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A lattice study of the nucleon quark content at the physical point C. Torrero

1. Introduction

Due to their connection to the hadron spectrum, pion-nucleon and kaon-nucleon scattering,
counting rates in Higgs boson searches and direct detection of Dark Matter, the nucleon (N) up-
down and strange quark contents f N

ud and f N
s are important quantities from the phenomenological

point of view. They are defined as

f N
ud = mud

〈N|ūu+ d̄d|N〉
2M2

N
≡ σπN

MN
,

f N
q = mq

〈N|q̄q|N〉
2M2

N
≡ σqN

MN
, (1.1)

where q = u,d,s and mud = (mu + md)/2. Recalling that they cannot be obtained directly from
experiment, their first determinations come from phenomenology [1, 2]. However, they are af-
fected by large uncertainties and agree only marginally within errorbars. This situation prompted
new phenomenological studies [3]-[8] as well as a series of lattice computations [11]-[20] (recent
reviews on σπN can be found in [9] and [10]). However, it is still challenging to carry out a lattice
computation which avoids any model assumption and includes a complete error analysis. By ex-
ploiting the Feynman-Hellmann theorem, this work displays an ab-initio study of the nucleon quark
contents where the different sources of systematic uncertainty are carefully taken into account.

2. Methodology

The dataset at the basis of this study consists of 47 ensembles obtained through N f = 2 + 1
simulations performed with a tree-level-improved Symanzik gauge action and clover-improved
Wilson quarks, the latter featuring 2 levels of HEX link smearing. The ensembles are made up
of approximately 13000 configurations altogether, corresponding to 5 different lattice spacings a
(ranging from 0.054 fm to 0.116 fm), lattice sizes up to 6 fm and pion masses Mπ all the way down
to 120 MeV. This setup allows for a consistent control of systematic uncertainties when reaching
the physical point (Φ), i.e. when interpolating to physical m(Φ)

ud and m(Φ)
s and extrapolating to a→ 0

and L→ ∞, L being the lattice spatial size.
Though a direct computation of the matrix elements in Eq.(1.1) could in principle benefit the

precision on the results, such an approach entails taking into account disconnected quark contri-
butions as well as an involved renormalization pattern. An alternative possibility is given by the
Feynman-Hellmann theorem which connects f N

ud and f N
s to the derivatives of MN with respect to

mud and ms respectively. More precisely,

f N
ud =

mud

MN

∂MN

∂mud

∣∣∣∣
Φ

, f N
s =

ms

MN

∂MN

∂ms

∣∣∣∣
Φ

. (2.1)

This indirect approach is convenient since it only requires the computation of the nucleon and
(renormalized) quark masses. The hadron masses of interest here can be extracted by fitting the
asymptotic behaviour of suitable 2−point time correlators C(t) — which do not imply any dis-
connected diagrams — while quark masses can be obtained through the ratio-difference method
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described in [21]. Quark masses are then renormalized non-perturbatively in the Renormaliza-
tion Group Invariance (RGI) scheme, using a generalization of the Rome-Southampton method as
explained in [21]. Gaussian sources and sinks are employed in the evaluation of C(t) while, in
applying the ratio-difference method, sources are Gaussian while sinks are point-like.

3. Data analysis

In computing the derivatives in Eq. (2.1), it is important to notice that usually Chiral Pertur-
bation Thoery (χPT) is invoked and the dependence with respect to mud and ms is traded for the
dependence with respect to M2

π and M2
Kχ = M2

K −M2
π/2. However, in the present study, the qual-

ity of the dataset at disposal allows for avoiding any χPT-related assumption (which might entail
some systematics, especially for f N

s ) and for studying the contributions of quark masses to hadron
masses explicitly. Since m(Φ)

ud and m(Φ)
s cannot be measured experimentally, they need to be fixed

by fitting the quark-mass dependence of two hadron masses — other than MN — whose physical
value is known: a convenient choice is given by M2

π and MKχ . Besides MN , M2
π and MKχ , a fourth

observable is needed in order to set the scale and, as often the case, the Ω baryon mass, MΩ, turns
out to be appropriate.

In the fit of C(t), assessing when the asymptotic behaviour sets in is a non-trivial task, usu-
ally carried out by relying on eye judgement and/or on the fit quality. However, the latter being a
stochastic variable on its own, a more systematic approach is given by the Kolmogorov-Smirnov
(KS) test [23] which consists in comparing the empirical distribution function E(x) of a stochastic
variable x with a reference distribution F(x). After determining their maximal distance D defined
as D = supx |F(x)−E(x)|, a significance level P is computed. In the present work, for a given
hadron mass, the initial time tmin in physical units is fixed together with the length ∆t (in lattice
units) of the time interval where the asymptotics of C(t) is then fitted on the 47 ensembles. After-
wards, the KS test is applied to the distribution of the corresponding fit qualities and, if P is larger
than 0.3, the combination (tmin,∆t) is considered good. Otherwise the test is repeated by varying
either tmin or ∆t or both. This procedure is separately applied to all masses needed in the study.

