not available., It is remarkable that only a very small shrinkage
region is observed for temperatures between 630 and 990°C, although the tem-
perature gifference amounts to 360°C. The dimensional behaviour of the
material is isofropic under irradiation below 1000°C and becomes anisotropic
to a 1imited extent above 1000°C2).

Reliable data for Young's modulus are available for the matrix with syn-
thesized resin for the irradiation temperaturé range between 630 and 1230°C.
The maximum value of fractional change is 82 % at 630°C and 40 % at 1230°C.

Comparisons of the matrix materials A3-3 and A3-27 with regard to their
dimensional behaviour and Young's modulus under irradiation as well as dis-
cussions on the parameters causing an effect are contained in Chapter 9.
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Composition and Fabrication of the Matrix Materials
Used for the Fuel Elements of the AVR
and THTR Reactors*

Material and Standard matrix Matrix with synthesized
Fabrication A3-3 resin A3-27
Composition of raw
materials:
Natural graphite 64 wt % 62.4 wt %
oke
PetrOI?um ¢ 16 wt % 15.6 wt %
graphite
Resin binder 20 wt % 22.0 wt %
Phenolic resin Synthesized
resin 2
: prefabricated synthesized from
Binder from phenol and
phenol and hexamethylenetetramine
formaldehyde during matrix
formation

Quasi-isostatic

Moulding method cold moulding

High-temperature

treatment:
Fuel elements 1800 or 1950°C 1950°C
Fuel-free 1800°C 1950°C

matrix spheres

* for AVR fuel elements: A3-3 and A3-27,
for THTR fue! element production: A3-3

4.1
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Propertles of the Matrix Materials
Used for the Fuel Elements of the AVR and THTR Reactors

Material Standard matrix Mairix w. synth.
. A3-3 resin A3-27
High-temperature
treatment 1800°C 1950°C 1950°C
Application older AVR fuel AVR fuel
Material property AVR fuel elements elements
elements
‘ THTR prod.

Young's [ 1020 1000 1070
modulus (kN - cm3) L~ 991 970 1020
Geometrical density (g@-cm?) 1.70 1.73 1,74
Coeff. of linear -
therm. expansion (108 K f 2.80 2.89 243
20.- 500°C L 292 3.45 2.69
Quotient of Coeff.
of therm. expansion a,/ay, 1.07 1.19 1.11
Therm. conductivity 1 0.59 0.70 0.69
at room temperature W-cm'K") 4 0.63 0.63 0.64
Therm. conductivity 11 0.38 0.41 0.44
at 1000°C W-cm'K") L 0.38 0.37 0.39
Spec. electrical I 1.56 1.46 1.43
resistance (10°Q-cm) L 1.60 1.48 1.48
Falling strength
Fall of a test sphere {(Number of
from a height of 4 m falls till 521 437 652
onto A3-3-spheres fracture) :
Corrosion rate
at 1000°C in He of
1 bar with (mg-cm?2h™) " 119 0.97 - 073
1 vol. % H.O (10 h) .

* for AVR fuel elements: A3-3 and A3-27, for THTR fuel element production: A3-3
= paraliel and perpendicular to the equatorial plane of the matrix sphere

4.2
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Graphitic Standard Matrix A3-3

Neutron -induced change of thermal conductivity
for the temperature ranges 440-1090 and 1120-1430°C,
in each case determined at irradiation temperature
(acc. to L. Binkele, High Temp.-High Press., 4, 1972, 401)
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5. VARIANTS OF THE STANDARD MATRIX A 3-3
FOR THE ENLARGEMENT OF THE RAW MATERIAL BASE

® Parameter Variations
® Comparison of Raw Material Variants with the
Standard Matrix
Concerning
- Falling Strength and Corrosion Rate
- Neutron-Induced Dimensional Behaviour
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5 VARIANTS OF THE STANDARD MATRIX A3-3 FOR THE ENLARGEMENT
OF THE RAW MATERIAL BASE

Parameter Variations

For an enlargement of the raw material base the filler components, natural
graphite and artificial graphite, which are used for fabrication of the
standard matrix, were replaced by natural graphite and artificial graphites
supplied by other contractors or manufacturers. Since there is little data
or information available for the raw materials used, Figure 5.1 specifies
the contractors or producers instead of giving information about variations.
However, comparisons between the standard matrix and the variants with
regard to their irradiation behaviour permit conclusions as to which diffe-
rences are involved in the raw materials (cf. Chapter 9).

As is shown in Figure 5.1, the raw material variation consisted in a replace-
ment of the natural graphite of the standard matrix by that of a different
supplier, while the artificial graphite was exchanged for analogous materials
of three other producers. In addition, a type of petroleum coke graphite
similar to that of the standard material, but featuring a very low degree
of graphitization was used,

Comparison of Raw Material Variants with the Standard Matrix

Concerning Falling Strength and Corrosion Rate

ng technologically important material properties were taken as criteria for
comparisons between the variants of all development groups and the standard
matrix: _

- mechanical strength,

~ corrosion behaviour.

Determination of the strength and corrosion data was carried out by HOBEG
prior to irradiation. The falling and bending strengths were determined
for all of the materials, and the tensile and compressive strengths for some
of theml). Comparisons were based on the falling strength because of its
technological relevance.
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The falling strength is defined as the number of falls of a test sphere
from a height of 4 m onto a bed of A3-3 spheres until fracture of the test
 sphere. Between 4 and 80 spheres of the variants and 148 spheres of the
standard matrix were subjected to this test within the scope of the deter-.

mination of data sets forming the basis of the present reportl).

A standard corrosion test was used for characterizing the corrosion
behaviour of materials. For this purpose, the corrosion rate was determined:
in flowing helium at a pressure of 1 bar and with a H20 content of 1 vol.%
after 10 h of annealing at-1000°C.

Table 5.2 shows the falling strengths and corrosion rates of the raw mate-
rial variants in comparison with those of the standard matrix. All variants
exhibit a higher falling strength than the standard material. For two arti-
ficial graphite variants,"A3-4 and A3-10, there is even an increase of
approximately 200 %. The corrosion rates were not determined for all of the
materials. Among the data available, only that of the natural graphite var-
jant A3-6 is below that of A3-3. Consequently, the variant A3-6 has proved
to be the most favourable raw material variant with regard to both material
properties, falling strength and corrosion rate.

