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ABSTRACT 

The Time Dependent Neutronics and Temperatures (TINTE) code system deals with the 
nuclear and the thermal transient behaviour of the primary circuit of the High-temperature 
Gas-cooled Reactor (HTGR), taking into consideration the mutual feedback effects in two-
dimensional axisymmetric geometry. This document contains a complete description of the 
theoretical basis of the TINTE nuclear calculation, including the equations solved, solution 
methods and the nuclear data used in the solution. This document was prepared in 
compliance with the layout and review requirements of [1] and [2], and forms part of the 
verification and validation of TINTE. 
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ABBREVIATIONS 

This list contains the abbreviations used in this document. 

Abbreviation or 
Acronym Definition 

1D one-dimensional 
ANL Argonne National Laboratory 
Bq Becquerel 
DIN Deutsches Institut für Normung e. V. (German 

Institute of Standards) 
DMACD Data Methods and Code Development 
ECP Engineering Change Proposal 
ENDF Evaluated Nuclear Data File 
HTGR High Temperature Gas-cooled Reactor 
HTR High Temperature Reactor 
LEU Low-enriched Uranium 
n/a not applicable 
NEA Nuclear Engineering Analysis 
OTTO Once-Through-Then-Out 
PBMR Pebble Bed Modular Reactor 
TINTE Time Dependent Neutronics and Temperatures 
V&V Verification and Validation 
VSOP “Very Superior Old Program” (Version 99) 
w.r.t with respect to 
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1. INTRODUCTION 

The Time Dependent Neutronics and Temperatures (TINTE) code system deals with the 
nuclear and the thermal transient behaviour of the primary circuit of a High Temperature 
Gas-cooled Reactor (HTGR), taking into consideration the mutual feedback effects, in two-
dimensional axisymmetric geometry. 

The original TINTE documentation consists of three parts, the first of which [3] was published 
(in German) more than a decade ago. The mathematical basis for this document has been 
verified in [5], which contains mathematical checks to the equation derivations of [3]. The 
third of these documents [4] contains additional detail on the calculation structure and certain 
data sources. 

The TINTE documentation was found to lack important detail. Some of this detail was found 
hidden within the documentation itself ([3] and [4]) and within the referenced documents. 
Some could only be found by a detailed analysis of the TINTE source code. A process of 
matching the TINTE source code with its theoretical basis was therefore found necessary to 
‘fill in the blanks’. 

This document describes a more complete theoretical basis for the TINTE nuclear 
calculations. In many cases, the equations of [3] remain unchanged. In other cases, 
additional information and/or equations are provided, giving a more complete picture of the 
TINTE calculation. Full derivations of the relevant equations are not always provided; in 
these cases, however, the full derivation is referenced. 

This document is not intended as a replacement to either [3] or [4] but should be regarded 
as an updated compilation of information from a number of sources, providing a more 
complete picture of the theoretical basis of the TINTE nuclear calculation. 

This document was prepared in compliance with the layout and review requirements of [1] 
and [2], and forms part of the verification and validation of the software product TINTE. 

1.1 NOMENCLATURE 

A list of relevant symbols and their meanings is provided below. 

fA  Face area vector [cm2] 

B  Neutron diffusion equation buckling [cm-2] 

gB  Graphite burn-up due to oxidation [atoms.cm-3] 

lC  Delayed neutron precursor concentration [neutrons.cm-3] 

2N
C  Nitrogen concentration [mol.m-3] 

2H
C  Hydrogen concentration [mol.m-3] 

CC  Carbon concentration [mol.m-3] 

D  Neutron diffusion coefficient [cm] 

E  Energy per interaction [J] 

F  Interaction rate [interactions.s-1] 

I  Iodine concentration [atoms.cm-3] 

J  Neutron current density magnitude [neutron.cm-2.s-1] 
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J  Neutron current density vector [neutron.cm-2.s-1] 

k  Reactor multiplication factor 

K  General-purpose multiplication factor 

L  Neutron leakage per unit flux [cm2] 

N  Atom number density [atoms.cm-3] 

Q  Heat production [J] 

r  Radial coordinate [cm] 

R  Ratio of the interaction rate in a given isotope to the total interaction rate 

S  General-purpose source term, iteration mesh transformation factor 

t  Time [s] 

T  Temperature [K] 

v  Average neutron velocity [cm.s-1] 

V  Volume [cm3] 

x  Molar fraction 

X  Xenon concentration [atoms.cm-3] 

z  Axial coordinate [cm] 

α  Heat flux resistance for the fuel coated particle overheating model [K.cm3.W-1] 

β  Delayed neutron fraction 

χ  Ratio of local to total heat production 

Δ  Time interval [s] 

ε  Fractional error. In the context of paragraph 3.2.6 this represents the solid material 
fraction. 

φ  Scalar neutron flux [neutrons.cm-2.s-1] 

γ  Convergence accelerating parameter or direct fission yield fraction 

λ  Decay constant [Bq] 

extrapλ  Boundary extrapolated length [cm] 

ν  Net number of neutrons produced per fission 

θ  Azimuthal ordinate [radian] 

σ  Microscopic cross section [cm2] 

Σ  Macroscopic cross section [cm-1] 

τ  Time interval [s] 

( )xΩ  The volume-weighted average of variable x  

ς  General-purpose fractional multiplication factor ( 10 ≤≤ ς ) 
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General superscripts, subscripts and embellishments may include the following: 

0  Initial condition 

1 End-of-interval condition or w.r.t. the fast energy group 

2  w.r.t thermal energy group 

B  Graphite burn-up 

C  Carbon 

eq  Equilibrium 

f  Fission. Fuel material in the context of paragraph 3.2.6. 

2H  Hydrogen 

i  Discrete axial location index (iteration mesh) or other general index 

î  Discrete axial location index (material mesh) 

ii  Discrete axial location index (fine iteration mesh) 

j  Discrete radial location index (iteration mesh) 

ĵ  Discrete radial location index (material mesh) 

jj  Discrete radial location index (fine iteration mesh) 

k  Discrete azimuthal location index (iteration mesh) 

k̂  Discrete azimuthal location index (material mesh) 

kk  Discrete azimuthal location index (fine iteration mesh) 

l  Delayed neutron precursor group 

m  Moderator material 

2N  Nitrogen 

r  w.r.t the radial direction 

z  w.r.t the axial direction 

φ  w.r.t the neutron flux 

θ  w.r.t the azimuthal direction 

x~  Located at the control volume edge 

x  Spatial or temporal average value 

x&  Temporal derivative 
dt
dx

 

'x  Modified 

x ′′′  Per unit volume 
*x  Effective value 
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Cross-section-related subscripts may include the following: 

a  Absorption (including fission absorption) 

f  Fission 

r  Removal (scattering out of energy group) 

s  Scattering out of the energy group 

tr  Transport 

7Gd  Absorption be 157Gd 

9Sm  Absorption by 149Sm 

1Sm  Absorption be 151Sm 

5Xe  Absorption by 135Xe 

Note that 1rΣ  and 2rΣ  are equivalent to 21→Σ s  and 12→Σ s  respectively in the context of TINTE. 

Heat-production-related subscripts may include the following: 

A  The remaining actinides, excluding 232Th and 238U 

B  Breeding from the isotopes 232Th and 238U  

Cs  134Cs neutron capture reaction 

d  Decay 

E  Capture reactions other than 134Cs and the actinides 

mod  Neutron moderation 

n  Fission neutron 

γ,n  n,γ reaction 

f  Fission 

k  Time interval index 

l  Local 

p  Prompt 

r  Fission fragment rebound 

S  Fission product 

β  β-particle 

γ  γ-particle 
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2. MODELLING REQUIREMENTS 

The TINTE code is required to calculate the time-dependent nuclear and thermal-hydraulic 
behaviour of a High Temperature Reactor (HTR). More specifically, the nuclear calculation 
shall model the time-dependent nuclear behaviour of a HTR in two-dimensional axisymmetric 
(r,z) geometry. 

The following physical processes shall be modelled: 

• The time-dependent neutron flux. 
• The neutron cross sections. 
• Short- and medium-term reactor dynamics – The influences of delayed neutrons and 

neutron poisons such as 135Xe shall be modelled. 
• The time-dependent heat source distribution – Prompt and decay heat shall be 

modelled. Non-local heat production due to gammas, neutron capture and moderation 
shall be modelled. 
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3. MODELLING DESCRIPTION 

3.1 PHYSICAL PROCESSES 

Of primary importance in modelling the operation of the nuclear reactor is the knowledge of 
the neutron distribution in the reactor core. For the purposes of TINTE, the neutron 
distribution as a function of space, time and energy is desired. The following physical 
processes are modelled: 

• The time-dependent absorption, scattering and fission of neutrons. 
• The prompt and delayed production of neutrons from fission. 
• The production and decay of saturation fission products such as 135I and 135Xe. 
• The heat production due to fission, both locally within the fuel and no-locally due to 

neutron moderation, absorption and gamma radiation. 
• The influence of state variables (temperature, etc.) on material cross sections. 

3.1.1 The Spatial Domain 

The reactor is modelled in TINTE using a discrete spatial mesh. The accuracy of such a 
discrete approximation is dependent largely on the model that is used. A rectangular mesh is 
chosen as this allows certain optimizations to be made to the numerical solution of the 
neutron flux. Because TINTE is tailored towards the modelling of cylindrical reactors, a 
cylindrical coordinate system was chosen. It should be noted that, despite the fact that the 
equations derived in this document include the azimuthal coordinate, the final TINTE 
implementation neglects the azimuthal dependence. 

This axisymmetric assumption has a number of consequences. Control rods and other 
discrete components, which have azimuthal dependence, are assumed to be homogenized 
in the azimuthal direction. This further complicates the generation of cross sections for 
calculations. The influence of, as an example, a single control rod cannot be accurately 
determined. True spatial oscillations cannot be modelled. 

The definition of the spatial domain is discussed further in paragraph 3.2.1. 

3.1.2 The Time-dependent Neutron Flux 

The neutron flux is modelled using the diffusion approximation. The diffusion approximation 
is derived from the neutron transport equation under the following assumptions [7]: 

a. Absorption is much less likely than scattering. 
b. There is a linear spatial variation of the neutron distribution. 
c. Scattering is isotropic. 

Condition (a) is satisfied for most moderating and structural materials within the nuclear 
reactor (graphite, water, etc.), but not for fuel and control rod materials. Condition (b) is 
satisfied a few mean free paths away from the boundary of a large (relative to the mean free 
path) homogenous media with relatively uniform source distributions. Condition (c) is 
satisfied for the scattering from heavy atomic mass nuclei. It is clear at this point that the 
diffusion approximation cannot be used independently to obtain accurate predictions. In 
general, more accurate transport calculations would be used along with diffusion theory to 
predict the neutron flux distribution of a reactor. These transport calculations are generally 
used to prepare effective macroscopic cross sections, which may then be used in the 
diffusion calculation. The topic of macroscopic cross sections is discussed further in 
paragraph 3.1.3. 
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Additionally, the two-energy-group approximation was adopted, assuming a single fast and 
epithermal energy group and a single thermal energy group. This approximation, again, may 
be considered valid only if sufficient precalculation has been carried out to determine the 
neutron energy spectrum within the reactor. The neutron spectrum may then be used to 
reduce the continuous energy-dependent cross sections to two-group cross sections. This 
two-group approximation also assumes that a thermal reactor is being modelled. 

The derivation of a solution method for the spatial- and time-dependent neutron flux is 
detailed in paragraph 3.2.3. 

3.1.3 Neutron Cross Sections 

In order to simplify the code, and improve computational time, it was decided that detailed 
transport calculations would be removed entirely from the TINTE nuclear calculation and 
would form part of the input data preparation procedure alone. The spatial two-group cross 
sections are therefore required as a user input to the code. Because of the many possible 
influencing parameters, these cross sections have to take into account numerous 
parameters: 

• Long-term changes in cross sections due to fuel burn-up – The TINTE calculation 
assumes short- and medium-term dynamics and therefore long-term effects are ignored. 

• Changes in reactor geometry – Constant reactor geometry is assumed. The influence of 
the addition of hydrogen and nitrogen in the coolant is considered, as well as the 
influence of graphite loss due to corrosion. 

• Movement of fuel in the core due to continuous refuelling – Because short- and medium-
term dynamics are assumed, the effect of fuel movement may be ignored. 

• Medium-term changes in cross sections due to the build-up of neutron poisons such as 
Xe-135 and Sm-151. 

• The leakage or buckling. 
• Material temperatures – The temperature feedback is assumed to have a fuel 

temperature and moderator temperature component. 

The common method of supplying groupwise cross-sectional data to codes is through 
multidimensional tables. It was decided that this method required too much memory to store 
the multidimensional tables and was computationally expensive to perform the 
multidimensional interpolating of data. Instead a polynomial representation of the cross 
sections was opted for. The method used for cross-section representation is detailed in 
paragraph 3.2.2. 

3.1.4 Short-term Reactor Dynamics 

The dynamics of a nuclear reactor is influenced by the delayed emission of neutrons from the 
decay of fission products. For pebble-bed-type HTRs, the influence of delayed neutrons is 
not dominant, however, it is still significant and should be accounted for. Although there are a 
relatively large number of fission products, each decaying via neutron emission, it is 
generally accepted that the observed composite emission characteristics can be well 
represented by defining six effective delayed neutron groups. Each group is characterized by 
a decay constant iλ  and relative fission yield ββ i . The influence of the delayed neutrons is 
included in the time-dependent diffusion equation. The derivation of the equations to model 
the delayed neutron production is given in paragraph 3.2.3.3. 
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3.1.5 Medium-term Reactor Dynamics 

All fission products influence the absorption of neutrons to some extent. Fission products that 
absorb neutrons are known as neutron poisons. Because absorption cross sections tend to 
decrease rapidly as a function of neutron energy, the influence of these poisons is greatest in 
thermal reactors. 

The most important fission product poison is Xe-135. This is formed from the decay of 
Te-135 to I-135 and subsequent decay to Xe-135. The isotope is also formed directly by 
fission. This isotope has a significant influence on the medium-term operation of a reactor, 
specifically when power levels change and the neutron spectrum shifts. 

The isotope Sm-149 is considered to be of less importance than Xe-135 but nonetheless its 
concentration influences the medium-term dynamic operation of the thermal reactor. In 
addition to Xe-135 and Sm-149, the isotopes Sm-151 and Gd-157 are considered important. 
Their fission yields are, however, smaller and their importance is therefore considered less. 

The derivation of a set of discretized time-dependent equations for the neutron poison 
concentrations is given in paragraph 3.2.4. 

3.1.6 Heat Production 

The heat production is necessary to determine fuel and moderator temperatures within the 
reactor. Fission processes are responsible for most of the generated heat within a reactor. 
Fission energy is released via highly divergent processes, i.e. many different sources must 
be considered. Approximately 5% of the energy, calculated from the mass defect, is released 
as anti-neutrinos and is therefore unavailable for heat production in the reactor. The heat 
production is assumed to be divided into two parts, namely the prompt and decay heat. 
Decay heat is conservatively modelled using the DIN standard 25 485 [21]. The derivation of 
the modelling equations for heat production, as well as the assumptions made, is given in 
paragraph 3.2.5. 
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3.2 PHYSICAL MODELLING AND SOLUTION OF EQUATIONS 

3.2.1 The Calculational Domain 

The TINTE nuclear module is tailored towards modelling cylindrical reactors using an r-z-θ 
coordinate system. While the underlying theory of TINTE has been derived in three 
dimensions, the code itself is currently limited to two-dimensional axisymmetric calculations. 
Therefore, for many of the derivations given in this document the third (θ) ordinate is 
accounted for but is not enabled in the code. 

A structured rectangular mesh is employed, shown in Figure 1. Multiple meshes are defined 
within the total computational domain. Since all meshes share common geometry, the 
concept of different meshes is not strictly correct, however, mapping of values from a given 
location in one mesh to its corresponding location in another is necessary and for this reason 
separate meshes are defined. The following meshes are defined (refer to Figure 1): 

a. Nuclear material mesh - All nuclear properties and solutions are stored on this mesh. It 
corresponds exactly with the coarse grid definition of the total computational domain but 
is generally smaller in size, i.e. areas of the model that are far from the core and are 
considered neutronically insignificant are excluded. 

b. Nuclear iteration mesh - The neutron flux calculation is carried out using this mesh. It is 
equivalent to the nuclear material mesh, however, material blocks may be lumped 
together in order to decrease solution time. 

c. One-dimensional (1D) nuclear iteration mesh in the radial direction - This is equivalent to 
the nuclear iteration mesh, but with a fine sub-meshing applied in the radial direction. 
This mesh is used for the radial pass of the one-dimensional leakage iteration calculation 
described later in paragraph 3.2.3.6. 

d. 1D nuclear iteration mesh in the axial direction - This is equivalent to (c) above for the 
axial direction. 

e. 1D nuclear iteration mesh in the azimuthal direction - This is equivalent to (c) above for 
the azimuthal direction. 

