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The composition and quantification of vascular plant-derived phenols in dissolved organic matter (DOM)
is of importance in understanding and estimating carbon flux from soils under different land uses. Solid
phase extraction (SPE) was used to extract waterborne organic matter (WBM), and thermally assisted
hydrolysis (THM) using tetramethylammonium hydroxide (TMAH) was compared with gas
chromatography-flame ionization detection (GC-FID) for the quantification of oxygenated aromatics in
WBM, from freshwater samples from grazed grassland, woodland and moorland land uses in southwest
England, UK.
WBM recovered with SPE correlated with water total organic carbon (TOC) content. SPE followed by

THM was shown to be the approach for isolating and quantifying water-transportable phenols. All the
different land uses exported similar amounts of lignin per unit weight of OC to the drainage water. We
also conclude that a significant proportion of lignin phenols is lost from soils as a component of WBM
in a particulate form, so the magnitude of total phenol loss is likely greater than previously thought.
� 2016 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Dissolved organic matter (DOM) represents an important frac-
tion of organic carbon (OC) since it is the most mobile fraction,
affecting many biogeochemical cycles in terrestrial and aquatic
environments (Bolan et al., 2011). The recent intensification of
the hydrological cycle with changing climate (Durack et al.,
2012) emphasizes the need to characterise the molecular composi-
tion of DOM in different land uses. Riverine dissolved OC (DOC)
concentration varies from ca. 1 mg/l in alpine environments
(Meybeck, 1982) to 25 mg/l for rivers draining swampy areas, e.g.
the Satilla River, Georgia (Berner and Berner, 2012), influenced
by climate variables, such as a wide annual mean temperature
with sufficient precipitation (Tian et al., 2013). The worldwide
average of 5.75 mg/l (Meybeck, 1982) equates to a flux of
0.25 � 1015 g riverine DOC/yr transported to the ocean (Hedges
et al., 1997). The most important sources of DOM in soils are
decomposed plant litter, root exudates and microbial biomass
(Kalbitz et al., 2000), comprising, amongst others, lignin-derived
phenols, carbohydrate-derived compounds, n-alkanoic acids,
n-alkanes and smaller amounts of N-containing compounds such
as amino acids (Frazier et al., 2003, 2005; Bowen et al., 2009).

In soils, there is evidence that lignin phenols protect soil OM
(SOM) from oxidation, contributing to the antioxidant capacity of
soils, by scavenging reactive free radicals, thereby terminating
the oxidative chain reaction (Rimmer, 2006; Rimmer and Abbott,
2011). Aromatics in DOM, such as lignin-derived compounds, can
be preferentially stabilized by sorption to soil minerals, thereby
contributing to stable forms of SOM, compared with more labile
components such as carbohydrates (Kalbitz et al., 2005). This is
supported by the observation of decreasing dissolved lignin phe-
nols concentration with increasing depth in mineral soils in forest
ecosystems, attributed to their sorption to the soil matrix
(Guggenberger and Zech, 1994). However, fractionation of phenols
can arise where more oxidised (carboxylated) phenols tend to
remain in soil solution (Guggenberger and Zech, 1994), also
observed in their preferential dissolution in leachates directly from
plant litter (Hernes et al., 2007). Hedges and Parker (1976) pro-
posed a parameter for the total amount of lignin phenols in a sed-
iment (K) by summing the weights of phenols equivalent to S (S4,
S5 and S6) and G (G4, G5 and G6) moieties normalised to OC. This
was later corrected to take into account the input of cinnamyl phe-
nols (G18 and P18) to the sedimentary OM (Hedges and Mann,
1979b). Reported total dissolved lignin phenol concentration from
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the USA ranges from 0.07 mg/100 mg OC in island drains from the
Sacramento-San Joaquin River Delta (Eckard et al., 2007) to
8.13 mg/100 mg OC (for the 1000 Da–0.2 lm DOC fraction) for
the Big Pine Creek watershed (Dalzell et al., 2005), determined
from CuO oxidation. Assuming an average dissolved lignin phenol
concentration of 2.65 mg/100 mg OC (the mean of published river-
ine values; Ertel et al., 1986; Benner and Opsahl, 2001; Frazier
et al., 2003; Dalzell et al., 2005; Eckard et al., 2007), this amounts
to a riverine flux of 6.61 � 1012 g dissolved lignin phenols/yr,
which clearly represents a substantial loss of terrestrial C in the
form of lignin. In addition to the large losses of dissolved lignin
phenols, the molecular structure of lignin monomers is unique to
vascular plants (Hedges and Mann, 1979a), allowing them to be
used as terrestrial biomarkers in aquatic ecosystems (Gardner
and Menzel, 1974; Goni et al., 1997).

