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The role of dendritic spikingmechanisms in neural processing is so far poorly understood.

To investigate the role of calcium spikes in the functional properties of the single neuron

and recurrent networks, we investigated a three compartment neuronmodel of the layer 5

pyramidal neuron with calcium dynamics in the distal compartment. By performing single

neuron simulations with noisy synaptic input and occasional large coincident input at

either just the distal compartment or at both somatic and distal compartments, we show

that the presence of calcium spikes confers a substantial advantage for coincidence

detection in the former case and a lesser advantage in the latter. We further show that

the experimentally observed critical frequency phenomenon, in which action potentials

triggered by stimuli near the soma above a certain frequency trigger a calcium spike at

distal dendrites, leading to further somatic depolarization, is not exhibited by a neuron

receiving realistically noisy synaptic input, and so is unlikely to be a necessary component

of coincidence detection. We next investigate the effect of calcium spikes in propagation

of spiking activities in a feed-forward network (FFN) embedded in a balanced recurrent

network. The excitatory neurons in the network are again connected to either just the

distal, or both somatic and distal compartments. With purely distal connectivity, activity

propagation is stable and distinguishable for a large range of recurrent synaptic strengths

if the feed-forward connections are sufficiently strong, but propagation does not occur

in the absence of calcium spikes. When connections are made to both the somatic and

the distal compartments, activity propagation is achieved for neurons with active calcium

dynamics at a much smaller number of neurons per pool, compared to a network of

passive neurons, but quickly becomes unstable as the strength of recurrent synapses

increases. Activity propagation at higher scaling factors can be stabilized by increasing

network inhibition or introducing short term depression in the excitatory synapses, but

the signal to noise ratio remains low. Our results demonstrate that the interaction of

synchrony with dendritic spiking mechanisms can have profound consequences for the

dynamics on the single neuron and network level.

Keywords: calcium spikes, layer 5 pyramidal neurons, coincidence detection, activity propagation, synfire chains,

detailed balance, short term plasticity

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://dx.doi.org/10.3389/fncom.2016.00076
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2016.00076&domain=pdf&date_stamp=2016-07-22
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:chuays@i2r.a-star.edu.sg
http://dx.doi.org/10.3389/fncom.2016.00076
http://journal.frontiersin.org/article/10.3389/fncom.2016.00076/abstract
http://loop.frontiersin.org/people/36075/overview
http://loop.frontiersin.org/people/13504/overview


Chua and Morrison Calcium Spikes in Pyramidal Neurons

1. INTRODUCTION

Calcium spikes have been extensively studied in many in-vitro
experiments (Stuart et al., 1997; Larkum et al., 1999b,a, 2001;
Hay et al., 2011; Almog and Korngreen, 2014) and their influence
on neuron firing activities has been investigated in in-vivo-
like simulation settings (Larkum et al., 2004, 2009; Shai et al.,
2015). As an outcome of this research, the calcium spike has
been hypothesized as the main biological mechanism to help
propagate synaptic inputs at the distal tuft to the soma of large
layer 5 pyramidal neurons, which would otherwise have little
influence on the membrane potential at the soma, and thus on
the neuron’s spiking activity (Larkum et al., 2009). Two biological
mechanisms thought to be of particular importance are back-
propagating action potential triggered calcium spikes Larkum
et al. (1999a), where the active back propagation of action
potentials to the distal dendrites combined with a coincident
distal input triggers a calcium spike that in turn triggers a burst
of action potentials, and critical frequency, in which three or
more pulses of synaptic inputs or currents delivered to the soma
at sufficiently high frequency trigger calcium spikes, and thus
further action potential bursts Larkum et al. (1999b). Hence,
calcium spikes have been proposed to be critical for coincidence
detection (Spruston, 2008), and the binding of synaptic inputs
from various brain regions (feedforward sensory inputs on the
basal dendrites and feedback attentional inputs on the distal
tuft) in the layer 5 pyramidal neuron which is also the output
neuron of the mammalian neocortex (Larkum, 2013). Shai et al.
(2015) also propose that the calcium spike could be important for
orientation tuning.

While it is clear that dendritic spikes play an important part
in the execution of cognitive tasks, for example by enabling
or enhancing stimulus response and selectivity (Sivyer and
Williams, 2013; Smith et al., 2013; Grienberger et al., 2014;
Palmer et al., 2014), the contribution of calcium spikes to neural
network computation, and the in-vivo role of the biological
mechanisms identified in the in-vitro studies mentioned above,
has remained as an area of ongoing research. For instance,
Traub and Wong (1982) showed that hippocampal neurons with
intrinsic bursting properties synchronize to generate epileptic
activities. More recently, both theoretical and experimental
studies suggest that calcium spike mediated activity propagation
in feed-forward networks (FFN) could underlie the neural
sequence generation in HVC neurons of the singing zebra
finches (Jin et al., 2007; Long et al., 2010). Dendritic spikes with
constant waveforms have also been investigated with respect
to their effect on network dynamics (Memmesheimer, 2010;
Jahnke et al., 2012; Memmesheimer and Timme, 2012). There,
the model was first devised using fairly general considerations
before being applied to fast dendritic sodium spikes, which have
been shown to reproduce experimental results in hippocampal
networks (Memmesheimer, 2010; Jahnke et al., 2015) and to
enhance activity propagation (Jahnke et al., 2013, 2014). On
the topic of slow dendritic spikes, modeling work carried out
by Lisman et al. (1998) suggests that slow NMDA spikes help
sustain neural activities critical for maintenance of working
memory and slow dendritic spikes in general increase the

memory capacity of recurrent neural networks (Breuer et al.,
2014).

As for theoretical work in modeling the calcium spike,
while simulations have been carried out at single neuron level
using NEURON (Carnevale and Hines, 2006), the amount of
background noise applied may not have been sufficient to
emulate the in-vivo situation. Also, quantitative measures have
yet to be be proposed for coincidence detection. Hence, while
calcium dynamics has been shown to increase frequency of
firing with increased basal and distal coincident inputs (Shai
et al., 2015), change of firing activities may also be achieved by
the coincident inputs alone, i.e., without calcium spikes. This
provides the motivation to quantify coincidence detection of
the neuron while receiving coincident inputs, with and without
calcium dynamics. Moreover, to our knowledge, there are few,
if any, network studies that investigate how calcium spikes at
single neuron level interact with the network dynamics. While
previous work has addressed activity propagation enhanced by
fast dendritic spikes (Jahnke et al., 2013, 2014), the slow calcium
spike has properties that deserve further investigation. One such
property is that calcium spikes last for tens of milliseconds
and have a long plateau peak, bringing the distal membrane
potential close to the excitatory reversal potential, hence severely
attenuating the effect of nearby excitatory synaptic inputs
(Larkum et al., 1999a). In addition, synaptic inputs impinge on
the large pyramidal neurons with varying electrotonic distance
to the soma, which in turn interact with the calcium spike in a
differentiatedmanner, potentially enhancing activity propagation
in a neural network of spatially extensive neurons differently
as well. The long duration of the calcium spike and the
compartmentalization of the layer 5 pyramidal neuron thus
introduce network effects not accounted for using an exponential
current in point neuron models; the effect of calcium spike
dynamics on the propagation of firing activities in a network
therefore remains an open question.

To address the above issues, we have first developed a three
compartment neuron model of the layer 5 pyramidal neuron
(Chua et al., 2015) and showed that the calcium spike can be
modeled using first order kinetics or as a threshold triggered fixed
waveform when the neuron is in a low fluctuation driven regime,
with calcium spikes triggered by occasional large coincident
inputs of a fixed time constant, which mimics the in-vivo
situation. This model is summarized in Section 2.1. Here, we
systematically investigate the behavior of the neuron model in
such a regime. In particular, we are concerned with determining
the effect of calcium spikes on the detection of coincidence
inputs and propagation of firing activities in a FFN embedded
in a random network, with a particular focus on whether the
coincident input arrives solely at the distal synapses or are shared
between the distal and somatic compartments. The single neuron
and network simulations are described in Section 2.2 and the
corresponding measures for coincidence detection and activity
propagation are given in Section 2.3.

In the single neuron scenario, we determine that the presence
of calcium spikes does confer an advantage in reliable and
informative spike detection if the coincident inputs only impinge
on the distal dendrite, but not if they also impinge on the
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soma (Section 3.1.1 and Section 3.1.2). Interestingly, the default
parametrization of our neuron model does not reproduce
the critical frequency phenomenon observed in Larkum et al.
(1999b); therefore our results demonstrate that this mechanism
is not a vital part of the coincidence detection mechanism as
previous argued (Larkum et al., 1999b; Shai et al., 2015). Further,
using a minor variant of the model parametrization that does
reproduce the critical frequency behavior, we demonstrate that
this phenomenon disappears in the presence of in-vivo like
background noise.

In a network scenario (Section 3.2), we discover that where
excitatory neurons are connected to each other only at the
distal compartment, calcium spikes are necessary for activity
propagation in an embedded FFN, which remains stable across
a large range of synaptic strengths. In the case of connections
at both somatic and distal compartments, the presence of
calcium spikes reduces the minimum width of a FFN capable
of supporting activity propagation. However, networks with
stronger synapses become unstable, as the activity propagation
interacts with spontaneous synchrony in the network. The
instability can be compensated by increasing network inhibition
or using exc-exc synapses with depressing short term plasticity
(Tsodyks et al., 1998, 2000).

Our results thus emphasize the importance of calcium spikes
in detecting and efficiently propagating coincidences, but suggest
that the critical frequency phenomenon is not an important
mechanism for neural processing.