Comparison of Raw Material Variants with the Standard Matrix

Concerning Neutron-Induced Dimensional Behaviour

Irradiation testing of the raw material variants in the HFR-Petten material
tests {cf. Chapter 3) has revealed that, with the exception of the A3-6
variant, the materials clearly differ from the standard matrix A3-3. While
the standard material shows an isotropic dimensional behaviour, the variants
behave anisotropically under stronger irradiation conditions (Figure 5.3).
Moreover, the variant with low-graphitized coke, A3-15, exhibits a

*
turn-around ) which is unusually early and pronounced for matrix materia]sz).

Volume shrinkage compared at 1250°C and THTR operation time dose is similar
for all materials or even smaller than that of the standard matrix
(Figure 5.3). The variant A3-15 has already passed the turn-around under

*)

Transition from shrinkage to expansion
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these irradiation conditions, and, consequently, exhibits a relatively small
shrinkage. Until turn-around its volumetric change corresponds to that of
A3-3.

As in the case of material propertiés, the natural graphite variant A3-6
has therefore proved to be the most favourable raw material variant in
respect of neutron-induced dimensional change.
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Variations of Parameters
for an Enlargement of the Raw Material Base

‘ Standard matrix - Designation
Parameter A3-3 Variation of variant
Type of -
natural graphite Kropfmahl * Omnium Minier* A3-6
component
Type of - Le Carbone Lorraine* A3-4
artificial graphite |  Ringsdorff * Pechiney * A3-10
‘component SIGRI * A3-11
Degree of graphi-
tization of petro- high small A3-15
leum coke graphite| .

* contractor or producer

S.1
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6. VARIANTS OF THE STANDARD MATRIX A 3-3
FOR SIMPLIFICATION OF FABRICATION

® Parameter Variations

® Comparison of the Fabrication Variants with the
Standard Matrix
Concerning
- Falling Strength and Corrosion Rate
- Neutron-Induced Dimensional Behaviour
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6 VARIANTS OF THE STANDARD MATRIX A3-3 FOR SIMPLIFICATION
O0F FABRICATION

Parameter Variations

In order to simplify and cheapen the fabrication process the final high-tem-
perature treatment of the A3-7 variant was carried out at 1600°C (Figure 6.1)
instead of 1800°C (standard matrix).

However, the most important and successful fabrication variation could be
achieved by synthesizing the binder during the fabrication process instead -
of adding prefabricated binder to the filler. This also involves a changed
type of binder. The thermoplastic phenolic resin binder made of the raw
materials phenol and formaldehyde is replaced by the duroplastic synthesized
resin binder formed of phenol and hexamethylenetetramine. The simplification
of fabrication consists in the omission of the process steps of kneading and
drying as well as the pre-characterization of the resin binder.

. Three materia1s with synthesized resin have been produced (Figure 6.1}. The
A3-26 variant differs from the other two materials by the type of synthesized
resin. Among the variants with the same type of binder, the material A3-27/2
features improvements with regard to material properties as compared to the
laboratory scale pre-production material A3-27/1. These were achieved by
optimization of the process parameters and by increasing the temperature
during final heat treatment.

Comparison of the Fabrication Variant with the Standard Matrix

Concerning Falling Strength and Corrosion Rate

Only two of the four fabrication variants exhibit a higher falling strength’
than the standard matrix, while the other two materials' falling strength

is substantially lower (Figure 6.2). Consequently, the materials with syn-
thesized resin, A3-26 and A3-27/1, do not fulfill the requirements to be

met in respect of this property. However, their early irradiation testing
led to fundamental knowledge permitting an advancement and improvement of
materials with synthesized resin. The improved A3-27/2 variant exhibits a
falling strength which is by 30 % higher than that of the standardized
matrix. Furthermore, its corrosion rate is by 40 % lower and, thus, con-
siderably better than that of the standard material.
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For the fabrication variant A3-7 a falling strength was determined which is
_even'above that of the improved material with synthesized resin A3-27/2
(Figure 6.2). On the other hand, the corrosion rate is very high, since the
.final heat treatment was only carried out at 1600°C. Consequently, the im-
proved matrix with synthesized resin A3-27/2 has proved to be the most favou-
rable fabrication variant with regard to both material properties, falling
strength and corrosion rate.

Comparison of the Fabrication Variants with the Standard Matrix

Concerning Neutron-Induced Dimensional Behaviour

Testing of the fabrication variants under irradiation revealed that only the
variant A3-7 - like the standard matrix - behaves isotropically (Figure 6.3).
A different behaviour is observed in each case for specimens of the pre-run
materials with synthesized resin, A3-26 and A3-27/1. This may be explained
by the relatively large scattering of pre-irradiation data. The improved
material with synthesized resin A3-27/2 behaves isotropically below 10000C
and becomes anisotropic above 10000C. However, the extent of anﬁsotropy

remains limited2).

The volume shrinkage of all materials at 12500C and THTR operation time dose
is similar to that of the standard matrix (Figure 6.3).

These comparisons show that the variant A3-7 corresponds to the standard
matrix with regard to its dimensional change and, thus, exhibits the best
behaviour of all materials. However, taking into account also the properties
of materjals, the improved matrix with synthesized resin A3-27/2 turns out
to be the most favourable fabrication variant; it is identical with the
A3-27 material used for fuel elements (cf. Chapter 4).
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Variations of Parameters for Simplification
' of Fabrication

matrix formation

Standard matrix o Designation
P; Variati
arameter _ ariation of variant
High-temperature 1800°C 1600°C A3-7
N treatment
Synthesized resin 1
Phenolic resin (thermoplastic) A3-26
Synthesis during
prefabricated .matrix formation
Binder characterization
necessary Synthesized resin 2 A3-27/1
(duropiastic) Pre-product. mat.
Synthesis during A3-27/2*

improved material

* identical with the matrix with synthesized resin A3-27

6.1
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7. VARIANTS OF THE STANDARD MATRIX A 3-3
FOR IMPROVEMENTS OF PRODUCT PROPERTIES,
ESPECIALLY OF STRENGTH

® Parameter Variations

® Comparison of the Strength Variants with the
Standard Matrix
Concerning -
- Falling Strength and Corrosion Rate
- Neutron-Induced Dimensional Behaviour
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7 VARIANTS OF THE STANDARD MaTRIx A3-3 FOR IMPROVEMENTS OF
ProDUCT PROPERTIES, ESPECIALLY OF STRENGTH

Parameter Variations

For improvements of product properties, especially for an increase in
strength, the material composition as well as the material components were
varied (Figure 7.1).