Solid phase extraction (SPE) has been widely used to isolate
DOC from aqueous solutions (Aiken et al., 1979; Meyersschulte
and Hedges, 1986; Moran et al., 1991; Lara and Thomas, 1994;
Simpson, 2000; Wang et al., 2012). Comparison of hydrophobic
sorbents (C2, C8, C18, cyclohexyl and phenyl XAD-2) and ultrafiltra-
tion to extract marine humic substances, found that C18 achieved
the greatest extraction efficiency (Amador et al., 1990). Compar-
ison of different solid phase ‘‘sorbents” silica-based octadecyl
bonded phases (C18, C18EWP and C18OH), silica-based octyl bonded
phase (C8) and modified styrene divinyl benzene polymers (PPL
and ENV) – on surface seawater samples from the north Brazilian
shelf off the Maracaçumé Estuary showed that PPL achieved the
highest extraction efficiency for DOC, although C18 was more selec-
tive for terrigenous compounds (Dittmar et al., 2008). The extract
from C18 SPE in disc form and original DOC from riverine samples
had a similar distribution of functional groups, indicated from
nuclear magnetic resonance (NMR) analysis (Kim et al., 2003).
Therefore, many studies investigating dissolved lignin degradation
products from freshwater (Louchouarn et al., 2000), estuarine
water (Dittmar et al., 2007; Bianchi et al., 2009), oceans (Hernes
and Benner, 2006) and stalagmites (Blyth and Watson, 2009) have
favoured C18 SPE. Comparison of solvents such as MeOH or MeCN
to activate and elute sorbed fresh, estuarine and marine DOC from
C18 SPE cartridges found little difference in cinnamyl:vanillyl (C:V),
syringyl:vanillyl (S:V) and acid:aldehyde ratios, although greater
recovery of freshwater K8 lignin phenols was achieved using
MeOH (76.2–91.1%, mean 86.0%) than MeCN (48.3–77.4%, mean
67.4%) when compared with a sample prepared using rotary evap-
oration (Spencer et al., 2010).

Thermally assisted hydrolysis and methylation (THM) in the
presence of tetramethylammonium hydroxide (TMAH), sometimes
known as TMAH thermochemolysis, has been used off-line to anal-
yse DOC, soils and vegetation (Martín et al., 1995; del Rio et al.,
1998; Huang et al., 1998; Frazier et al., 2003). It has also been
employed on-line with gas chromatography – mass spectrometry
(GC–MS) to characterise the molecular components of plant litter,
soils, aquatic humic substances (Saiz-Jimenez et al., 1993;
Challinor, 1995; Clifford et al., 1995; Mason et al., 2009, 2012)
Table 1
Geographical positions of sampling sites with Ordnance Survey national grid reference (G
grassland and woodland).

Sample Position and description

Grassland 1 Taw Barton Farm. Grazed grassland
Grassland 2 Sticklepath. Mix of spring water & g
Grassland 3 Josephs Carr Pond in a wet mire
Woodland 1 Tributary of River Taw. Quercus robu
Woodland 2 Orchard Dean Copse. Seasonally flow
River River Taw, Moorland source, throug
and terrestrial OM preserved in stalagmites (Blyth and Watson,
2009). One of its most interesting applications is in the character-
isation of phenolic compounds with side chains extending up to
three carbons formed from the TMAH-induced cleavage of ether
and ester bonds in plant-derived polyphenols present in soils
(e.g. Mason et al., 2012) and peat (e.g. Schellekens et al., 2015).

