

FORSCHUNGSZENTRUM JÜLICH GmbH

Institut für Reaktorwerkstoffe

Cäsium-Sorptionsuntersuchungen an graphitischen Reaktorwerkstoffen

von

J. Kwasny K. Hilpert H. Nickel

Jül – 2353 April 1990 ISSN 0366-0885

Als Manuskript gedruckt

Forschungszentrum Jülich: Berichte Nr. 2353

Institut für Reaktorwerkstoffe D 82 (Diss. T. H. Aachen) Jül-2353

Zu beziehen durch: ZENTRALBIBLIOTHEK · Forschungszentrum Jülich GmbH Postfach 1913 · D-5170 Jülich (Bundesrepublik Deutschland) Telefon: 02461/61-0 · Telefax: 02461/61-6103 · Telex: 833556-70 kfa d

Cäsium-Sorptionsuntersuchungen an graphitischen Reaktorwerkstoffen

von

J. Kwasny* K. Hilpert H. Nickel

*D 82 (Diss. T. H. Aachen)

Forschungszentrum Jül-2353 April 1990 Jülich GmbH Dissertation^{*} IRW

> Investigation of the sorption of cesium by grahitic reactor materials

> > bу

J. Kwasny^{*} K. Hilpert H. Nickel

Abstract

A Knudsen cell-mass spectrometer system has been developed for vapour pressure measurements to determine the sorption isotherms of Cs for graphitic reactor materials. Double Knudsen cells heated by high frequency were employed in this system. A high vacuum furnace with a specially designed oven-cell was used for isopiestic experiments carried out in addition to the mass spectrometric studies. The Cs equilibrium partial pressure was measured at temperatures 950 and 1820 K over A3-3 fuel element matrix with Cs concentrations between 0.17 and 34.76 mmol/kg. Sorptionisotherms of Cs according to Henry and Freundlich were evaluated from the vapour pressure data. The sorption enthalpies for Cs obtained indicate a strong bond by chemisorption. The Cs sorption of the "reactor graphites" A3-3, A3-27, ASR-1RG, ASR-1RS, ASR-2RS, PAN, P3-JHAN, PXA-2N, H-451, H-327, IG-110 and the coat-mix materials CM-100 and CM-30 resulted by the isopiestic method. It could be shown that graphitic reactor materials with phenolic resin binder are able to bind a substantially higher amount of Cs by sorption than "reactor graphites" without this binder. More information about the content of this report is given in chapter 8 "Zusammenfassung und Ausblick" (Summary and outlook).

Forschungszentrum Jülich GmbH IRW

Jül-2353 Dissertation*

April 1990

Cäsium-Sorptionsuntersuchungen an graphitischen Reaktorwerkstoffen

von

J. Kwasny^{*} K. Hilpert H. Nickel

Kurzfassung

Zur Durchführung der Sorptionsuntersuchungen wurde für die Dampfdruckmessungen ein System Quadrupol-Massenspektrometer mit zwei induktiv beheizbaren Knudsen-Zellen entwickelt. Für die zusätzlich durchgeführten isopiestischen Experimente wurde ein Hochvakuumofen mit einer speziell hierfür konzipierten, verschließbaren Ofenzelle eingesetzt. Gemessen wurden die Cs-Gleichgewichtsdampfdrücke im Temperaturbereich zwischen 950 und 1820 K über A3-3 Brennelement-Matrixgraphit mit Cs-Konzentrationen zwischen 0,17 und 34,76 mmol/kg. Cs-Sorptionsisothermen nach Henry und Freundlich konnten aus den Dampfdruckdaten ausgewertet werden. Die Größe der Sorptionsenthalpien weist auf eine starke Bindung durch Chemisorption hin. Mit der isopiestischen Methode wurde das Cs-Sorptionsvermögen der "Reaktorgraphite" A3-3, A3-27, ASR-1RG, ASR-1RS, ASR-2RS, PAN, P3-JHAN, PXA-2N, H-451, H-327, IG-110 und der Coat-Mix Materialien CM-100 und CM-30 verglichen. Es konnte u.a. gezeigt werden, daß graphitische Reaktormateri-alien mit Phenolharzbinder ein wesentlich größeres Sorptionsvermögen für Cs zeigen als phenolharzfreie Materialien. Weitere Informationen über den Inhalt dieses Reports sind dem Kapitel 8 "Zusammenfassung und Ausblick" zu entnehmen.

INHALTSVERZEICHNIS

1.	EINLEITUNG	1
2.	PROBLEMSTELLUNG UND ZIELSETZUNG	3
3.	GRUNDSÄTZLICHE BETRACHTUNGEN ZUR CÄSIUM- SORPTION AN GRAPHITISCHEN REAKTORWERKSTOFFEN	6
3.1	Einführung	6
3.2	Grundbegriffe der Sorption	6
3.3	Art der Sorptionskräfte	8
3.4	Haftkoeffizient und Akkomodationskoeffizient	10
3.5	Sorptionseffekte und ihre Bedeutung	11
3.5.1	Sorptionswärme	11
3.5.2	Sorptionsisothermen	13
4.	EXPERIMENTELLE EINRICHTUNGEN UND METHODISCHE ENTWICKLUNGSARBEITEN	15
4.1	Aufbau eines Systems Quadrupolmassenspektro- meter mit Knudsenzellen	15
4.2	Aufbau einer isopiestischen Apparatur	26
5.	PRÄPARATION	31
5.1	Probenvorbehandlung	31
5.2	Herstellung einer Cs-Quelle	32
6.	MEBMETHODEN, VERSUCHSDURCHFÜHRUNG UND AUS- WERTUNGSVERFAHREN	36
6.1	Partialdampfdruckmessungen mit der Knudsen- Effusionsmethode	36
6.1.1	Allgemeine Grundlagen zur Verdampfung unter Knudsenbedingungen	36
6.1.2	Zusammenhang zwischen gemessenen Ionenströ- men und den Partialdampfdrücken	38
6.1.3	Verfahren zur Bestimmung der Druckkalibrie- rungskonstante	48

Seite

6.2	Temperaturmessung	50
6.3	Gammaspektrometrische Konzentrationsbe- stimmung	53
6.4	Bestimmung und Aussagekraft der inneren und äußeren Oberfläche	56
6.5	Durchführung der massenspektrometrischen Versuche	59
6.6	Auswertungsverfahren für die massenspektro- metrischen Ergebnisse	66
6.7	Durchführung der isopiestischen Versuche	69
7.	DARSTELLUNG DER ERGEBNISSE UND DISKUSSION ZUR CS-SORPTION	71
7.1	Untersuchte graphitische Reaktorwerkstoffe	71
7.2	Zusammenstellung bisher durchgeführter Untersuchungen	77
7.3	Ergebnisse und Diskussion	86
7.3.1	Massenspektrometrische Experimente	86
7.3.2	Isopiestische Experimente	92
7.3.3	Vergleichende Betrachtungen	102
8.	ZUSAMMENFASSUNG UND AUSBLICK	105
9.	LITERATURVERZEICHNIS	109
10.	SYMBOLVERZEICHNIS	120
11.	ANHANG	123
11.1	Grundlegende Betrachtung zur Sorptionswärme	104
11.2	Apparative Aspekte zur Massenspektrometrie	124
11.3	Polykristalline Reaktorgraphite	127
11.3.1	Zusammensetzung und Herstellungsverfahren	135
11.3.2	Struktur und Eigenschaften	251
11.4	Vergleich der angewandten Methoden zur Untersuchung der Cs-Sorption	140
11.5	Cs-Dampfdruckmessungen an A3-3	143
		147

1. EINLEITUNG

Bereits Mitte der 50er Jahre begann man mit der Entwicklung von Hochtemperaturreaktoren (HTR). Seit dieser Zeit wurden eine Reihe von HTR-Konzepten diskutiert und bis zur technischen Reife entwickelt. Als wichtigste HTR-Testreaktoren dienten der PEACH BOTTOM (USA/1967-1974) und der AVR D/1967-1988), der DRAGON (GB/1968-1975) sowie die Prototypreaktoren FORT ST. VRAIN (USA/seit 1976) und der Thorium-Hochtemperaturreaktor (THTR) in Schmehausen (D/seit 1986). Hierbei wurden unterschiedliche Brennelementkonzepte verwirklicht. So wurden hinsichtlich des Coreaufbaus bzw. der Anordnung der Brennelemente durch die Entwicklung prismatischer Brennelemente in den USA und kugelförmiger Brennelemente in Deutschland zwei verschiedene Wege beschritten. Allen HTR jedoch gemeinsam sind die charakteristischen Merkmale:

- der Brennstoff befindet sich in Form von beschichteten Teilchen ("coated particles") in den Brennelementen,
- ein aus graphitischen Werkstoffen bestehendes Core,
- Helium als Primär-Kühlmittel./1,2/

Eine der zentralen Fragen in der Diskussion um Nutzen und Risiko der Kernenergie ist die Frage nach der Sicherheit von Kernkraftwerken. Die mögliche Freisetzung von Spaltprodukten spielt hierbei eine wichtige Rolle. Spaltprodukte und die damit verbundene Radioaktivität können unter drei Umständen freigesetzt werden:

 Im NORMALBETRIEB, dem bestimmungsgemäßen Betrieb (einschließlich der Betriebsstörungen ohne Sicherheitsbedeutung), werden die entstehenden Spaltprodukte weitestgehend innerhalb des Cores zurückgehalten.