An increase of the natural graphite fraction as compared to that of the
standard matrix led to the production of the A3-5 variant which has a filler
ratio of natural graphite to artificial graphite of & : 1. For the variants
A3-8 and A3-13, the binder content was increased as compared to that of the
standard matrix. It amounted to 23 and 26 wt %, respectively.

Additions of hardener to the binder lead to changes of the binder type and
result in increased binder coke y1e1d56)11)12)13). The variants A3-17, A3-16
and A3-21 were produced with differently high additions of the hardener
hexamethylenetetramine. These additions amounted to 5, 10 and 20 wt % related
to the binder content.

For the variant A5-1, the natural graphite component used was of the same
-contractor as that of the standard matrix, but the mean grain size only

- amounted to 7um instead of 40 um.

A simultaneous modification of two parameters proved to be the most success%u]
variation for increasing the strength:

Natural graphite of small grain size {7 pym) as well as a phenolic resin binder
with the addition of 10 wt % hardener were used for fabricating the variant
A5-2 and caused an increase in strength exceeding by far that of all the

other matrix materials.

Comparison of the Strength Variants with the Standard Matrix

Concerning Falling Strength and Corrosion Rate

The .eight strength variants exhibit highly different, but in all cases clear-
1y higher falling strengths than the standard matrix (Figure 7.2).
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Increases amount to at Jeast 20 % and in one extreme case, i.e. for the A5-2
variant, even to more than 900 %. This extreme value suggests that the falling
strength to be expected in connection with a bed of spheres made of the test
material instead of A3-3 spheres {cf. p. 45 ) will not be quite as high,

The corrosion rates were only determined for four of these variants. As can
be seen from Figure 7.2, all of the values are below that of A3-3. The lowest
rates were found in connection with the variants A3-5 and A3-17. They are

40 % below that of the standard material and thus show a considerable im-
provement of the corrosion behaviour. No corrosion rate has been determined
for the A5-2 variant which exhibits the highest falling strength. On account
of its material parameters it may however be assumed that the rate is Tower
than that of the standard matrix (cf. Chapter 8).

A determination of the most favourable variant in réspect of both falling
strength and corrosion rate is difficult, since the variant featuring a very
high falling strength (A5-2) is not identical with any of the variants with
low corrosion rate (A3-5 and A3-17). It will only be possible to determine
the most favourabie variant of this group after comparing the irradiation
behaviour of the materials.

.Comparison of the Strength Variants with the Standard Matrix

Concerning Neutron-Induced Dimensional Behaviour

In contrast to the standard matrix, all strength variants exhibit anisotropic
or mainly anisotropic dimensional behaviour at high irradiation temperatures
and fluences (Figure 7.3). The extent of anisotropy is different for the
materia]sz). Strongly anisotropic behaviour was only observed for the A3-16
variant whose material data were also clearly anisotropic prior to irradia-
11). Anisotropy for the variants A3-5 and A5-2 remains within reasonable

Vimits?)

tion

For the majority of strength variants, volume shrinkage at 1250°C and THTR
operation time dose is greater than that of the standard matrix (Figure 7.3).
Only the variant A5-2 shows a corresponding shrinkage, while variant A3-5
even remains below that of A3-3.
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Consequently, the materials A3-5 and A5-2 prove to be the!most favourable
strength variants with regard to neutron-induced dimensional change and
material properties. Two favourabie variants therefore result from this group,
of which
- ihe material A3-5 exhibits a particularly good corrosion
behaviour and

- the material A5-2 has a very high falling strength.

?t'ﬁ



Variations of Parameters for Improvements of Product
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Properties, especially of the Strength

Parameter Standerd Variation Desugn?tlon
matrix of variant
Ratio of natural graphite _ .
to artificial graphite 4:1 6:1 A3-5
) 23 wt % A3-8
0/ -
Binder content 20 wt % 26 wt % A3:13
_ 5wt % A3-17
Hardener addition * without 10 wt % A3-16
_ hardener 20 wt % A3-21
Mean without
40 um 7 um AS5-1
grain size hardener ' H H
of the natural
graphite 10wt % * 40 ym A3-16
component hardener - 7 um A5-2

* related to the binder content

7.1
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8. MOST FAVOURABLE VARIANTS FOR THE
ENLARGEMENT OF THE RAW MATERIAL BASE,
SIMPLIFYING FABRICATION AND IMPROVING
STRENGTH

® Compilation of the Most Favourable Variants

® Influences Causing an Improvement of the
Falling Strength and Corrosion Rate
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8 MoST FAVOURABLE RAW MATERIAL, FABRICATION AND STRENGTH
. VARIANTS

Compilation of Most Favourable Varjants

In Figure 8.1 those materials are compiled which have emerged as most
favourable variants from the three development groups with the objectives

- enlargement of the raw material base,
- simplification of fabrication,

- improvement of product properties
(Chapters 5 to 7).

These variants exhibit at least 30 % higher falling strengths and up to 45 %
lower corrosion rates than the standard matrix. Under strong irradiation
'conditions, the volume shrinkage of all materials is similar to that of "A3-3;
the dimensional behaviour becomes anisotropic in the case of three of the

variants, however, to a limited extentz).

Of the four most favourable materials, the variant A3-27/2 (identical with
the matrix with synthesized resin A3-27) is already being used as structural
material for AVR fuel elements (cf. Chapter 4). Moreover, the raw material
variant A3-6 as well as the strength variants A3-5 and A5-2 constitute a
potential of technologically interesting matrix materials exhibiting improved
strength and corrosion properties as well as a sufficiently good dimensional
behaviour under irradiation.

Raw materials availability and low cost would be added as further criteria
in the event of technological application.

IHf1uences Improving the Falling Strength and Corrosion Rate

The material comparisons made in Chapters 5 to 7 not only show which variants
may be regarded as a potential for technological use, but they furthermore
indicate which influences have Ted to their favourable strength and corrosion
properties. This shows the paths opening up in the event of increasing
requirements.
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Data analyses have revealed that the interaction between filler and binder
plays a significant role for the strength of graphitic matrixll). Under
equal conditions of manufacture, this is again influenced by

~ the type of natural graphite and artificial graphite filler components,
- the filler grain size,

- the type of binder,

- the ratio of binder coke content to filler content.