In addition to those above core, solid-material and gas-flow meshes are defined. These are 
used primarily for thermal-hydraulic calculations and therefore will not be discussed in detail. 

A nuclear material is assigned to each nuclear material block. A material can be assigned to 
more than one block. Each material, in turn, has a unique set of cross-section polynomials 
(refer to paragraph 3.2.2) as well as history of operation and fission rate fractions for heat 
production calculations (refer to paragraph 3.2.5). The user supplies these material 
parameters. 
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Figure 1: The TINTE Nuclear Calculational Domain 
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3.2.2 Cross Section Representation 

Homogenized two-group material cross sections are generally a complex function of a 
number of parameters. In TINTE, the following parameters are accounted for: 

• Fuel temperature, fT , expressed in Kelvin [K] 

• Moderator temperature, mT , expressed in Kelvin [K] 

• Leakage per unit volume per unit flux (buckling per unit volume), L ′′′  [cm-1] 
• Xenon concentration, Xe  [atoms.barn-1.cm-1] 

• Concentration of nitrogen, NC  [mol.m-3] 

• Concentration of hydrogen, HC  [mol.m-3] 

• Graphite burn-up (oxidation), gB  [mol.m-3] 

In order to minimize computational time, it was decided that inline spectrum calculations and 
homogenization would not be carried out in TINTE, but rather that two-group homogenized 
cross sections would be generated externally. These cross sections are represented in 
TINTE by a series of Nth order polynomials of the form shown. 

( )
( ) ( ) ( )[ ]
( ) ( ) ( )[ ] KK

K

+−++−+−+

−++−+−+

Σ=′′′Σ

n
mmnmmmm

m
ffmffff

gOHNmf

TTBTTBTTB

TTATTATTA

BCCXeLTT

0
2

0201

0
2

0201

0,,,,,,
22

 (3.1)

This representation was chosen, as opposed to multidimensional lookup tables, because it 
allows very rapid calculation of cross sections as a function of multiple parameters. Note that 
no serial expansions with mixed parameters are implemented, i.e. each polynomial term is a 
function of a single parameter only. 

All coefficients are defined on a per material basis. The reference point 0Σ  is chosen as the 

macroscopic cross section of the material for the reference operating conditions ( 0fT , 0mT , 

etc.) within the relevant region of the reactor. The coefficients iA , iB , etc. are defined 
thereafter to correct for changes in the operating conditions of the reactor. In practice, the 
polynomial coefficients are pre-calculated based either on VSOP 99 [19] steady-state results 
or on the results of previous TINTE calculations for an assumed range of operating 
conditions. Using this method, the cross sections are accurately calculated near the 
reference operating conditions but become less accurate as one moves away from the 
reference operating conditions. In TINTE, the precalculation of macroscopic cross sections 
for given operating conditions is performed using the TISPEC spectrum code. 

Each nuclear material mesh is assigned to a nuclear material and, therefore, a unique cross-
section set is calculated using the temperatures, buckling, etc. within the nuclear material 
mesh at the start of each nuclear time-interval. For steady-state calculations, the 
temperatures, buckling, etc. are carried over from the previous iteration. The following cross 
sections/nuclear parameters are calculated: 

• Fast and thermal macroscopic transport cross sections; 1trΣ  and 2trΣ . 

• Fast and thermal macroscopic absorption cross section (including fission); 1aΣ  and 2aΣ . 

• Fast and thermal macroscopic nu-fission cross section; 1fΣν  and 2fΣν . 
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• Fast and thermal macroscopic fission cross section; 1fΣ  and 2fΣ . 

• Fast and thermal macroscopic removal cross section; 1rΣ  and 2rΣ  (alternatively 21→Σ s  

and 12→Σ s ). 

• Fast and thermal group reciprocal mean neutron velocity; 
1

1
v  and 

2

1
v . 

• 135Xe, 149Sm, 151Sm and 157Gd thermal group microscopic cross sections; 5Xeσ , 9Smσ , 

1Smσ  and 7Gdσ . 

3.2.2.1 Diffusion constants 

The diffusion constants are calculated from the transport cross sections as: 

tr

D
Σ

=
3

1
 (3.2)

A special treatment may be necessary for cavity regions and pebble-bed-type cores, as 
neutron streaming can take place. This is accounted for by assuming different diffusion 
constants in the radial, axial and azimuthal directions [8]. Directional diffusion coefficients are 
defined using correction factors in the radial, axial and azimuthal directions. If we define 

DKD r
r = , where rD  is the radial diffusion coefficient and rK  is assumed constant 

throughout the calculation for any given material, the directional macroscopic transport cross 
section may be written as: 
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New polynomial coefficients 
r

ir
i K

A
A = , 

r

ir
i K

B
B = , etc. for the nuclear material may therefore 

be defined. Similarly, for the axial and azimuthal directions, directional polynomial 
coefficients 

z

iz
i K

A
A = , 

z

iz
i K

B
B = , 

θ

θ

K
A

A i
i = , etc. (3.3)

may be defined. 
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3.2.2.2 Overlaid cross-section sets 

The ability to dynamically alter material compositions within the reactor model is particularly 
useful for a number of different cases, e.g. to simulate the addition of neutron poisons and/or 
additional moderator material to the reactor. In TINTE, this is achieved by means of overlaid 
cross sections. For each nuclear material, more than one cross-section set may be defined. 
The final cross section values, as calculated for the nuclear material mesh and used in the 
diffusion calculation, are calculated by fractionally overlaying the cross sections calculated 
using the polynomial expansions of Equation 3.1. An example is given: 

( ) KK +Σ+Σ+Σ−−−=Σ CCBBACB ςςςς1  (3.4)

The fractions Bς , Cς , etc. are either user-specified or are set by the TINTE control modules. 

Note that 1≤∑ iς . 

3.2.2.3 Modelling of control rods 

With the exception of a central control rod, axial control rods cannot be represented directly 
in two-dimensional axisymmetric geometry. A number of models are commonly used to 
overcome this limitation. The ‘grey’ curtain model is adopted in TINTE [9]. This allows 
continuous control rod movements to be simulated by adjusting the neutron poison 
concentration in a given material. A major disadvantage to this method or representation is 
that it is often difficult to derive the neutron poison concentration and, therefore, the rod 
efficiency from the geometry and composition of the control rods. If rod efficiency is known 
beforehand, however, this model is easily implemented by means of overlaid cross-section 
sets. Typically, a cross-section set is defined for the control rod fully inserted and one for the 
control rod withdrawn from a given material mesh as shown in Figure 2. This method 
requires that each material mesh containing control rods must be assigned a unique material 
with overlaid cross-section sets. 

Control rod withdrawn
from mesh

Control rod fully
Inserted in mesh

etcrffa ;;;; ΣΣΣΣ ν etcrffa ;;;; ΣΣΣΣ ν
Cross-section set A Cross-section set B

 
Figure 2: Defining Cross-section Sets for the Simulation of Control Rod Movement 

A typical overlaid cross section is calculated, in the case of Figure 2, as 
( ) BA Σ+Σ−=Σ ςς1 . The correct choice of the parameter ς  ( 10 ≤≤ ς ) is essential for 

modelling small control rod movements because the parameter is not linearly dependent on 
control rod position. This topic is covered in greater detail in the TINTE control module 
descriptions. 

It should be noted that TINTE contains no equations to directly calculate the control rod 
worth. The user is expected to supply the overlaid cross-section sets. 
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3.2.3 The Neutron Flux Solution 

3.2.3.1 The time-dependent diffusion equations 

The two-group time-dependent diffusion equation is given below, including delayed neutron 
precursors [7]. 

In the fast energy group: 

( ) ( ) φλβφφφ
φ SCPD
tv l

llssa ++−+Σ+Σ+Σ−∇∇=
∂

∂ ∑
=

→→
6

1
2

12
1

21
111

1

1

11
 (3.5)

In the thermal energy group: 

( ) 1
21

2
12

222
2

2

1 φφφ
φ →→ Σ+Σ+Σ−∇∇=
∂

∂
ssaD

tv
 (3.6)

It should be noted that upward scattering is allowed for and the selected group structure 
(energy division) is left open. 

All fission neutrons are assumed created in the fast energy group. Neutron production is 
described by: 

( )2211
1 φνφν ffk

P Σ+Σ=  (3.7)

where k  is the effective reactor multiplication constant. In general, k  is calculated for the 
equilibrium case and remains unchanged during time-dependent calculations. In TINTE, 
however, there are special cases (fixed power transients) where k  is updated during the 
time-dependent calculation. This is discussed further in paragraph 3.2.3.10. 

3.2.3.2 Spatial discretization 

A three-dimensional r-z-θ coordinate system is used with a rectangular structured mesh. The 
laplacian operator in this case, for the case of anisotropic diffusion constant, becomes: 

z
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When considering each component separately: 
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Figure 3: Spatial Discretization Layout 

Consider the spatial coordinates of Figure 3. The current at the radial mesh interface jr~  may 

be written as:  

j

rr
j r

DJ
∂
∂

−=
φ

 

It is, however, necessary to determine an effective diffusion constant at the interface as 
adjacent meshes may contain different materials. We equate the neutron flow densities on 
both sides of the interface, applying a finite-difference approximation. 
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The current at the jth radial mesh interface, dependent on only the mesh-centred fluxes, can 
now be calculated. 
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( )1

1,

1

,
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−
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jj
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j
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rr
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(3.8)

 

The equivalent relationship for the j+1th mesh may be written and similarly relationships for 
the axial and azimuthal currents may be derived. 

We now consider the two-group diffusion equations and integrate over a given volume V. 
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Application of Gauss’ Theorem to the laplacian terms allows the volume integral to be 
transformed to a surface integral. 
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The surface integrals may be decomposed into a sum over the bounding faces of the mesh. 
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For continuous functions under the integrals, the integration midpoint rule can be applied to 
all integrals. 
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Given the definition of φ∇−= DJ , further defining the neutron leakage from each mesh 
surface as ( ) fffff DL AAJ •∇−=•= φφ  and considering the structured mesh definition, 

the equations may be written as: 
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where the face leakage values, using Equation (3.8) are calculated as: 
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The equivalent equation for the axial direction is: 
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The equivalent equation for the azimuthal direction is: 
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3.2.3.2.1 Boundary conditions 

The vacuum boundary condition is obtained by assuming the flux is zero at a given distance 
from the boundary, known as the extrapolated length extrapλ . Neutron transport theory 

calculations have given rise to the common definition [7] of the extrapolated distance of: 

Dtrextrap 371.071.0 1 ×=Σ= −λ  (3.14)
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Consider a vacuum boundary located at 1
~z . The flux at a distance extrapλ  from the boundary 

is zero as shown in Figure 4. 
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Figure 4: The Extrapolated Length Boundary Condition 

Assuming a linear flux profile, the flux at the boundary may be found. 
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Using this, the leakage per unit surface area at the boundary is given by: 
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Therefore, with reference to Equation (3.11), a first-mesh vacuum boundary condition may 

be represented by replacing the term z
i

ii

D
zz

1

1
~

−

−−
 with z

i

extrap

D
λ

. Similarly, for a final-mesh 

vacuum boundary, the term z
i

ii

D
zz ~−

 may be replaced by z
i

extrap

D 1−

λ
. This replacement is 

applicable to all directions, namely axial, radial and azimuthal. 
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For the special case of a reflecting boundary, the zero gradient boundary condition is 
approximated using a very large extrapolated length to diffusion coefficient ratio. 

0
~

limlim 11 =
−

=
∂
∂

∞→∞→ extrap

z

Dboundary

z

D

D
z

D
z

extrap
z

extrap λ
φφφ

λλ  

The value z
i

extrap

D
λ

 is chosen to be 1050. For typical diffusion lengths (in the order of 

centimetres to metres), the error introduced by this approximation is in the order of 10-40, 
which is considered negligible. 

3.2.3.3 Delayed neutron production 

Although there are a relatively large number of fission products, which subsequently decay 
via neutron emission, the observed composite emission characteristics of delayed neutrons 
may be well represented by defining six effective delayed neutron groups. Each group is 
characterized by a decay constant, lλ , and a relative yield fraction, ββ /l . The decay 

constants lλ  for the delayed neutron groups are given in Table 1 for 235U fuel. In the TINTE 
implementation, this group structure is used for all fissionable isotopes. The source and 
derivation of the delayed neutron data are discussed in Appendix B and Appendix C. 

Table 1: Decay Constants for the Six Delayed Neutron Precursor Groups, 235U [12] 

Delayed 
Neutron Group Group Decay Constant lλ  [s-1]

1 3.87 
2 1.4 
3 0.311 
4 0.116 
5 0.03174 
6 0.01272 

 

A fraction lβ  of delayed neutrons is produced per fission in the l th precursor group. The total 

fraction of delayed neutrons is therefore ∑
=

=
6

1l
lββ . The values lβ  are dependent on the 

nucleus split by fission and are therefore material-dependent. The effective fraction, il ,β , for 

a material is determined by its component fissionable isotopes. 
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The ratios iU
iPuiThiU

iU R
FFF

F
,5

,2,2,5

,5 ≡
+++ K

, etc., representing the fraction of fissions in a 

fissionable isotope, for each nuclear material, are assumed to be user-supplied parameters. 
The relative group yield fractions ββ /l  and total yield fractions β  for each fissionable 
isotope are given in Table 2 and Table 3. The source and derivation of these values are 
discussed in Appendix B and Appendix C. 
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It should be noted that all β  values given are physical [13] values, i.e. no compensation for 
the differences in energy spectra of the prompt and delayed neutrons has been made. 

Table 2: Fractional Fission Yield ( β ) of Delayed Neutrons for Fissionable Isotopes* 

Fractional Fission Yield ( β ) of Delayed Neutrons [%] 
235U 232Th 233U 234U 236U 238U 239Pu 240Pu 241Pu 242Pu 

0.6904 2.3981 0.2962 0.4342 1.1693 1.751 0.2245 0.285 0.5354 1.0524 
 

Table 3: Fraction of Delayed Neutrons ( ββ /l ) for Fissionable Isotopes and the Six 
Delayed Neutron Precursor Groups† 

Fractional Fission Yield ( ββ /l ) for Delayed Neutron Precursor Group [%] 
Group 

235U 232Th 233U 234U 236U 238U 239Pu 240Pu 241Pu 242Pu 
1 2.6 2.8 0.6 2.6 2.6 4 1.2 2.2 0.3 1 
2 12.8 18 11.9 12.8 12.8 30.5 14.1 15.3 24.7 23.7 
3 40.7 45.6 26 40.7 40.7 37.7 31 32.8 32.1 39.1 
4 18.8 16 27 18.8 18.8 13 26.3 24.1 22.1 18.9 
5 21.3 14.1 25.8 21.3 21.3 13.6 18.6 18.1 15.2 12.9 
6 3.8 3.5 8.7 3.8 3.8 1.2 8.8 7.6 5.6 4.5 

 

3.2.3.3.1 Transient case 

The time-dependent precursor concentration may be described by the following differential 
Equation [7]. 

lll
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t
C

λβ −=
∂

∂
 (3.16)

If the production P  is assumed linear over the time interval Δ , the integration of 
Equation (3.16) may be carried out. The concentration at the end of the time interval is found 
to be: 
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The mean concentration for the interval is found to be: 
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The derivations of Equations (3.17) and (3.18) are given in [5]. 

                                                 
* Refer to Appendix B. 
† Refer to Appendix C. 
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3.2.3.3.2 Steady-state case 

For the steady-state delayed neutron precursor concentration, the time-derivative in (3.16) 
disappears, resulting in the following relation: 

PC lll βλ =  (3.19)

3.2.3.4 Time Discretization 

The time discretized diffusion equations are given below. The derivation using Equations 
(3.5), (3.6) and (3.18) is given in [5]. 
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If a one-dimensional calculation with leakages from adjacent cells is assumed and the spatial 
discretization of paragraph 3.2.3.2 is applied to Equations (3.20) and (3.21). 
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(3.22)
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3.2.3.5 The Steady-state Calculation 

In order to ensure that the steady-state solution is also the stationary state of the time-
dependent equations, a quasi-transient solution method is adopted. An artificial time interval 
is chosen, which is applied to the v

1  terms in Equations (3.22) and (3.23). 