2. MATERIALS AND METHODS

To determine how calcium spikes in the layer 5 pyramidal neuron
may enhance its ability to detect and propagate coincident action
potentials, we developed a three compartment neuron model
in Chua et al. (2015). We provide the model with fluctuating
synaptic inputs and quantify its ability to detect and propagate
coincident action potentials. We describe the neuron models
and their parametrization in Section 2.1, and the variations of
synaptic inputs that the neuron receives in Section 2.2. In Section
2.3, we introduce the analysis of spiking activities used to quantify
our simulation results.

2.1. Neuron Models
We represent the layer 5 pyramidal neuron as a system of
three connected isopotential compartments (see Figure 1), with
dynamics described by three coupled first order differential
equations governing the time evolution of the membrane
potentials of the three compartments
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where the superscripts d, p, and s denote the distal, proximal and
somatic compartments, respectively.C andV refer to capacitance
and membrane potential and gl is the leak conductance, whereby
the resting potential is equal to U

y

l
when there are no external

inputs. The constants gpd and gsp are the conductances across
the distal-proximal and soma-proximal compartments, and Ue

and Ui are the excitatory and inhibitory reversal potentials.
The calcium current Ica is modeled using first order kinetics
or threshold triggered waveform in the distal compartment, as
proposed in Chua et al. (2015).

As explained in greater detail in Chua et al. (2015), a three
step approach was taken to fit the parameters of the neuron
model. In the first step, only the neuron parameters such as
capacitance and leak conductances are fitted; calcium dynamics
is deactivated in this step. An exhaustive search for the above
parameters within biologically realistic range is performed so that
a step current applied at the soma produces an action potential as
per Figure 1C of Larkum et al. (1999a), and a hyperpolarizing
current at the proximal followed by a beta current at the distal
do not trigger any action potential as per Figure 5C2 of Larkum
et al. (2001). Next, the calcium dynamics is activated, and we
fit the calcium parameters (of first order kinetics) such that
they are able to reproduce calcium spike and action potentials
as per Figures 1D,E of Larkum et al. (1999a). In the final
step, we increase the action potential threshold dynamically by
adjusting the parameters in the adaptive threshold so as to reduce
the number of calcium spike triggered action potentials to the
numbers observed experimentally.

When embedded in low rate background noise, we discovered
that a calcium spike could be triggered in the neuron by
400 spikes arriving simultaneously at the distal dendrite (with
synaptic weight of 0.6 nS each). Synchrony however does not
need to be precise; a calcium spike could still be triggered by the
spikes arriving with a delay normally distributed with σ = 6ms
more than 90% of the time, before falling off to 0 calcium spikes
as σ increased to 10.

The neuron model parametrized as above does not reproduce
the critical frequency (CF) property demonstrated by Larkum
et al. (1999b) and Shai et al. (2015): three step input currents
applied at the soma (each triggering an action potential) of
sufficient high frequency trigger a calcium spike at the distal
compartment, resulting in additional bursts of action potentials.
However, by modifying a minimal set of parameters, as listed in
Table 1 in the Appendix (Supplementary Material), we are also
able to reproduce this property.

2.2. Simulation Protocols
The neuron models are simulated in three main protocols:
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FIGURE 1 | Schematic of the three compartment model of the layer 5 pyramidal neuron indicating the regions abstracted by each compartment and

their dynamical properties (compared with actual neuron, from Spruston, 2009).

• The single neuron receives low fluctuating inputs [as per
Tables 2, 3 in the Appendix (Supplementary Material)] with
occasional large coincident inputs at just the distal, or both
soma and distal compartments.

• The single neuron receives regular step current stimulation at
the soma with or without low fluctuating inputs. Fluctuating
input details are described in Tables 2, 3 in the Appendix
(Supplementary Material).

• The neurons are arranged in a topological recurrent network,
and a fraction of the excitatory neurons are stimulated at the
somatic and/or distal compartments with synaptic inputs from
other neurons in the network.

2.2.1. Single Neuron with Occasional Coincident

Inputs in Noisy Background
The regime of interest for this study is where the neuron
is receiving mostly low fluctuating inputs with occasional
coincident inputs, such that its firing rate is approximately
1 spikes/s and the average membrane potential at the soma is
approximately −60mV. These requirements are slightly relaxed
in simulation settings (described below) in which the synaptic
weights are lognormally distributed and synaptic inputs have an
oscillating firing rate. To investigate under which circumstances

calcium spikes are triggered and in turn lead to action potential
bursts, we vary the amount of coincident inputs.

To create coincident input, the spike train arriving at each
synapse is composed of two superimposed Poisson spike trains.
The first spike train contains the synchronous input, and is
formed by copying each spike from an original spike train (also
known as the mother process, since inputs copy from this same
spike train Kuhn et al., 2003) with a certain copy probability p,
which ranges from 0.01 − 0.5. As we define the mother process
has a spike rate of 1 spike/s, each child spike train has a spike
rate of p spike/s. We require the total input at each synapse
to have a rate of 1 spike/s, so an additional asynchronous spike
train is drawn with Poisson statistics and rate 1 − p spike/s. The
superposition of the synchronous and asynchronous spike trains
result in a Poisson spike train of rate 1 spike/s for each synapse,
such that the pairwise correlation between any two coincident
input is p (Kuhn et al., 2003).

There are three further aspects of the synaptic inputs to be
considered:

2.2.1.1. Location of coincident inputs
Coincident inputs either impinge on 30% of excitatory synapses
in the distal compartment (distal inputs), or 20% of excitatory
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synapses in the distal compartment and 10% of excitatory
synapses in the soma compartment (shared inputs). We have also
simulated 15% of excitatory synapses in each of the distal and
somatic compartments, as opposed to 20/10.

2.2.1.2. Synaptic weight distribution
Excitatory synaptic weights are either identical or drawn from
a lognormal distribution. In the lognormal case, we assigned
coincident inputs to the synapses with the heaviest weights.
Given a lognormal weight distribution with a mean equal to the
identical weight, its variance will cause increased fluctuation in
the conductances and an increased firing rate, even in the case
where there are no coincident inputs. As we keep a constant
ratio of the standard deviation of the weight to its mean, we
have to adjust the mean synaptic weight downwards to keep
the neuron’s firing rate close to 1 spike/s. As a result of this
adjustment, the somatic mean free membrane potential is slightly
below −60mV. The adjustment is made using mean firing rate
and membrane potential values obtained from simulations of the
base case whereby there are no coincident inputs.

2.2.2. Single Neuron with Regular Step Current

Stimulation
Three step currents (of amplitude 1500 pA, duration 2ms, and
frequency ranging from 10 to 200 hz frequency) are applied at the
somatic compartment at regular interval of every 1000ms. In the
case of additional background noise, it is generated by synaptic
Poisson input (2000 and 500 excitatory and inhibitory Poisson
inputs with spike rates of 1 spike/s and synaptic weights of 0.6 nS
and 1.0 nS at each compartment respectively), resulting in low
fluctuations and a spike rate of 1 spike/s [see Tables 2, 3 in the
Appendix (Supplementary Material)].

2.2.3. Feed-Forward Chains in Recurrent Network
An excitatory population (8100 neurons, modeled using the three
compartment neuron model with either first order kinetics or
fixed waveform calcium spike), and an inhibitory population
(2025 leaky-integrate-and-fire neurons with conductance based
synapses) are each placed regularly on a 2D torus grids of
the same size and recurrently and reciprocally connected. The
connection probability is given by a 2D Gaussian distribution,
centered at the location of the post-synaptic neuron (Mehring
et al., 2003). Network parameters are chosen to result in an
asynchronous irregular firing regime at low rate [see Table 4 in
the Appendix (Supplementary Material)].

We next embed a FFN (see, e.g., Diesmann et al. 1999)
consisting of a series of pools of neurons, such that synchronous
activity in the first pool propagates along the embedded network
(Vogels and Abbott, 2005; Kumar et al., 2008). We assign both
excitatory and inhibitory neurons to corresponding pools in the
same proportions that they exist in the embedding network,
along the diagonals of the respective unrolled tori. This results in
two superimposed FFNs of nine pools with 100 neurons in each
pool (for distal inputs) or 15 pools with 36 excitatory neurons
each (for shared inputs).

Note that this embedding strategy differs from that
implemented by Jahnke et al. (2012), in which neurons in

the first pool are picked randomly, and each neuron in the
subsequent pool selected based on number of connections with
neurons in previous pool. In our study, neurons are assigned to
their respective pool according to their location on the grid.

The excitatory neurons are connected to each other either only
at the distal compartment so as to emulate the distal inputs case,
or at both the somatic and distal compartments so as to emulate
the shared inputs case.

To facilitate propagation of activity, the synaptic weights in the
FFN are strengthened by a scaling factor; in all cases, excitatory-
excitatory connections (between two consecutive pools in the
excitatory FFN) are strengthened; in for the Gaussian shared case,
all four connection types are strengthened (excitatory-excitatory
connections between consecutive pools in the excitatory FFN,
excitatory-inhibitory connections between one pool in the
excitatory FFN and the next pool in the inhibitory FFN,
inhibitory-excitatory between one pool in the inhibitory FFN and
the next pool in the excitatory FFN and inhibitory-inhibitory
connections between consecutive pools in the inhibitory FFN) so
as to achieved detailed balance (Vogels and Abbott, 2009).