- Unter STÖRFÄLLEN versteht man Ereignisabläufe, nach denen die Anlage aus sicherheitstechnischen Gründen nicht weiterbetrieben werden kann, für die die Anlage jedoch so ausgelegt ist, daß die Folgen für die Umgebung bestimmte Grenzwerte nicht überschreiten.
- Als UNFÄLLE bezeichnet man Ereignisabläufe, die im hypothetischen Bereich und jenseits der sicherheitsmäßigen Auslegung von Kernkraftwerken liegen./3/

Im Zusammenhang mit der vorliegenden Arbeit interessiert das Cäsium-Sorptionsverhalten von Brennelementmatrix und Reflektorgraphit deutscher Hochtemperaturreaktoren und der Vergleich zu amerikanischen, japanischen und französischen graphitischen Reaktorwerkstoffen.

2. PROBLEMSTELLUNG UND ZIELSETZUNG

Für den Reaktorkern (Core) von gasgekühlten Hochtemperaturreaktoren, der im wesentlichen aus den Reflektoren und den Brennelementen besteht, werden überwiegend graphitische Werkstoffe verwendet. Sie erfüllen eine Reihe von Anforderungen, die an Moderator- und Reflektorwerkstoffe gestellt werden.

wesentlichen Unterschiede zwischen amerikanischen und Die deutschen Anlagen bestehen in der Form und Zusammensetzung der Brennelemente. In amerikanischen Hochtemperaturreaktoren werden blockförmige Brennelemente mit hexagonalem Querschnitt, in deutschen dagegen kugelförmige Brennelemente eingesetzt. Als Binder wird in deutschen HTR Phenolharz verwendet im Gegensatz zu Steinkohlenteerpech in den amerikanischen Reaktoren (s. 11.3) /4,5/. Die Abb. 2.1 zeigt den prinzipiellen Anhang Brennelemente eines Kugel-Aufbau eines Cores und der haufenreaktors.

Abb.2.1: Querschnitt durch ein Core und die Brennelemente eines HTR/6/

Der Durchmesser der kugelförmigen Brennelemente beträgt 60 mm. Die innere Zone mit einem Durchmesser von 50 mm enthält je nach HTR-Typ ca. 10000 bis 40000 sphärische Kernbrennstoffteilchen (mittlerer Durchmesser ca. 0,5 mm), die in der graphitischen Matrix gleichmäßig eingebettet sind. Jedes Kernbrennstoffteilchen ist von mehreren Hüllschichten aus Pyrokohlenstoff bzw. Siliciumcarbid umgeben./7,1/

Die während des Reaktorbetriebes entstehenden Spaltprodukte werden im Normalbetrieb überwiegend innerhalb der beschichteten Kernbrennstoffteilchen zurückgehalten./8,9/ Die im bestimmungsgemäßen Betrieb auftretende Radioaktivität stammt im wesentlichen von Jod und den Edelgasen Krypton und Xenon. Dagegen ist die durch metallische Spaltprodukte entstehende Radioaktivität vernachlässigbar gering. Als Ursache für die Freisetzung im Normalbetrieb sind die herstellungs- und strahlungsbedingten Partikeldefekte sowie die herstellungsbedingte Urankontamination des Brennelementgraphits und der Partikelbeschichtung zu nennen.

Anders sieht es bei einer Coreaufheizung infolge eines Störfalles aus. Hierbei kann es zu einer verstärkten Spaltproduktfreisetzung kommen, zum einen bedingt durch die erhöhte Diffusion der metallischen Spaltprodukte (insbes. Cäsium, Strontium, Silber) durch die intakte Partikelbeschichtung und zum anderen durch zunehmende Partikeldefekte.

Die metallischen Spaltprodukte lagern sich teilweise an kälteren graphitischen Oberflächen (Brennelemente und Reflektoren) und zusammen mit Jod an metallischen Oberflächen (Dampferzeuger) ab./10,11/

Für den Spaltprodukt-Transport in graphitischen Reaktormaterialien sind grundsätzlich zwei Mechanismen verantwortlich:

die Diffusion unddie Sorption

- 4 -

In dieser Arbeit soll nun das Sorptionsverhalten des metallischen Spaltproduktes Cäsium im Brennelementgraphit und im graphitischen Werkstoff des Deckenreflektors eines deutschen HTR bei hohen Temperaturen, wie sie bei einer störfallbedingten Coreaufheizung möglich sind, untersucht werden. Die in diesem Zusammenhang interessierenden maximalen Temperaturen orientieren sich am Auslegungsstörfall eines HTR-500 und HTR-Modul. Sie beträgt beim HTR-500 T_{max} = 1200 - 1300°C und beim HTR-Modul T_{max} ≈1600°C nach 40 - 60 Stunden. Für diese Arbeit stellen sich im einzelnen folgende Aufgaben:

- Entwicklung und Aufbau geeigneter Apparaturen zur Messung von Dampfdrücken unter Gleichgewichtsbedingungen und für isopiestische Versuche,
- Ermittlung von Cs-Gleichgewichtsdampfdrücken über A3-Matrixgraphit mit der Knudsen-Effusionsmethode,
- Berechnung thermodynamischer Daten zur Cs-Sorption, insbesondere der Sorptionsisothermen über A3-Brennelement-Matrixgraphit und Vergleich zu anderen graphitischen Werkstoffen für Kernreaktoren,
- Vergleich des Sorptionsverhaltens unterschiedlicher Brennelement-, Reflektorgraphite und des in A3-Matrix verwendeten
 Phenolharzbinders mit der isopiestischen Methode.

3. GRUNDSÄTZLICHE BETRACHTUNGEN ZUR CÄSIUM-SORPTION AN GRAPHI-TISCHEN REAKTORWERKSTOFFEN

3.1 Einführung

Atome oder Moleküle, die sich an der Oberfläche einer Phase befinden, können nicht symmetrisch, sondern nur einseitig mit Nachbaratomen in Wechselwirkung treten. Sie unterscheiden sich deshalb von denen im Innern der Phase, da sie oft nicht abgesättigte Valenzen aufweisen, die eine Bindung von Fremdatomen oder -molekeln an der Oberfläche ermöglichen /12,13/. Dieser Vorgang ist für die graphitischen Reaktormaterialien von erheblichem Interesse und wird als Sorption bezeichnet.

Die Untersuchung dieser Sorptionsprozesse soll Aufschluß geben über die an der Oberfläche sorbierte Cäsiummenge, die Beeinflussung dieser Menge durch Druck und Temperatur, die Stärke der sorptiven Bindung und über die Veränderungen, die die sorbierende graphitische Oberfläche als Folge der Cäsium-Sorption erleidet.

3.2 Grundbegriffe der Sorption

Da es bisher auf dem Gebiet der Sorption noch keine einheitliche Nomenklatur gibt, sollen, um Mißverständnisse zu vermeiden, hier einige Grundbegriffe und -zusammenhänge erläutert werden.

Allgemein wird die Sorptionsphase gebildet aus:

D.h. durch die Wechselwirkung zwischen einem Adsorbens und einem Adsorpt¹⁾ baut sich ein (Ad-)Sorbat auf. Übertragen auf

¹⁾ Das ist die bereits gebundene Form des Adsorptivs.

die in dieser Arbeit untersuchte Cs-Sorption ist der graphitische Reaktorwerkstoff das Adsorbens und das (noch nicht sorbierte) Cäsium das Adsorptiv.

Der Begriff "Sorption" umfaßt sowohl die Adsorption als auch die Absorption. Unter der Adsorption soll der reine Oberflächeneffekt verstanden werden, also der Fall, bei dem Molekel oder Atome eines Gases an der Oberfläche eines Feststoffes gebunden werden. Tritt zusätzlich eine Aufnahme des Gases auch im Innern des Festkörpers auf, also ein Volumeneffekt, so spricht man von Absorption, sofern der Volumeneffekt überwiegt.

Im Zusammenhang mit graphitischen Reaktormaterialien wird der Begriff "Sorption" verwendet, wenn man über das relative Ausmaß von Oberflächen- und Volumeneffekten zunächst nichts aussagen will oder kann. Die vor allem in der älteren Literatur üblichen Begriffe "Adsorption" und "Chemisorption" sind häufig nicht klar definiert. Als Richtgröße wird zur Abgrenzung nicht selten die bei einem Sorptionsprozeß auftretende Sorptionswärme herangezogen. Hierbei wird ein sorptiver Vorgang als Adsorption bezeichnet, wenn die benötigte Sorptionswärme weniger als 42 kJ/mol betrug. Oberhalb von 42 kJ/mol spricht man demnach von Chemisorption.

Da diese Einteilung jedoch nicht frei von Willkür ist, führt die folgende Betrachtung zu einer genaueren Unterscheidung zwischen Chemi- und Physisorption: Läßt man sehr aktive Gase auf Adsorptien einwirken, so kommt es bereits bei Raumtemperatur zur Bildung chemischer Verbindungen an der Oberfläche, wie dies z. B. bei Sauerstoff auf verschiedenen Metallen der Fall ist. Die Sorptionswärmen entsprechen dann den Bildungswärmen. Die Sorption ist in diesem Fall also identisch mit einer chemischen Reaktion.

Werden dagegen inaktive Gase (vor allem Edelgase) in Form einer sehr lockeren Haftung der sorbierten Atome oder Molekel

- 7 -

an die sorbierende Oberfläche gebunden, liegen die Sorptionswärmen in der Größenordnung der Kondensationswärmen. Bei dieser lediglich durch Dispersionskräfte zustandekommenden Bindung spricht man von Physisorption.