In conjunction with this filler-binder coke bonds are formed with different

macroscopic propértieslo)ll).

The highest falling strength of the matrix was achieved by simultaneous
variation of two material parameters (cf. Figure 8.1, variant A5-2):
- reduction of the grain size of the natural graphite
component from 40 to 7 um,
- addition of 10 wt % hardener to the binder,

Three of the above-mentioned parameters are effective in this case:
- the filler grain sizé,

- the type of binder,

- the ratio of binder coke content to filler content.

By reducing the grain size of natural graphite the overall surface of the
grains is enlarged and the interaction between filler and binder is thus
intensified.

The addition of a hardener to the binder Teads to an increase of the binder
coke content, on the one hand, and to a changed type of binder, on the other
hand (cf. Chapter 7),

By increasing the binder coke content, the ratio of binder coke content to
filler content is adapted to the enlarged grain surface and a largely iso-
tropic distribution of fiiler grains is thus achieved.

Due to a higher binder cross-linking, the change in the binder type leads

to the formation of a binder coke with modified structure, resulting in a

buildup of local stresses in the matrix6)11)12)13).
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The stresses can be substantially reduced, however, if there is a strong
interaction between filler and binder as in the present case. This is
demonstrated, in particular, by the irradiation behaviour which hardly reveals

any effects of increased stresses in the materiaill).

This balanced combination of two different material variations thus implies

a series of mutual effects and leads to a matrix material which exhibits
extremely good strength properties, in particular a very high falling strength
and largely isotropic material properties.

It may be seen from the manifold variations of production and material
parameters that an improvement in the corrosion behaviour of the matrix can.
be ultimately attributed to

- a reduction of elements promoting corrosion,
- a decrease of binder coke reactivity.

Both effects become manifest in the case of the matrix with synthesized resin
A3-27 and lead to a 40 % lower corrosion rate as compared to the standard
material (Figure 8.1).

The improvement achieved is attributable to the following effects:

Owing to the binder synthesis during the process of matrix fabrication,
impurities promoting corrosion in a catalytic manner are introduced into the
matrix to a smailer extent than in connection with the use of prefabricated

resin binderls).

The increase in temperature from 1800 to 1950°C during heat treatment causes
an intensified reduction of existing elements promoting corrosion. On the
other hand, it leads to an increase in the degree of graphitization of the
binder coke component, reducing its reactivity and thus increasing the

corrasion resistance of the matrixa)ls).

The change of the binder type results in a modified binder coke structure,

~ due to a stronger cross-linking of the binder, reducing the corrosion rate

of the matrixs).
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The favourable influence which can be exerted on the corrosion rate of the
matrix by increasing the temperature during final heat treatment was also
utilized in the fabrication of fuel elements for the THTR (cf. Chapter 4).
After high-temperature annealing at 1950°C, the standard matrix A3-3 used
as structural material showed a 20 % lower corrasion rate than after
annealing at 1800°C.
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9. COMPARISON OF THE IRRADIATION BEHAVIOUR
OF THE MOST FAVOURABLE VARIANTS WITH THAT
OF THE STANDARD MATRIX CONCERNING LINEAR
DIMENSION AND YOUNG’S MODULUS

® Most Favourable Raw Material Variant A 3-6
- Linear Dimension
- Young’'s Modulus
® Most Favourable Fabrication Variant A 3-27
- Linear Dimension
- Young’'s Modulus
® Favourable Strength Variant A 3-5
- Linear Dimension
- Young’s Modulus
® Favourable Strength Variant A 5-2
- Linear Dimension
- Young’s Modulus
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9 COMPARISON OF THE IRRADIATION BEHAVIOUR OF THE MoST
FAVOURABLE VARIANTS WITH THAT OF THE STANDARD MATRIX
CONCERNING LINEAR DIMENSION AND YOUNG'S MODULUS

In Chapters 5 to 8 the isotropy and anisotropy of the dimensional behaviour
-and the volumetric change were already discussed as evaluation criteria for
the irradiation behaviour of the variants of the standard matrix under strong
irradiation conditions.

The present chapter illustrates the behaviour under irradiation of the four
technologically interesting variants A3-6, A3-27, A3-5 and A5-2. Figures 9.1
to 9.8 show the materials' changes in linear dimension and Young's modulus,
dependent on fluence, in comparison with those of the standard matrix. The
test target of irradiations, i.e. the full THTR operation time dose of 3.5
X 1021 cm2
material and fabrication variations is being discussed for a better under-

EDN, has been marked in each specific case, The influence of both

standing of the irradiation behaviour.

Most Favourable Raw Material Variant A3-6

The most favourable raw material variant A3-6, for which a natural graphite
other than that of the standard matrix was used {cf. Chapter 5), features

a smaller dimensional change than the standard material at all comparable
irradiation temperatures (Figure 9.1) while Young's modulus shows a slightly
stronger change (Figure 9.2).

There is hardly any information available abbut the natural graphite used

as raw material for this variant. However, the irradiation behaviour of the
matrix A3-6 indicates that there must be differences as compared to the
natura] graphite of the standard matrix despite the same geographical origin.
This is confirmed primarily by the behaviour of Young's modulus under
irradiation whose greater change in the range of low fluences suggests a

17). Since this

stronger influence of the neutron-induced pinning effect
effect, which is due to the pinning of mobile disiocations caused by
irradiation-induced'point defect clusters, has an influence in the crystalline

and well-ordered regions of the material and since no other material
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parameter except natural graphite was changed, there must be differences in
the type of natural graphite filler as regards its crystalline nature.

The filler-binder arrangement and thus the texture and structure of the
material can be changed due to differences in the filler type. Such a cause
is 1ndicateﬁ by the higher initial density of the variant as compared to

that of the standard matrix, which may explain the smaller neutron-induced
shrinkage of the material. Of importance in this connection is also the lower
open porosity which, besides less corrosion-promoting impurities, constitutes
a prerequisite for the remarkably low corrosion rate of the variant (cf.
Figure 8.1). '

Most Favourable Fabrication Variant A3-27

The matrix with synthesized resin A3-27, which has proved to be the most
favourable fabrication variant and is being used in AVR fuel elements, was
already described in detail in Chapters 4 and 6. Since it differs from the
standard material by

- the type of binder,

- the binder coke content,

- the temperature during final heat treatment,

influences caused by all three parameters are to be considered when comparing
the irradiation behaviour.