Input spikes are then applied to excitatory neurons in the first
pool of the excitatory FFN only. This is repeated five times, with
interval of 2.25 s apart. The excitatory connections between pools
are then multiplied by an increasing scaling factor in subsequent
simulations and activity propagation again measured to assess
effect of increased synaptic weights. For a full listing of the
network parameters, see Table 4 in the Appendix (Supplementary
Material).

In addition, we also perform single neuron simulations similar
to those described in Section 2.2.1, but adapted to provide the
neuron with input corresponding to that received by a neuron
in a FFN. To approximate the input received by a neuron in a
distally connected FFN, an excitatory synaptic input is applied
at the distal compartment, with synaptic weight multiplied by
two factors, namely the scaling factor and the expected number
of synaptic inputs from the prior excitatory pool, on top of
the background noise from Poisson inputs. To approximate the
input received by an excitatory neuron in a FFN with shared
connectivity, an excitatory synaptic input is applied at the distal
and somatic compartments, with synaptic weight multiplied by
two factors, namely the scaling factor and the expected number
of synaptic inputs from the prior excitatory pool. In addition,
it also concurrently receives an inhibitory input at the soma,
so as to reproduce the detailed balance in the network setting.
The Poissonian firing rates vary at different compartments as
the average network firing rates obtained empirically differ from
the original input rate of 1 spikes/s chosen in Section 2.2.1. The
synaptic weights are chosen identically to those in the network
simulations. For a full listing of the network parameters, see Table
3 in the Appendix (Supplementary Material).

2.3. Measures and Analysis
2.3.1. Coincidence Detection for Single Neuron

Simulation
We employ two measures for quantifying the spike coincidence
detection properties of the neuron model: reliability and
informativity, as defined below. The reliability of the response

Frontiers in Computational Neuroscience | www.frontiersin.org 5 July 2016 | Volume 10 | Article 76

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Chua and Morrison Calcium Spikes in Pyramidal Neurons

indicates how likely it is that a coincident input event triggers
the neuron to generate an action potential (or burst of
action potentials). Conversely, the informativity of the response
indicates how likely it is that an action potential (or burst)
was preceded by a coincident input event. A neuron is a good
coincidence detector when reliability and informativity are both
high. If reliability is high but informativity low, coincident events
trigger spike bursts, but so does random synaptic noise. If
informativity is high but reliability low for bursts of a given size,
then a burst of that size indicates a prior coincident event, but
there are also many other coincident events that do not trigger a
burst. The different scenarios are summarized in Table 1. As the
above measures are based on how the neuron spiking activities
change with coincident inputs. we have generalized coincidence
detection to also include coincidence propagation.

2.3.1.1. Reliability
The reliability of the neuronal response can be inferred from the
statistics of the number of action potentials occurring in the short
time window immediately after a coincident input event. This
measure is illustrated in Figure 2A. Following each coincident
input C, we define a primary time window (blue) of 100ms or
until the next coincident input, whichever is smaller. We identify
any action potentials of the output spike train falling within this
window. In the case that an action potential exists, we then mark
out from this first action potential a secondary time window
(pink) of 100ms or until the next coincident input, whichever
is smaller. We then count the number of action potentials a
falling in the secondary time window. Over the course of an
experiment we thus empirically obtain the distribution of action
potential counts given a coincident input, i.e., P(a|C), where a ∈

{0, 1, 2, 3,≥ 4}.

2.3.1.2. Informativity
The informativity of the neuronal response can be expressed
as the probability of a coincidence event given a certain action
potential count. To determine this we proceed as illustrated in
Figure 2B. We first look for occurrences of action potentials
in the spike train of the neuron. Given an action potential, we
count the total number of action potentials a within a primary
time window (blue) of 100ms or until the next coincident input,
whichever is smaller. We then use a secondary time window
(pink) of 100ms to look back in time from the first action
potential to determine whether there was a coincident input C.
Hence, from the above, given a particular action potential event,
if there is no coincident input in its secondary time window,
then the informativity value for the action potential event is 0.
Over the course of an experiment we thus obtain empirically
the distribution of coincident inputs given a particular action
potential count, i.e., P(C|a).

By construction, informativity is the posterior probability of
reliability. Hence from Bayes theorem, the reliability P(a|C) can
be computed as such:

P(a|C) =
P(C|a)Na

NC
(2)

where Na is the total number of bursts of size a and NC is the
total number of coincident events. The time window used in
this study is 100ms; using 50ms yields similar results (results
not shown). Hence, reliability values obtained analytically using
Equation (2) serve to verify the correctness of the empirically
obtained reliability values.

2.3.2. Activity Propagation in Network Simulation
The measure used to quantify activity propagation between pools
of the FFN for different scaling factors is the signal-to-noise ratio
(SNR) as described in Jahnke et al. (2012). Here, signal refers to
the spiking activity, which is defined by the number of action
potentials of the neurons in a particular pool measured within a
specific time window (here 100ms, as spiking activities propagate
from one pool to the next after an initial strong stimulus is
introduced to the first pool. Noise refers to spiking activity of
the neurons in the pools when no such stimuli was introduced.
Hence a high SNR is achieved only if the background activity
is sparse compared to the spiking activity propagating along the
FFN following a stimulus. The SNR is computed for every pool
after each stimulus applied to the first pool of the FFN, and then
averaged across trials to obtain a final SNR value for each pool
and each scaling factor.

3. RESULTS

3.1. Neuronal Response to Background
Noise
As a prerequisite for our investigation into the effectiveness of
the calcium spike in coincidence detection of coincident inputs
on both somatic and distal compartment, we first determine if the
waveform and threshold need to be modified from the case where
coincident inputs arrive only at the distal compartment, for the
case where coincident inputs arrive at both the somatic and distal
compartments. As presented in Chua et al. (2015), the threshold
of the calcium fixed waveform can be obtained empirically from
the maximum distal membrane potential reached by the input
EPSP (Figure 3A). Using the method represented in Figure 6B of
Chua et al. (2015), we determine a calcium threshold is−21.4mV
for distal inputs and−23.6mV for shared inputs.

To understand why the thresholds are different, we first
note that the calcium threshold is determined by the dynamics
of the first order kinetics model, and is thus influenced by
both the amplitude and shape of the EPSP—a slower decaying
potential requires a lower amplitude to trigger the calcium
spike (Chua et al., 2015). In the case that all coincident input
arrives at the distal compartment, the EPSP is higher but also
faster decaying than for shared inputs, where some of the input
goes to the soma and can thus only affect the distal EPSP
after being diminished by the leak conductance, as shown in
Figures 3A,B. Hence the distribution of the coincident input to
one or two compartments of the model causes different calcium
spike triggering EPSPs, resulting in different determinations of
the corresponding threshold. However, the fixed waveform of
the calcium spikes used in the reduced model is obtained from
the average calcium spike modeled using first order kinetics, as
shown in Figure 3C, and so is the same in both scenarios.
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TABLE 1 | Reliability and informativity.

Informativity

Low High

Reliability Low Only a small fraction of coincident inputs triggers a given neuronal response,

and a large fraction of the neuronal responses is triggered by fluctuating

inputs

Only a small fraction of coincident inputs triggers a given neuronal

response, but a large fraction of the neuronal responses is

triggered by coincident inputs

High A large fraction of coincident inputs trigger a given neuronal response, but a

large fraction of the neuronal responses is triggered by fluctuating inputs

A good coincidence detector: a given neuronal response occurs if

and only if there is a coincident input

FIGURE 2 | Reliability and informativity. (A) Schematic illustrating measurement of reliability. Blue shaded areas denote primary time window triggered by the

occurrence, pink shaded areas denote secondary time window, triggered by the occurrence of an action potential within the primary time window. The response of

the neuron is measured as the number of action potentials within the secondary time window. (B) Schematic illustrating measurement of informativity. Blue shaded

areas denote primary time window, triggered by the occurrence of an action potential; the burst size of the neuron is defined as the number of action potentials falling

in this window, as indicated above it. Pink shaded areas denote secondary time windows stretching back in time from the start of each primary window, and indicate

the relevant period for searching for a preceding coincident input.

These values serve as a basis for our investigation of the
role of location of synapses receiving coincident input in
determining the effectiveness of calcium spikes in triggering an
action potential, or burst of them, as described in Section 3.1.1
and Section 3.1.2. In addition, we examine the effects of two
other important aspects of neuronal input: the synaptic weight
distribution and the temporal structure of the stimulus.

Synaptic weights have been shown to be lognormally
distributed; the standard deviation to mean ratio of the
lognormal distribution is 1.18, as calculated by Song et al.
(2005). To investigate how lognormally distributed synaptic
weights might affect calcium spike-action potential dynamics,
we simulate both identical and lognormally distributed synaptic

weights. We further assume that the lognormal synaptic weight
distribution arises as a result of the interaction of coincident
input with STDP, and therefore assign the coincident input
stimulus to the synapses with the heaviest weights.

With respect to the temporal structure of the input to the
neurons, it has been shown that cortical pyramidal neurons have
up and down states Holcman and Tsodyks (2006). Excitatory
synaptic inputs arrive not at a stationary rate but at rates
modulated by some oscillatory frequencies van Kerkoerle et al.
(2014). Our results for fluctuating inputs with oscillating firing
rates are however, not qualitatively different from the case of
stationary synaptic inputs, and hence we only show results from
the simpler case.
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FIGURE 3 | Determining the properties of the calcium spike for purely

distal and shared distal and somatic inputs. (A) Maximum amplitudes of

distal EPSP obtained from the passive neuron model, as a function of the

pairwise correlation of the coincident input, distal inputs (black) and shared

inputs (red). (B) Maximum amplitudes of the mean distal excitatory

conductances during calcium spikes as a function of the pairwise correlation

of the coincident input; color scheme as (A). (C) Calcium spikes (first order

kinetics) triggered by the coincident inputs for τe = 1.0ms. The red curve is

the average calcium spike triggered by distal coincident inputs with pairwise

correlation of 0.5, while the blue curve is the average calcium spike triggered

by shared coincident inputs with pairwise correlations of 0.35. All other

average calcium spikes fall within the gray area. The black dashed curve

denotes the calcium waveform used for the fixed waveform model, obtained

from averaging across all calcium spikes.