Bei den meisten Sorptionsprozessen mißt man jedoch Sorptionswärmen, die größer als die Kondensationswärmen, aber kleiner als die Bildungswärmen der entsprechenden chemischen Verbindungen sind. Diese Sorptionsart wird als Chemisorption bezeichnet, da sie Eigenschaften aufweist, die zwischen den beiden Grenzfällen der chemischen Verbindung und der Physisorption liegen. Die so entstandenen Sorbate können durch Temperaturerhöhung mehr oder weniger leicht wieder zerstört werden, indem die sorbierten Gase entweder wieder desorbiert werden oder aufgrund der erhöhten Temperaturen zerfallen oder aber sich mit anderen sorbierten Gasen umsetzen. Das Adsorpt kann im Gegensatz zu einer chemischen Verbindung unter Umständen auf der sorbierenden Oberfläche sehr beweglich sein./14/

Aus der obigen Betrachtung ergibt sich somit ein fließender Übergang zwischen der Physisorption und der Chemisorption. Zur Charakterisierung der beiden Sorptionsarten dient vor allem die Größe der Sorptionswärme, der Temperaturbereich und die Konzentration des sorbierten Gases./15/

3.3 Art der Sorptionskräfte

Die Natur der Sorptionskräfte ist ähnlich den Kräften, die zwischen zwei gleichen Atomen oder Molekeln auftreten. Im Fall der Sorption liegen jedoch die Atome des einen Reaktionspartners, in diesem Fall des graphitischen Reaktorwerkstoffes, als in den Festkörper eingebaute Atome vor. Man kann folgende Kräftearten unterscheiden:

- Dispersionskräfte,
- Repulsions- oder Abstoßungskräfte,
- Kräfte durch Dipol-Wechselwirkung,
- Valenzkräfte,
- Wechselwirkungskräfte zwischen den Adsorptmolekeln oder -atomen.

Dispersionskräfte sind relativ weitreichend und beruhen auf der Anziehungskraft zwischen zwei Atomen trotz symmetrischer Ladungsverteilung durch Fluktuieren der Ladungswolke über Resonanz.

Repulsions- oder Abstoßungskräfte treten dagegen durch überlappende Eigenfunktionen von sehr stark angenäherten Partnern auf.

Weitere Kräfte, die bei den Wechselwirkungen zu berücksichtigen sind, wirken nur bei einem polaren Adsorbens und Adsorptiv. Für diesen Fall sind außerdem folgende Kräfte zu beachten:

Kräfte durch Dipol-Wechselwirkung entstehen (zusätzlich zu den Dispersions- und Repulsionskräften), wenn ein unpolares Adsorbens/Adsorptiv an ein polares Adsorptiv/Adsorbens oder ein jeweils polares Adsorptiv und Adsorbens gebunden wird.

Valenzkräfte treten wie die Repulsionskräfte bei starker Annäherung der Partner auf, sofern sich die Eigenfunktionen in geeigneter Weise überlappen. Sie sind typisch für die Chemisorption.

Wechselwirkungskräfte zwischen den Adsorptmolekeln oder -atomen sind bei großer Belegung des Adsorbens mit dem Adsorpt zu beobachten, da der Abstand zwischen den Adsorptmolekeln für diesen Fall sehr klein ist. Diese Kräfte treten sowohl bei der Chemisorption als auch bei der Physisorption auf. /16, 17/

Bei dem hier untersuchten Sorptionssystem wird das an der inneren und äußeren Oberfläche des Reaktorgraphits¹⁾ angelagerte Cs überwiegend chemisorbiert, wie in Kap. 7 noch diskutiert wird. Dies läßt zwar die Vermutung zu, daß hier die Valenzkräfte dominieren, eine genaue quantitative Aussage über die Wirksamkeit der einzelnen Kräfte ist aber aufgrund der heterogenen Struktur des Reaktorgraphits mit seinen verschiedenen Kristalloberflächen, Poren und Defekten im Kristallgitter derzeit noch nicht möglich.

3.4 Haftkoeffizient und Akkomodationskoeffizient

Bei der Betrachtung von Sorptionsprozessen sind mit Blick auf das thermodynamische Gleichgewicht zwischen Adsorbens und Adsorpt der Haftkoeffizient H und der Akkomodationskoeffizient a zu berücksichtigen.

H kann Werte zwischen 0 und 1 annehmen und gibt die Wahrscheinlichkeit an, mit der ein auf die Oberfläche treffendes Teilchen an ihr haften bleibt. Die Haftdauer des Teilchens an der Auftreffstelle wird durch die Größe der thermischen Energie beeinflußt, die vom Gitter auf das Teilchen übertragen also von wird, der Temperatur des Adsorbens /18/. Die thermische Energie eines sich der Festkörperoberfläche nähernden Atoms beträgt 1/2 kT²⁾. Das Atom bleibt entweder an der Auftreffstelle haften, sofern es seine Gesamtenergie an das Gitter des Adsorbens mit einem einzigen Stoß abgibt, oder es kann sich noch zweidimensional über die Adsorbensoberfläche bewegen, wenn bei der Sorption zunächst nur ein Teil der Energie an das Adsorbensgitter abgegeben wird.

^{1) &}quot;Reaktorgraphit" steht hier und im folgenden als Kurzform für "graphitische Reaktorwerkstoffe", da es sich hierbei nicht um Graphit im mineralogischen Sinne handelt, wie noch in Kap. 7.1 gezeigt wird.

²⁾ Gemäß dem "Gleichverteilungssatz" /14/

Der Haftkoeffizient von Cäsium an graphitischen Reaktorwerkstoffen wird üblicherweise H = l gesetzt, wie u. a. von Gaus et al. /19/ an A3-Matrixgraphit untersucht wurde.

Der Akkomodationskoeffizient berücksichtigt die Temperaturanpassung eines auf die Festkörperoberfläche auftreffenden Teilchens.

$$\alpha = \frac{T_w - T_a}{T_o - T_a}$$
(3.1)

 $T_w = Temperatur des wegfliegenden Teilchens$ $T_a = Temperatur des ankommenden Teilchens$ $T_o = Temperatur der Oberfläche des Adsorbens$

Wenn die Temperatur des wegfliegenden gleich der des ankommenden Teilchens ist, (also keine Temperaturanpassung stattfindet), wird $\alpha = 0$. Dagegen ist $\alpha = 1$, wenn die Temperatur des wegfliegenden Teilchens gleich der Oberflächentemperatur ist. /19/

Für das Sorptionssystem "Reaktorgraphit-Cäsium" kann bei den in dieser Arbeit vorliegenden Versuchsbedingungen α = 1 ge-setzt werden.

3.5 Sorptionseffekte und ihre Bedeutung

Die Betrachtung soll hier auf die im Zusammenhang mit "Reaktorgraphiten" wesentlichen Sorptionseffekte beschränkt werden. Hierzu zählen die Sorptionswärme und die Sorptionsisothermen.

3.5.1 Sorptionswärme

Für die Frage der Bindung des Cäsiums am graphitischen Material ist die Kenntnis der Stärke dieser Bindung, die sich in der Größe der Sorptionswärme äußert, von besonderer Bedeutung. Die Ermittlung der Sorptionswärmen kann auf zweierlei Weise erfolgen: entweder mißt man sie kalorimetrisch oder man berechnet sie aus der Temperaturabhängigkeit des Gleichgewichtsdampfdruckes, wie in dieser Arbeit geschehen.

Der Begriff der "Sorptionswärme" ist in der Literatur nicht einheitlich definiert. Man unterscheidet je nach Versuchsbedingungen zwischen integraler und differentialer Sorptionswärme sowie isothermer-, adiabatischer- oder isosterer Sorptionswärme. Die thermodynamische Ableitung der Beziehungen zwischen den verschiedenen Sorptionswärmen wurde von Ross /20/ und Young et al. /16/ ausführlich behandelt.

Voraussetzung für thermodynamische Berechnungen mit Versuchsergebnissen ist aber in jedem Fall, daß es sich um Gleichgewichtswerte handelt.

Eine grundlegende Betrachtung, die sich auf die Annahmen und Anwendbarkeit der in diesem Zusammenhang interessierenden <u>isosteren Sorptionswärme</u> q_{st} beschränkt, wird im <u>Anhang 11.1</u> angestellt. Hierbei ist q_{st} mit der im folgenden verwendeten isosteren Verdampfungsenthalpie ΔH°_{v} synonym.

Die Berechnung der isosteren Verdampfungsenthalpie ΔH°_{V} des sorbierten Cs nach der Methode des 2. Hauptsatzes erfolgt direkt über die beiden Meßgrößen Druck und Temperatur. Hierbei wird die Gleichung (3.2) von Clausius-Clapeyron zugrunde gelegt:

$$\frac{d \ln p_{CS}}{d(1/T)} = -\frac{\Delta H_v^o}{R}$$
(3.2)

mit p_{Cs} = Cs-Gleichgewichtspartialdampfdruck
R = allgemeine Gaskonstante
T = absolute Temperatur

Ersetzt man p_{CS} jeweils durch den mit dem Massenspektrometer direkt gmessenen Wert (I⁺Mb T), der proportional zu p_{CS} ist (vgl. <u>Kap. 6.1</u>), so kann auch ohne Kenntnis des absoluten Partialdruckes aus der Steigung der Geraden ln (I⁺Mb T) = f (1/T) die Verdampfungsenthalpie ermittelt werden. Somit sind die Enthalpiewerte frei von Ungenauigkeiten, die sich bei der Umrechnung des gemessenen Ionenstroms in einen Druck ergeben. Es resultiert dann pro Dampfdruckkurve(für eine bestimmte Cs-Konzentration) ein auf die mittlere Meßtemperatur bezogener Enthalpiewert.