As is shown in Figure 9.3, the dimensional change of the matrix with syn-
thesized resin is clearly smaller than that of the standard matrix at the
lowest reference temperature (630°C); however, it shrinks more than A3-3 at
temperatures above 1000°C and the dimensional behaviour becomes anisotropic,
although this anisotropy remains within a limited extentz). The change of
Young's modulus for this variant is greater than that of the standard matrix
at all temperatures (Figure 9.4},

The three parameters mentioned above, by which the matrix with synthesized
resin differs from the standard matrix, have different and, in part, counter-
acting effects on the dimensional behaviour of the material:
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The 1ncreé§ed temperature during final heat treatment is of greatest signifi-
cance . It results in a higher initial density of the matrix and better pre-
ordering of its binder coke component. Therefore, under irradiation, a lower
densification of the matrix and a lower irradiation-induced graph{tization

of the binder coke occur. Both effects cause a higher dimensional stability
of the material8)18),

A counteracting effect'of intensified neutron-induced shrinkage results

from the different type of binder and the higher binder coke content. Due

to the higher cross-linking of the binder, an increased stress-induced
graphitization of the binder coke occurs during irradiation and as a result
of the higher binder coke content more poorly graphitized material fractions

are subjected to the increased irradiation-induced graphitizationll)la).

The greater change in Young's modulus for the variant A3-27 as compared to
that of the standard material cannot be explained satisfactorily by means™
of the parameters causing effects on dimensional change. Irradiation ex- -
perience has shown, however, that the behaviour of Young's modulus under

irradiation is influenced even by slight material variationslo)

, S0 that other
influences which have not been discussed here may play a role in this

connection.

Favourable Strength Variant A3-5

The variant A3-5 produced with a higher fraction of natural graphite than
the standard matrix also exhibits a considerably better corrosion behaviour
in addition to higher strength (cf. Chapters 7 and 8).

Figure 9.5 shows that this variant has a greater dimensional stability than
the standard material under irradiation. At temperatures above 800°C the
2}, The
neutron-induced change of Young's modulus is only slightly greater for this
variant as compared to that of the standard matrix (Figure 9.6).

~ dimensional behaviour becomes anisotropic to a Timited extent

Influential parameterslresulting for the variant A3-5 from a comparison of
the irradiation behaviour of the two materials are

- the initial density or initial porosity,

- the natural graphite fraction of the fi11er10).
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At Tow irradiation temperatures, A3-5 undergoes a Tower densification than
the standard matrix on account of its higher initial density and therefore
exhibits greater dimensional stability. Additional influences are only effec-
tive at higher temperatures due to the changed ratio of the filler components:

Due to the increased highly crystalline fraction of natural graphite, which
‘replaces a corresponding fraction of the less well graphitized artificial
graphite, fewer artificial graphite fractions are subjected to neutron-induced
graphitization during irradiation. Consequently, the associated shrinkage

of the matrix A3-5 is smaller than that of the standard material. An adverse
influence of the higher natural graphite fraction is the increasingly ani-
sotropic dimensional behaviour, although the material properties are largely
isotropic prior to irradiation.

The behaviour of Young's modulus for the variant A3-5 also points to effects
which are due to the influential parameters mentioned above:

The slightly higher change of Young's modulus in the range of low fluences
as compared to that of the standard matrix is due to the higher fraction of
highly crystalline natural graphite for which a stronger neutron-induced
pinning effect can be assumed17) {cf. p. 79 ). In the range of higher fluences
and temperatures there is a superposition of effects which, on the one hand,
are attributable to irradiation-induced graphitization of the artificial
graphite component and, on the other hand, to the change in porosity of the

matrixlo).

"Favourable Strength Varjant A5-2

This variant, which differs from all the other matrix materials by its very
high falling strength, was fabricated using very fine-grained natural graphite
and adding a hardener to.the binder (cf. Chapters 7 and 8).

As is shown in Figure 9.7, the neutron-induced dimensional change of the
variant A5-2 is predominantly larger than that of the standard material,

but shrinkage values around 2 % are only reached in connection with the full
THTR operation time dose at the temperatures relevant for the .THTR fuel ele-
ment. Anisotropic behaviour is observed above BOOOC, but the extent of ani-
sotropy remains 1imited2).
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Clear differences may be observed between the neutron-induced changes of

- Young's moduli for both materials (Figure 9.8). In comparison with the
standard matrix, the variant shows a less steep initial rise of Young's
modulus, a lower maximum value of fractional change as well as a smaller
subsequent decrease. This favourable behaviour under irradiation is opposed
to the undesired high value for Young's modulus prior to irradiationz). Never-
theless, the same parameters of influence are effective:

The relatively high modulus of elasticity of the variant prior to irradiation
as compared to that of the standard matrix is due to the low porosity of the
material, on the one hand, which is connected with the reduced grain size

of natural graphite; on the other hand, it is a consequence of the higher
fraction of the poorly graphitized binder coke component.

Under irradiation the smaller filler grain and the higher binder coke fraction
contribute to reducing the initial rise of Young's modulus dnd to lawering

the maximum value. This is caused by the neutron-induced pinning ef%ectl7)
which is less or hardly effective in the filler regions with very small grain
and in the poorly ordered binder coke regions and, thus, leading to a smaller
change in Young's modulus. Further influences due to the neutron-induced
change in pofosity of the material and to irradiation-induced graphitization
of the binder coke component affect the behaviour of Young's modulus only

under stronger irradiation conditionslo).

Influential parameters are also perceivable for the neutron-induced dimen-
sional change of the variant, and they all contribute to material shrinkage:
Due to the higher binder coke content and to the change in the type of binder
coke caused by the addition of a hardener, irradiation-induced graphitization
of the binder coke component is intensified, resulting in an increased

shrinkage of the.matrixll).

An additional shrinkage effect may be attributed to a process of neutron-
induced re-ordering in the very small grains-of natural graphite, since the
structure has been changed and the crystallite size reduced by the grinding

processs). _ -
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10. INFLUENCES OF IRRADIATION PARAMETERS
DURING MATERIAL TESTS IN THE HFR PETTEN

® Dependence of the Dimensional Change of the
Standard Matrix on Irradiation Temperature

® Influence on the Dimensional Change of the
Standard Matrix Due to Differences in the
Fast Neutron Flux

® Coupling of Irradiation Temperature and
Fast Neutron Flux
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10 INFLUENCES OF IRRADIATION PARAMETERS DURING MATERIAL TESTS
IN THE HFR PETTEN

,The influence of irradiation parameters on the dimensional change of graphitic
matrix materials will be described in the following. For this purpose, the
standard matrix A3-3 is used as an example, since this material furnished
the largest number of specimens for the test series so that the irradiation
temperature range between 400 and 1450°C can be best supported by results.