The aims of this study were to: (i) assess the yield from C18 SPE
during the extraction of water-transportable lignin phenols from a
range of natural freshwaters, and compare cold on-column GC and
on-line THM using TMAH to detect extracted waterborne phenols,
(ii) compare water TOC, total phenol concentration and phenolic
diversity from different land uses – grazed grassland, woodland
and moorland – chosen because they represent the three dominant
land use types in southwest England.

2. Material and methods

2.1. Sampling sites and collection

River, soil drainage and pond water samples were collected in
triplicate from six sites (Table 1) in the vicinity of Rothamsted
Research North Wyke, Devon, southwest England, UK [50�450N,
4�530W] across different land uses (grazed grassland, woodland
and moorland). The first replicate from each site was collected
on May 11, 2010. The second and third replicates from the sites
Grassland 1, Grassland 2, Woodland 1, Grassland 3 and River were
collected on July 21, 2010. The second and third replicates from
Woodland 2 were collected on January 24, 2011 since this site
was dry until then. Water samples were collected in a bucket
(15 l) to ca. half-full, before transferring a subsample (5 l) to two
amber glass bottles (2.5 l) on-site. Sample pH was measured and
all samples were adjusted to pH 2 by adding sufficient drops of
concentrated HCl (Trace analysis grade, 37%; Fisher Scientific)
and stored in a fridge until extraction.

2.2. Soil and livestock dung sampling

The soils were sampled from each of the grassland, woodland,
and moorland land use types (Table 1) which had adjacent water
outlets within 100 m for sampling. Fifteen soil cores (25 mm di.,
< 30 cm depth) were taken in 3 replicates of 5 in a ‘W’ spatial sam-
pling pattern using a soil auger for each land use. The O and A hori-
zons were separated for analysis, and the impermeable clay B
horizon was discarded. The 5 samples constituting each of the 3
replicates were homogenised.

Representative samples of fresh cattle and sheep dung solids
(n = 3) were collected from each of the grassland plots (Table 1).

2.3. Sample extraction

Total OC (TOC) content was determined for water samples
(CA14 Formacs, Skalar (UK) Ltd.). The carrier gas was purified air,
supplied by a TOC gas generator (scrubbed of CO2 and moisture),
.R.) and land use descriptions. River is a mixed land use sample (moorland, grazed

G.R.

artificial drainage water SX654971
razed grassland drainage SX641939

SX654988
r dominated woodland SX665979
ing ditch in woodland SX653982

h grazed grassland and woodland SX653984
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and the inorganic catalyst was 2% orthophosphoric acid. Water
samples were then extracted using FD or SPE (described below)
and analysed on the basis of a split-split-plot experimental design.

SPE of water samples was carried out using a published method
(Louchouarn et al., 2000) except that samples were not initially fil-
tered (0.2 lm). Reversed phase C18 end capped SPE cartridges
(60 ml, 10 g, Mega-Bond Elut; Agilent Technologies) were mounted
on a vacuum manifold (VAC ELUT-20, 13 � 75 mm, Varian) con-
nected to a vacuum pump (Gast Diaphragm pump, model: DOA-
P504-BN; Gast Manufacturing, Inc., USA) via a liquid trap (Carboy
Bottle 20 l, part 2226-0050 with filling venting closure, part
2161-0830; Varian Ltd.), enabling up to 10 SPE cartridges to be
used simultaneously. Each cartridge was preconditioned with
100 ml MeOH (HPLC grade; Fisher Scientific) followed by 50 ml
pure water (MilliQ Gradient A10) acidified to pH 2 (Trace analysis
grade HCl acid, 37%; Fisher Scientific). Water (2.5 l) was drawn
through the SPE cartridges at an average rate of ca. 20 ml/min
via a Teflon transfer pipe (1/8 in. � 0.1 in.; Part AL20096, Varian
Ltd.) and adapters (part 12131004, Varian Ltd.) to seal the SPE car-
tridge. After samples were extracted, cartridges were rinsed with
50 ml acidified pure water (pH 2) to remove any residual salts.
Louchouarn et al. (2000) rinsed with 1 l acidified water as they
analysed saline in addition to freshwater samples. Then, collection
bottles (60 ml; Part BTF-543-030X, Fisher Scientific) were placed
inside the vacuum manifold under each SPE cartridge prior to elut-
ing the retainedWBM in one fraction with 50 ml MeOH. The MeOH
was evaporated from the collection bottles at 40 �C under a stream
of N2 and transferred quantitatively to a 5 ml glass vial before final
evaporation to dryness and being capped and stored under N2 in a
freezer until analysis. Procedural blanks (ultrapure Milli-Q water)
were analysed separately in order to assess potential contamina-
tion during sample handling.