Da die Verdampfungsenthalpie $\Delta \widetilde{H}^{\circ}_{V}$ des (nicht sorbierten) metallischen Cs groß im Vergleich zu Gasen ist, wird ihr Wert bei der Berechnung der isosteren Sorptionsenthalpie ΔH°_{S} subtrahiert, d. h.:

$$\Delta H_{sTm}^{\circ} = (\Delta H_{vTm}^{\circ} - \Delta \widetilde{H}_{vTm}^{\circ})^{(1)}$$
(3.3)

Für eine geschlossene Monolage Cs auf dem graphitischen Werkstoff sei dann $\Delta H^{\circ}_{v} = \Delta \widetilde{H}^{\circ}_{v}$, also $\Delta H^{\circ}_{s} = 0$.

3.5.2 Sorptionsisothermen

Die Untersuchung der Sorptionsisothermen ist ein Hilfsmittel, um Aufschluß über die Art der Sorption zu erhalten. Hierbei geht man in der Regel von einer konkreten Modellvorstellung aus, für die theoretisch gültige Sorptionsisothermen aufgestellt werden, die anschließend anhand von experimentellen Daten verifiziert werden sollen.

Die Sorptionsisothermen stellen einen Zusammenhang zwischen der Konzentration c des sorptiv gebundenen Spaltproduktes Cs, der Temperatur und dem Cs-Partialdampfdruck in der umgebenden Gasphase im Gleichgewichtszustand her. Es werden hierbei zwei Bereiche unterschieden, und zwar unter- und oberhalb einer Grenzkonzentration c_+ an sorbiertem Cs:

¹⁾ Index ${\rm T}_{\rm m}$ bezieht sich auf eine mittlere Temperatur.

- Im <u>"Henry-Bereich</u>" für c < c_t gilt: der Gleichgewichtspartialdruck p steigt linear mit der sorbierten Cs-Menge an:

$$p = k_{\rm H} \cdot c \tag{3.4}$$

mit $k_{H} = e ((A+B/T)) + (D-1 + E/T \cdot ln c_{t})$ (3.5)

In diesem Bereich kommt es zu keiner Wechselwirkung zwischen den sorbierten Cs-Molekeln. Es wird hierbei eine ideal bewegliche Monoschichtsorption zugrunde gelegt. /21/

 Im <u>"Freundlich-Bereich"</u> für c ≤ c_t gilt: der Gleichgewichtspartialdruck p nimmt aufgrund einer zunehmenden Sättigung der Sorptionsplätze mit größter Bindungsenergie exponentiell zu.

$$p = k_F \cdot c^u \tag{3.6}$$

mit
$$k_F = e^{(A+B/T)}$$
 (3.7)

u = D + E/T(A, B, D, E = Konstanten)

Die Grenzkonzentration c_t wird auf der Grundlage vorliegender Meßdaten so gewählt, daß die Standardabweichungen der berechneten Sorptionskonstanten (A, B, D, E) minimal werden.

Eine Temperaturabhängigkeit der Grenzkonzentration kann hierbei insbesondere für den untersuchten A3-Matrixgraphit ausgeschlossen werden, wie noch im <u>Kap. 6.6</u> erläutert und im <u>Kap. 7</u> anhand der Ergebnisse diskutiert wird.

4. EXPERIMENTELLE EINRICHTUNGEN UND METHODISCHE ENTWICKLUNGS-ARBEITEN

Im Rahmen der Zielsetzung (vgl. <u>Kap. 2</u>) wurden in dieser Arbeit die im folgenden beschriebenen methodischen Entwicklungsarbeiten durchgeführt und die erforderlichen experimentellen Einrichtungen aufgebaut.

4.1 Aufbau eines Systems Quadrupolmassenspektrometer mit Knudsenzelle

Für die Untersuchung der Cs-Dampfdrücke über A3-Matrixgraphit wurde eine Anlage, bestehend aus einem Quadrupolmassenspektrometer mit Knudsenzellen und einem HF-Generator zur induktiven Beheizung der Knudsenzellen im Hochvakuum aufgebaut, wie in Abb. 4.1 gezeigt.

Die grundlegenden apparativen Aspekte zur Massenspektrometrie werden im Anhang 11.2 dargestellt und erläutert.

Im folgenden soll auf die einzelnen Konstruktionsmerkmale eingegangen werden. Hierzu sind in <u>Abb. 4.2</u> die wichtigsten Bauteile schematisch dargestellt:

Abb. 4.1: Quadrupolmassenspektrometer (1 = Hochvakuumrezipient, 2 = HF-Generator, 3 = Vorvakuumpumpe, 4 = Turbomolekularpumpen, 5 = x-/y-/z-Manipulator für Knudsenzellen, 6 = Stickstoff-Kühlfalle, 7 = wassergekühlte Induktor-Durchführung)

Abb. 4.2: Prinzipskizze des Knudsenzellen-Massenspektrometers (mit vakuumerzeugenden Teilen)

Knudsenzellen

An den Knudsenzellenaufbau wurden verschiedene Anforderungen gestellt, die sich aus der geometrischen Vorgabe anderer Bauteile und versuchs- bzw. meßtechnischen Gründen ergaben:

- (1) Knudsenzellen mit einem maximalen Außendurchmesser von 16 mm für ein Mindestprobenvolumen von ca. 1 cm³ (<u>Abb. 4.3</u>).
- (2) Genau definierbare Seiten- und Höhenverstellbarkeit der im Induktor befindlichen Knudsenzellen.
- (3) Eine drehbare 2-Knudsenzellenanordnung mit Halterungen der Knudsenzellen aus einem hochtemperaturbeständigen, elektromagnetisch nicht koppelnden und schlecht wärmeleitenden Werkstoff.

Die Anforderung (1) resultiert einerseits aus dem Innendurchmesser des Induktors zur Beheizung der Molybdän-Knudsenzellen und andererseits aus der Tatsache, daß bei Unterschreitung einer Mindestprobenmenge die Einstellung des Gleichgewichtdampfdruckes schwierig wird, da dann das Verhältnis Fläche der Effusionsöffnung/Probenoberfläche zu klein wird, wie im <u>Kap.</u> <u>6.1.1</u> noch ausgeführt wird.

Eine genau definierbare Seiten- und Höhenverstellbarkeit ermöglicht die optimale Ausrichtung der Knudsenzellen, so daß sich die Effusionsöffnung genau senkrecht unter der Ionenquelle befindet, um eine maximale Empfindlichkeit zu erreichen. Die Höhenverstellung dient dazu, die Knudsenzellen aus bzw. in den Induktor zu fahren. Durch Anordnung des Induktors direkt unterhalb des Abschatters kann außerdem der Abstand 1^{1} der Effusionsöffnung zur Ionenquelle klein gehalten werden. Dies ist wichtig, da gilt (vgl. <u>Kap. 6.1.2</u>):

¹⁾ Beträgt hier 1 = 4 cm

$$\frac{N_{\alpha}}{N_{\alpha}} \approx \frac{d^2}{2}$$
 (4.1)

D. h. die Anzahl N_{α} der Teilchen im effundierenden Dampfstrahl, die eine Ionisationszone mit dem Durchmesser d erreichen, nimmt umgekehrt proportional zu 1² ab, wobei N_{o} die Gesamtzahl der pro Zeiteinheit entweichenden Teilchen im Molekularstrahl ist. Für die Seiten- und Höhenverstellung wird ein skalierter Manipulator verwendet, der in x-, y- und z-Richtung auf 0,5 mm genau von außen eingestellt werden kann (vgl. Abb. 4.2 und Abb. 4.4).

Die im Zusammenhang mit massenspektrometrischen Dampfdruckmessungen ungewöhnliche 2-Knudsenzellenanordnung (gem. Anforderung (3)) bietet den Vorteil, daß der Rezipient zwischen der Eichmessung (vgl. Kap. 6) (mit Zelle 1) und Dampfdruckmessung über der Probe (mit Zelle 2) nicht geöffnet werden muß, wodurch zusätzliche Meßungenauigkeiten, wie sie sich bei notwendigen kurzzeitigen Abschaltung der Massenspekder trometer-Elektronik¹⁾ beim Öffnen des Rezipienten ergeben, vermieden werden. Aufgrund der räumlichen Trennung kann es außerdem zu keinen chemischen Wechselwirkungen zwischen der Die der Probensubstanz kommen. beiden Eichsubstanz unđ Knudsenzellen sind jeweils auf einem Al₂O₃-Keramikstab angebracht, wobei die Keramikstäbe in Halterungen eingebaut werden, die auf einer Edelstahldrehscheibe angeordnet sind. Die Drehscheibe kann über den oben erwähnten Manipulator bewegt werden. Auf Abb. 4.4 sieht man die Knudsenzellenanordnung bei geöffnetem Rezipienten.

¹⁾ Ionenquelle, Trennsystem und Auffänger des Massenspektrometers dürfen nur im Vakuum betrieben werden

Abb. 4.3: Knudsenzelle mit Bohrung für pyrometrische Temperaturmessung (1), Probentiegel (2) und Deckel mit Effusionsöffnung (3) aus Molybdän

Zur Temperaturmessung werden EL-18 Mantelthermoelemente (Fa. Philips) eingesetzt. Zusätzlich ist in jeder Knudsenzelle eine Bohrung (d = 1 mm, 1 = 6 mm) für die pyrometrische Temperaturmessung vorhanden (vgl. Abb. 4.2 und Abb. 4.3).