Dependence of the Dimensional Change of the Standard Matrix
on Irradiation Temperature

Figure 10.1 shows the dependence of the neutron-induced dimensional change
of the standard matrix on irradiation temperature. The THTR operation time

dose of 3.5 x 1021 cm'2 EDN was selected as a constant value for the fluence.

The isodose shows that the dimensional change, i.e. materijal shrinkage, is
lowest at irradiation temperatures around 1000°C and increases considerably
towards both lower and higher temperatures.

| .
The general course of the isodose results form a superposition of different
influences which are due to irradiation-induced processes in the material,
such as
- the change in porosity,
- irradiation-induced damage to crystalline regions,
- irradiation-induced graphitization of poorly ordered regions.

Influence on the Dimensional Change of the Standard Matrix
Due to Differences in the Fast Neutron Flux

Figure 10.2 illustrates how the dimensional change is influenced as a function
of the fluence by differences in the flux of fast neutrons at constant irradia-
tion temperature.



-102-

The two representations in Figure 10.2 are identical with regard to the
measuring points plotted. The curve on the left shows the mean isothermal
"line, as is normal practice for isothermal irradiations. The clearly per-
ceivable scatter1ng of measured values cannot be attributed to differences

in the mater1a1 data prior to 1rrad1at1on nor to deviations of the mean irra-
diation temperature, since there is an extremely good agreement in both cases.

An exptanation can only be found when considering the values for the mean
" flux of fast neutrons. In this way, the isothermal line can be resolved to
lines of constant neutron flux which hardly feature any deviations of measured
values (Figure 10.2 right). It can be shown that the lower neutron flux causes
-2 higher shrinkage of the material than the higher neutron flux.

This “flux effect" was proved not only for matrix materijals, but also for
other graphitic materials. Effects on various material properties were also
detected in addition to those on dimensional changez)s)l;)lg)zo).

Coupling of Irradiation Temperature and Fast Neutron Flux

Figure 10.3 shows the type of coupling existing.between the dirradiation tem-
perature and the flux of fast neutrons during irradiation of the standard
matrix in the HFR Petten. Plotted are the mean values of temperature and flux
to be allocated in each case to the isothermal irradiation of the matrix
specimens. The direction of specimens cut from the matrix spheres is marked by
the different symbols: parallel (! ) and perpendicular (1) to the equatorial
plane.

The representation shows that the flux of fast neutrons increases with the
irradiation temperature. This rise is so steep in the range between 800 and
1200°C that the associated flux value at 1200°C is about 2.5 times higher
than at 800°C. In the middle of this range lies the temperature flux combi-
nation for the lowest shrinkage of the material.

It may be furthermore seen from Figure 10.3 that the coupling of the two
irradiation parameters is less close at low temperatures than at higher tem-
peratures’

Corresponding couplings between temperature and neutron flux were also ob-
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i

served during irradiation of the other matrix materials. However, fewer data
were measured for the temperature-flux curves of these materials on account
“of the small number of irradiation specimens (cf. Figure 3.6).
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11. NEUTRON-INDUCED DIMENSIONAL CHANGE OF
STANDARD MATRIX SPECIMENS IN COMPARISON
WITH THE DIMENSIONAL CHANGE OF SPHERICAL
FUEL ELEMENTS

® Comparative Representation
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11 NEUTRON-INDUCED DIMENSIONAL CHANGE OF STANDARD MATRIX
SPECIMENS IN COMPARISON WITH THE DIMENSIONAL CHANGE OF
SPHERICAL FUEL ELEMENTS

Figure 11.1 gives a comparison between the dimensional changes of specimens of
the standard matrix A3-3 and those of spherical fuel elements with A3-3 as
structural material. The dimensional changes as a functicon of the irradiation
temperature of the matrix and of the surface temperature of fuel elements are
plotted for the mean THTR f]uence*) of 2.5 x 1021 cm'2 EDN.

The dimensional change of the standard matrix A3-3, which was determined in
the isothermal material tests HFR-M13 to HFR-M32 between 400 and 1450°C in
the Migh Flux Reactor Petten {cf. Chapters 3, 4 and 10), is illustrated by
the solid curve. Regions are entered for the fuel elements irradiated in
several experiments of different reactors (R2-Studsvik and DRAGON reactor).
The height of these regions results from the differences of dimensional
change in the direction of the polar axis of fuel element spheres and
perpendicular to it. The width of the region is determined by changes in the
surface temperature during irradiation.

A comparison shows that there is a relatively good agreement between the
results of matrix specimens and those of fuel elements. On an average, the
fuel elements of the high flux tests R2-K2 and R2-K9 in the R2-Studsvik
shrinked slightly less and those of the long-time tests DR-K3 and DR-K4 in
the DARGON reactor slightly more than the matrix specimens.

There are general differences between matrix specimens and fuel elements con-
cerning the isotropy of the dimensional behaviour. While the irradiation speci-
mens of the standard matrix behave isotropically even under strong irradiation
conditions, the integral elements exhibit a lower shrinkage in the direction

of the polar axis than perpendicular to it.

%#)The mean THTR fluence is accumulated on an average by the
THTR fuel elements: to be transferred outwards. (The full THTR cperation

time dese is only reached by 10-4 fuel elements of the THTR.)
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The anisotropic dimensional behaviour of spheres, which is attributed to the
influence of the shell due to manufacture, can be seen from the height of
the regions in Figure 11.1.

When discussing the dimensional change of spherical fuel elements in compari-~
son with that of specimens of the structural material, influences due to

- fast neutron flux,

- irradiation temperature history,

- coated fuel particles

must be taken into account.

A comparison of irradiation parameters of the different experimenfs shows

that the mean flux of fast neutrons in the fuel element tests in the R2-Studs-
vik was slightly higher than in the matrix tests of the corresponding tem-
perature range in the HFR-Petten. On the other hand, the long-time irradiations
bf fuel elements in the DRAGON reactor, which come closer to the conditions

of realistic THTR operation, showed mean flux values which were distinctly
lower than those of the matrix tests.