2.4. Sample derivatisation and analysis

The dry WBM residues (ca. 3 mg) extracted using FD and SPE
were analysed for total C and total N using a Carlo Erba NA2000
analyser (CE Instruments, Wigan, UK) and a SerCon 20–22 isotope
ratio mass spectrometer (SerCon Ltd., Crewe, UK) at Rothamsted
Research North Wyke. Wheat flour (1.91% N, 41.81% C, 4.80 d15N
and �26.41 d13C) calibrated against IAEA-N-1 by Iso-Analytical,
Crewe, UK was used as a reference standard.

An aliquot of SPE (ca. 2 mg) extract was derivatised with N,O-
bis(trimethylsilyl)trifluoroacetamide (BSTFA) in a GC vial (part:
STV12-02L, Kinesis) with limited volume insert (part: INWC-01,
Kinesis), by dissolving in 50 ll pyridine, and whirlimixed for 15 s
with BSTFA (5 drops). Trimethylchlorosilane (TMCS, 1%) was added
before capping the vials and heating the samples at 60 �C for 1 h.
The samples were then blown down to dryness under N2. 5a-
Androstane (3 ll; 0.1 mg/ml) was added to each sample as an
internal standard. Samples were redissolved in dichloromethane
(DCM) and analysed using cold on-column GC with flame ionisa-
tion detection (GC-FID) for quantification and GC–MS for identifi-
cation of the trimethyl (TMS) derivatives.

Cold on-column GC-FID (HRGC 5160 Mega Series; Carlo Erba
Strumentazione) was used with a 60 m HP-5, 0.25 mm i.d.,
0.25 lm film thickness column (Agilent J&W). The GC oven pro-
gramme was 40 �C (2 min) to 300 �C (held 1 min) at 2 �C/min, then
to 320 �C (held 40 min) at 20 �C/min (run time 174 min). The car-
rier gas was H2 at 2 ml/min. Injection volume was 1 ll.

GC–MS analysis of the BSTFA-derivatised total solvent extract
was performed with an Agilent 7890A GC split/splitless injector
(280 �C) linked to an Agilent 5975C mass selective detector (elec-
tron voltage 70 eV, source 230 �C, quad 150 �C electron multiplier
(EM) 1800 V, interface 310 �C). Samples were manually injected
(1 ll) in splitless mode for 1 min before switching to an open split
(30 ml/min) using a 60 m HP5 ((5% phenyl)-methylpolysiloxane)
column (0.25 mm i.d., 0.25 lm film thickness; Agilent J&W Scien-
tific, USA) using the same GC oven temperature programme as
for GC-FID. H2 was the carrier gas at 1 ml/min. Product detection
was carried out in full scan mode (m/z 50–700), EM voltage was
2176 V. Acquisition was controlled with a HP Compaq computer
using Chemstation software.

An aliquot of SPE extracted WBM was analysed using THMwith
TMAH. Extracted sample (ca. 1 mg) was weighed into a quartz
pyrolysis tube plugged with solvent-extracted glass wool. The glass
wool had been extracted with DCM:MeOH (93:7, v/v) in a Soxhlet
apparatus for 24 h. 5a-Androstane in DCM (3 ll; 0.1 mg/ml) was
added as internal standard to the pyrolysis tube. Immediately prior
to analysis, TMAH (5 ll; 25%; w/w in aqueous solution) was added.
The tube was inserted into the Pt pyrolysis coil and flash pyrolysed
at 610 �C for 10 s (20 �C/ms ramp). The temperature and ramp rate
were chosen as they were successful in previous studies investigat-
ing lignin phenols (Clifford et al., 1995; Huang et al., 1998; Mason
et al., 2009, 2012) and Sphagnum–derived phenols (Abbott et al.,
2013). The pyroprobe interface was maintained at 340 �C with
the products passing into an HP6890 GC instrument with an open
split (30 ml/min) and a 60 m HP5-MS column (0.25 mm i.d.,
0.25 lm film thickness; J&W Scientific, USA). He was the carrier
gas at 1 ml/min. The GC oven was programmed from 50 �C to
220 �C (held 1 min) at 1.5 �C/min, and then to 320 �C (held
16 min) at 15 �C/min. Detection was carried out using an HP5973
series mass selective detector (MSD) in full scan mode (m/z 50–
700). Identification was based on the NIST98 mass spectral library
as well as comparison with relative retention times and mass spec-
tra reported in other studies (Clifford et al., 1995; del Rio et al.,
1998; Chefetz et al., 2000; Nierop, 2001; Vane et al., 2001; Vane,
2003; Robertson et al., 2008; Mason et al., 2009, 2012).