3.1.1. Distal Coincident Inputs in Stationary Noise
Figure 4 shows the response of all three considered neuron
models to distal coincident inputs with stationary Poisson input,
for both identical and lognormally distributed synaptic weights.

For low pairwise correlation, all three models behave much the
same. The fixed waveformmodel is identical to the passive model
in this regime, as the coincident input is not enough to trigger a
calcium spike. The first order kinetics model still produces small
currents for the lower coincidences, but this has a negligible effect
on the neuron behavior. In both weight distribution scenarios,
the neuron models with active responses to coincident input
at a higher pairwise correlation (calcium spikes modeled by
either kinetics or fixed waveform), have similar firing rates of 6–
8 spikes/s, whilst the passive neuron remains at around 1 spike/s
(see Figures 4A,D).

Action potential bursts of ≥4 spikes are reliably triggered by
coincident inputs from pairwise correlation value of around 0.25
onwards, with the lognormal case doing so at slightly smaller
pairwise correlations (see Figures 4B,E). Smaller burst events
are not reliably triggered at any correlation value. Reliability
results computed from simulation and those analytically derived
from informativity simulation results using Equation (2) are in
agreement, and so are omitted in the rest of this study. At the
same time, these action potential events of the active neuron are
highly informative to its postsynaptic neurons of pre-synaptic
coincident events to its distal compartment (see Figures 4C,F).
Note that a value of 0 in Figures 4B–F can also indicate that
there were no events of the given burst size. Thus, the fluctuating
curves in Figures 4C,F for the passive neuron, and for the active
neuron models at low pairwise correlation, indicates that bursts
of ≥4 action potentials occurred extremely rarely, but always
after a coincident input.

Hence, the presence of a calcium spike in a neuron receiving
background noise and distal coincident inputs considerably
increases its coincidence detection properties, with bursts of ≥4
action potentials as the event of interest. In contrast, the passive
neuron (without calcium spike) receiving the same synaptic
inputs fares badly for both measures.

3.1.2. Distal and Somatic Coincident Inputs in

Stationary Noise
We next investigate the scenario that coincident inputs arrive
at both the distal and the somatic compartments (15% each
compartment). Figure 5 shows how reliably the coincident
inputs can trigger bursts of different magnitudes. In the case that
all synaptic weights are identical, we observe that bursts of size
two or more can be very reliable from a pairwise correlation of
around 0.2 (Figure 5B) for passive and active neuronal dynamics,
and bursts of size three are not reliably triggered for either
the passive or the active neuron model (Figure 5C). Whereas
bursts of size two continue to be highly reliable for the passive
neuron for higher pairwise correlation values, for the active
neuron models these bursts are subsumed in bursts of size four
from pairwise correlation values of around 0.35 onwards (see
Figure 5D). Note that bursts of size two are due to somatic
coincident inputs and not due to calcium spikes: they do not
occur for the active neuron models when the coincident input is
applied solely to the dendritic compartment (see Section 3.1.1),
and they do occur for shared input for the passive neuron.
This demonstrates that calcium spikes are only reliably triggered
by coincident inputs from this point onwards. As coincident
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FIGURE 4 | Neuronal response to distal coincident inputs superimposed on stationary Poisson noise as functions of the pairwise correlation of the

input with identical synaptic weights (A–C) and lognormally distributed weights (D–F). (A,D) Firing rate of passive neuron model (gray), neuron model with

fixed waveform (blue) and with first order kinetics (red). (B,E) Reliability: probability of a burst event of ≥4 action potentials following a coincident input; colors as in (A).

Reliability values as computed directly from simulation results are shown as solid curves while reliability values computed using informativity simulation values as per

Equation (2) are shown using markers. (C,F) Informativity: probability of a preceding coincident input given a burst of ≥4 action potentials; colors as in (A).

inputs are shared across the somatic and distal compartments,
the amount of coincident inputs at the distal compartment is
halved. Comparing to the distal case, in which bursts of size
≥4 are reliably triggered at a pairwise correlation of around
0.25 (see Figure 4B) , we may conclude that for the fluctuating
regime, while there is cooperativity of coincident inputs across
compartments in generating calcium spikes (and hence bursts),
they are less effective in doing so than a focused distal input.

In the lognormal case, Figures 5E,F show that single action
potentials are reliably subsumed in bursts of size two at a lower
pairwise correlation compared to the response of the neurons
with identical synaptic weights. These remain a reliable indicator
in the passive neuron model until the bursts of size two are

subsumed in bursts of size three at a pairwise correlation of
around 0.4 (Figure 5G). For the active neuron models, the
bursts of size two are subsumed in bursts of size ≥4 from a
pairwise correlation of around 0.2 (see Figure 5H), whilst bursts
of size three hardly ever occur. Reliability results calculated from
informativity using Equation (2) are not shown, as they give
identical results as reliability computed from simulation data.

Figure 6 shows the informativity of different burstmagnitudes
in signaling a preceding coincident event. Bursts of size two are
informative of a prior coincident input in the passive neuron
model from pairwise correlation value ≈ 0.1 onwards for both
identical and lognormally distributed synaptic weights, while its
informativity in the active neuronmodel drops off with increased
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FIGURE 5 | Reliability of neuronal response to shared coincident inputs (15% in somatic and distal compartments) superimposed on stationary

Poisson noise as functions of the pairwise correlation of the input with identical synaptic weights (A–D) and lognormally distributed weights (E–H).

(A,E) Reliability results for single action potential; passive neuron model (gray), fixed waveform (blue), and first order kinetics (red). (B,F) Reliability results for burst of

size two. (C,G) Reliability results for burst of size three. (D,H) Reliability results for burst of size ≥4.

coincident inputs (Figures 6A,D). Bursts of size three are highly
informative in all cases from correlation value ≈ 0.1 onwards
(Figures 6B,E). However, we note that they are only reliably

triggered in the passive neuron from correlation value ≈ 0.4
onwards in the lognormal case and hardly at all in the uniform
case (see Figures 5C,G).Bursts of size≥4 are only informative for
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FIGURE 6 | Informativity of neuronal response with respect to shared coincident inputs (15% in somatic and distal compartments) superimposed on

stationary Poisson noise as functions of the pairwise correlation of the input with identical synaptic weights (A–C) and lognormally distributed

weights (D–F). (A,D) Informativity of bursts of size two; passive neuron model (gray), fixed waveform (blue), and first order kinetics (red). (B,E) Informativity of bursts

of size three. (C,F) Informativity of bursts of size ≥4.

the active neuron neuron models, as they are seldom triggered
in the passive neuron model, which can be observed from the
fluctuating values (see Figures 6C,F). As with Figures 4C,F, the
fluctuating curves indicate that bursts of size ≥4 were very rare,
but were always informative of a preceding coincident event.

We can conclude that in the identical weight case, bursts of
size two accurately detect coincidences for active and passive
neuron models in the range of mid pairwise correlation values
and for high correlation values in the passive neuronmodel, while
bursts of size ≥4 become more accurate for the active neuron
model at high correlation values. For the lognormal case, bursts
of size ≥4 makes the active neuron model a good coincidence
detector across both pairwise correlation ranges. These results
are summarized in Table 2. Hence, calcium spikes only play a

TABLE 2 | Size of bursts that are reliably informative for coincidence

detection in the shared input case.

Identical Lognormal

Passive Active Passive Active

Pairwise

correlations

Mid (0.2 ≤ x < 0.35) 2 2 2 ≥4

High (0.35 ≤ x ≤ 0.5) 2 ≥4 3 ≥4

role in coincidence detection in the identical weight case from
high pairwise correlation values onwards, while they play a role at
much lower values for the pairwise correlation in the lognormal
case.
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The results in this and the previous section additionally
demonstrate that the neuron model employing a threshold
triggered fixed waveform (Chua et al., 2015) is in very close
agreement with the neuron model employing first order kinetics
for background noise with superimposed coincident inputs.
Therefore, for the remainder of the manuscript we restrict our
analysis to the responses of the neuron model with a threshold
triggered fixed waveform, unless otherwise stated.

We next investigate the effects of shifting the distribution of
the coincident inputs to predominantly distal. Figure 7 depicts
the case of shared coincident inputs arriving at 10% of the
excitatory synapses onto the soma and 20% of those onto the
distal compartment. For synapses with identical weights, bursts
of size two are reliably triggered in the passive neuron from
a pairwise correlation value of around 0.3 (Figure 7A) when
a single action potential is subsumed in bursts of size two, as
compared to 0.2 for an equal input distribution (Figures 5A,B);
no bursts of higher magnitude are generated (Figure 7B) in the
passive case. Themain difference to the case where the coincident
inputs are equally distributed is that bursts of size two are never
reliably triggered in the active neuron, and bursts of size three
are not triggered at all; these smaller magnitude responses are
subsumed in bursts of size ≥4, which are reliably triggered from
a lower correlation value (compare Figures 7B, 5D).