HF-Heizung

Die induktive Beheizung der Knudsenzelle erfolgt mittels eines Hochfrequenzgenerators der Firma AEG mit einer HF-Leistung von 6 kW bei einer Betriebsfrequenz von 500 kHz. Hierzu wird die zu beheizende Knudsenzelle in den wassergekühlten Induktor gefahren.

Abb. 4.4: Knudsenzellen-Anordnung (1 = Drehscheibe, 2 = Keramikhalter, 3 = Knudsenzellen, 4 = Perbunandichtung, 5 = Wasserkühlung, 6 = Rezipient, 7 = Mantelthermoelemente)

Die kapazitive Anpassung des Induktors an die Knudsenzelle erfolgt über maximal 4 getrennt zuschaltbare Kondensatoren von je 2500 pF. Die Vorteile dieser Art der Beheizung bestehen zum einen in einem kurzen Abstand 1 zwischen der Effusionsöffnung der Knudsenzelle und der Ionenquelle, da Wärmeabschirmbleche, wie sie für die häufig eingesetzte Elektronenbombardementheizung benötigt werden, entfallen und zum anderen wegen sehr geringen Temperaturschwankungen von weniger als \pm 1°C. Die Abb. 4.5 zeigt eine glühende Knudsenzelle bei 1225 K.

Abb. 4.5: Induktiv beheizte Knudsenzelle bei 1225 K (1 = Knudsenzelle 1, 2 = Knudsenzelle 2), 3 = Induktor

Massenspektrometer

Für die Cs Dampfdruckuntersuchungen wurde ein Quadrupol-Massenspektrometer (Typ 4, Firma Extranuclear Laboratories, Pittsburgh, Pennsylvania, USA) eingesetzt.

Die Erzeugung der Ionen erfolgt mit einer <u>Elektronenstoß-</u> <u>Ionenquelle</u>. Sie ist mit einer Ziehblende und drei weiteren Blenden zur "Fokussierung" des erzeugten Ionenbündels auf den Eintrittsblenden des Trennsystems ausgerüstet (vgl.Abb. 11.1). An die Ziehblende wird eine Spannung im Bereich von + 18 V und an die anderen Blenden jeweils + 100 V bis - 400 V angelegt. Die maximal einstellbare Ionisierungsstromstärke beträgt 5 mA bei einer maximal erreichbaren Ionisierungsenergie von 103 eV. Der nicht ionisierte Anteil des aus der Knudsenzelle kommenden Dampfstrahls kondensiert oberhalb der Ionenquelle an einer mit flüssigem Stickstoff gefüllten Kühlfalle (vgl. <u>Abb. 4.2</u>). Hierdurch wird der Untergrund im Massenspektrometer niedrig gehalten und gleichzeitig eine Verbesserung des Vakuums erzielt. Außerdem wird der Rezipient im Bereich der Ionenquelle wassergekühlt, da sonst die Wärmestrahlung der Knudsenzelle zu unerwünschten Temperaturschwankungen in der Ionisierungszone führt.

Das <u>Quadrupol-Trennsystem</u> wird über einen Massenprogrammierer eingestellt, der die zur Trennung der gewünschten Massen benötigte Gleich- und Wechselspannung an den Stäben regelt, wobei die Frequenz konstant gehalten wird (vgl. <u>Anhang 11.2</u>, Gl. 11.19). Für Ionen bis zur Masse 180 war eine Frequenz von etwa 2,1 MHz erforderlich.

Der Ionennachweis erfolgt mit einem Channeltron mit einem Verstärkungsfaktor von ca. 10⁶ bei einer Arbeitsspannung von 2,4 kV. Hierbei handelt es sich um eine besondere Form des Sekundärelektronenvervielfachers aus Glas (vgl. <u>Anhang 11.2</u>), der als ringförmiger Kanal mit abnehmendem Durchmesser ausgeführt ist. Wie aus der <u>Abb. 4.6</u> zu ersehen ist, wurde das Channeltron versetzt zur Längsachse des Trennsystems angeordnet, um Meßfehler durch in der Ionenquelle erzeugte und das Stabsystem passierende Photonen auszuschließen.

Abb. 4.6: Anordnung des Channeltrons (1 = Ionen + Photonen, 2 = Trenn-system, 3 = Photonen, 4 = Ionen)

Die Ionen werden durch die am Eingang anliegende Spannung in Richtung des Channeltrons abgelenkt. Der Ionenstrom wird dann über den Spannungsabfall an Hochohmwiderständen von 2*10⁹ Ohm mit Elektrometerverstärker gemessen. Anschließend werden die so erhaltenen, dem Ionenstrom proportionalen Spannungen mit einem Einkanalschreiber (BD-40, Fa. Kipp & Zonen) registriert.

Rezipient

Da die Dampfdruckuntersuchungen im Hochvakuum durchgeführt werden müssen, befindet sich das System Quadrupolmassenspektrometer – Knudsenzellen in einem Edelstahl-Rezipienten (vgl. <u>Abb. 4.1</u> und <u>Abb. 4.2</u>). Dieser wurde so konzipiert, daß er an drei Stellen wassergekühlt werden kann:

1. Im Bereich der Ionenquelle durch einen im Flansch integrierten Kühlkreislauf wie aus <u>Abb. 4.7</u> zu ersehen. Hierdurch werden, wie bereits erwähnt, Temperaturschwankungen in der Ionisierungszone vermieden.

2. Im Bereich der Perbunan-Dichtung (vgl. <u>Abb. 4.4</u>), die bei Erwärmung des Rezipienten durch die Wärmestrahlung der Knudsenzelle oder beim Ausheizen¹⁾ des Rezipienten schnell zur Versprödung neigt. Hierdurch käme es zu einer Verschlechterung des Hochvakuums.

3. Im Bereich der Induktor-Durchführung vom HF-Generator in den Rezipient (vgl. <u>Abb. 4.1</u>), um den Wärmefluß in Richtung des HF-Generators zu verringern.

¹⁾ Mit gesonderten Heizbändern; bis 250°C

Abb. 4.7: HV-Rezipient (1 = Wasserkühlung für Ionenquelle, 2 = Turbomolekularpumpen, 3 = Vakuummeßröhre)

Bei der Wahl der Hochvakuumpumpen waren zwei Kriterien ausschlaggebend: Sie sollten unempfindlich gegen häufiges An- und Abschalten sein, da der Rezipient bei jedem Wechsel der Eichstandards bzw. der Proben geöffnet und damit vollständig belüftet werden muß. Darüber hinaus sollte ein Hochvakuum von 10^{-4} Pa 15 bis 20 Minuten nach Einschalten der Vakuumpumpen vorliegen, um die notwendige Abschaltungsdauer der Elektronik des Massenspektrometers möglichst kurz zu halten, da sie nur im Hochvakuum von kleiner 10^{-4} Pa betrieben werden darf. Andernfalls wäre jedesmal eine zeitaufwendige Grundjustierung der hochempfindlichen Elektronik erforderlich gewesen. Der Einsatz von Ionengetterpumpen kam somit aufgrund des großen Gasanfalls beim Öffnen des Rezipienten nicht in Frage. Stattdessen wurden zwei ausheizbare Turbo-Molekularpumpen (TPU 110/170, Fa. Balzers/Pfeifer, Wetzlar) installiert (vgl. <u>Abb.</u> <u>4.11</u>). Ihr Saugvermögen beträgt 110 1/s bzw. 170 1/s. Zur Erzeugung des Vorvakuums wird eine zweistufige Drehschiebervakuumpumpe (DUO-016B, Fa. Balzers/Pfeifer, Köln) eingesetzt. Das erreichte Endvakuum liegt bei 10^{-6} Pa.

Das Vakuum wird mit einer Ionisationsmanometerröhre (IE-211, Fa. Leybold-Heraeus, Köln) gemessen.

4.2 Aufbau einer isopiestischen Apparatur

Für die vergleichenden Sorptionsuntersuchungen und zur Präparation der Proben für die massenspektrometrischen Messungen wurde ein Hochvakuumofen aufgebaut, wie in Abb. 4.8 gezeigt.

Das Kernstück bildet eine zylindrische Molybdän-Zelle mit einem Innendurchmesser von 40 mm und einer Höhe von 70 mm. Die Zelle kann je nach Größe des Cs-Quelltiegels mit 12 bzw. 18 Probetiegeln beschickt werden. In <u>Abb. 4.9</u> sieht man neben der Ofenzelle, den Proben- und Cs-Quelltiegeln noch einen Deckel mit Stopfen für die Ofenzelle.

Zum Verschließen der Molybdän-Zelle wurde eine rechtwinkelige, über Schrauben justierbare Edelstahlkonstruktion entwickelt, die es ermöglicht, den Stopfen bei Temperaturen bis 1300 K im Hochvakuum über einen hohlen Al₂O₃-Keramikstab von außerhalb des Rezipienten abzusenken. Hierbei ist der Stopfen mit einem innenliegenden Wolframdraht beweglich am Keramikstab befestigt. Diese Gesamtkonstruktion soll im folgenden "Galgenkonstruktion" genannt werden. (vgl. Kap. 6.7).