For the delayed neutron production terms, however, it is assumed that the time interval tends 
towards infinity (steady-state condition). The exponential terms in Equation (3.22) drop away 
and the equation is reduced to: 
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Using Equation (3.19), the delayed neutron terms drop away completely; resulting in the 
steady state discretized fast group diffusion equation. 
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Equations (3.24) and (3.23) are transformed into an eigenvalue problem by adjusting the 
neutron poison level. For this, the production terms are replaced by kP , where k  is the 
eigenvalue. In the eigenvalue problem, the flux level is unknown and is determined by 
specifying the thermal power of the reactor. Therefore, the neutron fluxes are calculated 
assuming an eigenvalue. The neutron fluxes are normalized to the user-specified reactor 
power. The eigenvalue is then updated according to the calculated flux. This process is 
repeated until the neutron fluxes and eigenvalue converge. This represents the intermediate 
flux iteration loop. 

3.2.3.5.1 The start-up feedback term 

When the calculation is started, the neutron flux is not known. For the first neutron flux 
calculation, the ‘old-time’ fluxes ( 0φ ) are assumed zero. As a result, the right-hand sides of 
Equations (3.23) and (3.24) become zero and VSφ  respectively. The methodology used for 

the initial neutron flux calculation is discussed in paragraph 3.2.3.8.2. 

3.2.3.6 The leakage iteration method 

An iterative method is employed for solving the discretized two-group diffusion equation 
(Equations (3.22) and (3.23)) in a coupled manner. This method is derived from the method 
used by Naito et al [10] and Monterosso and Vincenti [11]. 

The reactor is divided into a number of layers along the z-axis and a number of channels in 
the rθ-plane, as shown in Figure 5. A block is formed at the intersection of each layer with 
each channel. The blocks correspond to the nuclear iteration meshes described in Chapter 2. 
This method, therefore, yields neutron flux values within the nuclear iteration mesh. 

The iterative method of solving the two-group diffusion equations using this method is 
described. The leakage from adjacent (radial and azimuthal) directions is initially assumed. A 
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one-dimensional calculation is carried out in the axial direction to obtain updated fluxes and 
axial leakages. The updated axial leakages are used for the one-dimensional calculation in 
the radial direction, yielding updated fluxes and radial leakages. The updated radial and axial 
leakages are then used for the one-dimensional calculation in the azimuthal direction, 
yielding updated fluxes and azimuthal leakages. The one-dimensional calculations are 
iterated until consistency is obtained. 

In calculating accurately the flux within each block, it is necessary to obtain accurate leakage 
values. For this purpose, each block is further subdivided in the direction of the channel, into 
a number of fine meshes (sublayers) to improve on the finite-difference approximation that 
would normally be applied to each block. This fine meshing of the channels is implemented 
through the 1D leakage iteration meshes described in Chapter 2. In this way, for each 
channel (as defined by the iteration mesh) a single 1D calculation is carried out using a fine 
mesh discretization in the 1D direction for N channels and N dimensions. The total number of 
1D calculations carried out can therefore be written for the three-dimensional case as: 

( )cycxczcxczcyiD NNNNNNNN ++=1  

Where 

DN1  is the number of required one-dimensional calculations for convergence. 

iN  is the number of iterations required to achieve convergence of the azimuthal 
leakages. 

czcycx NNN ,,  are the number of coarse iteration mesh divisions defined in the x, y and z 

directions respectively. 

The leakage iteration method has the following characteristics: 

a. A fine-mesh difference technique is applied to only the channels and layers. It is 
therefore not necessary to store the flux at all fine-mesh points. This reduces 
computational time and memory usage. 

b. Because the leakage at each surface of a block is calculated using a fine-mesh 
difference approximation, the discretization error is reduced. 

c. When only one fine mesh point is located within each block, this method becomes 
equivalent to the finite-difference method. 
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Figure 5: Configuration of Channels, Layers and Blocks 

The one-dimensional discretized diffusion equation in the axial direction is obtained for the 
fast group by substituting Equation (3.12) in (3.22). 
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Note that 0
iP  and 1

iP  refer to the production in mesh I at times t0 and t1 respectively. 

Similarly, substitution of Equation (3.12) in (3.23) yields the discretized one-dimensional 
diffusion equation in the axial direction, for the thermal group. 
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This system of equations may be written generically as: 
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iiiiiiiii qmrrp ,2
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,2,2 =−−− ++− φφφφ   ( )Li K,1=  (3.26)

These equations may be written in matrix form for each channel. 
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where, for the transient case in the axial direction, the coefficients are defined as: 
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For the steady-state calculation, iP ,1 , is  and iq ,1  differ from the transient case (refer to 

paragraph 3.2.3.5). They are given below. 
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The matrix A , consisting of 2 x 2 sub-matrices, may be considered to be a tridiagonal matrix 
and therefore a direct solution may be found. 

The recursion formulae [11] are given as: 
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where the matrix ia  is: 
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and the vector ib  is: 
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The boundary conditions are: 

⎥
⎦

⎤
⎢
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⎡
== + 0

0
10 LΦΦ  

Therefore 00 =a  and 00 =b . 

Starting with the known 0a  and 0b , all values of ia  and ib  are calculated forwards using 
Equations (3.40) and (3.41). These values are then substituted into the recursion formulae 
(3.39) to obtain the updated neutron flux. 

The inversion of the 2 x 2 matrices ( )1−•− iii aRP  is carried out directly using the equation: 

( )TW
W

W cof11 =−  (3.42)

where the determinant is easily obtained as: 
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and the transposed cofactor matrix is given by: 
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ww
wwTW  (3.44)

Updated leakages at the block boundaries are obtained using one of Equations (3.11), (3.12) 
or (3.13), depending on the chosen coordinate. The leakage values at boundaries are 
calculated using modified forms of Equations (3.11), (3.12) and (3.13) as described in 
paragraph 3.2.3.2.1. 

3.2.3.7 Mapping properties to/from the iteration mesh 

3.2.3.7.1 Calculating the material mesh based neutron flux 

In order to derive a method of mapping properties to/from the iteration mesh, a simple one-
dimensional case is considered. Consider the iteration block, shown in Figure 6, consisting of 
three material blocks and nine fine iteration blocks. Note that the hat (1̂ , 2̂ , etc.), in the 
context of this paragraph, refers to material block indices. 
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Figure 6: Calculating the Material Mesh Based Neutron Flux, 1D Case 

We consider the volume integrated neutron flux within material block 1. 
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Within each material block, the subdivisions have equal volume, therefore: 
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Where inˆ  is the number of fine iteration blocks in the ith material block. This is simply the 

arithmetic mean of the fine block neutron fluxes. 

Starting with the obvious relationship 
1̂1̂ φφ = , and introducing Equation (3.45): 

φφ

φ
φ

φ
φ

φ
φ

φ

1̂

1̂
1̂

1̂

1̂1̂
1̂

n
S

n
ii

ii

=∴

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

∑
∈

 

Here 
φ

φ∑
∈= 1̂

1̂
ii

ii

S  is the one-dimensional mesh transformation factor. 

This approach may be extended to two dimensions. If one considers that the flux solutions 
have been obtained in the radial and axial directions using separate meshes, separate 
transformation factors irS ˆ  and jzS ˆ  are defined for each direction. These may be used to 

define partially mapped radial and axial fluxes 1̂zφ , 2̂zφ , 1̂rφ , etc. as shown in Figure 7. 
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Figure 7: Calculating the Material Mesh Based Neutron Flux, 2D Case 

The same mapping approach may then be followed using the partially mapped fluxes to 
obtain fully mapped fluxes in the material blocks. The fully mapped fluxes in two dimensions 
may therefore be obtained using the relationship: 
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This may again be extended to the full three-dimensional case as follows: 
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and irn ˆ , jzn ˆ  and 
k
n ˆθ

 is the total number of fine blocks per material mesh for the radial, axial 

and azimuthal iteration meshes respectively. 

In the absence of flux data, the flux is assumed constant, yielding the following: 
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This is equivalent to the number of fine mesh intervals in the material block, and is used as 
an initial guess for the transformation factors. 

3.2.3.7.2 Calculating coarse iteration mesh based properties 

By using the volume-integrated flux over the coarse iteration block, as in paragraph 3.2.3.7.1, 
the iteration block flux zφ  for the axial solution is calculated as the volume-weighted sum of 
the fine-block fluxes. 

∑
∑

=

ii
ii

ii
iiiizz

z

V

V

 

,φ
φ  (3.54)

where iiV  is the axial fine-block volume and iizz ,φ  the axial fine-block neutron flux. Similarly, 

for the radial and azimuthal directions: 

∑
∑

=

jj
jj

jj
jjjjrr

r

V

V

 

,φ
φ  (3.55)

∑
∑

=

kk
kk

kk
kkkk

V

V

 

,θθ
θ

φ
φ  (3.56)

For a well-converged solution, θφφφφ ≈≈≈ zr , therefore, a simple arithmetic mean is 
sufficient to determined the combined flux. The combined iteration block flux is therefore 
calculated as the arithmetic mean of the three solutions.  

( )θφφφφ ++= zr

3
1

 (3.57)

The adjacent leakage at the fine-block edges is calculated using volume weighting of the 
iteration block leakages.  
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3.2.3.7.3 Mapping properties from the material mesh to the coarse iteration meshes 

Consider the two-dimensional fine iteration block shown in Figure 8. Note, in this case, the 
iteration block shown has a depth equal to a single fine interval, i.e. this is a view from above 
a channel. 

Σ

1̂,1̂Σ 1̂,2̂Σ 1̂,3̂Σ

2̂,1̂Σ 2̂,2̂Σ 2̂,3̂Σ

 
Figure 8: Mapping Cross Sections to the Coarse Iteration Mesh 

By conservation of the reaction rate within both meshes, the following applies: 
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Substituting Equation (3.46): 
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The above equations give the finite volume cross sections for a block of height equal to the 
material mesh height. This is because of the two-dimensional approach used in its’ 
derivation. To obtain fine iteration block cross sections, the above expressions are divided by 
the number of fine blocks (of equal volume) per material mesh in the relevant direction. 
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This approach is applicable to all material properties, including cross sections v
1  terms and 

diffusion coefficients. 

3.2.3.8 Convergence of the flux solution 

By a repeated ‘sweeping’ of all three coordinates, the updated flux values from the radial, 
axial and azimuthal calculation converge. The convergence criteria used by TINTE are: 

a. Flux convergence - The maximum error in the neutron flux is determined for the fluxes 
calculated for each one-dimensional calculation. For the radial, axial and azimuthal 
directions respectively, these are given below. 
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The effective maximum error in neutron flux for all directions is calculated as the arithmetic 
mean for the three directions, namely [ ]θφφφφ εεεε ,,,3

1 ++= zr . For convergence, min,φφ εε < , 

where min,φε  is a user-supplied parameter. This calculation uses coarse iteration block fluxes, 

as calculated using Equations (3.54) through (3.56). 

b. Power convergence - The maximum error in the ‘steady-state equivalent’ heat 
production is determined for the fluxes calculated for each leakage iteration. Consider 
the error in fluxes calculated using channels in the radial direction: 
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Similarly, the error in fluxes calculated for channels in the axial direction is: 

[ ]
[ ]θ

θε
QQQ
QQQ

rz

rz
zQ &&&

&&&

++
+−

=
3
1

2
1

,  (3.71)

Similarly, the error in fluxes calculated for channels in the azimuthal direction is: 
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where the ‘steady-state equivalent’ heat production is defined as 

2211// φφθ ffffzr EEQ Σ+Σ=&  and is calculated using neutron flux values from the radial, 

axial or azimuthal directions respectively. The effective maximum error in the ‘steady-
state equivalent’ heat production for all directions is calculated as the arithmetic mean for 
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the three directions, namely [ ]θεεεε ,,,3
1

QzQrQQ ++= . This parameter is calculated by 

TINTE, however, it is not compared with any reference value and is therefore for 
information only. As for (a), coarse iteration block heat production is used for this 
calculation. 

c. For steady-state calculations, the change in effective reactor multiplication constant with 
subsequent iterations is taken into account to determine if convergence has been 
achieved. The k-effective error is calculated as shown. 

1

10

k
kk

k
−

=ε  (3.73)

where 1k  and 0k  are the updated and old effective reactor multiplication constants 
respectively, calculated for subsequent iterations. For convergence, min,kk εε < . 

d. Number of iterations – In order to trap non-converging solutions, it is necessary to limit 
the number of iterations. In TINTE, the number of inner flux iterations (refer to 
paragraph 4.1.2) is limited to 9. 

3.2.3.8.1 Source iteration 

The Scarborough criteria state that convergence of a system of linear equations is 
guaranteed if the matrix A  (Equation (3.27)) is diagonally dominant; i.e. the sum of the 
magnitudes of all non-diagonal terms in a row is less than or equal to, for all rows, and equal 
to, for at least one row, the magnitude of the diagonal term. The stability of the solution is 
therefore largely dependent on the magnitude of the diagonal terms ip ,1  and ip ,2 . Apart from 

the Scarborough criteria, another important criterion is that all coefficients have the same 
sign. All non-diagonal terms will always be positive; it is therefore necessary to ensure that 
the main diagonal terms are never negative. This is ensured by including the ‘new’ 
production, as well as all negative leakages (leakage into the mesh), in the source term. 
Large source terms, however, result in very slow convergence. The following source iteration 
scheme is therefore introduced. 

The ‘new’ production 1P  is divided into two fractions, 1Pγ  and ( ) 11 Pγ− . The fraction 1Pγ  
remains in the main diagonal of the matrix A , while the remaining fraction is transferred to 
the source term. A value 1=γ  leads to the fastest convergence but may also lead to 
instability. By contrast, 0=γ  ensures stability but will slow down convergence. In a similar 

manner, for any negative transverse leakage terms, a fraction φγ L~  remains in the main 

diagonal and the remaining fraction ( ) φγ L~1−  is transferred to the source term. 

A further improvement is made with regard to the transverse leakages. The leakage term 
φL~  at the surface between adjacent channels may be defined using either the current 

channel as a reference or the adjacent channel. If the adjacent channel fluxes have already 
been solved for, it is advantageous to represent the leakage as a function of the adjacent 
channel fluxes because they may then be regarded as fixed sources when included in the 
source term. It is therefore clear that the choice of channels should be ordered specifically to 
take advantage of this ‘passing of information’ between adjacent channels. 

A simple example is considered; an iterative solution is to be found for a one-dimensional 
purely absorbing channel with a source at one end. If the equation is linearized to the form of 
Equations (3.25) or (3.26), the updated flux in a mesh is dependent only on the mesh and its 
neighbouring meshes. 
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Each one-dimensional flux calculation transfers information (updated transverse leakages) to 
its neighbouring channels. The most efficient convergence is obtained by first calculating for 
the channel that is most likely to transfer the most information to its neighbours. The 
neighbouring channel calculations will thereafter transfer this information to their neighbours 
and so forth. In practical circumstances, the optimal starting channel would generally 
coincide with the location of the largest source of neutrons. This concept is illustrated in 
Figure 9. In this particular example, channel 16 contains a source and optimal convergence 
is obtained by starting the iterative scheme at channel 16 and working towards channel 1. In 
TINTE, this starting channel is chosen to be the channel with the smallest negative leakage. 
The calculation of fluxes proceeds outwards from this channel to the edges of the mesh. For 
the initial calculation, where leakage values are unknown, the centre of the reactor is chosen 
as a starting point for the calculation. Using this sequence for the one-dimensional 
calculations, the number of iterations required is approximately halved. 

Starting channel for
calculation

Starting channel for
calculation

Converged solution

Converged solution

Initial guess

Iteration #1

Iteration #2

Iteration #3

Initial guess

Iteration #1
Iteration #2

C
hannel 1

C
hannel 16

Direction of ‘flow of information’

Direction of ‘flow of information’

 
Figure 9: Choosing the Optimal Starting Channel to Improve Convergence of the 

Leakage Iteration Method 
 

3.2.3.8.2 Obtaining an initial guess for the steady-state neutron flux and transverse 
leakage 

In order to obtain an initial guess to the neutron flux, one-dimensional diffusion calculations 
are carried out for a single channel in the radial direction, followed by a single channel in the 
axial direction. For the radial calculation, the transverse leakages are assumed zero. The 
neutron fluxes and leakages obtained for this radial channel are then copied to all radial 
channels. These values therefore ‘feed into’ the axial calculation. The neutron fluxes and 
leakages obtained for this axial channel are then copied to all axial channels. The initial 
neutron flux guess is obtained by multiplying the radial and axial flux profiles together. The 
resulting profile is then normalized to the user-specified reactor power. Note that the 
azimuthal neutron flux is initially assumed constant and the azimuthal leakages are assumed 
zero, i.e. no azimuthal calculation is carried out. 