With lognormally distributed synaptic weights, the main
difference from the equal input distribution case of 15%
coincident inputs to the somatic and distal compartments is
again that bursts of size two are never reliably triggered in the
active neuron (Figure 7E). The smaller magnitude response is
subsumed in response of bursts of size≥4, which become reliable
at a lower pairwise correlation value than in the equal input
distribution case (Figure 7F).

The difference arises because the predominantly distal
coincident input is more effective at triggering calcium spikes,
which in turn generate bursts of size ≥4 at lower correlations
than the equal input distribution. In the absence of the calcium
spike, the increasing correlation tends to generate bursts of size
2, which are somatically driven, as is clear from their occurrence
in the passive neuron model.

Together with informativity results in the identical weight case
(Figures 7C,D), bursts of size two and burst of size ≥4 make
the passive and active neurons respectively good coincidence
detectors from pairwise correlation values ≈ 0.3 onwards. In the
lognormal weight case (see informativity results Figures 7G,H),
burst of size two (and at higher pairwise correlation values,
burst of size three; not shown) and burst of size ≥4 make
the passive and active neurons respectively good coincidence
detectors from pairwise correlation values ≈ 0.15 onwards.
Therefore, in contrast to the case in which coincident inputs
arrive solely at the distal compartment (Section 3.1.1), the
presence of calcium spikes does not confer any advantage to the
neuron in detecting coincident input shared across the somatic
and distal compartments.

The 10/20 setting agrees better with the experimental
observations reported in Larkum et al. (1999a), in which a
current input at the soma triggers an action potential, which then
back propagates to the distal compartment, and in combination

with current input at the distal compartment triggers a calcium
spike, resulting in a burst of action potentials. Also, bursts of
size ≥4 are triggered from correlation values of around 0.3
onwards, demonstrating a more effective cooperativity across
compartments than when shared inputs are distributed equally
across the compartments. For the rest of the manuscript, we
therefore focus on the case that the coincident inputs arrive
predominantly at the distal compartment.

3.1.3. Critical Frequency in Stationary Noise
It has previously been demonstrated in-vitro that when several
step current stimuli, each sufficient to trigger an action potential
on its own, are applied to the soma of the layer 5 pyramidal
neuron at a sufficiently high frequency (usually between 70 and
100 Hz), a calcium spike is triggered at the distal compartment.
This leads to further somatic depolarization and typically further
action potentials (Larkum et al., 1999b; Shai et al., 2015). The
lowest frequency for which this phenomenon occurs is known
as the critical frequency. The back-propagating action potentials
sum up supralinearly at the distal compartment when they are
evoked at or above the critical frequency due to the active
recruitment of voltage gated calcium channels at the distal apical
dendrites. Below the critical frequency, the currents at the distal
compartment due to the action potentials sum up linearly. As
a result, calcium spikes can be triggered without distal inputs.
The critical frequency phenomenon is commonly cited as the
basis for which synaptic inputs at other parts of the neuron (e.g.,
basal dendrites) could lower the amount of distal synaptic inputs
required to trigger a calcium spike, thus achieving coincidence
detection of synaptic inputs across different parts of the neuron
(Larkum et al., 1999a,b; Williams and Stuart, 2002).

Our default parametrization of the three compartment neuron
model as described in Chua et al. (2015) and Section 2.1 is fitted
to reproduce the experimental results presented in Figures 1C–E
of Larkum et al. (1999a) and Figures 5C2, 6D of Larkum et al.
(2001), and does not exhibit the critical frequency phenomenon.
Nonetheless, as shown in Section 3.1.2, coincidence detection
across the somatic and distal compartments (shared input) is
demonstrated despite the parametrization of the neuron model
not reproducing the critical frequency phenomenon. Hence, in
contradiction of the claims in Spruston (2008), we conclude
that the phenomenon characterized by the critical frequency is
sufficient but not necessary for coincidence detection.

By changing a minimal set of parameters, listed in the final
section of Table 1 in the Appendix (Supplementary Material),
we are able to reproduce the critical frequency property in our
model, with a critical frequency at 100Hz of stimuli input rate.
The response of the neuron model with modified parameters
to a variety of input stimuli is demonstrated in Figure 8. In
Figure 8A (corresponding to Figure 1E of Larkum et al., 1999a), a
beta current, with amplitude 2200 pA and time constants 5.0 and
1.0ms, is applied at the distal compartment, triggering a calcium
spike which then propagates to the soma and triggers five action
potentials, three more than for the original parametrization.
If the same step current is applied again, followed 4ms later
by a beta current of half the amplitude, i.e., 1100 pA at the
distal compartment (see Figure 1D of Larkum et al., 1999a),
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FIGURE 7 | Reliability and informativity results of neuronal response to shared coincident inputs (10% in the somatic and 20% in the distal

compartment) superimposed on stationary Poisson noise as functions of the pairwise correlation of the input with identical synaptic weights (A–D)

and lognormally distributed weights (E–H). (A,E) Reliability for burst of size two: passive neuron model (gray) and fixed waveform (blue). (B,F) Reliability for bursts

of size ≥4. (C,G) Informativity for burst of size two. (D,H) Informativity for bursts of size ≥4.

this triggers a calcium spike at the distal compartment which
then causes six additional action potentials (four more than the
original parametrization), as shown in Figure 8B. If, however,

30ms before applying the beta current, a hyper-polarizing
step current of −200 pA is applied for 50ms at the proximal
compartment (Figure 5C2 of Larkum et al., 2001), the calcium
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FIGURE 8 | Simulation results for modified three-compartment model which reproduces the critical frequency property. (A–D) Top panels show the

membrane potentials for each compartment against time inms (black: soma, cyan: proximal, magenta: distal), while the lower panels show the corresponding DC

stimulation injected at each compartment against time inms. See main text for the stimulation details. (E) Minimum amplitude of the beta current at the distal

compartment required to trigger a calcium spike when applied together with the somatic step current as in (B). (F) Calcium spike ratio (proportion of step current

stimuli that trigger a calcium spike) as a function of input frequency for the neuron with modified parameters in the case of no background noise (black) and with

background noise (red).

spike is still triggered but is not able to trigger action potentials at
the soma, as shown in Figure 8C. A hyper-polarizing current of
−200 pA as used in Figure 6D of Larkum et al. (2001) is enough to
prevent triggering of action potentials by the calcium spike, as for
the original parametrization. These results demonstrate that the
modified parametrization still reproduces the key experimental
results reasonably well, albeit not as accurately as our default
parametrization.

Figure 8D illustrates the behavior expected of a neuron
subject to stimulation above the critical frequency: three step
currents, each of amplitude 1500 pA and duration 2ms, are
applied at the somatic compartment with 100Hz frequency,
triggering a calcium spike which triggers another five action
potentials. Figure 8E shows the amplitude of the distal current
required to trigger a calcium spike when applied in conjunction

with a somatic step current. The time interval refers to time of
onset of the distal current relative to the somatic current. This
agrees qualitatively with Figure 2D of Larkum et al. (1999a).
The minimal amplitude of the beta current required to trigger
a calcium spike is less than 300 pA, compared with around
1000 pA for the original parametrization. Hence the calcium
spike can now be triggered with even fewer distal synaptic inputs
when coincident with an action potential, when compared to
the original parameters. The critical frequency of the modified
neuron model is 100Hz, as shown in Figure 8F, and so is in
agreement with the findings presented in Larkum et al. (1999b)
and Shai et al. (2015).

However, repeating the experiment in the presence of
background noise (without coincident synaptic inputs; see
Section 2.2.2), reveals a very different picture. In this case,
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calcium spikes are triggered for the whole frequency range,
with average of 87%, and minimum of 79% of total stimuli
(Figure 8F). The original parametrization results in no calcium
spikes across the whole tested frequency range of 10–200 Hz
(data not shown). This suggests that the experimentally observed
critical frequency property is an artifact of the experimental
conditions, in which synaptic noise arrives at only a small fraction
of the number of synapses the layer 5 pyramidal neuron typically
has (Larkum et al., 1999b; Shai et al., 2015), and so has little
relevance for neural information processing.

In the presence of background noise, calcium spikes
are triggered by fewer coincident inputs for the modified
parametrization than the original, which then results in burst
of more action potentials as well. The simulation results in
subsequent sections are hence qualitatively similar for both
parametrization. As the critical frequency property does not
hold in the fluctuation driven regime, we return to the original
parametrization for the network investigations in the following
section.

3.2. Network Simulation
The results of the previous section demonstrate in a single neuron
setting that coincident inputs are able to trigger calcium spikes
and in turn bursts of action potentials: bursts beget bursts.
Here, we investigate a possible functional role of this dynamical
feature, namely intensifying and stabilizing the propagation
of synchronous activity in a FFN consisting of a series of
pools of neurons with strong connections from each pool to
the next. We examine the behavior of an FFN embedded in
a topological recurrent network with a Gaussian connectivity
profile, as described in Section 2.2.3 [parameters detailed in Table
4 in the Appendix (Supplementary Material)].

The FFN is constructed from existing neurons and synaptic
connections. The neurons in each pool of the FFN are
topologically close to each other, and a detailed balance
(Vogels and Abbott, 2009) to increase network stability is
achieved through scaling of all inter-pool synapses (exc-exc,
exc-inh, inh-exc, and inh-inh). Strong stimuli are introduced
to the excitatory neurons in the first pool, and we investigate
the reliability of activity propagation along the network in
dependence on the pool size and the relative strengths of the
synaptic connections from one pool to the next compared to
a non-FFN exc-exc connection. In the following, the relative
strength of the FFN connections is termed the scaling factor. In
the shared connectivity setting, pre-synaptic excitatory neurons
are connected to post-synaptic excitatory neurons at both the
somatic and distal compartments while in the distal connectivity
setting, they are connected at only the distal compartments.