Abb. 4.8: Isopiestische Apparatur (1 = Steuer- und Meßelektronik, 2 = Vorvakuum-Pumpe, 3 = Turbomolekularpumpe, 4 = Rezipient mit wassergekühltem Hochvakuumofen)

Abb. 4.9: Ofenzelle (1) mit Deckel (2) und Stopfen (3), Probentiegel (4) und kleiner Quelltiegel (5) aus Molybdän

Abb. 4.10: Prinzipskizze der isopiestischen Apparatur (1 = Ofen, 2 = Abschirmbleche, 3 = Abschirmfolie/wassergekühlter Außenmantel, 4 = Heizelemente, 5 = Thermoelement, 6 = "Galgenkonstruktion", 7 = Ofenzelle mit Deckel und Stopfen, 8 = Rezipient, 9 = Turbo-Molekularpumpe, 10 = Vorvakuum-Pumpe)

Die mit Proben gefüllte Zelle kann in einen widerstandsbeheizten Ofen (Typ WI 100/100, Fa. Leybold-Heraeus, Hanau) auf maximal 1800 K erhitzt werden (Abb. 4.10). Der Ofen ist mit zwei Wolfram-Heizwendeln am Boden und Deckel ausgerüstet. Für eine homogene Temperaturverteilung und zur Vermeidung größerer Wärmeabstrahlung nach außen ist der Ofen im Innern mit einer 20-lagigen Wolframfolie ausgekleidet. Zusätzlich sind am Boden und Deckel Wolfram-Abschirmbleche angebracht. Der aus Kupfer bestehende Außenmantel des Ofens wird über eine Kühlschlange wassergekühlt (Abb. 4.11).

Abb. 4.11: Wassergekühlter Hochvakuumofen (1) im Rezipient (2) mit "Galgenkonstruktion" (3)

Die Temperaturregelung erfolgt über einen Thyristorregler mit einem Wolfram/Rhenium-Thermoelement als Istwertgeber. Für die Temperaturmessung am Boden der Ofenzelle wird ein Platin/Rhodium-Thermoelement verwendet.

Zur Erzeugung des Hochvakuums wird eine ausheizbare, 2-stufige Turbo-Molekularpumpe (TPU-270, Fa. Balzers/Pfeifer, Wetzlar) mit einem Saugvermögen von 270 l/s eingesetzt. Sie ist besonders für große Gasmengen, wie sie u. a. bei der Nitratzerset-
zung anfallen (s. <u>Kap. 6.7</u>), geeignet. Das Vorvakuum wird über eine Drehschiebervakuumpumpe (D-16A, Fa. Leybold-Heraeus, Köln) erzeugt. Mit dieser Anordnung können Vakuumdrücke von 10^{-5} Pa erreicht werden. Die Messung des Vakuums erfolgt mit einer Ionisationsmanometerröhre (PR 41, Fa. Leybold-Heraeus, Köln).

5. PRÄPARATION

5.1 Probenvorbehandlung

Die zunächst als Block bzw. Kugel vorliegenden graphitischen Reaktorwerkstoffe müssen je nach Art der Untersuchung einer Vorbehandlung unterzogen werden. Die grundsätzlichen Verfahrensschritte zur Herstellung der jeweils erforderlichen Probengeometrie sind in Abb. 5.1 dargestellt.

Abb. 5.1: Verfahrensstammbaum zur Herstellung erforderlicher Probengeometrien

Für die vergleichenden isopiestischen Experimente werden die Werkstoffe mit einer Säge in Bruchstücke von mehreren Zentimetern zersägt und anschließend mit Fräsmaschine und Drehbank zu Würfeln mit einer Kantenlänge von 5 mm zugeschnitten.

Zur Herstellung von Graphitpulver, wie es insbesondere für die massenspektrometrischen Versuche benötigt wird, werden die Graphitbruchstücke in einer Zentrifugalmühle (Typ ZM l, Fa. Retsch, Haan) bis auf eine Korngröße von 1-2 mm zerkleinert. Die anschließende Absiebung zur Trennung nach Korngrößen erfolgt mit einer mehrstufigen Schwingsiebanlage (Typ RV, Fa. Retsch, Haan).

Anzumerken ist, daß die Zerkleinerung nicht zu einer Fraktionierung des Matrixgraphites führt, die Bestandteile der Proben, also wie im Vollmaterial verteilt bzw. zusammengesetzt und somit repräsentativ sind.

Für die Dampfdruckmessungen wurde A3-3 Matrixgraphitpulver mit einer Körnung von 40 - 80 μ m hergestellt. Die Proben entstammen mehreren unbenutzten Matrix-A3-Kugeln (ohne Brennstoffpartikel) aus einer Produktionscharge der Firma Hobeg (Hanau).

Die Körnung von 40 - 80 μ m wurde gewählt, da sie eine große Oberfläche im Verhältnis zur Fläche der Effusionsöffnung¹⁾ der Knudsenzelle besitzt. Hierdurch wird sichergestellt, daß keine Diffusionsprofile in der Probe entstehen und somit keine verfälschten, d.h. zu niedrige Dampfdrücke gemessen werden.

5.2 Herstellung einer Cs-Quelle

Zur sorptiven Beladung²⁾ der Proben mit Cs über die Gasphase in der verschlossenen Ofenzelle (vgl. <u>Abb. 4.10</u>) muß für jede Charge (maximal 18 Proben) eine neue Cs-Quelle präpariert werden.

Die sowohl für die massenspektrometrischen als auch die isopiestischen Proben gewählte Art der Quelle besteht aus den beiden Grundkomponenten einer Lösung und einem Speichermaterial, das die Lösung im Quelltiegel aufnimmt. Hierzu wird

¹⁾ Etwa 1 : 500000

²⁾ Das genaue Verfahren wird in Kap. 6.7 beschrieben

zunächst eine Cäsiumnitratlösung mit folgender Zusammensetzung hergestellt:

- ¹³⁴Cäsiumchlorid,
- Silbernitrat,
- ¹³³Cäsiumnitrat,
- Äthanol,
- destilliertes Wasser.

Das zunächst als Chloridlösung vorliegende radioaktive ¹³⁴Cäsium¹⁾ wird mit Hilfe des Silbernitrats gemäß der Reaktion

$$CsCl + AgNO_3 \longrightarrow CsNO_3 + AgCl$$

in Cäsiumnitrat überführt, wobei das entstehende Silberchlorid ausgefällt wird. Die Cs-Nitrate²⁾ (¹³⁴Cs/¹³³Cs) werden dann zusammen mit einigen Tropfen Äthanol in destilliertem Wasser gelöst, wobei das Äthanol eine Herabsetzung der Oberflächenspannung bewirkt:

Für die durchzuführenden Versuche und die Eichstandards (vgl. <u>Kap. 6.3</u>) wurden insgesamt 20 ml Lösung angesetzt. Hierzu wurden 4 ml 134 CsCl-Lösung, die zum Zeitpunkt des Ansetzens 1,6*10⁻⁷g Cs enthielt, mit etwa 1*10⁻⁵g AgNO₃ in 134 Cs-Nitrat überführt. Diese wurde zusammen mit 0,9092 g 133 CsCl - Pulver und 10 µl Äthanol mit destilliertem Wasser bis auf 20 ml aufgefüllt.

2) ¹³³CsNO₃ liegt als Pulver vor

¹⁾ Dient später zur radiologischen Konzentrationsbestimmung

Die gewählten CsCl-Mengen ergaben sich aus folgenden Vorüberlegungen zur Präparation der ersten Charge für die massenspektrometrischen Untersuchungen:

- Die Cs-Konzentration in 1 ml CsNO₃-Lösung sollte ausreichen, um die Proben theoretisch bis zu einer maximalen Cs-Konzentration von c = 75,2 mmol/kg = 10g/kg über die Gasphase zu beladen. Damit konnten, unter Berücksichtigung der präparativen Verluste, die bei einer störfallbedingten Coreaufheizung entstehenden Cs-Konzentrationen erreicht werden.
- 2) Die als Tracer eingesetzte Aktivität des ¹³⁴Cs sollte zum einen möglichst gering gehalten werden, zum anderen aber ausreichen, um auch noch Konzentrationen messen zu können, die um einen Faktor 100 kleiner als die Maximalkonzentration waren.

Die jeweils im Quelltiegel benötigte Cs-Nitratmenge ^mCsNO3 für eine theoretisch angestrebte Cs-Konzentration c_{th} in den Proben kann wie folgt berechnet werden:

$${}^{m}_{\text{CSNO}_{3}} = {}^{c}_{\text{th}} {}^{m}_{\text{Graphit}} \frac{{}^{M}_{\text{CsNO}_{3}}}{{}^{M}_{\text{Cs}}}$$
(5.1)

$${}^{c}_{\text{th}} = \text{theoretisch angestrebte Cs-Konzentration (g/g)}$$

$${}^{m}_{\text{Graphit}} = {}^{\text{Masse der insgesamt in der Ofenzelle befind-lichen graphitischen Materialien (g)}}$$
(5.1)

$${}^{M}_{\text{CsNO}_{3}} = 194,9 \text{ g/mol} = \text{molare Masse des } {}^{133}_{\text{Cs-Nitrats}} {}^{1}$$
)

$${}^{M}_{\text{Cs}} = 132,9 \text{ g/mol} = \text{molare Masse des } {}^{133}_{\text{Cs}}$$

¹⁾ Der Massenanteil des ¹³⁴Cs-Nitrats lag bei 2.10⁻⁵% und kann daher vernachlässigt werden.

Wobei die Gleichung (5.1) nur zur groben Abschätzung der einzusetzenden Cs-Nitratmenge dient. In der Praxis erhält man deutlich niedrigere Cs-Konzentrationen in den Proben. Dies hat sehr unterschiedliche Gründe:

- a) Cs-Verluste aus dem Quelltiegel durch Verdampfen bei noch geöffneter Ofenzelle während der Nitratzersetzung (vgl. Kap. 6.7).
- b) Cs-Verluste aus dem Ofentiegel durch Verdampfen bei geschlossener Ofenzelle aufgrund kleiner Undichtigkeiten der Dichtflächen des Zellendeckels und des Stopfens.
- c) Unterschiedliches Sorptionsvermögen der Proben.