Once that the mass of hadron X in lattice units has been obtained, its dependence on mud and
ms has to be parametrized. This is carried out by means of a function like

(aMX)nX =anX (1+ga
X(a))

(
1+gFV

X (Mπ ,L)
)(

M(Φ)
X

)nX

[
1+ ca,ud

X (a) m̃ud +ca,s
X (a) m̃s +h.o.t.

]
, (3.1)

where X = N, Ω, π, Kχ with nX = 2 for X = π and nX = 1 otherwise. Quark mass terms are
given by m̃q = mRGI

q −m(Φ)
q (q = ud,s) with mRGI

q = amqZ−1
s (β )/a(1 + ga

q(a)), Zs(β ) being the
non-perturbative renormalization constant in the RGI scheme computed in a dedicated study [21].
In Eq. (3.1), h.o.t. denotes higher-order terms in the Taylor expansion while coefficients ga

X(a) and
gFV

X (Mπ ,L) parametrize discretization and finite-volume corrections respectively, the latter mod-
elled in the spirit of [24, 25]. Coefficients ca,q

X (a) (q = ud,s) are given by ca,q
X (a) = cq

X(1+ga,q
X (a)),

where ga,q
X (a) parametrizes the continuum extrapolation of the slope parameter cq

X .
The only experimental input in Eq.(3.1) corresponds to M(Φ)

Ω
, Mπ

(Φ) and M(Φ)
Kχ (set to 1672.45MeV,
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Figure 1: (Color online) Typical dependence of MN with respect to mRGI
ud (left) and mRGI

s (right). The black

point represents the numerical result for M(Φ)
N while the horizontal line corresponds to its experimental value.

134.8MeV and 484.9MeV[26] respectively1), all other coefficients being fit parameters to be deter-
mined by minimizing a standard χ2 function where errorbars on data have been obtained through
a bootstrap procedure with 2000 samples. All four hadron masses are fitted at the same time: note
that some coefficients in Eq.(3.1) — namely m(Φ)

ud , m(Φ)
s , ga

q(a) and the lattice spacings — are in
common. All fits are correlated, including those of C(t) described previously.

4. Evaluation of statistical and systematic uncertainties

In order to carry out an ab-initio study, it is necessary not to make any a priori assumptions
and to assess the impact of the different sources of systematic error. This goal is accomplished by
allowing for variations at different stages of the data analysis as in [27].

As for the fit of the 2−point time correlators, two different time ranges have been considered,
the first corresponding to the setup (tmin,∆t) obtained through the KS test, the second obtained by
shifting tmin forward by one timeslice for each particle mass while keeping ∆t fixed. Truncation
errors in the Taylor expansion have been taken into account by pruning the data with two cuts in
the pion mass at 320 MeV and 480 MeV. In addition to this, higher-order terms proportional to m̃2

ud

(or also a χPT-inspired [(mRGI
ud )3/2− (m(Φ)

ud )3/2] for MN), m̃3
ud , m̃udm̃s and m̃2

udm̃s in (3.1) have been
considered. Concerning cut-off effects, the improvement procedure should grant leading O(αsa)
corrections (αs being the strong-coupling constant) but, in practice, HEX smearing might result in
O(a2) corrections being dominant: both possibilities are taken into account by setting ga

N(a) to be
proportional to either a2 or αsa. As for the uncertainties associated with the definition of Zs(β ),
this is accounted for by allowing for six different procedures to be alternatively employed in the
renormalization process [21]. Finally, any further uncertainty is estimated by replacing the Taylor
expansion in Eq.(3.1) with Padé approximants in the fit of MN .

1Consequently, the corresponding discretization corrections are set to zero by definition, only ga
N(a) is left.
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Figure 2: (Color online) Comparison of the results for f N
ud (left) and f N

s (right) obtained in this work with
other studies.

This overall procedure leads to 192 different analyses, each one providing a result for f N
ud and

f N
s as an output. These 192 values are subsequently weighed through Akaike’s Information Crite-

rion (AIC) [28], the AIC-weighed mean and standard deviation corresponding to the mean value
and systematic error of the given observable respectively. The statistical error is computed through
the bootstrap error on the AIC-weighed mean.