The choice of a channel to use in each direction is arbitrary, as long as the channel contains 
some fissionable material, however, the best neutron flux estimate would be obtained for 
channels that pass through the location of maximum neutron production or power. 
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In the absence of flux or power data an estimate is obtained by considering the nu-fission 
cross section ( VfΣν ). Typically, the volumetric centre of the core would be adequate, but 

there are exceptions to this rule. Consider Figure 10, which shows a typical flux profile and 
nu-fission profile together. Note the low nu-fission cross section between C and D, which 
could, for example, represent a breeder blanket. Basic intuition would suggest that this 
region be ignored when locating the centre of the core, therefore the following method is 
used in TINTE to locate a more representative centre of the core. While sweeping through 
the nuclear domain in the positive r, z and θ direction, the nu-fission cross section is 
compared with a reference value, which is initially set to zero. If VfΣν  is at least 10 times the 

reference value, the reference value is updated. This would correspond to point A in the 
figure; it represents the start of a region of high neutron production. Sweeping continues until 

VfΣν  drops to 0.5 times the reference value. This would correspond to point C in the figure. 

The representative centre of the core is then assumed to lie halfway between A and C, 
namely at B. The factors 10 and 0.5, used to locate the boundaries, are arbitrarily chosen. 

νΣfV

r/z/θ

φ

C DA B
 

Figure 10: A Typical Flux Profile Shown against the Nu-fission Cross Section 

3.2.3.9 Buckling feedback in the material mesh 

The leakage in each direction is determined from separated one-dimensional calculations, 
and the values must then be mapped to the relevant material blocks when calculating the 
total leakage from the material blocks. This is necessary for the buckling feedback in the 
calculation of updated material cross sections (refer to paragraph 3.2.2). The mapping 
process may introduce sufficient numerical error such that the group neutron balances 
(Equations (3.22) and (3.23)) are not satisfied for the material blocks. For this reason, the 
material block leakages are calculated directly from Equations (3.22) and (3.23) for the 
calculated material block fluxes. 

Equations (3.22) and (3.23) are rearranged to solve for the total leakage as shown. 
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Here 1
1φ  and 1

2φ  are mapped from the fine-iteration blocks (refer to paragraph 3.2.3.7.1) and 
all cross sections, etc. are for the material block. 

3.2.3.10 Global reactor parameters 

The effective reactor multiplication constant (k-effective) is calculated as the ratio of 
production to loss of neutrons. This is implemented in TINTE as: 
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where the discretized prompt neutron production rate term is given by: 
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The discretized neutron loss term is given by: 
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The discretized delayed neutron production term is given by: 
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Because, on the one hand, k  is calculated during the steady-state solution and, on the other 
hand, the reactor is held critical during certain time-dependent calculations, it is convenient to 
define steady-state and transient components of the eigenvalue. 

'0kkk =  (3.80)

where 0k  is the eigenvalue calculated during the steady-state solution and 'k  the correction 

to 0k  for time-dependent calculations. 

Using Equation (3.80), the prompt neutron production rate term during time-dependent 
solutions (refer to Equation (3.77)) becomes: 
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And thus 'k  may be calculated using the modified form of Equation (3.76). 
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The effective reactivity, assuming the critical reactor has 0kk =  ( 1'=k ), may be calculated 
for the time-dependent solution as follows: 

k
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k 0
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=ρ  (3.83)

The global inverse reactor period ω  at any location in the reactor is defined such that the 
power density within the reactor changes according to the function: 
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For a discrete time interval Δ , the derivative may be discretized to yield the inverse reactor 
period. 
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For reactor control purposes, this is calculated at the location of maximum 01 QQ ′′′−′′′ &&  as this 
will, in most cases, correspond with the maximum ω . 



 

 

39

3.2.4 Fission Product Poisoning 

All fission products will act as neutron absorbers and their formation tends to reduce the 
global reactor multiplication constant (k-effective). Certain fission products are known as 
saturating fission products because their half-lives are sufficiently short that an equilibrium is 
reached between their production, decay and absorption during normal reactor operation. 
These isotopes will influence reactor operation in many cases such as reactor start-up, 
shutdown and power level changes and as such their influence must be taken into account. 
Of the saturating fission products, the isotopes 135Xe and 149Sm are generally considered the 
most important. 
135Xe has a very large thermal absorption cross section, 6106.2 ×  barns. It is produced 
directly by fission and also by the decay of the isotope 135I. This is in turn formed by the 
decay of the isotope 135Te, which is a direct fission product. 
149Sm has a lower (approximately 60 times less) thermal absorption cross section than 135Xe, 

4104×  barns. It is formed by the decay of the isotope 149Pm, which in turn is formed by the 
decay of 149Nd. 149Nd is a direct fission product. 

In both cases, the half-lives of the parent isotopes (135Te and 149Nd) are significantly shorter 
than that of their daughter isotopes (135I and 149Pm). The assumption is made, therefore, that 
these are formed directly by fission. The basic transmutation decay chain of Figure 11 may 
be used to represent a saturation fission product. 

I

X

β - λI

X’(n,γ)

β - λX

σX

X’’  
Figure 11: Transmutation Decay Chain for a Typical Saturation Fission Product 

We consider the transmutation decay chain for a generic isotope pair ( XI → ) of Figure 11. 
The differential equations describing the build-up and decay for each isotope are [7]: 

IFI II λγ −=&  (3.85)

and 

( )XIFX XXIX 2φσλλγ +−+=&  (3.86)

where 

XI ,  are the isotope concentrations of the parent and daughter isotopes respectively. 

XI γγ ,  are the fractional fission yields of the parent and daughter isotopes respectively. 

F  is the fission rate, defined as 2
2

1
1 φφ ff Σ+Σ . 

2φ  is the thermal flux. 

Xσ  is the thermal microscopic absorption cross section of the isotope X. 

Note that additional assumptions have been made regarding the formation of X and I. They 
may or may not be formed directly by fission, depending on the values of Iγ  and Xγ . 
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Similarly, the value of Xλ  determines whether the isotope is stable ( 0=Xλ ) or not ( 0>Xλ ). 
The concentrations of the generic isotopes X’ and X’’ are not required and are therefore not 
modelled. 

Because the absorption cross sections of the saturation fission products is relatively low in 
the higher energy regions, absorption of neutrons by isotope X is assumed to take place in 
the thermal region only. In the case of 149Sm, a large epithermal absorption resonance is 
present, however in a two-energy group model this effect cannot be modelled accurately. In 
order to take into account the spectrum change that such a resonance may have, neutron 
poison concentration dependence is included in the group cross-section calculation (refer to 
paragraph 3.2.2). 

As stated above, the isotopes 135Xe and 149Sm are generally considered the most important 
saturation fission products. These are considered in the calculation, as well as the isotopes 
151Sm and 157Gd, which are of lesser importance. Therefore, the following four isotope pairs 
are considered: 

XeI 135135 →  

SmPm 149149 →  

SmPm 151151 →  

GdEu 157157 →  

The decay constants ( λ ) for the transmutation decay chains, taken from ENDF/B 4 [12], are 
given in Table 4. The source for these values is discussed in more detail in Appendix D. 

Table 4: Decay Constants for Neutron Poisons as used in TINTE 

Isotope 
Decay Constant 

( λ ) [s-1] 
135Xe 2.116E-5 
135I 2.883E-5 
149Sm 1E-30 
149Pm 3.626E-6 
151Sm 5.751E-9 
151Pm 6.876E-6 
157Gd 1E-30 
157Eu 1.260E-5 

 

The production of strong absorber isotopes is assumed instantaneous and constantly 
proportional to the fission rate for each nuclear material. Values taken from ENDF/B 4 [12] 
for the fission yields of the relevant isotopes are given Table 5. The source of these values is 
discussed in more detail in Appendix D. 

The effective fission yield for any material iγ , consisting of a mixture of a number of 
fissionable isotopes, may be calculated as follows: 

[ ]
iPuiThiU

iPuPuiThThiUUi FFF
FFF

,2,2,5
,22,22,55

1
+++

+++=
K

K γγγγ  (3.87) 
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The ratios iU
iPuiThiU

iU R
FFF

F
,5

,2,2,5

,5 ≡
+++ K

, etc., which represent the fraction of fissions in 

each fissionable isotope, are assumed to be supplied by the user. 

Table 5: Direct Fission Yield of Strong Absorbers for Fissionable Isotopes [12] 

Direct Fractional Fission Yield (γ ) for Fissionable Isotope [%] 
Isotope 

235U 232Th 233U 234U 236U 238U 239Pu 240Pu 241Pu 242Pu 
135Xe 0.25 1.33 1.34 0.25 0.25 0.015 1.15 1.15 0.23 0.23 
135I 6.35 3.52 4.86 6.35 6.35 6.55 6.3 6.3 6.95 6.95 
149Sm 0 0 0 0 0 0 0 0 0 0 
149Pm 1.084 1.084 1.084 1.084 1.084 1.084 1.084 1.084 1.084 1.084 
151Sm 0 0 0 0 0 0 0 0 0 0 
151Pm 0.4196 0.4196 0.4196 0.4196 0.4196 0.4196 0.4196 0.4196 0.4196 0.4196 
157Gd 0 0 0 0 0 0 0 0 0 0 
157Eu 0.00613 0.00613 0.00613 0.00613 0.00613 0.00613 0.00613 0.00613 0.00613 0.00613 
 

3.2.4.1 Transient case 

We consider the production decay chain for a generic isotope pair ( XI → ). The differential 
equations describing the build-up and decay for each isotope are as given in 
Equations (3.85) and (3.86). 

We assume a constant fission rate for the time interval 01 tt −=Δ . 

( ) ( )012
1 FFFtF +== ; ( )1,0 , ttt∈  

Substitution of this into Equation (3.85) allows the time-dependent concentration of the 
parent isotope I  to be solved for. 

( ) ( ) FtItI
dt
d

II γλ =+  

This is an ordinary differential equation of the first kind ( ) ( )tqItpI =+& . The solution for ( )tI  
for time 0tt >  may be determined using integrating factors. 
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The integrating factor ( )tμ  is found as follows: 

( ) ( )000
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μ  
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The solution for ( )tI  becomes: 
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At the end of the time interval ( 1tt = ): 

( )Δ−Δ− −+= II eFeII
I

I λλ

λ
γ 101  (3.88)

A solution may now be found for the daughter isotope X , starting with Equation (3.86). We 
define 22 φσλλ XX += . In this case we assume a constant flux over the time interval, 

i.e. ( ) ( )0
2

1
22

1
22 φφφφ +==t . Equation (3.86) now becomes: 
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This is an ordinary differential equation of the first kind ( ) ( )tqXtpX =+& . The solution for 
( )tX  for time 0tt >  may be determined using integrating factors. 
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The integrating factor ( )tμ  is found as follows: 
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The solution for ( )tX  becomes: 

( )
( ) ( ) ( ) ( ) ( )[ ] ( )

( )

( ) ( ) ( ) ( ) ( ) ( )[ ]{ }
( ) ( ) ( ) ( ) ( ) ( )( ){ }
( ) ( ) ( ) ( ) ( ) ( )( ){ }∫ ∫

∫ ∫

∫

∫∫

−−−−−

−−−−−

−−−−−

−

−−−

−+++=

−+++=

−+++=

+−++
==

t

t

t

t

tt
II

tt
IX

tt

t

t

t

t

tt
II

tt
IX

tt

t

t

tt
IIIX

tttt

tt

t

t

tt
IIIX

ttt

t

dteFIdteFtXe

dteFIdteFtXe

dteFIFetXe

e

tXdteFIFedttq
tX

I

I

I

I

0 0

020202

0 0

020202

0

00202

02

0

002

0

''

''

'

'

'
0

'
0

'
0

'
0

'
00

00
'

λλλλ

λλλλ

λλλ

λ

λλ

γλγγ

γλγγ

γλγγ

γλγγ

μ

μ

 

The integrals may be evaluated and the equation simplified: 
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At the end of the time interval ( 1tt = ): 
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 (3.89)

It should be noted that Equation (3.89) differs slightly from the expression given in [3]. It is, 
however, consistent with the original German version of [3] and the TINTE source code. 

3.2.4.2 Steady-state case 

For the steady-state condition, the time-derivative of the fission product concentration is zero. 
Using Equations (3.85) and (3.86), the following equations therefore apply: 

FI
I

I
eq λ

γ
=  (3.90)

and 

FX IX
eq

2λ
γγ +

=  (3.91)

No underrelaxation is applied to this solution. Therefore, the fission rate and thermal flux, as 
calculated by the two-group diffusion solution, are used directly for this calculation. 

3.2.4.3 Approach-to-equilibrium case 

For the case where a new equilibrium condition is to be established during a transient 
calculation, the steady-state equations are not used but rather a virtual time-stepping method 
is employed to maintain numerical stability, as a form of underrelaxation. In this case, the 
fission rate and thermal flux at the end of the time interval (as opposed to the mean as in the 
transient case) are used, in order to improve the convergence. Equation (3.88) may be 
rewritten as: 
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( )virtvirt eFeII
I

I λτλτ

λ
γ −− −+= 10  (3.92)

where virtλτ  is a virtual time-stepping constant, chosen to ensure stability of the solution. In 
the case of the concentration of isotope X, the equilibrium concentration of isotope I is 
inserted into (3.87), yielding the differential equation: 

( ) ( )XFX XXIX φσλγγ +−+=&  

The solution to this differential equation, assuming constant fission rate and flux over the 
time interval is: 

( )virtvirt eFeXX IX λτλτ

λ
γγ −− −

+
+= 1

2
0  (3.93)

3.2.4.4 Calculation of neutron poison macroscopic cross sections 

The microscopic absorption cross section ( Xa,σ ) for each isotope pair is calculated as 

described in paragraph 3.2.2. The total macroscopic absorption cross section for all strong 
absorber isotopes is given by: 

∑=Σ
157,151,149,135
,,

GdSmSmXe
iaiXa X σ  (3.94)

This value is added to the thermal group absorption cross section. 
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3.2.5 Heat Production 

Heat production in the reactor may be divided into a number of individual terms xE , where 
the index x  is: 

r  rebound energy of the fission fragments directly after fission 

n  kinetic energy of the prompt neutrons produced by fission 

pγ  prompt gamma energy 

dγ  delayed gamma energy 

β  beta decay energy 

These energy contributions are combined into a prompt component: 

pnrp EEEE γ++=  (3.95)

and as the decay heat: 

βγ EEE dd +=  (3.96)

 

The total fission heat production is the sum of the prompt and decay contributions. 

dpf EEE +=  (3.97)

Table 6: Fission Energy Release (MeV) for the Fissionable Isotopes [22] 

Fissionable Isotope 235U 232Th 233U 234U 236U 238U 239Pu 240Pu 241Pu 242Pu

Total utilizable energy per 
fission, eqfE ,  

193.7‡ 185 191.1 189.6 191.9 194.8‡ 199.9‡ 197 202‡ 199.1 

Prompt energy per fission, 

pE  
180.8 168.7 180.8 179.4 179.9 178.2 189.5 187.4 189.2 187.9 

Rebound energy of fission 
fragments, rE  

169.1 160.4 168.2 167.1 167.5 169.6 175.8 173.7 175.4 174 

Average prompt fission 
neutron energy, modE  

4.8 4.7 4.9 5.4 5.4 5.5 5.9 6.8 6 7 

Beta decay energy per 
fission, βE  

6.5 8.1 5.2 6.1 7.4 8.3 5.3 6.4 6.6 7.7 

Neutron capture energy§ 8.7 8.7 8.7 8.7 8.7 10.9 11.5 8.7 11.9 8.7 
 

                                                 
‡ From supplement 1 of DIN 25 485 [21]. 
§ From DIN 25 485 [21]. Because the DIN standard does not specify values for the isotopes 232Th, 233U, 234U, 236U, 
240Pu and 242Pu, these are assumed equal to the values for 235U. 
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3.2.5.1 Prompt power 

The prompt volumetric heat production may simply be calculated using the fission rate and 
prompt energy per fission. 

( ) pffp EQ 2
2

1
1 φφ Σ+Σ=′′′&  (3.98)

The total prompt reactor power pQ&  is therefore the volume integral ∫ ′′′
V pdVQ& . This is written 

in a discretized form. 

( )( )∑∑ Σ+Σ==
ijk

ijkpff
ijk

ijk
pp VEQQ 2

2
1

1 φφ&&  (3.99)

3.2.5.2 Decay Heat 

The decay heat calculation in TINTE is based on the DIN 25 485 standard [21]. In the 
standard, five contributions to the decay heat are specified, namely: 

a. The contribution of the fission products ( )TtQS ,& . 

b. The contribution of the actinides 239U and 239Np ( )TtQB ,& . In TINTE the actinides 233Th 
and 233Pa are included in this contribution. 

c. The contribution of the remaining actinides ( )TtQA ,& . 

d. The contribution of the 134Cs capture reaction ( )TtQCs ,& . 

e. The contribution of the remaining capture reactions ( )TtQE ,& . 

where t  is the decay period (after reactor shutdown) and T  the operating period. 