Anzumerken ist, daß die Verluste unter (a) bis zu 40 % betragen können, aber versuchstechnisch bedingt sind. Dagegen konnten die Verluste unter (b) durch Einschleifen der Deckelund Stopfendichtflächen nach dem Ausglühen und geeigneter Wahl des Konuswinkels der Dichtflächen (in praktischen Versuchen ermittelt) auf < 0,2 % des anfänglichen Cs-Inventars pro Tag reduziert werden (vgl. Abb. 4.10). Damit war sichergestellt, sich in der verschlossenen Ofenzelle ein Gleichdaß gewichtsdampfdruck ausbilden kann.

Die Cs-Nitratlösung wurde mit geeichten Pipetten dem Speichermaterial im Quelltiegel zugegeben. Als Speichermaterial wurde A3-Matrixgraphitpulver (40-60 μ m) verwendet. Anschließend erfolgte eine Verdampfung des destillierten Wassers bei 373 K im Trockenschrank über 12 Stunden.

Der so präparierte Quelltiegel wurde zusammen mit den Cs-freien Proben in die Zelle des Hochvakuumofens eingesetzt. Die Beladung der Proben mit Cs erfolgte über die Gasphase wie im Kap. 6.7 ausführlich beschrieben wird.

- 6. MEBMETHODEN, VERSUCHSDURCHFÜHRUNG UND AUSWERTUNGSVERFAHREN
- 6.1 Partialdampfdruckmessungen mit der Knudsen-Effusionsmethode

6.1.1 Allgemeine Grundlagen zur Verdampfung unter Knudsenbedingungen

Zur Untersuchung von Gleichgewichten zwischen einer kondensierten Phase und ihrer Gasphase, muß über der zu analysierenden Probe zunächst ein meßbarer Dampfdruck erzeugt werden. Bei der in dieser Arbeit eingesetzten Methode der Hochtemperaturmassenspektrometrie wird die Probe in eine Knudsenzelle eingesetzt. Hierbei handelt es sich um einen heizbaren Behälter von im vorliegenden Fall ca. 1,4 cm³ Inhalt, der bis auf eine kleine Effusionsöffnung geschlossen ist. Für den Fall, daß die Querschnittsfläche der Öffnung sehr viel kleiner als die (äußere und innere) Oberfläche der Probe ist¹⁾, stellt sich im Innern der Zelle praktisch thermodynamisches Gleichgewicht ein. Der aus der Zelle austretende molekulare Dampfstrahl repräsentiert daher unter obigen Voraussetzungen die Gleichgewichtsverhältnisse im Zelleninnern. Gleichgewicht sollte vorgelegen haben, da zu Testzwecken die Querschnittsfläche der Effusionsöffnung bei sonst konstanten Versuchsbedingungen variiert wurde, ohne daß veränderte Dampfdrücke gemessen wurden.

Eine Abschätzung des Massenverlustes, der infolge der Verdampfung durch die Effusionsöffnung entweicht, kann auf der Grundlage folgender Betrachtung erfolgen:

Ausgehend von einer idealen²⁾ Knudsenzelle genügen die Molekeln in der idealen Gasphase einer Maxwellschen Verteilungsfunktion.

¹⁾ In dieser Arbeit ca. 1 : 500000

²⁾ Der Einfluß der Effusionsöffnung ist zu vernachlässigen, kein Temperaturgradient

Es gilt dann für den Zusammenhang zwischen der Dichte ρ des Gases und dem Partialdampfdruck P einer beliebigen Teilchensorte in der Knudsenzelle .

$$\rho = \frac{p}{kT}$$
(6.1)
k = Boltzmann-Konstante

mit

T = absolute Temperatur

und für die Teilchen n mit der Masse m, die pro Zeit- und Flächeneinheit auf die Zellenwand treffen

$$n = \frac{1}{4} \rho u_{m}$$
 (6.2)

mit

$$u_{\rm m} = 4 \, (kT/2\pi m)^{1/2}$$

= mittlere thermische Geschwindigkeit der Teilchen

Da die Anzahl n somit auch die pro Flächen- und Zeiteinheit aus der Effusionsöffnung entweichenden Teilchen angibt, läßt sich mit Gleichung (6.1) und (6.2) die gesamte Effusionsrate N berechnen:

$$N = naq = aq \frac{p}{kT} \left(\frac{kT}{2\pi m}\right)^{1/2}$$
(6.3)

wobei q die Querschnittsfläche der Effusionsöffnung darstellt und der Faktor a die Durchlaßwahrscheinlichkeit von q aufgrund ihrer endlichen Länge berücksichtigt (vgl. Kap. 6.1.2).

Berücksichtigt man weiterhin noch das Molekulargewicht der ausströmenden Molekel M einer Teilchensorte, so ist

$$N = \frac{A_0}{M} \frac{dm}{dt}$$
(6.4)

A_o = Avogadro-Konstante.

mıt

Für die abzuschätzende Massenverlustrate (dm/dt) gilt dann nach Hertz-Knudsen mit k=R/A_o

$$\frac{dm}{dt} = paq \left(\frac{M}{2\pi RT}\right)^{1/2}$$
(6.5)

6.1.2 Zusammenhang zwischen gemessenen Ionenströmen und den Partialdrücken

Zur Ermittlung des jeweils in der Knudsenzelle vorliegenden Gleichgewichtsdampfdruckes aus dem gemessenen Ionenstrom müssen verschiedene Einflußfaktoren berücksichtigt werden:

- Es muß für die Anwendbarkeit der Gl. (6.13) eine molekulare Strömung in der Effusionsöffnung der Knudsenzelle vorliegen,
- 2) die Nachweisempfindlichkeit,
- 3) die unterschiedlichen Ionisationsquerschnitte und
- 4) der jeweils gemessene Ionenstrom muß wegen der Abhängigkeit des zum Sekundärelektronenvervielfachers (vgl. <u>Anhang 11.2</u>) gehörenden Verstärkungsfaktors von der Masse und Struktur der auftretenden Ionen korrigiert werden.

Die in der Effusionsöffnung vorliegende Strömungsart hängt zum einen von dem in der Knudsenzelle vorliegenden Druck ab, d.h. also von der mittleren freien Weglänge der Teilchen in der Gasphase und zum anderen vom Durchmesser der Effusionsöffnung. Nach Boerboom /22/ kann der maximal zulässige Dampfdruck p_{max}, bei dem die mittlere freie Weglänge der effundierenden Molekel kleiner als der Durchmesser der Effusionsöffnung ist und daher eine molekulare Strömung vorliegt, abgeschätzt werden, es gilt:

$$P_{max}/Pa = \frac{3,60}{r/mm}$$
 (6.6)

wobei r der Radius der Effusionsöffnung ist.

Für die Cs-Dampfdruckuntersuchungen wurde in dieser Arbeit ein Durchmesser von 0,1 mm gewählt, wodurch nach Gl. (6.6) noch Drücke bis 72 Pa zulässig sind. Experimentelle Arbeiten zur Verifizierung des Übergangsbereiches von der molekularen zur hydrodynamischen Strömung werden in /23/ zitiert und erläutert. Die gemessenen maximalen Cs-Dampfdrücke liegen jedoch mit ca. 5 Pa um über eine Größenordnung unter obigem Grenzdruck. Die untere Grenze für Dampfdruckmessungen hängt Nachweisempfindlichkeit von der des jeweils eingesetzten System Massenspektrometer mit Knudsenzelle und der Intensität¹⁾ der massenabhängigen Untergrundsignale ab.

Mit der Nachweisempfindlichkeit k - auch Druckkalibrierungskonstante genannt - werden apparative Einflußfaktoren wie der Durchmesser, die Länge und Form der Effusionsöffnung, der Abstand zwischen der Ionisierungszone in der Ionenquelle und der Effusionsöffnung, die Transmission der Ionenquelle und des Trennsystems berücksichtigt. Da sich neben der Geometrie der Effusionsöffnung vor allem der Abstand zwischen Knudsenzelle und Ionisierungszone entscheidend auf die Nachweisempfindlichkeit auswirkt, sollen hierzu im folgenden einige grundsätzliche Betrachtungen angestellt werden.

1) In diesem Fall des ¹³³Cs

- 39 -

Geht man von einer idealen Effusionsöffnung aus, also von einer Öffnung mit infinitesimal kleiner Querschnittsfläche und Wandstärke, wie sie experimentell durch eine schneidenförmige Öffnung gut angenähert erreicht wird, treten die effundierenden Molekel ohne Stoßverluste aus der Knudsenzelle aus. Es gilt dann für die pro Zeiteinheit in den Raumwinkel d Ω strömenden Molekel dN bei Annahme einer cos-Verteilung /24,25/:

$$dN = N_{O} \frac{\cos \vartheta}{\pi} d\Omega$$
 (6.7)

wobei N_o die insgesamt pro Sekunde effundierenden Molekel und der Winkel 3 gegen die Normale geneigt ist. (Abb. 6.1).