2.5. Data presentation and statistical data analysis

Total lignin phenol concentration was normalised to 100 mg OC
for each site. The statistical data analysis was carried out using
analysis of variance (ANOVA) with GenStat 64-bit Release 14.1
and correlation using Microsoft Excel. Statistical significance was
tested at the 95% level, and Tukey’s 95% confidence intervals test
was used to identify statistical differences.
3. Result and discussion

3.1. WBM extraction yield

SPE recovered 11.92 ± 2.69, 0.30 ± 0.30, 20.97 ± 6.67,
8.97 ± 3.17, 6.93 ± 0.97 and 3.24 ± 0.95 mg/l of WBM from Grass-
land 1, Grassland 2, Grassland 3, Woodland 1, Woodland 2 and
River sites, respectively (Fig. 1b). The total weights of WBM recov-
ered with SPE are reported in Table 2.

Expressed as a concentration, the amount of WBM recovered
from the six water samples by SPE (Fig. 1b) correlated with water
TOC (Fig. 1a, r2 0.9542, P < 0.001). This confirms the organic nature
of the isolated WBM.

3.2. Phenol extract yield from THM and GC-FID

Phenols were components of the TMAH thermochemolysis
products from the SPE-extracted WBM at all 6 sites (Fig. 2) with
total phenol concentration ranging between 0.09 ± 0.05 (Grassland
2) and 0.82 ± 0.37 mg/100 mg OC (Grassland 1). Previously, C18 SPE
has demonstrated excellent recovery of lignin phenols (101 ± 4%)
and repeatability from freshwater samples compared with direct
dry-down (Louchouarn et al., 2000). The total concentration values
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Fig. 1. Mean (± standard error of mean, n = 3) of (a) TOC content of the water samples from different land use sites (Table 1); (b) total extract yield from SPE waterborne
matter (WBM).

Table 2
Mean (± standard error of mean in parentheses, n = 3) water sample pH, waterborne
matter (WBM) yield and TOC in solid phase extracted (SPE) WBM solid residues for 6
water samples from sites described in Table 1 (n.d., not detected).

Site pH WBM yield (mg) TOC of WBM residue (%)

Grassland 1 7.33 (0.20) 30.6 (7.9) 47.2 (2.2)
Grassland 2 6.39 (0.06) 2.5 (1.0) 59.1 (4.8)
Grassland 3 6.50 (0.21) 38.3 (14.0) 46.5 (3.4)
Woodland 1 7.14 (0.09) 23.9 (8.5) 44.2 (3.7)
Woodland 2 6.54 (0.01) 17.8 (0.9) 41.9 (2.9)
River 7.35 (0.18) 9.9 (2.7) 50.6 (2.0)
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Fig. 2. Mean (± standard error of mean, n = 3) total phenolic concentration from SPE
water samples detected using cold on-column GC-FID and THM. Sites are described
in Table 1.
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of SPE isolated phenols detected using THM for Grassland 2, Grass-
land 3, Woodland 1, Woodland 2 and River sites here were compa-
rable with total lignin phenol (K8) concentration determined from
freshwaters [Penobscot River, Maine (Spencer et al., 2010) and the
Big Pine Creek watershed (Dalzell et al., 2005)] using CuO oxida-
tion. Following SPE extraction, GC-FID only allowed phenols to
be detected at 4 of the 6 sites and in lower abundance than those
released during THM, with concentration ranging between
0 mg/100 mg OC in Grassland 2 and River to 0.05 mg/100 mg OC
in Grassland 1 (Fig. 2).