The total decay heat may be written as: 

ECsABSd QQQQQQ &&&&&& ++++=  

The contribution AQ&  is calculated using: 

( ) ( ) ( )TtQtAKTtQ SAA ,, && ⋅=  

where 

( ) ( ) ( )SMLBUKA −×−−×+−×−= −−− 121008.75.210544.414010826.31 223  (3.100)

BU  is the average discharge burn-up of the fuel in MWd / kg. 

L  is the power density in MW / m3. 

SM  is the mean heavy metal content of the fuel (including fuel free spheres) in g per fuel 
sphere. 

( )tA  is a tabulated function. 

The contribution ( )TtQE ,&  may be written as: 

( ) ( ) ( )TtQtHTtQ SE ,, && ⋅=  

where ( )tH  is a tabulated value. 
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The total decay heat may therefore be written as: 

( ) ( )( ) CsBASd QQKtAtHQQ &&&& ++++= 1  (3.101)

TINTE specifies the fuel composition using more isotopes than is provided for in the DIN 
standard (refer to Table 6). For the isotopes not given in the DIN standard, values are 
assumed equal to those for 235U. 

3.2.5.2.1 Reactor life history 

The composition and power generation within fuel, changes over the operation period of the 
fuel. These changes result from: 

• the movement of the fuel through various power generation zones within the core; 
• changes in total reactor power output; 
• the formation and breakdown of fissionable isotopes. 

This is taken into consideration by dividing the operational history of the fuel into a number of 
time intervals of constant power generation and constant power values for the fissionable 
isotopes, i.e. the power generation history is approximated by step functions. 
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Figure 12: A Power Histogram 

It is possible to determine each time offset kt  as a function of the reactor operation times kT . 

∑
+=

=
m

kj
jk Tt

1
 (3.102)

and 

0=mt  

It is assumed that the user supplies the reactor life history. An option is available in TINTE to 
approximate the life history for the Once-Through-Then-Out (OTTO) fuel cycle, assuming no 
fuel isotopic changes. The option allowed the approximate construction of the reactor life 
history for multipath fuelling and was successfully used in the first models of the SIEMENS 
MODUL reactor. The option is now considered obsolete and therefore will not be discussed 
further in this document. 
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3.2.5.2.2 Fission product contribution 

The contribution SQ&  of the fission products to the decay heat is calculated by summing the 

individual iSQ ,
&  values for the four fissionable isotopes (235U, 238U, 239Pu and 241Pu). If the 

reactor operation history can be divided into m  constant power operating intervals, each with 
known fuel isotopic distributions, each iSQ ,

&  value in turn consists of a sum of the decay heat 

contributions for m  time intervals of reactor operation. 
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where iik QQ&  is the ratio of thermal fission power to utilizable energy per fission for the ith 

fissionable isotope. This is equivalent to the fission rate kiF ,  for the isotope. This fission rate 

is related to the total fission rate in the material by kkiki FRF ,, = , where kiR ,  is the ratio of 

fissions in the ith fissionable isotope to the total fission rate during the kth time interval. 

The sum over l  indicates the sum over the 24 decay heat precursor groups. The DIN 
standard, however, does not use the same group structures for all fissionable isotopes (235U, 
238U, 239Pu and 241Pu). In order to optimize computational time, a single set of 24 precursor 
groups was chosen and associated ( )li λα  values calculated [23] to closely replicate the 
DIN standard [21]. These values are given in Table 7. The resulting equation may be written 
as: 
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3.2.5.2.3 Contribution of the Actinides 239U, 239Np, 233Th and 233Pa 

The two most important isotopes that can be produced by conversion (‘breeding’) are 233U 
and 239Pu. The reactions involved are as follows: 

( ) UPaThnTh 233233233232 , ⎯→⎯⎯→⎯ −− ββγ  (3.104)

( ) PuNpUnU 239239239238 , ⎯→⎯⎯→⎯ −− ββγ  (3.105)

 

The heat produced by the β-decay of 233Th, 233Pa, 239U and 239Np is termed the ‘breeding’ 
heat production, BQ& . This is calculated as the sum of the individual isotope contributions. 

PaThNpUB QQQQQ &&&&& +++=  (3.106)
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where 

MeVEU 474.0= , the mean decay energy of 239U 

MeVENp 419.0= , the mean decay energy of 239Np 

ThE , the mean decay energy of 233Th, assumed equal to UE  

PaE , the mean decay energy of 233Pa, assumed equal to NpE  

141091.4 −−×= sUλ , the decay constant of 239U 

161041.3 −−×= sNpλ , the decay constant of 239Np 

141018.5 −−×= sThλ , the decay constant of 233Th 

1710971.2 −−×= sPaλ , the decay constant of 233Pa 

kUR ,  and kThR , , the ratios of the neutron capture rates of 239U and 233Th to the total fission 

rate at the end of the kth time interval 

3.2.5.2.4 Total decay heat production 

The contribution of 134Cs to decay heat production is ignored. Taking this into account, the 
total decay heat production at a given time may be written as: 
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In order to simplify the calculation, the term ( ) ( ) ( )( )Akkli KtAtH ++1λα  is written as 

( )( )( ) ( )( )liAli tAKtH λαλα ++ +1  and a set of constants for ( )( )( )litH λα++1  and 

( )( )litA λα  calculated. This approximation is discussed in detail in Appendix A, as well as 
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the method used to calculate the constants**. The constants  ( )( )( )litH λα++1  and 

( )( )litA λα  are tabulated in Table 7 and Table 8. Because the DIN standard [21] does not 
provide values for the isotopes 232Th, 233U, 234U, 236U, 240Pu and 242Pu, these are assumed 
equal to the values for 235U. 

Table 7: Decay Heat Group Constants used in TINTE, Contribution of Fission Products 
and Remaining Capture Reactions 

( )( )( )litH λα++1  

[MeV/fission] Group 
Decay Constant λ 

[1/s] 
235U 238U 239Pu 241Pu 

1 9.46529900E-11 9.826E-02 1.000E-05 4.919E-03 1.134E-01 

2 8.70105772E-11 6.366E-02 1.000E-05 1.020E-05 9.636E-06 

3 7.13382487E-11 1.209E-05 1.769E-05 1.378E-05 7.954E-06 

4 2.49801153E-11 3.796E-02 4.045E-01 3.575E-01 6.582E-03 

5 1.12361217E-09 7.563E-02 5.786E-02 5.076E-02 4.251E-02 

6 1.76517465E-08 1.000E-05 1.589E-02 2.848E-02 4.322E-02 

7 2.63223467E-08 8.487E-02 1.045E-01 1.073E-01 1.274E-01 

8 1.02468769E-07 7.239E-02 2.346E-02 8.340E-03 1.000E-05 

9 1.31947711E-07 1.620E-01 1.762E-01 1.689E-01 1.433E-01 

10 5.96407672E-07 2.298E-02 1.000E-05 4.865E-03 3.987E-02 

11 6.66693113E-07 2.715E-01 2.781E-01 2.788E-01 2.501E-01 

12 2.53418850E-06 2.113E-01 2.392E-01 2.514E-01 2.145E-01 

13 7.80728971E-06 1.000E-05 6.312E-02 1.050E-01 1.917E-01 

14 1.00849415E-05 2.650E-01 1.644E-01 1.119E-01 1.000E-05 

15 2.03242415E-05 3.591E-01 3.667E-01 4.015E-01 3.972E-01 

16 5.05207819E-05 5.771E-01 4.453E-01 3.516E-01 3.047E-01 

17 1.57960705E-04 9.045E-01 8.383E-01 7.387E-01 8.415E-01 

18 4.61398841E-04 1.166 1.258 1.293 1.223 

19 1.23477143E-03 1.221 1.070 1.217 1.230 

20 4.71254051E-03 1.179 1.498 9.214E-01 1.080 

21 1.53414304E-02 2.307 2.831 1.871 2.410 

22 5.89464404E-02 1.977 2.611 1.399 1.945 

23 2.19475243E-01 2.285 2.593 1.540 2.262 

24 8.83998586E-01 5.457E-01 1.952 4.715E-01 8.838E-01 

 

                                                 
** Note that the terms lλ , ( )( )( )litH λα++1  and ( )( )litA λα , used in this chapter, refer to the constants lΛ , ilβ  
and ilγ , derived in Appendix A, respectively. The original variable names, as given in the DIN standard, are kept 
the same to improve readability.  
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Table 8: Decay Heat Group Constants used in TINTE, Contribution of the Remaining 
Actinides 

( )( )litA λα  

[MeV/fission] Group 
Decay Constant λ 

[1/s] 
235U 238U 239Pu 241Pu 

1 9.46529900E-11 8.606E-06 2.031E-01 1.321E-01 1.940E-05 

2 8.70105772E-11 3.181E-01 4.386E-02 7.297E-02 6.513E-02 

3 7.13382487E-11 5.806E-02 4.193E-02 4.682E-02 1.552E-01 

4 2.49801153E-11 1.351E-01 1.000E-05 3.682E-02 1.605E-01 

5 1.12361217E-09 1.000E-05 1.000E-05 1.000E-05 1.000E-05 

6 1.76517465E-08 6.248E-03 1.786E-02 2.314E-02 3.056E-02 

7 2.63223467E-08 6.620E-03 1.849E-03 1.000E-05 1.000E-05 

8 1.02468769E-07 3.342E-02 2.840E-02 2.421E-02 1.974E-02 

9 1.31947711E-07 1.000E-05 1.000E-05 9.120E-04 1.000E-05 

10 5.96407672E-07 5.854E-03 1.088E-02 1.330E-02 2.197E-02 

11 6.66693113E-07 1.526E-02 9.275E-03 7.780E-03 1.000E-05 

12 2.53418850E-06 1.086E-02 1.392E-02 1.461E-02 1.235E-02 

13 7.80728971E-06 4.939E-03 4.099E-03 6.538E-03 1.214E-02 

14 1.00849415E-05 1.118E-02 1.007E-02 7.135E-03 8.118E-05 

15 2.03242415E-05 1.759E-02 1.661E-02 1.822E-02 1.837E-02 

16 5.05207819E-05 1.936E-02 1.462E-02 1.026E-02 8.534E-03 

17 1.57960705E-04 2.427E-02 2.316E-02 2.143E-02 2.537E-02 

18 4.61398841E-04 2.013E-02 2.365E-02 2.428E-02 2.053E-02 

19 1.23477143E-03 1.318E-02 8.913E-03 1.246E-02 1.329E-02 

20 4.71254051E-03 1.384E-02 1.921E-02 1.015E-02 1.301E-02 

21 1.53414304E-02 1.944E-02 2.367E-02 1.596E-02 2.078E-02 

22 5.89464404E-02 1.328E-02 1.778E-02 8.924E-03 1.274E-02 

23 2.19475243E-01 1.327E-02 1.507E-02 9.208E-03 1.398E-02 

24 8.83998586E-01 2.210E-03 1.032E-02 2.005E-03 4.163E-03 

 

3.2.5.2.5 Extending the operational time 

In order to extend the operational history by additional constant power intervals, it is 
necessary to calculate the relationship between the decay heat at the end of subsequent 
time intervals, given known initial conditions. Equation (3.111) may generically be written as: 
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where l  is used to denote the 24 decay groups as well as the six additional exponential 
terms in Equation (3.111). Equation (3.102) is used to replace tk as follows: 
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where 01 =+mT . By expanding the final few terms of the sum over k, it is clear that the 
delayed heat production after interval m  may be written as a function of that after interval 

1−m . 
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By denoting ( ) ( )tQtQ
l

ldd ∑
=

=
30

1
,

&& , and assuming constant power over a time interval Δ . 

( ) ( ) ( )Δ−Δ− −+=Δ+ ll eFetQtQ lldld
λλ α 1'0,0,

&&  (3.112)

This approximation is used to extend the decay heat production at the end of a given life 
histogram by a short time period. This would typically be half a burn-up cycle, in the order of 
several days. 

3.2.5.2.6 Time-dependent decay heat production 

The DIN standard assumes a constant fission rate for each time interval. For the time-
dependent case, this zeroth order approximation is not particularly suited and a modified 
form of Equation (3.111) is sought out. It is noted that Equation (3.112) is the solution to the 
differential equation 
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ld QF

dt
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,
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assuming constant fission rate. The general solution to this equation is: 
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If the fission rate is assumed linear ( ( ) ( )01
0

0 FFttFtF −
Δ
−

+= ), (3.114) may be solved to 

yield the general solution form for a direct fission decay heat precursor. 
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The individual decay heat precursors at the end of a time interval Δ  are therefore found to 
be: 
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In the case of the actinides 239Np and 233Pa (isotopes formed through breeding), the 
differential equation to be solved is given below (for the specific case of 239Np). 
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For the solution of Equation (3.119), partial integration is used. 
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Using the identical methodology as was used in the derivation of Equation (3.115), the 
integral part of the above equation is reduced, resulting in the following general expression 
for the time-dependent breeding decay heat of an isotope (for the case of 239Np). 
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Using this, the expressions for the decay heat production of the isotopes 239Np and 233Pa at 
the end of a time interval Δ  can be written as: 
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The total decay heat production at the end of the time interval may be calculated as the sum 
of the individual decay heat components. 
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The mean for a time interval Δ  may be calculated as: 
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Using Equations (3.115) and (3.120), the integral may be solved. 
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Similarly, the additional term ( ) ( ) ( )( )tQetQ U
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 in (3.120) may be integrated 

to obtain the following: 
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The mean component decay heat precursor values for a time interval Δ  may therefore be 
written as: 
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The total mean decay heat production for a time interval may be calculated as: 
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3.2.5.2.7 Effective steady-state heat production 

The total energy per fission specifies the energy release at equilibrium operating conditions, 
i.e. decay heat is constant ( ∞→T ). If we write the total energy release per fission as the 
sum of prompt and decay components, Equation (3.111). 
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The prompt energy per fission may thus be expressed as follows: 
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The real reactor, however, will never reach true infinite equilibrium conditions and the 
effective energy release per fission, which now takes into account the life history of the fuel 
is: 

 
F
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&
+=  (3.131)

where pE  is a known value for each fissionable isotope. In this case, the decay heat 

(calculated using (3.111)) is substituted in to obtain the effective energy per fission. 

3.2.5.3 Locality of heat production 

During the heat production, which is caused by fission, most of the feedback energy of the 
heavy fission fragments is converted to heat at the site where fission took place. β-radiation 
also does not travel far and can be assumed to remain at the site of fission. 

In contrast, the high-energy neutrons, as well as prompt and decay γ-radiation will cover 
large distances before depositing their energy in the reactor materials. 

Two types of heat production may therefore be distinguished with respect to their locality of 
energy deposition: 

• Local heat sources – Recoil energy of fission fragments (prompt) and β-radiation 
(decay). 

• Non-local heat sources – High-energy neutron moderation and capture, neutron,γ 
interactions and γ-radiation. 

3.2.5.3.1 Local heat sources 

The ratios pχ  and dχ  are defined as the ratio of local to total heat production for the prompt 

and decay heat cases respectively. The local power of the reactor may then be written as: 

( )Bddppl QQQQ &&&& −+= χχ  (3.132)

The breeding term BQ&  is assumed to be non-local, hence its exclusion from the decay power 
term in Equation (3.132). 
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Using Equations (3.95) and (3.96), the locally deposited contributions of the prompt and 

decay energies-per-fission are rE  and βE  respectively; therefore 
p

r
p E

E
=χ  and 

d
d E

Eβχ = . 

3.2.5.3.2 Non-local heat sources 

Non-local heat production is due to a number of interactions, namely:  

• scattering interactions during moderation; 
• neutron,γ-reactions; and 
• γ-reactions. 

The kinetic energy of the high-energy neutrons is generally converted to heat during 
moderation and absorption. The moderation and absorption heat production is calculated 
from the effective heat-production per moderation interaction, modE . 