With such a procedure, the systematics associated with the continuum extrapolation of the
leading M(Φ)

N term in (3.1) is accounted for while the uncertainties related to the continuum extrap-
olation of the sub-leading f N

ud or f N
s contributions are not. Indeed, the discretization terms ga,q

N (a),
were considered to be zero in the above analyses. In order to take them into account, the terms
ga,q

N (a) were set to be proportional to either αsa or a2 and M(Φ)
N was fixed to its experimental value

to stabilize the corresponding fits. Even with such a setup, only corrections in ca,ud
N (a) are sup-

ported by the data. By including these and by performing the same variation of 192 analyses as in
the procedure described above, the central values of f N

ud increases by 0.0024 and f N
s decreases by

0.038 compared to the standard analysis. We use this variation to estimate the uncertainty associ-
ated with the continuum extrapolation of the quark contents. It has been added in quadrature to the
systematic error obtained in the standard analysis and propagated throughout.

5. Results and discussion

A check of the accuracy of our approach is given by the comparison between the numerical
result for M(Φ)

N and its experimental value. Our estimate reads MN = 929(16)(7) MeV — the
numbers between brackets are the statistical and systematic error in order — in good agreement
with experiment (938.9 MeV). An example of the typical dependence of MN with respect to mRGI

ud
and mRGI

s is shown in Fig. (1).
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The final results for the quark contents are

f N
ud = 0.0405(40)(35) , f N

s = 0.113(45)(40) , (5.1)

which agree with most lattice computations within errorbars, as can be deduced from Fig. (2).
Results obtained by weighing the analyses with a constant weight or with their fit quality are con-
sistent with the values in Eq.(5.1).

While the precision on the light quark content is good (the combined error reads 13%), the
overall uncertainty on f N

s is still large, 53% approximately. This is a consequence of the fact that,
as is shown in the rightmost plot of Fig. (1), the dependence of MN with respect to ms is small, this
being the major drawback of the present approach based on the Feynman-Hellmann theorem. In
order to try to improve on the precision, the whole analysis has also been carried out by fixing M(Φ)

N
to its experimental value but the impact on the errorbars is not significant. To our understanding,
the uncertainty on f N

s in the Feynman-Hellmann approach can be narrowed only by reducing the
statistical error on the data and by increasing the lever arm on ms.

Acknowledgments

Computations were performed using the JUGENE installation of FZ Jülich and HPC resources
provided by GENCI-IDRIS (grant 52275), as well as further resources at FZ Jülich and clusters at
Wuppertal and CPT. This work was supported in part by the OCEVU Labex (ANR-11-LABX-
0060), the A*MIDEX project (ANR-11-IDEX-0001-02) and by DFG grant SFB/TRR-55.

References

[1] J. Gasser, H. Leutwyler, and M. Sainio, Sigma-term update, Phys. Lett. B253 (1991) 252.

[2] M. Pavan, I. Strakovsky, R. Workman, and R. Arndt, The pion-nucleon Sigma term is definitely large:
results from a G.W.U. analysis of pion nucleon scattering data, PiN Newslett. 16 (2002) 110,
[hep-ph/0111066].

[3] J. M. Alarcon, J. Martin Camalich, and J. A. Oller, The chiral representation of the πN scattering
amplitude and the pion-nucleon sigma term, Phys.Rev. D85 (2012) 051503, [hep-ph/1110.3797].

[4] L. Alvarez-Ruso, T. Ledwig, J. Martin Camalich, and M. J. Vicente-Vacas, The nucleon mass and
pion-nucleon sigma term from a chiral analysis of lattice QCD world data, Phys. Rev. D88 (2013)
054507 [hep-ph/1304.0483].

[5] X.-L. Ren, L.-S. Geng, and J. Meng, Scalar strangeness content of the nucleon and baryon sigma
terms, Phys. Rev. D91 (2014) 051502 [hep-ph/1404.4799].

[6] M. Lutz, R. Bavontaweepanya, C. Kobdaj, and K. Schwarz, On finite volume effects in the chiral
extrapolation of baryon masses, Phys. Rev. D90 (2014) 054505 [hep-lat/1401.7805].

[7] J. M. Alarcon, L. S. Geng, J. Martin Camalich, and J. A. Oller, The strangeness content of the nucleon
from effective field theory and phenomenology, Phys. Lett. B730 (2014) 342
[hep-ph/1209.2870].

[8] M. Hoferichter, J. Ruiz de Elvira, B. Kubis, and U.-G. Meissner, High-Precision Determination of the
Pion-Nucleon σ Term from Roy-Steiner Equations, Phys. Rev. Lett. 115 (2015) 9, 092301
[hep-ph/1506.04142].