Since the dimensional change of fuel elements is slightly smaller at higher
flux values and slightly higher at Tower values, it may be assumed that -

in conformity with the results shown in Figure 10.2 - the influence of diffe-
rent neutron fluxes, possibly in connection with different neutron spectra,

is effective in this case, too.

Furthermore, a different irradiation temperature history was also found for
the individual experiments:

- Specimens of the standard matrix were irradiated in isothermal test -
series {cf. Chapters 3 and 4).

- Fuel elements of the high flux tests R2-K2 and R2-K9 in the R2-Studsvik
were subjected to so-called THTIR short-time cycling at surface tempera-
tures of 600, 750 and 900°C, i.e. a frequent alternating temperature
treatment. In addition, the temperature was set to 450°C during one

21}) (

period of irradiation in the experiment R2-K9 dotted section in

Figure 11.1}.
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- Fuel elements of the long-time tests DR-K3 and DR-K4 in the DRAGON
reactor experienced a slow temperature decrease by 200 to 2509C during
irradiation of more than 700 full power dayszz).

On the basis of this information about the temperature history, effects on
the dimensional change of the fuel elements may be expected. As can be seen
from Figure 11.1, however, these effects can only be small; probably because
the experiments. took place predominantly at temperatures which are at least
not far from those of the shrinkage minimum of the matrix.

A1l the fuel elements compared contained BISO particles. The volumetric par-
ticle Toading of the fuel elements was different; it amounted to 16.6 and
17.5 % in the DRAGON tests and was even below 4 % in the Studsvik tests2l).
Consequently, only minor or' no influences of coated fuel particles'on'the
neutron-induced dimensional change of the integral elements are to be ex-
pected. '
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12. OUTLOOK

Warm Moulding of Spherical Fuel Elements

- — Advantages

- Principle

Manufacture of Matrix Powder for Warm Moulding
Manufacture of Warm-Moulded Fuel Elements
Warm-Moulded Graphitic Matrix Materials

= Composition and Fabrication

- Material Properties

- Comparisons with the Cold-Moulded Matrtx
Materials A 3-3 and A 3-27
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The development and irradiation testing of graphitic matrix materials for
cold-moulded HTR fuel elements have been completed successfully with the use
of two approved materials for AVR and THTR fuel elements.

Supplementary aspects result from the limits of fabricability for cold-moulded
fuel elements with high heavy metal loading, on the one hand, and from efforts
to further improve fabrication technology, on the other hand. -

For this reason, the HOBEG company developed a process of warm moulding for
spherical fuel elements. At the same time, an indigenous pitch coke graphite
was used as basic raw material for the graphitic matrix instead of the raw
material mixture of natural graphite and petroleum coke graphite used before.

A material test is being carried out at present in the HFR-Petten to prove
the suitability of such warm-moulded matrix materials for HIR fuel elements.

Warm Moulding of Spherical Fuel Elements

The advantages which can be achieved by the warm moulding of spherical fuel
elements in comparison with cold moulding are compiled in Figure 12.1.

The method of warm moulding may permit the fabrication of fuel elements even
with higher heavy-metal loading than the cold- moulding process (cf. p. 25).
Owing to the low moulding pressure the fracture of fuel particles during
mou]ding is substantially lower and it appears likely to use coated fuel par-
ticles without overcoating (cf. Figure 3.3). Furthermore, remote control of
the moulding operation becomes possible since the fuel elements are moulded
in a steel die instead of rubber dies as before. A totally improved fabri-

cation technology can therefore be achieved by warm moulding.

Figure 12.2 shows the principle of warm moulding for spherical fuel elements:
In a steel die the ellipsoidal kernel of matrix powder and coated fuel par-
ticles, on the one hand, and the ellipsoidal shells made of matrix powder,

on the other hand, are pre-moulded under the same conditions of pressure and
temperature. Assembling of these pre-fabricated fuel element parts is followed
by final moulding at a temperature above the melting point of the resin binder.
After coking and final heat treatment the integral fuel elements are lathed
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to the specified size.

Manufacture of Graphitic Matrix Powder for Warm Moulding

The manufacture of the matrix powder used for warm moulding of the fuel ele-
ment kernel and the matrix shells {cf. Figures 12.2 and 12.4) is represented
in Figure 12.3.

A binder solution is prepared from the basic materials phenolic formaldehyde
resin and methanol and is then processed to resinated matrix powder with an
isotropic artificial graphite filler (pitch coke graphite). A duroplastic
binder is produced from the thermoplastic phenolic resin binder by the addition
of hexamethylenetetramine as a hardener. A transition to in-situ binder syn-
thesis analogous to the synthesized matrix A3-27 {cf. Chapters 3 and 4) seems
to be possible.

Manufacture of Warm-Moulded Spherical Fuel Elements

The method developed by HOBEG for manufacturing warm-moulded fuel elements

is characterized by the fact that the two-stage pressing operation is carried
out in a steel die at Tow pressures of about 10 N x mm"2 and at temperatures
around 100°C.

While the principle of the process is illustrated in Figure 12.2, the flow
diagram in Figure 12.4 shows a breakdown into individual process steps indi-
cating the respective parameters of temperature and pressure.

Warm-Moulded Graphitic Matrix Materials

The most important data of the two warm-moulded matrix materials W2-1 and
W2-2 provided by HOBEG are compiled in Figures 12.5 and 12.6. Both materials
are being tested at present under fast neutron exposure in an isothermal
material test in the HFR-Petten. Variant W2-2 serves as reference material

in addition to the standard quality W2-1. It exhibits a higher binder content
and is intended to provide a better understanding of irradiation behaviour.
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As is shown in Figure 12.5, the materials differ only by their composition,
whereas the raw material and fabrication parameters are equal. The fiiler
component consists of pit¢ch coke graphite and the binder component has been
made of prefabricated phenolic resin binder up to now to which 5 wt % of the
hardener hexamethylenetetramine is added. Final heat treatment is carried
out at 1950°C to achieve a favourable corrosion rate (cf. p. 75 ).