( ) 1
21

1modmod φ→Σ+Σ=′′′ saEQ&  (3.133)

Because of the unique composition of fuel-containing regions of the reactor, a unique fast 
neutron spectrum exists in all regions. The energy per moderation is therefore spatially-
dependent, depending on the fraction of each fissionable isotope within the region. 
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The fractions iU
iPuiThiU

iU R
FFF

F
,5

,2,2,5

,5 ≡
+++ K

, etc., representing the fraction of fissions 

taking place in a fissionable isotope, for each nuclear material, are assumed to be user-
supplied parameters. It should be noted that because of the non-locality of the heat 
production due to moderation and absorption, regions within the reactor cannot be treated 
individually according to their unique composition. This is because neutrons born in one 
region of the reactor may travel some distance before being moderated or absorbed. The 
assumption is made that all regions of the reactor have the same homogenized energy per 
moderation. The homogenized energy per moderation/absorption is calculated as the 
volume-weighted average of that for all fuel-containing regions. 
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n,γ-reactions are treated in a similar fashion using an effective heat-production per n,γ-
interaction. 

( ) ( )[ ]222111.,, φφγγ fafann EQ Σ−Σ+Σ−Σ=′′′&  (3.136)

where γ,nE  is assumed a constant value of 6.1 MeV per reaction (Table 1 of DIN 25 485 

[21]). 

The distribution of heat produced by γ-reactions can be determined by means of transport 
theory methods, which is not practical in this case, as these calculations require a large 
amount of computational effort. Because the effective cross sections of the γ-quanta, which 
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arise from the fission process, are similar to those of the fast neutrons in the HTR, it is 
assumed that the γ-heat is distributed in the same profile as the fast neutron destruction rate. 

An effective γ-cross-section is defined as:  
2122 →Σ+Σ−Σ=Σ sfaγ  (3.137)

taking into account γ-reactions and scattering. This expression for the effective γ-cross-
section was determined arbitrarily to match experimental data. No documented validation of 
the expression is currently available. The cross section is used to create a normalized value 
at each location. 
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The discretized form of the above equation is given below. 
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The γ-heat production at each location is then calculated according to 

γγγ ζ QQ && ′′′=′′′  (3.140)

where γQ&  is the global γ heat production. If the total and local energy per fission are defined 

to exclude n-γ interactions as well as neutron moderation and absorption reactions, γQ&  can 

be calculated as the difference between the total and the local fission power, namely: 

lf QQQ &&& −=γ  (3.141)
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3.2.6 Determining Feedback Values for Calculating Cross Sections 

3.2.6.1 Time-dependent extrapolation 

Because cross sections are required for the nuclear calculation, they must be determined 
before each nuclear calculation commences. Therefore, feedback parameters such as fuel 
and moderator temperatures, gas concentrations, graphite burn-up, etc. must be available 
before each nuclear calculation. This becomes a problem in the time-dependent case, 
because temperatures and gas flow parameters are only calculated after several nuclear 
time intervals (refer to Figure 16). This problem may be removed if the nuclear and 
temperature calculations are iterated over, however, this would greatly increase the required 
computational time. 

Instead, the assumption is made that a number of parameters vary linearly with time and 
therefore their values may be extrapolated from the previous available time interval. For the 
following parameters, values for the previous nuclear time interval are extrapolated: 

a. Local and non-local heat sources – The previous interval mean and end-of-interval 
values are extrapolated to estimate the new interval mean. 

( )
0

1
0111

n

n

t
t

QQQQ
Δ
Δ′′′−′′′+′′′=′′′ &&&&  (3.142)

This is illustrated in Figure 13. 
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Figure 13: Time Extrapolation of the Nuclear Heat Sources 

b. The fuel layer temperatures – The fuel layer temperature values are not directly available 
at the end of each nuclear calculation (they result from the temperature calculation). 
Additionally, the fuel temperatures may change rapidly in response to nuclear power 
changes. A simple extrapolation of the fuel layer temperatures is therefore insufficient to 
account for changing power levels. The method used to calculate the fuel layer 
temperatures (described in the TINTE thermal-hydraulic theory description [6]) is 
sufficiently fast that the values at the end of each nuclear time interval can be calculated 
directly. This calculation is done using the fuel layer temperatures and nuclear heat 
sources at the end of the previous nuclear time interval, as well as extrapolated nuclear 
heat sources (refer to (a) above) and extrapolated fuel surface boundary conditions 
(refer to (d) below). This method allows the fuel layer temperatures to be estimated, 
taking into account changes in power. 
For the following parameters, values from the previous temperature time interval are 
extrapolated: 
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c. Solid material temperatures – The reflectors and other solid materials are sufficiently far 
from the fuel elements themselves that changes in power will result in a relatively slow 
response in temperature. A simple time extrapolation of the solid material temperatures 
is therefore acceptable. This extrapolation uses the temperatures from the previous 
nuclear time interval and the rates of temperature change from the previous temperature 
time interval. 
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This is illustrated in Figure 14. 
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Figure 14: Time Extrapolation of the Solid Material Temperatures 

d. The fuel surface boundary conditions – The heat transfer from the fuel surface to its 
surroundings is represented using two parameters, *α  and *θ . Here *α  is an effective 
heat transfer coefficient and *θ  is the representative temperature of the surroundings. 
For the calculation of the fuel layer temperatures, these parameters provide the 
boundary conditions at the surface of the fuel sphere. The approximation is made that 
*α  and *θ  vary linearly with respect to time and that their values may be extrapolated 

using the same method described in (c) above. 
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This simple extrapolation is sufficient for the case of non-changing surrounding 
temperatures. This is, however, not the case (refer to (c) above). Because the surrounding 
(solid material) temperatures are extrapolated, *θ  must be corrected. With reference to the 
TINTE Thermal-hydraulics Theory Report [6], the total heat transfer from the surface of a fuel 
sphere to its surroundings may be written as the sum of a number of individual heat 
transfers. In the discretized spatial domain this includes heat transfer from the surrounding 
meshes, as well as other influences such as gas temperature. 
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If each temperature iT  changes by an amount iTΔ , the updated value of *θ  is calculated as: 
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where 'θ  is the corrected value. A total correction *θΔ  may be defined as: 
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The correction to the change in a single surrounding temperature (i.e. neighbouring mesh) 
therefore becomes: 
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The question arises that, if *θ  may be calculated directly using the extrapolated temperature, 
what is the reason for first extrapolating *θ  and then correcting the value. The reason is that 
*θ  is a function of both the surrounding temperatures iT  and the heat transfer coefficients 

iα . A more accurate approximation is obtained using this method because it takes into 
account the change in heat transfer coefficients. This method is equivalent to extrapolating 
the individual heat transfer coefficients iα  in addition to the surrounding temperatures iT  and 

then, from these, calculating the extrapolated *θ . 

3.2.6.2 Coated particle overheating model 

The fuel layer temperature calculation, described in the TINTE Thermal-hydraulics Theory 
Report [6], does not account for the heterogeneity of the fuel spheres, specifically the many 
fuel-containing coated particles embedded within the fuel graphite matrix. Because of the 
very small size of the coated particles, the temperature difference between the fuel and the 
surrounding graphite is generally small, in the order of 3 to 6 °C. Therefore the additional 
complications that would arise by developing a very accurate model for the fuel, taking into 
account the double-heterogeneity of the core, would not provide a significant advantage over 
a simplified model. 

A simplified lumped mass heat transfer model for the coated particles was chosen, as shown 
in Figure 15. Each coated particle is assumed to be a spatially independent point heat source 
with heat storage and conductive heat transfer to the surrounding matrix. This assumption 
introduces minimal error for a number of reasons: 

• The coated particles have a very small diameter. 
• The conductivity of the uranium dioxide fuel kernel is high relative to that of the very thin 

coating layers. The result of this is that the temperature profile through a typical coated 
particle is ‘top-hat’ shaped, i.e. approximately discontinuous at the coatings with very 
little temperature difference across the uranium dioxide kernel itself. 

• The low density of the coating layers results in a low heat capacity and therefore the 
coatings have little influence on the time-dependent temperature response of fuel kernel. 

• The thermal behaviour of the uranium dioxide kernels and coatings under extreme 
temperatures and neutron fluxes is not fully understood. For this reason, the accuracy of 
the material properties used in a more complex model would be questionable. Time-
dependent experimental results would be needed to ‘tweak’ the parameters of any 
model, regardless of its complexity. This ‘tweaking’ of parameters is more easily carried 
out for a simple model. 

fT

fQ&

fpf c ,ρ

mT

 
Figure 15: Lumped Particle Model for Particle Overheating 
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The coated particle (fuel) is at temperature fT  and the surrounding matrix (moderator) at 

temperature mT . The nuclear power generation within the coated particle is fQ ′′′&  and the 

particle has volumetric heat capacity fpf c ,ρ . The following differential equation may be used 

to describe the system: 

( )mf
f

fffpf TTQTc −−′′′=
α

ρ 1
,

&&  (3.149)

Here, fα  is an effective heat flux resistance for the coated particle (represented by the 

resistor element in Figure 15). This value is assumed constant for a given reactor. Note that 
the coated particle power density differs from the homogenized power density calculated in 
paragraph 3.2.5. We therefore introduce the ratio of coated particle power density to 
homogenized local power density lf QQ && ′′′′′′ . Also note that the local power production is 

considered because we are concerned with the local heating within the fuel itself. 

Rearranging Equation (3.149) yields the following: 
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We define a modified heat flux resistance: 
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and a time-dependence factor: 
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These may be substituted into the equation to yield the following: 
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( )mlfffff TQTT +′′′=+ && 'αλλ  (3.152)

Here fλ  may be written in terms of the modified heat flux resistance f'α . 
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3.2.6.2.1 Steady-state case 

For the steady-state case, the time-derivative term in Equation (3.152) is zero and the 
equation reduces to: 

mlff TQT +′′′= &'α  (3.154)
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3.2.6.2.2 Time-dependent case 

The heat generation is assumed linearly dependent on time, i.e. 

( ) ( )01
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0 llll QQ
tt

QtQ ′′′−′′′
Δ
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+′′′=′′′ &&&& . Similarly, the moderator temperature is assumed to vary 

linearly with time, i.e. ( ) ( )01
0

0 mmmm TT
tt

TtT −
Δ
−

+= . The time-dependence of the term 

mlf TQ +′′′&'α  may therefore be written as shown. 
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We define the source terms: 

( ) ( ) ( )tTtQtA mlf +′′′≡ &'α  (3.155)

111 ' mlf TQA +′′′≡ &α  (3.156)

000 ' mlf TQA +′′′= &α  (3.157)

Equation (3.152) may be rewritten as: 

( ) ffff TtAT λλ −=&  (3.158)

The above equation has the same general form as Equation (3.113), for which the solution is 
known. 
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The coated particle overheating at the end of time interval Δ  may therefore be written as: 
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3.2.6.2.3 Coated particle parameters 

The ratio lf QQ ′′′′′′ &&  in Equations (3.150) and (3.153) is equal to the inverse of the coated 

particle packing fraction, fε−1 . This may be calculated using the fuel element geometry and 

design as follows. 

We define the number of coated particle per fuel sphere, fn . This, multiplied by volume per 

coated particle fV , gives the volume of coated particles per fuel sphere, ffVn . The coated 

particle packing fraction is given by: 
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where beV  is the volume per fuel sphere (ball element) and beε  is the pebble bed void 
fraction. The volume per fuel sphere is calculated using the formula: 

3

3
4

bebe RV π=  (3.161)

where beR  is the fuel sphere radius. 

A heavy metal loading per fuel sphere SM  may be used to calculate the uranium dioxide 

loading per fuel sphere as 
U

UO

M
M

SM 2 , where 
2UOM  and UM  are the molar masses of 

uranium dioxide fuel and low enriched uranium metal respectively. The coated particle 
density fρ  may be expressed in terms of the fuel sphere heavy metal loading. 
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Using Equations (3.160) and (3.162), Equation (3.153) may now be rewritten as: 
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Note that the above equation of fλ  is independent of the coated particle geometry and 

layout. Instead, the heavy metal loading, fuel sphere volume and pebble bed void fraction are 
used as these may be more accurately measured. The fuel data used in TINTE for 
calculating fλ  is summarized in Table 9. 

Table 9: Fuel Data Assumed for the Coated Particle Overheating Model 

Parameter Value Source Comment 

beR  3 cm [25] PBMR Type A fuel 

UM  238 g/mol  Low-enriched Uranium (LEU) fuel 

2UOM  270 g/mol   

fPc ,  0.3 kJ/kg/K [24] For UO2 fuel. Calculated using temperature 
dependent equation at 500 °C. 

SM  -  User supplied parameter 

beε  -  User supplied parameter 
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Parameter Value Source Comment 

beR  3 cm [25] PBMR Type A fuel 

UM  238 g/mol  Low-enriched Uranium (LEU) fuel 

2UOM  270 g/mol   

fPc ,  0.3 kJ/kg/K [24] For UO2 fuel. Calculated using temperature 
dependent equation at 500 °C. 

f'α  -  User-supplied parameter 

 

An average coated particle temperature of approximately 500 °C is assumed for the value of 

fPc , . For reactors operating with higher average fuel temperatures, such as the Pebble Bed 

Modular Reactor (PBMR) (900 °C, refer to [20]), a more accurate value would be 317 J/kg/K 
according to [24]. The value assumed neglects influences such as fuel burn-up and 
operational temperature. 

The effective specific resistance f'α  of the coated particle may be calculated directly from 

Equation (3.154) if steady-state operational data for a reactor is available. 
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&
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It is, however, a difficult task to measure the temperature difference in a reactor accurately 
and for this reason the value is more easily determined using the response of a reactor to 
transients such as control rod withdrawals. Typical values for f'α  are in the region of 

0.5 K.cm3/W to 0.9 K.cm3/W. Recent work suggests that a value closer to 2.6 K.cm3/W 
should be used for the PBMR reactor ([26] and [27]). 

3.2.6.3 Determining representative fuel and moderator temperatures 

The extrapolation methods discussed in paragraph 3.2.6.1 estimated temperature values. 
For out-of-core locations (reflectors, etc.), the homogenized solid material temperatures are 
estimated. Each out-of-core location therefore has a single representative moderator 
temperature value which may be used for the calculation of cross sections (refer to 
paragraph 3.2.2). 

For locations within the core, the extrapolation methods discussed in paragraph 3.2.6.1 yield 
temperatures for all layers of all fuel types. In order to determine representative moderator 
temperatures for a given core location, volume-weighted averaging is applied over all fuel 
types and all layers within the fuel sphere. 
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The subscripts n  and i  denote the individual fuel types and fuel layers respectively. nγ  is 
the volume fraction of type n  fuel elements in the relevant core region. 
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Fuel temperatures are calculated using the coated particle overheating model discussed in 
paragraph 3.2.6.2. For the calculation of the representative fuel temperature, the volume-
weighted average fuel temperature is calculated in a similar manner to Equation (3.165). 

The variables of Equations (3.154) and (3.159) for the calculation of fuel temperatures using 
the overheating model are considered. 

• The heat production values 1fQ ′′′&  and 0fQ ′′′&  are dependent on the fuel type but are 

independent of the fuel layers, i.e. spatial self-shielding within the fuel zone is neglected. 

• The temperatures 0fT , 0mT  and 1mT  are dependent on both the fuel type and layer. 

For simplicity’s sake, we denote the volume-weighted average, over the fuel-containing 
layers, of a variable x  as ( )xfΩ . 
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Applying Equation (3.166) with substitution of Equations (3.156), (3.157) and (3.159) yields 
the following: 
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By manipulation of the above equation and application of the properties of sums, the volume-
weighted average of the updated fuel temperature ( )1ff TΩ , for a fuel type and location, may 

be written in terms of the volume-weighted sums of the initial fuel temperature and moderator 
temperatures. 
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This simple manipulation shows that for constant f'α  and fλ , and assuming uniform heat 

sources (neglecting fuel spatial self shielding), the representative fuel temperature, at the 
end of a time interval Δ , for each fuel type in each location, may be calculated directly using 
the representative initial fuel ( ( )0ff TΩ ) and moderator temperatures ( ( )0mf TΩ  and 

( )1mf TΩ ). It is therefore not necessary to calculate the particle overheating for each layer 

individually. Note, however, that the representative moderator temperatures ( )0mf TΩ  and 

( )1mf TΩ  in this case are for the fuel-containing layers only. 

The TINTE nuclear calculation assumes a homogenous core, therefore the cross-section 
polynomials do not distinguish between fuel types. It is necessary to combine the 
representative fuel temperatures for each fuel type into a single representative fuel 
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temperature for each location. This is done using the volume fractions nγ  for each fuel type 
as in Equation (3.165). 

( )[ ]∑ Ω=
n

nffn
*
f TT ,γ  (3.168)

3.2.6.4 Determining representative molecular concentrations 

The gas-mixing model in TINTE calculates the molecular concentrations of nitrogen (in the 
form of N2), hydrogen (in the form of H2O) and carbon (in the form of CO and CO2). The 
presence of these molecules in the gas flow is potentially important for calculations including 
water ingress and graphite corrosion because of their influence on moderation. For this 
reason their concentrations are included as terms in the calculation of neutronic cross 
sections. 