3.2.1. Shared Connectivity Setting
In the shared connectivity setting, the initial stimuli trigger one
to two action potentials in each neuron of the first pool of the
FFN in the passive case [somatic synaptic inputs, refer to Table
4 in the Appendix (Supplementary Material)], whereas calcium
spikes and a burst of action potentials are triggered in the active
case (initial stimuli are synaptic inputs shared across the somatic
and distal compartment). We first present results for the neuron

model calcium dynamics representing the calcium dynamics with
first order kinetics, while comparison with the fixed waveform
calcium dynamics is presented in Section 3.2.3.

No activity propagation is observed for the passive case for all
scaling factors (1−12) as demonstrated in Figures 9A,B. In order
to achieve activity propagation, the number of excitatory neurons
per pool must be increased from 36 to 100 (Figure 9C). Note
that “stripy” spontaneous activities take place even in network
of passive neurons. In contrast, a network of active neurons
exhibits reliable activity propagation from scaling factor of seven
onwards, although the SNR does drop along the length of the
network, as shown in Figures 9D,E. However, at high scaling
factors, input stimuli can trigger a pathological state whereby all
neurons fire continuously and can last for seconds (Figure 9F).
Hence activity propagation in active neurons is sensitive to the
scaling factor.

In a more inhibitory network, in which the afferent synaptic
weights of the inhibitory neurons are increased to 1.7 (excitatory)
and −5.2 nS (inhibitory) and synaptic inputs at 90 times the
original synaptic weight are introduced at the neurons in the first
pool of the inhibitory FFN, simultaneously with the stimuli of
the excitatory FFN, network-wide spontaneous activities lasting
for seconds are eliminated. Activity propagation is achieved
for a bigger range of synaptic scaling factors with better SNR
maintained along the length of the network (Figures 10A,B).
For larger scaling factors, the entire network is still recruited,
albeit for shorter duration: in Figure 10C, strong synchronous
firing can be observed in excitatory neurons that are not part
of the FFN (marked in red) for periods of tens of milliseconds
after each activity propagation event in the FFN. This is in
contrast to the lower inhibition case shown in Figure 9F, in
which network-wide spontaneous activities can last for seconds.
Moreover, stripy spontaneous activities result in a low SNR and
make the propagated activities hard to distinguish.

When the synaptic connections between excitatory neurons
incorporate depressing short term plasticity [parameters given
in Table 4 in the Appendix (Supplementary Material)] without
increasing inhibition in the network, spontaneous activities
for seconds are also eliminated with high SNR activity
propagation achieved for a larger range of synaptic scaling factors
(Figures 10D,E). At large scaling factors, stripy spontaneous
activities still occur causing SNR of propagated activities to suffer,
but spiking activities recruiting the whole network such as those
shown in Figure 10C, no longer occur, as shown by the randomly
selected excitatory neurons (in red) not firing in synchrony
(Figure 10F).

Note that when calcium spikes are triggered by the input
stimuli, the stimuli triggered bursts of action potentials in the
FFN combine with the spontaneous activities to trigger network-
wide activities lasting for seconds. Therefore, increased inhibition
or synapses with depressing short term plasticity is needed to
keep the network healthy, as demonstrated in Figures 10C,F

when such long lasting network activities are not observed even
for scaling factor of 18. The network is much more prone to
network-wide sustained activities, even at low scaling factors,
when afferent synaptic weights of the inhibitory neurons are
reduced to 1.2 (excitatory) and−2.8 nS (inhibitory).
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FIGURE 9 | Activity propagation along a feedforward network for the shared inputs case. In the raster plots, spikes of neurons in the excitatory FFN are

represented by alternate colors of black and magenta, while those of neurons in inhibitory FFN are represented by alternate colors of green and cyan, with 36 and 9

neurons per excitatory and inhibitory pool, unless otherwise stated. Spikes of other randomly selected excitatory neurons are in red. Times of stimuli to the first pool

are represented by gray dashed lines. (A) Raster plot for the network of passive neurons, with scaling factor of 12. (B) Signal-to-noise ratio as a function of the layer of

the FFN and the scaling factor for the network of passive neurons. (C) Raster plot for passive neurons (with 100 excitatory neurons and 25 inhibitory neurons per pool

and scaling factor of 13). (D) Raster plot for the network of active neurons, with scaling factor of 7. (E) Signal-to-noise ratio as in (B) for the network of active neurons.

Note different scaling of (B,E). (F) Raster plot as in (D), but with scaling factor of 11.

Activity propagation is achieved for all scaling factors from
7 onwards Figure 9D, but is highly unstable. At high scaling
factors, the propagated activities either end up either recruiting
the whole network (for different durations depending on the level
of inhibition in the network), or there is too much spontaneous
background activities which adversely affect the SNR of the
propagated activities (which is the case for increased inhibition
and depressing synapses).

The occurrence of spontaneous activities at high scaling
factors (such as that shown in Figure 10C), resulting in a
drop in SNR is in accordance with the observations of activity
propagation by Jahnke et al. (2012). We further observed that

with calcium spikes (in contrast to Jahnke et al., 2012), these
spontaneous activities can degenerate at higher scaling factors
to pathological firing lasting for seconds, as shown in Figure 9F.
Such a pathological state can be prevented to a certain extent by
introducing depressing short term plasticity between excitatory
neurons or increased inhibition in the network (Figure 10).

We further perform single neuron simulations that emulate
an excitatory neuron in a FFN, so as to better understand
dynamics of activity propagation of an embedded FFN with
shared connectivity (data not shown). The network we emulate
is the one shown in Figures 10D–F (with depressing synapses).
In the shared case, for the active neuron, bursts of size ≥4 are
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FIGURE 10 | Activity propagation along a feedforward network for the shared inputs case and increased inhibition (A–C), short term plasticity

(depressing) for all exc-exc synapses (D–F) and simultaneous stimuli on first pools of excitatory and inhibitory FFNs. In raster plot, the spiking activities of

neurons in the excitatory FFN are represented by alternate colors of black and magenta, while those of neurons in inhibitory FFN are represented by alternate colors of

green and cyan. Spiking activities of other randomly selected excitatory neurons are in red. Time of stimuli are represented by gray dashed lines. (A) Raster plot for the

network of active neurons, with scaling factor of 8. (B) Color-map of SNR for the active case. (C) Raster plot for the network of active neurons, with scaling factor of

18. (D) Raster plot for the network of active neurons, with scaling factor of 10. (E) Color-map of SNR for the active case. (F) Raster plot for the network of active

neurons, with scaling factor of 18.

a good coincidence detector for scaling factor from six onwards,
with both reliability and informativity at values close to one. For
the passive neuron, a single action potential is a good coincidence
detector for scaling factor from five onwards, with both reliability
and informativity at values close to one. Hence, even without
calcium spikes, single action potentials are reliably triggered
by coincident inputs. This explains why random fluctuations
in the feedforward network that are too weak to trigger a
calcium spike may nevertheless lead to spontaneous activities,
leading to an increase in background noise and affecting SNR
for propagated activities. It is also plausible that the pathological
state of firing may be due to increased spontaneous activities
during calcium spike mediated activity propagation, which then

spreads to the whole network for a sustained period, without
coping mechanisms such as short term plasticity and increased
network inhibition.

3.2.2. Distal Connectivity Setting
For distal connectivity, activity propagation is only achieved
in the case that calcium spikes are active. As the purely distal
stimulation has a weaker effect than the shared somatic and distal
stimulation, no activity propagation is observed for either the
passive or the active neuron model in an FFN consisting of 15
pools, each containing 36 excitatory neurons with first order
kinetics calcium spike and 9 inhibitory neurons, as used above.
We therefore increase the number of excitatory and inhibitory
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neurons per pool to 100 and 25 respectively. As the network size
remains unchanged, the number of pools in the FFN is reduced
to nine.

Without calcium spikes, activity propagation does not take
place even for the broader FFN (Figures 11A,D). This is because
distal coincident inputs on their own have little impact at the
soma and hardly trigger any action potentials. The high SNR in
the first pool is due to the input stimuli being applied to somatic,
rather than distal synapses, and so has a much stronger effect on
the neuron.

For the active neuron model, activity propagation is achieved
from around scaling factor 15 onwards, however not all stimuli

to the first pool result in full activity propagation, even for
scaling factor 24. (Figures 11B,E). Note that for the active neuron
networks, initial stimuli are purely dendritic.

As the network is configured to be in an inhibition dominated
regime, we also investigated reducing inhibition in the network to
check if activity propagation is established: the afferent synaptic
weights of the inhibitory neurons are reduced to 1.2 (excitatory)
and −2.8 nS (inhibitory). In addition, only the connections
between excitatory neurons in the FFN are subject to the scaling
factor. In Figures 11C,F, activity propagation is achieved in the
network of active neurons for scaling factor 8 onwards, with a
high SNR maintained along the length of the network. The first

FIGURE 11 | Activity propagation along a feedforward network for the distal inputs case. In the raster plots, spiking activities of neurons in the excitatory FFN

are represented by alternate colors of black and magenta, while those of neurons in inhibitory FFN are represented by alternate colors of green and cyan. Spiking

activities of other randomly selected excitatory neurons are in red. Times of stimuli to the first pool are represented by gray dashed lines. (A) Raster plot for the

network of passive neurons, with scaling factor of 24. The FFN consists of nine pools, each containing 100 excitatory neurons and 25 inhibitory neurons. Inhibition

level as per shared case (Figure 10), with detailed balanced input. (B) Raster plot for the network of active neurons, all other parameters as in (A). (C) Raster plot for

the network of active neurons, with scaling factor of 8. The FFN consists of ten pools, each containing 81 excitatory neurons and around 20 inhibitory neurons.