6



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
1
2
8

A lattice study of the nucleon quark content at the physical point C. Torrero

[9] M. Hoferichter, J. Ruiz de Elvira, B. Kubis, and U.-G. Meissner, Roy-Steiner-equation analysis of
pion-nucleon scattering, [hep-ph/1510.06039].

[10] H. Leutwyler, Theoretical aspects of Chiral Dynamics, [hep-ph/1510.07511].

[11] C. Alexandrou, et al. (ETM Collaboration), The low-lying baryon spectrum with two dynamical
twisted mass fermions, Phys. Rev. D80 (2009) 114503 [hep-lat/0910.2419].

[12] D. Toussaint and W. Freeman (MILC), The strange quark condensate in the nucleon in 2+1 flavor
QCD, Phys. Rev. Lett. 103 (2009) 122002 [hep-lat/0905.2432].

[13] R. Babich, R. C. Brower, M. A. Clark, et al., Exploring strange nucleon form factors on the lattice,
Phys. Rev. D85 (2012) 054510 [hep-lat/1012.0562].

[14] G. S. Bali, et al. (QCDSF Collaboration), The strange and light quark contributions to the nucleon
mass from Lattice QCD, Phys. Rev. D85 (2012) 054502 [hep-lat/1111.1600].

[15] R. Horsley, et al. (QCDSF-UKQCD Collaborations), Hyperon sigma terms for 2+1 quark flavours,
Phys. Rev. D85 (2012) 034506 [hep-lat/1110.4971].

[16] S. Durr, Z. Fodor, T. Hemmert, C. Hoelbling, J. Frison, et al. (BMW Collaboration), Sigma term and
strangeness content of octet baryons, Phys. Rev. D85 (2012) 014509 [hep-lat/1109.4265].

[17] W. Freeman et al. (MILC Collaboration), The intrinsic strangeness and charm of the nucleon using
improved staggered fermions, Phys. Rev. D88 (2013) 054503 [hep-lat/1204.3866].

[18] P. Junnarkar, and A. Walker-Loud, The Scalar Strange Content of the Nucleon from Lattice QCD,
Phys. Rev. D87 (2013) 114510 [hep-lat/1301.1114].

[19] M. Gong, et al. (XQCD), Strangeness and charmness content of nucleon from overlap fermions on
2+1-flavor domain-wall fermion configurations, Phys. Rev. D88 (2013) 014503
[hep-ph/1304.1194].

[20] C. Alexandrou, V. Drach, K. Jansen, C. Kallidonis, and G. Koutsou, Baryon spectrum with
N f = 2+1+1 twisted mass fermions, Phys. Rev. D90(7) (2014) 074501 [hep-lat/1406.4310].

[21] S. Durr, Z. Fodor, C. Hoelbling, S. D. Katz, et al. (BMW Collaboration), Lattice QCD at the physical
point: Simulation and analysis details, JHEP 1108 (2011) 148 [hep-lat/1011.2711].

[22] A. Crivellin, M. Hoferichter, M. Procura, Accurate evaluation of hadronic uncertainties in
spin-independent WIMP-nucleon scattering: Disentangling two- and three-flavor effects, Phys. Rev.
D89 (2014) 054021 [hep-ph/1312.4951].

[23] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C++: The Art of
Scientific Computing, Cambridge University Press, 2002.

[24] G. Colangelo, S. Durr, C. Haefeli, Finite volume effects for meson masses and decay constants, Nucl.
Phys. B721 (2005) 136 [hep-lat/0503014].

[25] G. Colangelo, A. Fuhrer, C. Haefeli, The pion and proton mass in finite volume, Nucl. Phys. Proc.
Suppl. 153 (2006) 41 [hep-lat/0512002].

[26] S. Aoki, Y. Aoki, C. Bernard, T. Blum, et al., Review of lattice results concerning low energy particle
physics, Eur. Phys. J. C74 (2014) 2890 [hep-lat/1310.8555].

[27] S. Durr, Z. Fodor, J. Frison, C. Hoelbling, et al. (BMW Collaboration), Ab-initio Determination of
Light Hadron Masses, Science 322 (2008) 1224 (2008) [hep-lat/0906.3599].

[28] Sz. Borsanyi, S. Durr, Z. Fodor, C. Hoelbling, et al. (BMW Collaboration), Ab initio calculation of
the neutron-proton mass difference, Science 347 (2015) 1452 (2015) [hep-lat/1406.4088].

7