The calculation of gas mixing is discussed in detail in the TINTE Thermal-hydraulics Theory 
Report [6]. From the perspective of the nuclear calculation, it is necessary to calculate the 
homogenized molar densities of nitrogen, hydrogen and carbon in the material blocks. The 
gas-mixing calculation supplies the molar densities of gaseous N2, CO, CO2, H2 and H2O, as 
well as liquid H2O (surface wetting). 

The concentration of a particular species (a ) in gas may be calculated from the gas 
concentration gC  (mol/m3) and the species mol fraction ax  (mola/molgas). 

gaa CxC =  

If a material block contains a fraction ε  of solid material, a gas fraction of ε−1  is present 
and the homogenized concentration of species a  becomes: 

( ) gaa CxC ε−= 1  

For nitrogen gas, this becomes: 

( ) gNN CxC
22

1 ε−=  (3.169)

For total carbon, this becomes: 

( )( ) gCOCOCOCO CxxCC
22
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If we consider that a concentration BC  of graphite has been removed due to corrosion or 
other effects, the resulting loss in the concentration of carbon atoms CCΔ  is: 
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This loss is expressed as a fraction of the initial graphite concentration in the material block 

sC . 
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For gaseous H2 and H2O, as well as liquid water (vapour): 

( )( ) gvHgOHHvHgOHH CxxxCCC ,0,,0, 222222
1 ++−=++ ε  
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To take into account surface wetting, we now introduce a surface wetting concentration 

lOHC ,2
, which is the number of moles of liquid water per mole of solid graphite in the material 

block. The total hydrogen-based molecule concentration in the material block becomes: 

( )( ) lOHgvHgOHHH CCxxxC ,,0, 22222
1 εε +++−=  (3.171)

The cross-section polynomials are derived directly in terms of the variables 
2N

C , sC CCΔ  

and 
2H

C . The values calculated using Equations (3.169) through (3.171) may therefore be 

used directly to calculate the neutronic cross sections. 
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4. BASIC MODELLING EQUATIONS 

Because of the large number of equations used and specific methods used for the coupled 
solution of these equations, a single list of modelling equations will serve little purpose for the 
reader of this document. For this reason, this chapter gives calculation algorithms that are 
used for the complete nuclear calculation. Each step in the solution process is referenced to 
a single equation within paragraph 3.2. Where a single equation is not used, but rather a 
solution method consisting of several coupled equations, a reference is provided to the 
relevant subsection within paragraph 3.2. 

4.1 CALCULATIONAL STRUCTURE 

The partial problems of a reactor calculation are solved separately in TINTE, i.e. the partial 
solutions are explicitly coupled. The disadvantage of this is that the solution of the full system 
of equations may only be solved by iteration. On the other hand, this method of solution 
allows the partial problems to be separated, thus simplifying the calculation structure. 

The partial solutions include the following: 

a. The nuclear calculation – A neutronic calculation is performed to determine the time-
dependent flux distribution and the power distribution is calculated from this. 

b. The temperature calculation – Heat transfer calculations are performed to determine 
time-dependent temperature distribution of the calculation domain. This includes gas 
flow, convection, solid conduction and radiation heat transfer calculations. 

c. Chemistry calculation – Chemical reaction rates (graphite oxidation) are calculated, to 
determine changes in geometry and chemical composition. 

Repeat until Σi ΔtNi=ΔtT

Nuclear power for ΔtT

1. Heat Transfer
2. Temperatures
3. Fuel Element Boundary 

Conditions
4. Gas Mixing
5. Corrosion

ΔtT

ΔtN
Time-dependent nuclear

calculation for ΔtNi

 
Figure 16: The Modular Structure of TINTE; the Principle of Time Discretization [3] 

We term the iteration over the partial problems the outer iteration. Because of the relatively 
short periods associated with neutronic calculations, several nuclear time intervals are used 
within each temperature/chemistry calculation. This concept is shown in Figure 16. Separate 
temperature and nuclear time intervals are therefore defined. The choice of the time intervals 
is determined by the control module and will not be described in this document. In the 
context of this document, the generic time interval Δ  refers to the nuclear time interval. 
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4.1.1 The Nuclear Calculation 

Initially, fuel and moderator temperatures are required for the cross-section calculation. 
Because multiple nuclear time intervals are used per temperature interval, these values are 
available for the first nuclear interval. For the subsequent nuclear intervals within the 
temperature interval, the fuel and moderator temperatures are calculated by temporal 
extrapolation of previous temperatures. This extrapolation is considered part of the 
temperature calculation (although separate in a sense) and will not be discussed in any great 
detail within this document. 

As stated above, the moderator and fuel temperatures are used to calculate nuclear cross 
sections. Then follows what is termed the neutron flux inner iteration. During this, the xenon 
(and other strong absorbers) concentrations are first adjusted according to the guessed 
neutron flux distribution for the time interval. These concentrations are used to update the 
neutron absorption of the material blocks. A flux calculation is then performed to update the 
flux distribution. The neutron flux inner iteration is repeated until convergence of the flux 
distribution is obtained. 

The spatial fission power distribution for the time-interval is then calculated. In transient 
cases, the power distribution is fed back into the fuel and moderator temperature calculation. 
Therefore, an intermediate power iteration is repeated until convergence is obtained. 

This represents the converged solution for a single nuclear time interval. This is repeated for 
all nuclear intervals within the current temperature time interval. The effective nuclear power 
in each material mesh block, for the temperature interval, is then calculated as the average 
power for all the nuclear subintervals. 

This calculation structure is depicted in Figure 17. 

4.1.2 Calculation Algorithms 

The individual nuclear calculation algorithm for the steady-state case is depicted in 
Figure 18. This represents the nuclear calculation for a single pseudo-time-interval (the 
concept is described in paragraph 3.2.3.5). Figure 19 depicts the algorithm for the 
time-dependent case. This represents the solution algorithm for a single nuclear time-
interval. Note that the inner flux iteration (refer to Figure 20) is shared between both cases. 
The detail of each of the blocks in the Figure 18 through Figure 20 is explored in the 
subsequent chapters of this document. 
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Figure 17: The TINTE Nuclear Calculation [3] 
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Figure 18: Flow Diagram for the Steady-State Nuclear Calculation 
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Figure 19: Flow Diagram for the Time-dependent Nuclear Calculation 
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Figure 20: Flow Diagram for the Neutron Flux Inner Iteration 
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4.2 OUTSTANDING ISSUES 

The impacts of the following assumptions have yet to be validated. 

• The delayed neutron production – The delayed neutron yields and group data were 
originally taken from ENDF/B IV [12], BNL-325 [18], as well as a number of other 
sources. In the absence of some of the original documentation, the values used in 
TINTE are compared with the more recent ENDF/B VI [14]. This comparison is detailed 
in Appendix B. The effects of differences in the source data have been shown, using a 
simplified steady-state approximation, to be below 1%. The full impact on strong 
transient calculations (power excursions, etc.), however, has yet to be quantified. 
Possibly of greater importance is that no attempt has been made to account for the 
differences in the yield spectra of prompt and delayed neutrons for the two-group 
diffusion calculation, i.e. no attempt has been made to calculate effective β  values from 
the physical values. 

• The saturation fission products (neutron poisons) – Decay constants and fission yields 
for the saturation fission products were originally taken from ENDF/B IV [12]. In the 
absence of the original data, the values used in TINTE are compared with the more 
recent ENDF/B VI [14]. This comparison is detailed in Appendix D. A number of 
significant differences have been noted, however, the effects of these differences have 
not been fully quantified. Differences were noted between Equation (3.89) and Equation 
(3.52) of [3]. Equation (3.89) is, however, consistent with the original German version of 
[3] and the TINTE source code. 

• The decay heat calculation - Assumptions made to DIN 25 485 [21] are discussed in 
Appendix A. In this paragraph, it is shown that the assumptions made are conservative, 
however, the amount of conservatism has yet to be quantified. Also, the DIN standard 
does not specify decay heat data for the isotopes 232Th, 233U, 234U, 236U, 240Pu and 242Pu; 
these are assumed equal to the values for 235U. The effect of this assumption has not 
been quantified. 

• The locality of heat production – An effective gamma cross section is assumed in 
Equation (3.137). This assumption was based on previous data for a pebble-bed-type 
reactor. No derivation is available; therefore the assumption is currently not fully 
validated in accordance with the requirements of [1]. 

• The overheating model for the fuel coated particle temperatures, discussed in 
paragraph 3.2.6.2, has not been fully validated. In particular, the choice of an accurate 
value for the effective specific resistance requires experimental data. Current progress 
within the Data Methods and Code Development (DMACD) group on an updated coated 
particle overheating model [28] should resolve this issue. 
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5. APPENDICES 

5.1 APPENDIX A: THE DECAY HEAT CONSTANTS AS APPLIED IN TINTE 

This appendix summarizes Chapter 4.1 of [23]. This document describes the treatment of 
decay heat production in TINTE and the methods used to obtain the constants used from the 
DIN standard [21]. Chapter 4.1 of [23] discusses the adjustment of the DIN standard for use 
in a dynamic program such as TINTE. 

It is appropriate and convenient to model the decay heat production of a reactor using 
methods similar to those used for the decay chains of the neutron poisons Xe-135, Sm-149, 
etc., discussed in paragraph 3.2.4 of the current document. The decay heat production is 
therefore described using ordinary differential equations, which can be solved numerically 
with minimal computational effort. This method of solution applies to the fission product 
contribution SQ&  (refer to paragraph 3.2.5.2.2) and the contributions UQ& , NpQ& , ThQ&  and PaQ&  

of the actinides 239U, 239Np, 233Th and 233Pa respectively (refer to paragraph 3.2.5.2.3). 

The neutron captures of caesium isotopes can similarly be described using ordinary 
differential equations. Supplement 1 of the DIN standard [21] discusses the decay heat 
contribution of 133Cs and 134Cs. For reactor operation periods of greater than 50 d and reactor 
shutdown periods of less than 100 d, both isotopes have negligible influence on the decay 
heat. 1 d after reactor shutdown, these isotopes contribute approximately 0.2% of the total 
decay heat. After 5 d, this value is approximately 0.5%, which again may be considered 
negligible. 

The DIN standard is not written in the form of dynamic differential equations suitable for use 
both during and after reactor shutdown. The functions ( )tA  and ( )tH  are dependent on the 
time after reactor shutdown. Implementing such a method in a dynamic code would require 
additional intervals to be added to the operational histogram each time the power level 
and/or flux profile changes, even if only by small amounts. For certain transients this would 
result in a reactor history consisting of many thousands of time intervals for all locations in 
the core, which is not feasible. An adaptation of the standard is required that will allow the 
decay heat data, during the time-dependent calculation, to be calculated independently of the 
reactor’s operational history, using only the decay heat values from the previous iteration. 

The following procedure is used to achieve this: The function ( )tA  rises continuously up to a 
shutdown time of 109 s (refer to Figure 21), which is greater than the operational life of the 
fuel elements. If the time zero of the function ( )tA  is redefined as the time of fission, a 
conservative estimate of the decay heat is obtained. Unlike ( )tA , the function ( )tH  does not 
rise continuously, but includes a number of small oscillations. Applying the same technique 
to this function would therefore not necessarily be conservative, because the function 
decreases with time in some places. A further conservative assumption is therefore made. A 
function ( )tH +  is defined such that it envelopes ( )tH , but does not decrease with time as 

shown in Figure 21. One can then conservatively redefine the time zero of ( )tH +  as the time 
of fission. 
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Figure 21: The Decay Heat Functions A(t) and H(t) from DIN 25 485 

 

With reference to Equation (3.103), the contributions ( ) ( )TtQTtQ ES ,, && +  and ( )TtQA ,&  may 
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Equation (2) of the DIN standard [21] is now introduced for a single operational time ( TTk =  

and τ=kt ). 
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The data for each isotope 
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 is specified in the DIN standard using differing decay 

constants. In order to reduce computational and coding effort as well as storage 
requirements, a new set of decay constants is chosen and new sets of decay group data for 
each isotope for use in TINTE are calculated. The decay groups are chosen such that all 
isotopes share a common set of decay constants. This allows a certain amount of 
precalculation to be carried out and, as such, reduces the computational effort required. The 
new decay heat constants lΛ , ilβ  and ilγ  are chosen such that the following relationship 
applies: 
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The above relationship should be independent of the integral portion and as such may be 
simplified to the following: 
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This relationship must be accurate for both large and small values of t . Because the 
exponential functions will quickly fall to very small values, the percentage error rather than 
the absolute error is reduced to ensure the inherent trend of the decay is maintained. This is 
more easily achieved using the following form of (5.4). 
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In order to minimize the loss in accuracy, the number of decay groups is chosen equal to that 
specified in the DIN standard, 24. Nonlinear involution has been used to generate the 
necessary values. Details on this method will not be discussed, but rather comparisons with 
the DIN standard are shown to illustrate the accuracy of the newly developed decay heat 
data. The comparisons are shown in Figure 22 through Figure 25. Where small differences 
occur, e.g. in Figure 22 between 106 and 107 s, these are conservative. 

The fitted data values are given in tabular form in Table 7 and Table 8, on pages 50 and 51 
respectively. Note that the terms lλ , ( )( )( )litH λα++1  and ( )( )litA λα , in the context of 

paragraph 3.2.5.2, refer to the derived constants lΛ , ilβ  and ilγ  respectively. 
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Figure 22: Comparison of the Decay Heat Release of 235U for the DIN Decay Data and 

Fitted Values 
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Figure 23: Comparison of the Decay Heat Release of 238U for the DIN Decay Data and 

Fitted Values 
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Figure 24: Comparison of the Decay Heat Release of 239Pu for the DIN Decay Data and 

Fitted Values 
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Figure 25: Comparison of the Decay Heat release of 241Pu for the DIN Decay Data and 

Fitted Values 
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5.2 APPENDIX B: MODIFICATION OF THE ABSOLUTE DELAYED NEUTRON YIELDS 
FOR USE IN TINTE 

The source for the original data for the absolute delayed neutron yields is specified in the 
TINTE source code as ENDF/B IV [12], for the isotopes 235U, 232Th, 233U, 238U, 239Pu, 240Pu 
and 241Pu, and INDC(NDS)-107/G+Special [16] (Table III, p. 61) for the isotopes 234U, 236U 
and 242Pu. In the absence of the original ENDF/B data, ANL/NDM-5 [15] was referred to. 
Both [15] and [16] contain delayed neutron yield dν  values. BNL-325 [18] is referenced for 

the total neutron yield tν  of each isotope, however, this original data source could not be 
obtained to verify the data used in TINTE. 

In order to verify the data used, ENDF/B VI [12] data is compared with the values used in 
TINTE. This comparison is shown in Table 10. 

Table 10: Comparison of TINTE and ENDF/B VI Total Delayed Neutron Yields 

Isotope ENDF/B VI TINTE Difference 

 νd νt β [%] β [%]  
235U 1.67E-02 2.4367 0.6854 0.6904 0.0050 
232Th 5.27E-02 1.9487 2.7044 2.3981 0.3063 
233U 0.0074 2.4947 0.2966 0.2962 0.0004 
234U 0.0129 2.3520 0.5485 0.4342 0.1143 
236U 0.0232 2.3170 1.0013 1.1693 0.1680 
238U 0.0440 2.4921 1.7656 1.7510 0.0146 
239Pu 0.0065 2.8789 0.2240 0.2245 0.0005 
240Pu 0.0090 2.803 0.3211 0.2850 0.0361 
241Pu 0.0162 2.9453 0.5500 0.5354 0.0146 
242Pu 0.0197 2.81 0.7011 1.0524 0.3513 

 

The isotopes 235U, 233U, 238U, 239Pu and 241Pu compare well. Differences are seen in the 
values for the other isotopes, in particular the isotopes 232Th and 242Pu (shown in bold) show 
large differences. This may be attributed to a lack of experimental data at the time. 

In a typical pebble-bed-type thermal reactor, operating on Low-enriched Uranium (LEU) fuel, 
more than 99% of the fission reactions take place in the isotopes 235U, 239Pu and 241Pu††. The 
remaining fissionable isotopes contribute less than 1% in total to the fission rate. In 
particular, the isotopes 232Th and 233U are not formed or found in LEU fuels in even small 
amounts. The isotope 242Pu is created very slowly as fuel is burned and the isotope has a 
very small fission cross section at thermal energies, therefore even with very high fuel burn-
up values, the fraction of fissions in this isotope is negligible (0.004%)††. For these reasons, 
the differences in the total delayed neutron yields will have a negligible effect on the 
calculation, for the case of LEU fuel. Therefore, the data specified in Table 2 is acceptable 
for calculations involving LEU fuel. 