The material properties of the two warm-moulded matrix materials are compared
in Figure 12.6. A comparison of data shows that the matrix W2-1 with the lower
binder content exhibits a clearly better strength behaviour than the matrix
W2-2, especially a substantially higher falling strength. Furthermore, the
thermal conductivity determined at 1000°C and Young's modulus are also

more favourable for thislméterié1; only the higher corrosicn rate points

to é-éiight1y more unfavourable corrosion behaviour. The coefficients of
linear thermal expansion determined between 20 and 500°C and, consequently,
also their quotients;ayfay are similar for both materials.

Figure 12.7 permits a comparison of the material properties of warm}mou1ﬂed
with those of cold-moulded matrix. The tabulation contains the data of the
standard quality of the warm-moulded material W2-1 as well as those of the
two cold-moulded materials A3-3 and A3-27 which are being used for fuel ele-
ments (cf. Chapter 4).

The three materials have different materjal and fabrication parameters (cf,
Figures 4.1 and 12.5), but they are subjected to the same high-temperature
treatment at 1950°C. The warm-moulded matrix shows a substantially better
strength behaviour in comparison with the cold-moulded materials. Its values '
for tensile and compressive strength are between 70 and 95 % above those of
the fuel element matrices and its falling strength is about 50 and 130 % higher
than that of the synthesized resin matrix A3-27 and the standard matrix
A3-319500,respective1y. On the other hand, the thermal conductivity and,
correspondingly, the electrical resistance as well as the corrosion rate are
more unfavourable than for cold-moulded materials. Moreover, moulding in a
die causes a higher quotient of the thermal expansion coefficients ( a)iay ).

[t is of significant technological advantage that the overcoating of coated
fuel particles can probably be omitted altogether for warm-moulded fuel
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elements or that at least the process flow for overcoating can be essentially
simplified without the occurrence of particle fracture, especially in the-
case of TRISO particles with their brittle SiC Tayer.
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Advéntages of Warm Moulding Compared with
Cold Moulding of Spherical Fuel Elements

~ Warm moulding

. 6 enables the manufacture of fuel elements with
higher heavy-metal loading '

® leads to a smaller fracture of the fuel particles
during fuel element moulding

® makes possible either omission or at least
~ simplification of the overcoating procedure

® facilitates an improved technology for the
manufacture of fuel elements

12.1
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Viewgraph of Warm Moulding
of Spherical Fuel Elements

Pre-moulding of the
fuel element kernel
(ellipsoidal)

Pre-moulding of the
matrix shells
(ellipsoidal)

Assembling

Final moulding

Heat treatment
and lathing

12.2
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Manufacture of Warm-Moulded Spherical

Fuel Elements

Resinated matrix powder

Fuel
particles

Portioning

Dosing Dosing
|

Homogenizing

I
Pre-moulding Pre-moulding
(80°C; 10 N - mm™®) (80°C; 10 N - mm3)

| ]
Sphere shells Fuelled zone

Assembling

]

Final moulding
(80-120°C; 10 N - mm'%)

Coking
(800°C)

—

Degassing
(1950°C)

Lathing

-

Spherical fuel element

12.4
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Composition and Fabrication of Warm-Moulded
Graphitic Matrix Materials

Material and Warm-moulded matrix
Fabrication w2-1* w2-2
Composition of raw
materials:
Pitch coke graphite 84 wt % 82 wt %
Resin binder 16 wt % 18 wt %
Binder Phenolic resin with

addition of
5 wt % hardener** -

Moulding method

Warm moulding in a steel_ die

High-temperature
treatment

1950°C

* * standard quality

* related to the binder content

12.5
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Material Properties of Warm-Moulded
Graphitic Matrix Materials

Warm-moulded matrix
Material property

w2-1* w2-2
Young's I 1095 1110
modulus (kN - em™®) 1 892 980
Geometrical density (g - cm9 1.73 174
Coeff. of linear
therm. expansion (108 K™ il 2.94 297
20 - 500°C L 3.73 3.70
Quotient of Coeff. 7 _
of therm. expansion ol 1.27 ‘ 1.25
Therm. conductivity N I 0.57 0.56.
at room temperature W-cm' K" L 0.50 0.51
Therm. conductivity 1 0.35 030
at 1000°C W.cm' K 1 0.32 0.27
Spec. electrical I 1.77 1.81
resistance (102 Q - cm) 1 2.11 2.09
Compression (daN - cm™) It 844 775
strength . 1 832 740
Tensile (daN - cm™) I 225 132
strength i 220 164
Falling strength
Fall of a test sphere !
‘from a height of 4 m (Number of falls 1000 536
onto A3-3 spheres till fracture)
Corrosion rate
at 1000°C in He of .
1 bar with ' (mg-cm?h’) 1.14 1.01
1 vol. % Ho0 (10 h)

* parallel and perpendicular o the equatorial plane of the matrix sphere
** standard quality

12.6
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Material Properties of Warm-Moulded Matrix Compared with
those of Cold-Moulded Matrices

Material Warm-mouided Caold-moulded matrices
matrix W2-1** A3-3 A3-27
High-temperature
treatment 1950°C 1950°C 1950°C
Application Development AVR fuel AVR fuel
Material property of elements elements
warm-moulded
THTR
fuel elements production
Young's u* . 1095 1000 1070
moduius (kN - cm?) L 882 970 1020
Geometrical density (g-cm?) 1.73 1.73 1,74
Coeff. of linear '
therm. expansion (10 K 1 2.94 2.89 2.43
20 - 500°C 1 373 3.45 2.69
Quotient of Coeff. .
of therm. expansion o, foy 1.27 1.19 1.11
Therm. conductivity ) 1] 0.57 0.70 0.69
at room temperature W-cm'K") 1 0.50 0.63 0.64
Therm. conductivity i 0.35 ) 0.4 0.44
at 1000°C W-cm' K" 1L 0.32 0.37 0.39
'Spec. electrical " 1.77 1.46 1.43
resistance (10°Q.cm)y L 2.11 1.48 1.48
Compression (daN - cm3) || 844 435 469
strength 1 832 - 428 464
Tensile (daN - cm®) Il 225 135 135
strength : : 4 220 126 130
Falling strength
Fall of a test sphere {(Number of
from a height of 4 m falls till 1000 437 652
onto A3-3-spheres fracture)
Corrosion rate
at 1000°C in He of '
1 bar with {mg - cm?2 h) 1.14 0.97 0.73
1 vol. % HoO (10 h) '

* parzllel and perpendicular to the equatorial plane of the matrix sphere !
** standard quality

12.7
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