

Human Brain Project

Unifying our understanding of the human brain

Dirk Pleiter (Jülich Supercomputing Centre)

Co Funded by the European Union

Overview

- Introduction
- Selected use cases
- Future supercomputers for brain research
- Federated data infrastructures
- Summary and outlook

Introduction

FET Flagships and Scientific Goals

FET flagships

- Future & Emerging Technologies projects (co-)funded by European Commission
- Science-driven, seeded from FET, extending beyond ICT
- Ambitious, unifying goal, large-scale

Human Brain Project (HBP) flagship

- Currently 114 participants in Specific Grant Agreement 1 (SGA1)
- SGA1 runs from 2016-18 with an overall budget of ~110 M€

Goals of the HBP

- Enable research aiming for understanding of the human brain
- Transfer neuroscience knowledge for development of future technologies

Challenge: Complexity of the Human Brain

Extremely large number of neurons

About 100 billion neurons

Extremely high-radix interconnect

100 trillion synapses

Many organisational levels

- Molecular
- Cellular
- Brain regions
- Whole brain

Extremely power efficient

- The human brain consumes only 30 W
- Today we need supercomputers to model fractions of the human brain

Project Objectives

- Create and operate a European Scientific Research Infrastructure for brain research, cognitive neuroscience, and other brain-inspired sciences
- Gather, organise and disseminate data describing the brain and its diseases
- Simulate the brain
- Build multi-scale scaffold theory and models for the brain
- Develop brain-inspired computing, data analytics and robotics
- Ensure that the HBP's work is undertaken responsibly and that it benefits society

Project Organisation and Approach

Open organisation

- Core project vs. partnering projects
- Competitive calls program

Neuroscience and platform sub-projects

- Neuroscience sub-projects:
 - Mouse and human brain organisation
 - Systems and cognitive neuroscience
 - Theoretical neuroscience
- Platforms: see next slide

Co-design approach to shape future research infrastructure

- Neuroscience vs. platform sub-projects
- Dedicated co-design projects

Human Brain Project Platforms

Platform

- Neuro-informatics platform
 - Integration of brain data and extreme scale data analytics
- Brain simulation platform
 - Integration of different simulators
 - Molecular level simulations to whole-brain modelling
- High-Performance Analytics & Computing Platform
 - Design, implement and operate a federated HPC and data analytics platform
 - Establish co-design processes involving HPC solution providers
- Medical Informatics Platform
 - Federated clinical infrastructure
- Neuromorphic Computing Platform
 - Design, implement and operate neuromorphic hardware systems
- Neurorobotics Platform
 - Based on integration of models, simulators and neurorobotics systems

Infrastructure

Selected Use Cases

Use Case: High-resolution Brain Atlas

Research goal

 Accurate, highly detailed computer model of the human brain based on histological input

Approach

[K. Amunts et al., Science 2013]

- Create high-resolution 2-dimensional brain section images
- Re-construct 3-dimensional models from these images

Need for High Resolution

- Large-Area Polarimeter image
- Optical resolution limit = 159 µm
- ~3 GByte / image

- Polarizing Microscope image
 - Optical resolution limit = 3.9 µm
 - ~700 GByte / image

Brain Atlas: The Computational Challenge

Image registration

- Based on mutual information metric
- Determination of joint histograms

- Runs fast on NVIDIA Kepler GPUs
 - Key feature: support of L2 atomics

Navigation in petabytes of data

- About O(10...100) GByte/image
- O(10⁴) images

[S. Lefranc et al., 2016]

Use Case: Whole-Brain Modelling

Neural Simulation Technology (NEST)

One out of several brain simulators in the HBP

Application target

- Create models of the brains of mammals and humans
- Push limits of large-scale simulations of biologically realistic networks
 - Huge network: O(10¹¹) neurons
 - High connectivity: Neuron connected to O(10⁴) neurons

Approach

- Simulation of spiking neuronal network
- Focus on large networks, use of simple point neurons

[Potjans, Diesmann, 2012]

NEST: The Memory Capacity Challenge

Simulation work-flow

- Construct network
- Spiking neuronal network simulations
- Analyse observables created by simulations

Supercomputer requirements

- Maximise memory footprint
 - Application today is memory capacity limited
- Optimise processing performance → memory bandwidth
 - Keep ratio simulation versus simulated time small
- Allow for interactive steering of the applications

[Kunkel et al., 2014]

Simulation Virtual Surgery

Scientific question

What happens if particular neuron connections are cut?