 

                                                 
†† Data is obtained using VSOP [19] output data for the 400 MW PBMR reactor [20]. 
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5.3 APPENDIX C: MODIFICATION OF THE DELAYED NEUTRON PRECURSOR GROUPS 
FOR USE IN TINTE 

Group delayed neutron data is taken from ENDF/B IV [12] for the isotopes 235U, 232Th, 233U, 
238U, 239Pu, 240Pu and 241Pu. A further confirmation of this data is found in ANL/NDM-5 [15]. 
The group delayed neutron data for the isotope 242Pu is taken from AERE-R 6993 [17]. This 
data is summarized in Table 11 and Table 12. 

Table 11: Group Delayed Neutrons Data ( ββ l ) for the Fissionable Isotopes 235U, 
232Th, 233U and 238U 

Group 235U 232Th 233U 238U 

 lλ  ββ l  lλ  ββ l  lλ  ββ l  lλ  ββ l  

1 54.51 0.038 56.03 0.034 55.11 0.086 52.38 0.013 
2 21.84 0.213 20.75 0.15 20.74 0.274 21.58 0.137 
3 6 0.188 5.74 0.155 5.3 0.227 5 0.162 
4 2.23 0.407 2.16 0.446 2.29 0.317 1.93 0.388 
5 0.496 0.128 0.571 0.172 0.546 0.073 0.49 0.225 
6 0.179 0.026 0.211 0.043 0.221 0.023 0.172 0.075 

 

Table 12: Group Delayed Neutrons Data ( ββ l ) for the Fissionable Isotopes 239Pu, 
240Pu, 241Pu and 242Pu 

Group 239Pu 240Pu 241Pu 242Pu 

 lλ  ββ l  lλ  ββ l  lλ  ββ l  lλ  ββ l
1 53.75 0.038 53.56 0.028 54 0.01 53.73234 0.004 
2 22.29 0.28 22.14 0.273 23.2 0.229 23.49651 0.195 
3 5.19 0.216 5.14 0.192 5.6 0.173 5.2912 0.162 
4 2.09 0.328 2.08 0.35 1.97 0.39 2.050731 0.411 
5 0.549 0.103 0.511 0.128 0.43 0.182 0.498667 0.218 
6 0.216 0.035 0.172 0.029 0.2 0.016 0.189903 0.01 

 

As was the case for the decay heat group source data (refer to Appendix A), the delayed 
neutron data uses a unique group structure for each fissionable isotope. In order to reduce 
computational, memory and coding requirements, a common group structure was chosen 
and new relative yield ( ββ l ) values calculated to satisfy the following relationship. 

∑∑ Λ−

=

− =
k

t
ki

l

tli kli ee ,

6

1

, , γ
β

β λ  (5.6)

 

The group structure was chosen to be the same as that for the isotope 235U (refer to 
Table 11). The methods used to determine values for ki ,γ  are not discussed here, but rather 

comparisons between the source and modified delayed neutron decay curves are given in 
Figure 26 and Figure 27. Note that in order to improve readability, the terms ββ l  and lλ , 

as used in paragraph 3.2.3.3, refer to the modified constants ki ,γ  and kΛ  respectively. 
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Figure 26: Delayed Neutron Decay Curves for 235U, 232Th, 233U and 238U 
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Figure 27: Delayed Neutron Decay Curves for 239Pu, 240Pu, 241Pu and 242Pu 
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The maximum error introduced by the fitted delayed neutron data to the total production is 
0.015% for 232Th. In the absence of prompt production (production by delayed neutrons 
alone), the maximum error introduced is 1.2%. This error is, however, within the source data 
uncertainty bounds ([15] and [16]). The fitted delayed neutron data is given in Table 2. 
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5.4 APPENDIX D: SATURATION FISSION PRODUCT YIELD AND DECAY DATA 

The decay constants and fission yields of neutron poison specified in Table 4 and Table 5 
are taken from ENDF/B IV [12]. The original data could not be obtained and therefore the 
more recent ENDF/B VI [14] is compared with the data used in TINTE. A comparison of 
decay constants for the relevant decay chains is given in Table 13. 

Table 13: Comparison of the Decay Constants of Selected Isotopes, ENDF/B VI versus 
TINTE 

Isotope ENDF/B VI TINTE Difference 

  T1/2 [h] λ [s-1] λ [s-1] [%] 
135Xe54 9.14 2.107E-05 2.116E-05 0.445 
135I53 6.57 2.931E-05 2.883E-05 1.651 
149Sm62 stable 0 1.E-30 n/a 
149Pm61 53.08 3.627E-06 3.626E-06 0.0378 
151Sm62 788916.7 2.441E-10 5.751E-09 95.76 
151Pm61 28.4 6.780E-06 6.876E-06 1.402 
157Gd64 stable 0 1.E-30 n/a 
157Eu63 15.18 1.268E-05 1.260E-05 0.665 

 
149Sm and 157Gd are both stable isotopes. For numerical reasons (to prevent division-by-zero 
errors), the decay constants of these isotopes are represented as 1E-30 s rather than 0 s. 
The error introduced by this approximation is negligible. In general, the decay constants 
differ by less the 2%, which is acceptable. 

For 151Sm (in bold), however, the difference is very large. The decay constant for this isotope 

is relatively small though. The ratio 
2φσ

λ
X

X  is in the order of 10%, i.e. the effective decay 

constant ( 22 φσλλ XX += , refer to paragraph 3.2.4) is dominated more by the absorption 
term 2φσ X  than the decay constant Xλ . According to VSOP [19] steady-state calculation 
outputs for a typical LEU pebble bed reactor [20], the 151Sm absorption per neutron lost is 
10% of the 135Xe value and 30% of the 149Sm value. Therefore, despite the 96% difference in 
decay constant, the overall effect on calculation results is expected to be small. 

In order to validate the fission yield values of Table 5, the more recent ENDF/B VI was 
considered. Cumulative and independent fission yields for the relevant isotopes are given in 
Table 14 through Table 17. The effective fission yields for each parent/daughter isotope pair 
was determined as follows: The parent isotopes (135I, 149Pm, 151Pm and 157Eu) are assumed 
to be formed directly from fission, therefore the cumulative fission yield values, summed for 
all isotope states, are used to account for formation by decay of higher level isotopes. The 
daughter isotopes (135Xe, 149Sm, 151Sm and 157Gd) are treated independently, and therefore 
the independent fission yield values, summed for all isotope states, are used. The resulting 
effective fission yields are given in Table 18. 
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Table 14: Cumulative Fission Yields of Selected Isotopes in the Ground State, from ENDF/B VI‡‡ 

Isotope  5Uγ  2Thγ  3Uγ  4Uγ  6Uγ  8Uγ  9Puγ  0Puγ  1Puγ  2Puγ  

135Xe54 0.065385 0.055285 0.062592 0.055775 0.060797 0.069676 0.076083 0.072317 0.0717 0.074943 
135I53 0.0628187 0.055183 0.050323 0.049011 0.059748 0.069407 0.065419 0.067316 0.069431 0.073885 
149Sm62 0.0108163 0.010836 0.007781 0.010358 0.013384 0.016253 0.012166 0.013939 0.014741 0.015984 
149Pm61 0.0108163 0.010836 0.007781 0.010358 0.013384 0.016253 0.012166 0.013939 0.014741 0.015984 
151Sm62 0.0041877 0.003636 0.003157 0.003181 0.004149 0.007994 0.007384 0.008547 0.00913 0.010225 
151Pm61 0.0041877 0.003636 0.003157 0.003181 0.004149 0.007994 0.007384 0.008547 0.00913 0.010225 
157Gd64 6.151E-05 9.32E-06 6.3E-05 0.000109 0.000234 0.000414 0.000742 0.000994 0.001354 0.001683 
157Eu63 6.15E-05 9.32E-06 6.3E-05 0.000109 0.000234 0.000414 0.000741 0.000994 0.001354 0.001683 

 

Table 15: Cumulative Fission Yields of Selected Isotopes in the First Excited State, from ENDF/B VI‡‡ 

Isotope  5Uγ  2Thγ  3Uγ  4Uγ  6Uγ  8Uγ  9Puγ  0Puγ  1Puγ  2Puγ  

135Xe54 0.0110156 0.008187 0.01546 0.0122189 0.009559 0.01036 0.0171394 0.013446 0.0118204 0.0116123
 

Table 16: Independent Fission Yields of Selected Isotopes in the Ground State, from ENDF/B VI‡‡ 

Isotope  5Uγ  2Thγ  3Uγ  4Uγ  6Uγ  8Uγ  9Puγ  0Puγ  1Puγ  2Puγ  

135Xe54 0.0007851 2.653E-05 0.004206 0.001749 0.0002728 0.0001115 0.003141 0.001450 0.000655 0.0003068
135I53 0.02927 0.008389 0.03305 0.02783 0.01779 0.01355 0.04287 0.03447 0.03009 0.02165 
149Sm62 1.709E-12 0 1.25E-10 2.94E-10 2.04E-12 1.57E-14 8.19E-10 3.61E-11 7.18E-13 3.94E-13 
149Pm61 3.87E-08 4.71E-11 5.36E-07 1.12E-06 4.0E-08 1.18E-09 2.43E-06 2.96E-07 2.29E-08 1.29E-08 
151Sm62 4.75E-09 1.22E-12 7.E-08 1.16E-07 2.43E-09 7.76E-11 3.85E-07 4.26E-08 2.58E-09 1.65E-09 
151Pm61 6.42E-06 3.81E-08 2.644E-05 3.719E-05 3.92E-06 4.85E-07 0.0001076 3.106E-05 5.86E-6 4.24E-06 

                                                 
‡‡ Values for U3, U5, Pu9, Pu0, Pu1 and Pu2 are at 0.023 eV. Values for Th2, U4, U6 and U8 are at 0.5 MeV.  
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Isotope  5Uγ  2Thγ  3Uγ  4Uγ  6Uγ  8Uγ  9Puγ  0Puγ  1Puγ  2Puγ  

157Gd64 1.48E-09 2.37E-13 1.66E-08 3.51E-08 1.53E-09 8.04E-11 2.9E-07 7.04E-08 4.15E-09 5.58E-09 
157Eu63 6.35E-07 1.58E-09 2.22E-06 4.44E-06 1.04E-06 1.96E-07 3.46E-05 1.82E-05 4.23E-06 5.1E-06 

 

Table 17: Independent Fission Yields of Selected Isotopes in the First Excited State, from ENDF/B VI‡‡ 

Isotope  5Uγ  2Thγ  3Uγ  4Uγ  6Uγ  8Uγ  9Puγ  0Puγ  1Puγ  2Puγ  

135Xe54 0.0017812 7.55E-05 0.008063 0.005014 0.000776 0.000157 0.007523 0.003551 0.001614 0.000751 
 

Table 18: Effective Fission Yields of Selected Decay Chain Isotopes, from ENDF/B VI 

Isotope  5Uγ  2Thγ  3Uγ  4Uγ  6Uγ  8Uγ  9Puγ  0Puγ  1Puγ  2Puγ  

135Xe54 0.002566 0.000102 0.012269 0.006763 0.001049 0.000269 0.01066 0.005 0.00227 0.001057 
135I53 0.06282 0.05518 0.05032 0.04901 0.05975 0.06941 0.06542 0.06732 0.06943 0.07389 
149Sm62 1.71E-12 0 1.25E-10 2.94E-10 2.04E-12 1.57E-14 8.19E-10 3.61E-11 7.18E-13 3.94E-13 
149Pm61 0.01082 0.01084 0.00778 0.01036 0.01338 0.01625 0.01217 0.01394 0.01474 0.01598 
151Sm62 4.75E-09 1.22E-12 7.0E-08 1.16E-07 2.43E-09 7.76E-11 3.85E-07 4.26E-08 2.58E-09 1.65E-09 
151Pm61 0.004188 0.003636 0.003157 0.003181 0.004149 0.007994 0.007384 0.008547 0.00913 0.01023 
157Gd64 1.48E-09 2.37E-13 1.66E-08 3.51E-08 1.53E-09 8.04E-11 2.9E-07 7.04E-08 4.15E-09 5.58E-09 
157Eu63 6.15E-05 9.32E-06 6.3E-05 0.000109 0.000234 0.000414 0.000741 0.000994 0.001354 0.001683 
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Table 19: Difference in Fission Yields of Selected Decay Chain Isotopes, ENDF/B VI versus TINTE Values 

Isotope  5Uγ  2Thγ  3Uγ  4Uγ  6Uγ  8Uγ  9Puγ  0Puγ  1Puγ  2Puγ  

135Xe54 -6.64E-05 0.0132 0.001131 -0.00426 0.001451 -0.000119 0.000836 0.0065 3.1E-05 0.00124 
135I53 0.000681 -0.02 -0.00172 0.0145 0.00375 -0.00391 -0.00242 -0.00432 6.87E-05 -0.00439 
149Sm62 -1.71E-12 0 -1.25E-10 -2.94E-10 -2.04E-12 -1.57E-14 -8.19E-10 -3.61E-11 -7.18E-13 -3.94E-13 
149Pm61 2.37E-05 3.8E-06 0.00306 0.000482 -0.00254 -0.00541 -0.00133 -0.0031 -0.0039 -0.00514 
151Sm62 -4.75E-09 -1.22E-12 -7E-08 -1.16E-07 -2.43E-09 -7.76E-11 -3.85E-07 -4.26E-08 -2.58E-09 -1.65E-09 
151Pm61 8.33E-06 0.00056 0.00104 0.00102 4.71E-05 -0.0038 -0.00319 -0.00435 -0.00493 -0.00603 
157Gd64 -1.48E-09 -2.37E-13 -1.66E-08 -3.51E-08 -1.53E-09 -8.04E-11 -2.9E-07 -7.04E-08 -4.15E-09 -5.58E-09 
157Eu63 -1.96E-07 5.2E-05 -1.71E-06 -4.81E-05 -0.000173 -0.000353 -0.00068 -0.00093 -0.00129 -0.00162 
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Differences between ENDF/B VI values (Table 18) and TINTE values (Table 5) 
( VIBENDFTINTE /γγ − ) are given in Table 19. For 235U fuel, the differences are relatively small. 

For all non-235U fissionable isotopes and all non-135Xe decay chain isotopes, however, the 
differences are larger. This is because accurate data was previously not available for these 
values. 

For Sm, Pm, Gd and Eu isotopes, values were only available for 235U fuel. In these cases, 
the values for the other fissionable isotopes were assumed equal to those for 235U. Similarly, 
data for the 135Xe and 135I was not available for the fissionable isotopes 234U, 236U, 240Pu and 
242Pu. These were therefore assumed equal to the values for 235U, 235U, 239Pu and 241Pu 
respectively. 

An estimation of the approximate error in neutron poison concentration, introduced by these 
assumptions and differences, may be found for the equilibrium condition as follows (refer to 
Equation (3.91)). 

( )
( ) 1

/

−
+
+

=
BENDFIX

TINTEIX
Xeq γγ

γγ
ε  

Table 20 shows the estimated error in equilibrium neutron poison concentration (ENDF/B VI 
versus TINTE values) calculated using the above equation. 

Table 20: Estimated Error in Neutron Poison Concentrations 

Isotope 5Uε  

[%] 

2Thε  

[%] 

3Uε  

[%] 

4Uε  

[%] 

6Uε  

[%] 

8Uε  

[%] 

9Puε  

[%] 

0Puε  

[%] 

1Puε  

[%] 

2Puε  

[%] 
135Xe54 0.94 -12.27 -0.95 18.33 8.56 -5.78 -2.08 3.02 0.14 -4.19 
149Sm62 0.22 0.04 39.31 4.65 -19.01 -33.30 -10.90 -22.23 -26.46 -32.18 
151Sm62 0.20 15.39 32.90 31.90 1.14 -47.51 -43.18 -50.91 -54.04 -58.96 
157Gd64 -0.32 557.74 -2.74 -43.96 -73.82 -85.18 -91.73 -93.83 -95.47 -96.36 

 

The same argument as was previously used in Appendix B is now applied. In a typical 
pebble-bed-type thermal reactor, operating on LEU fuel, more than 99% of the fission 
reactions take place in the isotopes 235U, 239Pu and 241Pu, in the approximate ratios 6:3:1 
(using data from [20]). Using this assumption, the effective error for each neutron poison is 
estimated at 0.01%, 6%, 18% and 36% for the isotopes 135Xe, 149Sm, 151Sm and 157Gd 
respectively. 

Additionally, taking into account that the ratio of absorption of these four elements is 
approximately 140:40:20:1 (using data from [20]), a total effective error may be estimated at 
3%. 
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