THM in the presence of TMAH released an increase of more than
one order of magnitude in the amount of phenols relative to the
amount detected with GC-FID for all the samples.
3.3. Phenol diversity in SPE extracts detected with THM or GC-FID

Following SPE and detection with GC-FID, some benzoic acids
were found as their respective TMS ethers and esters (abbreviated
to P6, G6, PA and S6) in 4 of the water samples (Grassland 1, Grass-
land 3, Woodland 1 and Woodland 2; Table 3). Grassland 1 con-
tained the highest OC-normalised amounts with P6, PA and G6
having 38.8, 3.4, and 3.6 lg/100 mg OC, respectively. No phenols
were detected in Grassland 2 or River sites. For Grassland 2, this
may be due to the very low level of total phenols (Fig. 2), whereas
for the River sample, it may be due to a large proportion of phenols
existing in oligomeric or particulate form not identifiable via GC-
FID. PA is the only acid in both Woodland 1 and Woodland 2 water
samples, which have a significant input from Quercus robur (oak).
In its underivatised form PA is 3,4-dihydroxybenzoic acid (proto-
catechuic acid) and has also been detected in oak dominated soils
in the Netherlands (Nierop and Filley, 2007).

TMAH thermochemolysis yielded significantly more phenols at
all 6 sites than from the GC-FID analysis of the WBM isolated from
each of the water samples with SPE (Fig. 2). These included vascu-
lar plant-derived phenols released by guaiacyl (G), syringyl (S) and
p-hydroxyphenyl (H) lignin units (Ralph et al., 2004) as well as
phenols (P) from other sources.

Thermochemolysis releases phenols produced from the TMAH-
induced cleavage of ether and ester bonds in the lignin macro-
molecule (Hatcher et al., 1995; Wysocki et al., 2008). A structurally
diverse range of phenolics, in higher concentration as well as in a
less oxidised form, were detected with THM than with GC-FID. This
suggests that a significant proportion of dissolved lignin phenols is
leached from the soil in an oligomeric form, rather than as
monomers.
3.4. Water TOC and phenols from different land uses

The TOC and lignin phenol parameters for the grazed grassland
and woodland water samples reflected ecosystem level inputs,
incorporating any interaction between the contributing inputs
within each ecosystem. The River sample was also subject to catch-
ment scale processes, including interactions between grazed grass-
land, woodland and moorland ecosystems. The Grassland 3 aquatic
sample (see Fig. 1a) had the highest TOC (13.86 ± 0.41 mg/l),
whereas water from the Grassland 2 site had the lowest TOC
(1.50 ± 0.75 mg/l, Fig. 1a), which were significantly different
(P < 0.001). The Grassland 2 aquatic OC concentration
(1.50 ± 0.75 mg/l) was also significantly different from the Grass-
land 1 sample (9.41 ± 2.64 mg/l), whereas water from the Wood-
land 1, Woodland 2 and mixed land-use River sites had



Table 3
Mean (± standard error of mean, n = 3) water-transportable benzoic acids concentrations, as TMS derivatives, from six sites (see Table 1), extracted using SPE and detection using
GC-FID (PA, protocatechuic acid; n.d., not detected).

TMS derivative Abbr Concentration (mg/100 mg OC)

Grassland 1 Grassland 2 Grassland 3 Woodland 1 Woodland 2 River

4-[(TMS)oxy]-benzoic acid TMS ester P6 38.75 (21.51) n.d. 0.28 (0.28) n.d. 0.08 (0.08) n.d.
3-Methoxy-4-[(TMS)oxy]-benzoic acid TMS ester G6 3.40 (2.82) n.d. 0.57 (0.57) 0.3 (0.3) n.d. n.d.
3,4-Bis[(TMS)oxy]-benzoic acid TMS ester PA 3.61 (0.70) n.d. 0.36 (0.36) 0.27 (0.27) 0.73 (0.73) n.d.
3,4,5-Tris(TMSoxy)-benzoic acid TMS ester S6 n.d. n.d. n.d. 1.63 (1.63) n.d. n.d.