Approach

 Interactive manipulation of network during simulation

Future vision

 Interactive access to supercomputers

[M. Diesmann, 2013]

Future Supercomputers for Brain Research

Envisioned Use Cases

Future large-scale simulations with need for

- Pre-exascale computers with extreme scale memory footprint
- Ability to steer the simulations
- Concurrent interactive analysis of data
- Scalable data visualisation capabilities

High-performance data analytics

- Image and other data in O(1-10) PByte range
- Need for scalable compute resources to process data

Architectural and Technological Requirements

Integration of dense memory technologies

- Need space to
 - Enable checkpoint/restart or resume mechanisms
 - Hold transient data
- New NVM technologies will help (V-NAND, PCM, ...)
 - Provide high capacity, but only limited bandwidth
 - Challenge: global interface to this memory
- Globally accessible and addressable storage class memory

Technologies enabling exploitation of memory and storage hierarchies

Support of automatised data staging and migration

Architectural and Technological Requirements

Integration of visualisation capabilities

- Scalability
- Small response times
- Support of various user interfaces

Resource management: co-scheduling and dynamic scheduling

- Co-scheduling of different types of resources
 - Compute vs. data resources
- Ability to cope with resource requirements changing during job execution

HBP Pre-Commercial Procurement

Instrument for procurement of R&D services

Competitive processed organised in multiple phases

Current status

- Final phase started in July 2015
- Remaining competitors
 - CRAY
 - IBM + NVIDIA

 Pilot systems to demonstrate readiness of the proposed solutions have been recently installed at JSC

Selected R&D Result: DSA

DSA = Direct Storage-class memory Access

Key idea

- Use OpenFabrics stack for (local) NVM access
- RDMA write/read to/from NVM device

Extension within PCP

- Global address space
- Full saturation of InfiniBand EDR link speed demonstrated

PCP Pilot System Complex

Cray PCP Pilot System

Based on CS Storm with KNL

KNL processors with 64 cores

Deep memory and storage hierarchy

- High-bandwidth MCDRAM
- Capacity optimised DDR4
- SATA-attached SSD
- DataWarp nodes with PCIe-attached SSDs

PCP related features

- Integration of dense memory
- Tightly integrated visualisation nodes
- Dynamic resource management integrated with SLURM

IBM-NVIDIA Pilot System

Based on Minsky platform

2x POWER8' + 4x Pascal GPUs

Deeper memory hierarchy

- High bandwidth memory technologies
 - 64 GiByte, ~3 TByte/s
- Large capacity system memory
 - ≥256 GiByte, ~200 GByte/s
- Very-large capacity NVM
 - 2 TiByte, ~3 GByte/s

Improved data movement capabilities

New NVLink and DSA technologies

Digression: Neuromorphic Architectures

SpiNNacker [Steve Furber

[Steve Furber, David Lester et al.]

- System based on custom processors
 - ARM-based SoC design
- Application optimised asynchronous NoC and inter-chip network

Waferscale system NM-PM1

- HICANN ASIC
 - High Input Count Analog Neural Network
 - Implements a particular neuron model
- O(100) ASICs on single wafer
- Simulation speed faster than real-time

[Karlheinz Meier et al.]

Federated Data Infrastructures

Envisioned Use Case: Modelling the Dynamic Brain

Comparative analysis of data from multiple data sources

- Spike-train data generated by NEST on standard HPC systems
- Data from neuromorphic systems like FACETS
- Electro-physiological data from multi-electrode array measurements

Workflow

- Upload primary data
- Replicate data to location near data analytics facility
- Apply data analytics methods to the data

Selected Requirements

Integrated AAI with single sign-on

HBP decided for OIDC based AAI

Support of data replication to improve

- Data resilience (not considered critical here)
- Data availability (only foreseen for a subset of the data)
- Data access performance

Data localisation service

Support of different types of data sources, e.g.

- Standard supercomputers
- Neuromorphic special purpose computers
- High-performance image scanners

Different Classes of Data Repositories

Archival Data Repositories

- Data store optimized for capacity, reliability and availability
- Data is not replicated

Active Data Repositories

- Data repository localized close to computational or visualization resources such that high performance access to data is enabled
- Used for storing temporary slave replica of large data objects

Database Repositories

Data store optimized for search and retrieval of small data objects

Upload Buffers

Reliable data store for staging data before upload to archive

Federated Data Infrastructure Architecture

Approach to Realisation

Analysis of use cases

Identify requirements

Selection of technologies

- Match requirements and identify missing solutions
- Implement POCs

Integration of infrastructure

- here 🖕 🔶
- Test interoperability through infrastructure level POCs

Integration of application workflows

Interface with use case applications

Application-level validation

Semi-production demonstrators

Summary and Outlook

Summary and Outlook

Overview on Human Brain Project

- 10 years mission started in 2013
- On track towards building a world-class brain research platform

Outlook on future supercomputers

- Requirements from neuroscience applications go beyond "classical HPC"
- Aim for impact on future supercomputer roadmaps

Creation of a federated data infrastructure

- Data is of key relevance for the HBP
- Efficient federation of data and compute resources is key for the success of the HBP

Thank You.