Inhibition level reduced compared to shared case (Figure 10), with only exc-exc inter-pool synapses scaled. (D–F) Signal-to-noise ratio corresponding to scenarios

(A–C) as functions of the layer of the FFN and the scaling factor. Note the differing scales.
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sign of stripy spontaneous activities occurs at scaling factor 17
and deteriorates to that observed in Figure 10F at scaling factor
of 24 (data not shown). Hence, with reduced inhibition, activity
propagation is achieved in the network of active neurons which
remains robust for a much bigger range of scaling factors (8−16).
This is in contrast to the shared input case, which is characterized
by strong synchronous activity at much lower scaling factors and
activity propagation with good SNR in only a narrow band of
scaling factors (Figures 9, 10).

This difference is due to the fact that in the distal network, exc-
exc connections are located at the distal compartments. Hence
in the excitatory FFN, scaled up distal excitatory inputs on their
own (if they do not trigger calcium spikes) are severely attenuated
at the soma and hardly trigger any action potentials. Hence,
random fluctuation of excitatory inputs in the FFN will result in
the stripy spontaneous activities at much higher scaling factors,
but will do so at relatively lower scaling factors in the shared
case. In addition, during the time course of a calcium spike,
excitatory inputs to the soma can result in an action potential,
whereas excitatory inputs to the distal have conductances of very
low amplitude, given that the compartment membrane potential
is close to reversal potential for excitatory synapses, and hence
have even less effect on the soma. Hence, while the network
with distal connectivity requires more neurons in each pool
for activity propagation than the network with shared distal
and somatic connectivity, activity propagation is very stable and
maintains good SNR even with increasing scaling factors (stripy
spontaneous activities do not occur).

The distal connectivity results differ from the shared
connectivity results and also from the behavior reported by
Jahnke et al. (2012) for two reasons. Firstly, as coincident
inputs only arrive at the distal compartment, they have to
trigger a calcium spike to elicit any action potentials. However,
the threshold for a calcium spike is much higher than that
of an action potential, and so no spontaneous synchronous
behavior emerges until a high scaling factor of 17. Secondly,
as the deactivating function h of the calcium dynamics has a
fairly long time constant (τh = 50ms), increasing stimuli are
required to trigger calcium spikes in quick succession with the
same amplitude (further discussed in Section 3.2.3). This can
be circumvented in the shared case by backpropagating action
potentials triggered by inputs on somatic synapses with scaled
weights. In the distal case, even with reduced inhibition and
scaling factor of 24, spontaneous activities stay within the FFN
and do not descend into the pathological state as illustrated in
Figure 9F.

Note that when it is the presence of calcium spikes
that permits activity propagation (i.e., a network of similarly
configured passive neurons exhibits no propagation) then the
mechanism is different to the classical mode of propagation in
an FFN. As burst firing triggered by calcium spikes can last for
tens of milliseconds (50–80ms, as opposed to the passive case, in
which spiking activities at each pool last for around 10ms), such
a firing mode effectively allows post synaptic neurons in the next
pool a bigger integration time window so as to trigger calcium
spikes and hence burst firing. As a result, propagation is also
slower: compare activity propagation for passive and active FFNs

in Figures 9C,D, whereby the last pool of neurons (pool number
nine) in the passive case spikes 15ms later after stimulus onset
at first pool (100 neurons per pool, scaling factor 13) while the
last pool in the active case spikes 200–220ms later after stimulus
onset (36 neurons per pool, scaling factor 7).

In the single neuron simulation, we emulate an excitatory
neuron in a FFN with distal connectivity as per Figures 11C,F
(data not shown). For the active neuron, bursts of size ≥4
are a good coincidence detector for scaling factor from two
onwards, with both reliability and informativity at values close
to one. For the passive neuron, both reliability and informativity
of a single action potential rises gradually with increasing
scaling factors, reaching values of approximately 0.4 and 0.6 for
reliability and informativity, respectively, at a scaling factor of
25. This is equivalent to all distal excitatory synapses receiving
the coincident input, as compared to 15% of distal excitatory
synapses (at maximum pairwise correlation value of 0.5) in the
original distal single neuron simulation (Figure 4). Hence for
the distal case, coincidence detection (and activity propagation)
remains highly dependent on calcium spike activation. Without
calcium spikes, spiking activities are not reliably triggered,
which explains why in the distal case, activity propagation with
relatively less noise is achieved for a larger range of weight scales
(Figures 11C,F).

3.2.3. Network Effect of Model Calcium Dynamics
In this section, we examine the effect of the choice of
representation for the calcium dynamics on the behavior of a
neuron in an embedded FFN. For the single neuron simulations
carried out in Section 3.1 and the network simulations with
distal coincident inputs (Section 3.2.2), there is no qualitative
difference between the first order kinetics and the fixed waveform
approaches.

However, in the case of shared coincident inputs, this is not
so. For a scaling factor of 10, network simulations of shared
connectivity using fixed waveform calcium models result in
successful activity propagation (Figure 12A, showing results for
depressing synapses for Exc-Exc connections). As the scaling
factor increases, long continuous firing (as seen in Figure 9F)
can be alleviated by increased inhibition or depressing synapses
for exc-exc connections (Figures 10C,F) in the kinetics calcium
model. However, when the same simulation is repeated with
fixed waveform calciummodel, the long continuous firing lasting
for seconds persists (Figure 12B, showing simulation results for
depressing synapses for a scaling factor of 18). The above results
for fixed waveform calcium model are the same for increased
inhibition (results not shown).

We investigate why this maybe the case by observing the
membrane potentials and calcium variables of excitatory neurons
in the pools for the above simulations. In Figure 12C, we observe
that during activity propagation, one of the excitatory neuron
in the third pool first discharge a calcium spike (with three
action potentials), followed shortly by another three calcium
spikes of smaller amplitudes (with one action potential each).
In Figure 12D, the corresponding activating function has one
full long peak, followed by three smaller, shorter peaks. Value
of the deactivating function goes to around 0.4 during the
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FIGURE 12 | Network and neuronal responses with calcium dynamics modeled by first order kinetics and fixed waveform. (A) Raster plot for network of

active neurons with shared coincident inputs, short term plasticity (depressing) for all exc-exc synapses, scaling factor 10 and calcium spike modeled using fixed

waveform. (B) As in (A), but with scaling factor 18 and calcium spike modeled using fixed waveform. (C) Membrane potential (red: soma, black: distal) for an

excitatory neuron in the third pool during activity propagation with shared coincident inputs, increased inhibition, scaling factor 12 and calcium spike modeled using

first order kinetics. (D) The corresponding plot for the calcium activating (blue) and deactivating (green) functions. (E) As in (C) but with calcium spike modeled using

fixed waveform. (F) The corresponding calcium spike (magenta) to the kinetics model (C) and calcium spike (cyan) to the fixed waveform model (E). (G) As in (C) but

with distal coincident inputs and decreased inhibition (H) The corresponding plot for the calcium activating (blue) and deactivating (green) functions.
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first calcium spike and remains there during the next three
calcium spikes and only fully recovers afterwards. Hence the later
three calcium spikes are triggered when the underlying calcium
variables have yet to fully recover from the first calcium spike. As
such, these later spikes are both smaller in amplitude and shorter
in duration. Such calcium spiking activities are observed in other
excitatory neurons in different pools during activity propagation.
In Figures 12E,F, we observe that in the case of fixed waveform
calcium model, calcium spikes, all of the same waveform, are
triggered in quick succession, resulting in continuous firing,
while the calcium spikes modeled using kinetics lasted for the
duration of approximately two calcium spikes (fixed waveform).
Hence the long recovery period of the calcium variables in the
kinetics model helps to prevent such continuous firing.

In the distal case, as shown in Figures 12G,H, only one
calcium spike is triggered during activity propagation, since there
is no “stripy” spontaneous activities (present in the shared case)
to trigger subsequent calcium spikes. Hence, simulation results
from both calciummodels in the case distal coincident inputs are
qualitatively the same.

The difference in network activities for high scaling factors in
the case of shared coincident inputs can therefore be attributed
to the different handling of the refractory period. In the kinetics
model, the calcium spike does not have a hard refractory period.
Subsequent calcium spikes can still be triggered if the membrane
potential is high enough, even when the underlying calcium
variables have yet to fully recover. These new spikes are smaller
while the deactivation variable remains at around the same value.
In the fixed waveform model, the calcium spike has a hard
refractory period lasting the entire duration of the calcium spike
(100ms), during which no new calcium spike can be triggered.
Once the refractory period is over, if the calcium threshold is
again reached, a new calcium spike of the same waveform is
triggered. Hence, while there can be several more calcium spikes
in the same duration emitted by the model using first order
kinetics, it is less effective in sustaining continuous firing, due to
the relatively longer time constant of the deactivating function
(τh = 50ms).

Hence, from the above observations, the fixed waveform
calciummodel would give the same results as the kinetics calcium
model in simulations in which calcium spikes are not triggered
in quick succession, as shown in Figures 12G,H. Given that the
fixed waveform model is computationally simpler and thus faster
(Chua et al., 2015), we therefore recommend its use in these cases.