Fig. 3. Mean (± standard error of mean, n = 3) total lignin phenol concentrations in soils, dung and DOM extracts (G, grazed grassland; F, woodland; M, moorland; subscripts o
and a denote the soil organic and A horizons respectively; SD, sheep dung; C, cattle dung).
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statistically similar TOC concentrations (5.45 ± 1.60, 3.42 ± 0.46
and 2.32 ± 0.72 mg/l, respectively in Fig. 1a). Increased TOC con-
tent was measured in the Grassland 1 and 3 water as compared
with both woodland samples. Grassland 2 was probably diluted
by a contribution of underground spring water with low OM con-
tent (Fig. 1a). The TOC content of SPE extracted WBM was also
greater in grazed grassland than in woodland water samples
(Table 2). In another study, increased TOC values were also
detected in the leachates from grass litter-amended soil lysimeters
compared with ash and oak leaf litter-amended lysimeters, also
revealing that grass litter lost more OC as DOC than oak and ash lit-
ter (Williams et al., 2016).

Mean water pH (± standard error, n = 3) decreased as follows:
River (7.35 ± 0.18) > Grassland 1 (7.33 ± 0.20) > Woodland 1
(7.14 ± 0.09) > Woodland 2 (6.54 ± 0.01) > Grassland 3 (6.50 ±
0.21) > Grassland 2 (6.39 ± 0.06, Table 2).

Since SPE followed by THM was the better approach for detect-
ing and identifying lignin phenol biomarkers, this combination was
used to characterise the phenolic thermochemolysis product dis-
tributions with the aim of investigating a relationship with land
use. Fig. 2 shows that total dissolved phenols represented a rela-
tively minor component (0.09 ± 0.05% to 0.82 ± 0.37%) of DOC from
all ecosystems, comparable with total phenol concentrations in
leachates from lysimeter grass and woody leaf litter degradation
studies also detected with THM (Williams et al., 2016) as well as
in leaf litter itself (Klotzbücher et al., 2011; Williams et al.,
2016). This indicates little or no net additional soil contribution
to total phenolic concentration lost in the dissolved phase at the
lysimeter or ecosystem scale. Negligible amounts of phenols were
detected in the River sample with SPE followed by GC-FID (Table 3),
although SPE followed by THM of the same sample detected
similar total phenol concentration to the Grassland 3 sample. This
indicates that the phenols in the River sample were in oligomeric
form, so not identifiable with GC-FID.
G2 (3,4-dimethoxytoluene), G3 (3,4-dimethoxystyrene), P3 (4-
methoxystyrene) and P4 (4-methoxybenzaldehyde) were only pre-
sent in grassland-sourced water. These phenols have been detected
in grassland litter and soils (Huang et al., 1998; Mason et al., 2012).
G3 and P3 are also associated with non-woody lignin (Clifford
et al., 1995; Chefetz et al., 2000). S2 (3,4,5-trimethoxytoluene)
and S18 [trans-3-(3,4,5-trimethoxyphenyl)-propenoic acid methyl
ester) were present only in the Woodland 1 water sample.

Total lignin phenol concentration values in soil O and A hori-
zons, as well as animal dung and DOM from grazed grassland,
woodland and moorland are presented in Fig. 3. This comparison
shows that OC-normalised total lignin concentration for DOM in
the freshwater samples was similar to total lignin concentration
in soil O and A horizons, for their respective land uses (Fig. 3). This
suggests that all the different land uses export a similar amount of
lignin per unit weight of OC into the drainage water.

4. Conclusions

The amounts of vascular plant-derived phenols from THM were
more than an order of magnitude higher than those measured
using GC-FID in SPE extracted WBM, so SPE followed by THM
was recognised as the approach to recover and identify water-
transportable phenols. However, SPE is not able to recover phenols
in particulate form, so there may be an underestimation of the flux
of total waterborne lignin phenols lost from soils and ecosystems
using this method. All the different land uses investigated export
similar amounts of lignin per unit weight of OC into the drainage
waters.
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