4. DISCUSSION

In this study, we investigate the effects of calcium spikes
on coincidence detection by a single neuron and activity
propagation in an embedded feed-forward network, using the
three compartment neuron model previously developed in Chua
et al. (2015). We show that calcium spikes are necessary for
detection of purely distal coincident inputs; without them,
no action potentials are triggered. Previous experimental and
modeling studies focusing on single neuron dynamics have
consistently shown that synaptic inputs at the distal dendrites

have to activate the voltage dependent calcium channels in order
to propagate to the soma (Larkum et al., 1999b, 2009; Shai
et al., 2015). We have extended the above understanding to show
that even for large coincident inputs at the distal dendrites, the
calcium spike is still required for effective propagation toward
the soma and informative and reliable coincidence detection.
However, the presence of local NMDA receptors in a biological
neuron evoking NMDA spikes, not represented in our model,
may reduce the threshold for the amount of synaptic inputs
required to activate the calcium channels (Larkum et al., 2009).

Our results also show that calcium spikes trigger large bursts
of action potentials for coincident inputs that are shared between
the distal and somatic compartments. In the absence of calcium
spikes, bursts of size two are triggered instead. Thus, a passive
neuron can detect shared coincident inputs, albeit with only a
modest change in firing activities. The default parametrization
of our neuron model does not reproduce the critical frequency
phenomenon, in which current stimuli applied to the soma of the
layer V pyramidal neuron at a sufficiently high frequency trigger
calcium spikes, which in turn trigger further bursts of action
potentials (Larkum et al., 1999b; Shai et al., 2015). However,
we demonstrate that a modified parametrization of our neuron
model does reproduce the critical property, but that this property
is not maintained when embedded in the fluctuation driven
regime. Here, somatic input currents trigger bursts of action
potentials independent of their frequency. Hence the role of
critical frequency in-vivo is not clear: whilst it is sufficient for
coincidence detection, our results argue against the claim that it
is necessary (Spruston, 2008).

To understand the consequences of differing coincidence
detection capacities for network activity, we examined the
behavior of a feed-forward network embedded in a randomly
connected network with a Gaussian connectivity profile. Again
we distinguished between a scenario in which the feed-forward
connections exist purely at the distal dendrite of the downstream
neurons, or at both the distal and the somatic compartments. In
the case of exc-exc synapses made solely with the distal dendrite,
activity propagation only takes place in the presence of calcium
spikes, even when the width of the feed-forward network is
increased. In the presence of calcium spikes, activity propagation
is stable with respect to increasing the amplitude of the synaptic
connections within the network.

If exc-exc synapses are established with both the distal
and somatic compartments, the presence of calcium spikes
enables activity propagation to take place with much fewer
neurons per pool than in the case of passive neurons. However,
with both active and passive neurons, as the strength of the
recurrent synapses are increased, spontaneous spiking activities
spanning several pools of the feed-forward network begin to
occur with increasing prevalence, adversely affecting the signal
to noise ratio of the activity propagation. In networks of
active neurons with strong synapses, the spontaneous activity
interacts with the propagated activity to result in network level
synchronized spiking, which can last for seconds. Thus, while
activity propagation is very robust for active neurons with respect
to the strength of synapses, it only results in distinguishable
signaling in a much smaller parameter range.
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A notable difference between the purely distal and shared
connectivity networks is that, with increasing synaptic
strength, activity propagation remains stable in the former
case (Figure 11), but becomes unstable in the latter (Figure 9).
The reason is primarily that synaptic inputs at the distal
compartment, even when synapses are strong, do not result
in action potentials when there are no large distal coincident
inputs to trigger calcium spikes. On the other hand, in the shared
case, sufficiently strong random synaptic inputs to the soma
result in synchronous spontaneous activities, which combine
with calcium spike enabled propagation activities to result in
network level sustained activities. The amount of coincident
inputs required to trigger a calcium spike is also reduced in the
event of an action potential due to its active backpropagation
to the distal compartment. Even if we increase the inhibition
in the network, synchronous spontaneous activities are still
prevalent, although network level sustained activities only last
for approximately the duration of the calcium spikes and not for
seconds.

This would necessarily imply that if activity propagation is
driven by binding (using calcium spikes) of feedforward and
feedback inputs as suggested by Larkum (2013), it is a highly
unstable process and other neuronal or network mechanism
such as short term plasticity (other than increased network
inhibition and detailed balance of excitation and inhibition) is
needed to keep it in check. It is also in the shared case that
the different calcium models lead to different network dynamics
at high scaling factors. This is due to the fact that the kinetics
model has a much longer recovery period than the duration
of a calcium spike before a full strength calcium spike can
be triggered again, whereas the refractory period of the fixed
waveform model is that of the calcium spike duration. It remains
to be seen whether a longer “soft” refractory period, during
which lower amplitude calcium spikes can still be triggered,
would be able to reproduce the network results of the kinetics
model.

Whereas our study makes no claim for the existence of
feed-forward networks in the brain, there are nonetheless
interesting implications for the large layer 5 pyramidal neurons.
The distal tuft dendrites of these neurons receive long range
corticocortical and thalamocortical inputs in layer 1 (Kuhn et al.,
2008; Petreanu et al., 2009), which in turn then project to
superficial layers of other cortical regions (Douglas and Martin,
2004). Our results suggest that these axon-distal connections
could be the substrate for reliable propagation of coincident
activity.

Activity propagation becoming unstable at higher synaptic
scaling factors (> 6.5) was previously observed in Jahnke
et al. (2012). We demonstrate that this result is dependent on
where coincident input arrives; with purely distal connectivity,
activity propagation remains stable for a larger range of
scaling factors. To check the validity of our conclusion,
we have also run simulations of embedded FFNs using
the point neuron model with fast sodium dendritic spikes
proposed by Jahnke et al. (2012). We find that with the
faster dendritic spike dynamics, we observe somewhat worse
activity propagation results as compared to our simulations

using shared connectivity settings as shown in Figures 9D,E

(see Supplementary Material for details). Our discovery of stable
and distinguishable propagation across a range of synaptic
strengths that does not result in spontaneous synchronous
activity is thus dependent on a dendritic spiking mechanism
residing at a compartment electrotonically distant from the soma.
This is not achievable with a classical point neuron model,
although we do not exclude the possibility of a formulation
of a point neuron that generates an effective electrotonic
distance. Whereas recent works such as Memmesheimer and
Timme (2012) and Wybo et al. (2015) demonstrate that point
neuron models can successfully model the somatic effect of
non-linear integration of dendritic inputs, our work shows
that at the network level, the electrotronic distance in a
compartmental model can result in very different network
dynamics.

Our three compartment neuron model by no means captures
all the properties of calcium spikes, yet it not only allows us
to investigate the role of calcium spikes but also potentially
how the different operating modes of the pyramidal neuron
(integrator vs. coincidence detector) interact with the calcium
spike, as one main implication of our findings is that fluctuating
synaptic inputs to the somatic compartment are integrated and
trigger action potentials (rate coding), whereas synaptic noise
at the distal compartment has little effect on the soma, and
only large synchronous inputs can trigger calcium spikes to
further trigger bursts of action potentials (temporal coding).
The concept of different parts of the pyramidal neuron having
a different coding scheme is not new, however in Branco and
Häusser (2011), the gradient was shown to exist along single
dendritic branches, while here the gradient is suggested to be
between the soma and distal compartments. However, it would
be premature to conclude this on the basis of the current
study, as we did not consider other (local) dendritic spikes
such as NMDA spikes that could reduce the requirement for
large synchronicity in the distal compartment (Larkum et al.,
2009). Moreover, bursts of action potential may also be triggered
by basal synaptic inputs due to NMDA spikes (Polsky et al.,
2004). In such a case, calcium spikes at the distal dendrite are
not involved, and basal/somatic coincident inputs and bursts of
action potentials as outputs are then mediated by a different
dendritic mechanism.

A further restriction of scope in our study is that we
did not take into account how calcium spikes may be
hijacked by distal or proximal inhibitory inputs so as to fail
in triggering bursts of action potentials. Such a mechanism
maybe mediated by the Martinotti cells,which upon receipt
of bursts of action potentials from a pre-synaptic pyramidal
neuron then laterally inhibits neighboring pyramidal neurons
(Silberberg and Markram, 2007). This could then implement a
winner-takes-all network. During the time course of a calcium
spike, the distal membrane potential is near to the excitatory
reversal potential. As such excitatory synaptic inputs during
this period results in very little conductances and is as good
as lost.

Despite this limitation, our results illustrate the critical role
calcium spikes play in influencing the spiking activities of
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individual neurons and networks of neurons. When inputs
are asynchronous, a network of neurons with active calcium
dynamics behaves like a network of passive neurons. However,
in the event that a spatially close sub-population of these
neurons receives coincident inputs, the network dynamics
can change fundamentally, generating activity propagation or
sustained network spiking as shown in Figures 9D,F. We
know that biological neurons, especially pyramidal cells, do
spike dendritically. While previous experimental recordings
lend much support to the notion these biological neural
networks behave as in the asynchronous irregular regime
(Brunel, 2000), this may change as soon as coincident inputs
arrive, for instance due to a sensory stimulus. Such a stimulus
could then trigger large feedforward burst of action potentials
targeting spatially close neurons in the sensory receptive
field, further triggering a cascade of events, made possible
by dendritic spikes. Already, there are experimental findings
showing dendritic spikes are critical for neuronal functions in-
vivo (Sivyer and Williams, 2013; Smith et al., 2013; Grienberger
et al., 2014; Palmer et al., 2014). Hence, if we are to study and
model how cortical networks process stimuli and attentional
feedback, we have to take into account how dendritic spikes
fundamentally change network behavior in the presence of
synchrony.
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