Legt man weiterhin ein sphärisches Koordinantensystem zugrunde, so ist

$$d\Omega = 2 \pi \sin \vartheta d\vartheta \tag{6.8}$$

e Anzahl der Molekel N $_{\alpha}^{(1)}$, die pro Sekunde in einen Kegel t dem Öffnungswinkel 2 $^{\alpha}$ strömen, läßt sich dann nach Inteation der Gl. (6.7) von 0 bis $^{\alpha}$ berechnen mit

$$N_{\alpha} = 2 N_{0} \int_{0}^{\alpha} \sin\vartheta \cos\vartheta d\vartheta = N_{0} \sin^{2}\alpha \qquad (6.9)$$

d da

a < < 1 gilt

$$\frac{N_{\alpha}}{N_{o}} = \sin^{2} \alpha \approx \left(\frac{d}{21}\right)^{2}$$
(6.10)

t

d = Durchmesser der Ionisierungszone
1 = Abstand Effusionsöffnung-Ionisierungszone

h. die Teilchendichte im Molekularstrahl und somit auch die chweisempfindlichkeit nimmt mit dem Quadrat der Entfernung l n der Öffnung ab. /26/

r die in dieser Arbeit verwendete Apparatur ergibt sich mit 2 mm und l=40 mm ein $N_{\alpha}/N_{o} = 6*10^{-4}$.

ne Verbesserung der Nachweisempfindlichkeit kann erreicht rden, wenn man statt der schneiden- eine kanalförmige fusionsöffnung wählt, da sie fokussierende Eigenschaften sitzt. Jedoch nimmt hierbei die Durchlaßwahrscheinlichkeit t zunehmender Länge des Effusionskanals ab, da ein Teil der f die Effusionswand auftreffenden Molekel nach dem cos-Getz wieder in die Knudsenzelle gelangt.

r die Wahl einer geeigneten Geometrie der Effusionsöffnung t ein Kompromiß zwischen einer ausreichenden Nachweisemindlichkeit auf der einen Seite und einer geringen Massenrlustrate auf der anderen Seite zu schließen. Dies ergibt ch aus der Notwendigkeit, das thermodynamische Gleichgewicht der Knudsenzelle möglichst wenig zu stören und die Abnahme r Konzentration in der Probe bei lang andauernden Meßserien . <u>Kap. 6.6</u>) und z. T. sehr hohen Dampfdrücken klein zu hal-1.

Also die Zahl der Teilchen im Molekularstrahl, die die Ionisierungszone erreichen.

Zu diesem Zweck wurde statt der häufig verwendeten schneidenoder kanalförmigen Effusionsöffnungen mit 0,3 - 0,6 mm Durchmesser hier erstmals für diese Problemstellung eine kanalförmige Öffnung¹⁾ mit nur 0,1 mm Durchmesser bei einer Länge von 2 mm eingesetzt.

Abb. 6.2: Knudsen-Effusionsöffnung

Vergleicht man diese Effusionsöffnung z. B. mit einer üblichen Kanalöffnung (0,3 mm \emptyset / 2 mm Länge), so erhält man unter Berücksichtigung der jeweiligen Durchlaßwahrscheinlichkeit (Clausing-Faktor) a und der Querschnittsfläche q eine um über 80 % kleinere <u>effektive</u> Querschnittsfläche ($q_{eff} = aq$)²⁾. Der große Vorteil gegenüber herkömmlichen Öffnungen besteht somit in einem minimalen Konzentrationsverlust (vgl. Gl. 6.5, <u>Kap.</u> <u>6.1.2</u>). Der Einsatz dieser Effusionsöffnung war möglich, da die Intensitätsverluste des Dampfstrahls aufgrund der kurzen Entfernung zur Ionenquelle relativ klein sind und somit die erforderliche Nachweisempfindlichkeit k noch gegeben ist.

¹⁾ Der Konus im unteren Teil des Effusionskanals ist herstellungsbedingt.

²⁾ Die Werte für a wurden einer Tab. aus /27/ gem. einer Berechnung nach Clausing entnommen.

Ein weiterer wichtiger Gesichtspunkt bei der Ermittlung der Partialdrücke aus den gemessenen Ionenströmen sind die unterschiedlichen Ionisationsquerschnitte σ des Eichstandards (hier Silber) und der Probensubstanz (Cäsium). Da σ nicht nur vom chemischen Element, sondern auch von der Ionisationsenergie abhängt, werden in der <u>Tab. 6.1</u> die aus der Literatur bekannten Werte verglichen.

Tab. 6.1: Literaturvergleich des Verhältnisses der maximalen Ionisationsquerschnitte für Einfachionisation (vgl. <u>Anhang 11.2</u>) von Ag und Cs

Ionisations- energien für Ag/Cs (eV/eV)	Verfasser
37/11	Mann /28/
44/28	Mann /29/
60/60	Stafford /30/
35/35	Otvos/Stevenson /31/
	Ionisations- energien für Ag/Cs (eV/eV) 37/11 44/28 60/60 35/35

Hierbei wird direkt das für die Druckberechnung benötigte Verhältnis von Silber- zu Cäsium-Ionisationsquerschnitt bei Elektronenstoßionisation angegeben. Der in dieser Arbeit verwendete relative Ionisationsquerschnitt $\sigma_{Ag}^{+/\sigma_{CS}^{+}}$ wurde daher wie folgt berechnet.

Berücksichtigt man, daß zwischen dem Ionenstrom einer Spezies und seinem Ionisationsquerschnitt σ ein proportionaler Zusammenhang besteht, dann gilt unter der Annahme, daß die Größe σ von der Auftrittsenergie $E_A^{(1)}$ an linear mit der Überschußenergie $\Delta E = E - E_A$ bis zu ihrem maximalen Wert σ_{max} (<u>Abb.</u> 6.2) zunimmt, folgende Interpolationsformel /32/:

$$\sigma = \frac{E - E_A}{E_{max} - E_A} \sigma_{max}$$
(6.11)

mit E = Ionisationsenergie

 E_{max} = Ionisationsenergie für σ_{max}

und ($E_{max} - E_A$) \approx konst.

¹⁾ Mindest-Ionisierungsenergie, bei der für eine bestimmte Spezies eine Ionisierung stattfindet.

Abb. 6.2: Ionisationsausbeutungskurve

Die <u>Tab. 6.2</u> zeigt die für die Berechnung des relativen Ionisationsquerschnittes gem. Gl. (6.11) verwendeten Werte.

Tab. 6.2: Verwendete Ionisationsquerschnitte (E = eingestellte Ionisationsenergie, E_A = Auftrittsenergie, E_{max} = Ionisationsenergie für σ_{max})

	*)E (Skt)	E _A (Skt)	E _{max} (Skt)	^o max (10 ⁻ 16	*) cm²)	^{− σ} Ag ⁺ ^{− σ} Cs ⁺
Ag+ Cs ⁺	31,4 31,4	23,3 26,4	47,1 39,6	5,05 10,78		0,42
*)Aus /28/ (Skala mit Argon (=2,83 10 ⁻¹⁶ cm ²) normiert)						

Unter Berücksichtigung der Ionisationsenergie wurde für die Druckberechnung somit in dieser Arbeit ein relativer Ionisierungsquerschnitt $\sigma_{Ag}^{+/\sigma}_{Cs}^{+}$ von 0,42 gewählt. Eine genauere Bestimmung ist derzeit nicht möglich, da das vorhandene experimentelle Datenmaterial nur Angaben über Ionisationsquerschnitte für jeweils nur eine Ionisationsenergie enthält.

Dies ist jedoch bei den hier durchgeführten Untersuchungen an A3-3 von geringerer Bedeutung, da für alle Messungen die gleiche Ionisationsenergie und Einstellung der Ionenoptik verwendet wurden. D.h. das Verhältnis der Dampfdruckkurven¹⁾ untereinander verändert sich nicht, lediglich das absolute Druckniveau ist hierdurch mit einem möglichen konstanten Fehler behaftet. Die Unsicherheit der Ionisationsquerschnitte stellt zugleich den größten Fehler bei der Druckbestimmung dar.

Weiterhin muß zur Umrechnung des mit einem Sekundärelektronenvervielfachers (S.E.V.) gemessenen Ionenstromes der Verstärkungsfaktor γ berücksichtigt werden. Er kann entweder direkt durch Vergleich des mit einem Faraday-Auffänger²⁾ und mit dem des S.E.V. gemessenen Ionenstromes ermittelt werden.

Sofern dies nicht möglich ist, kann eine Abschätzung mit hinreichender Genauigkeit über die Annahme erfolgen, daß der jeweilige Verstärkungsfaktor der Geschwindigkeit der auftretenden Ionen direkt und damit der Wurzel der Masse M umgekehrt proportional ist. /33/

¹⁾ Vgl. <u>Kap.</u> 7

²⁾ Direkte Messung des Ionenstromes ohne Verstärkung (vgl. Anhang 11.2)

Bei der in dieser Arbeit eingesetzten Anlage konnte zu diesem Zweck ein Faraday-Auffänger zugeschaltet werden. Der ermittelte relative Verstärkungsfaktor γ_{Ag}/γ_{Cs} beträgt 1,1 + 0,06.

Er stimmt somit mit dem rechnerisch ermittelten Wert gemäß

$$\frac{\gamma_{Ag}}{\gamma_{Cs}} = \left(\frac{M_{Cs}}{M_{Ag}}\right)^{1/2} = \frac{(133)^{1/2}}{(107)^{1/2}} = 1,11$$
(6.12)
$$\frac{M_{Cs}}{M_{Ag}} = 133 \text{ g/mol} = \text{Masse des Cs-Ions}$$
$$\frac{M_{Ag}}{M_{Ag}} = 107 \text{ g/mol} = \text{Masse des Ag-Ions (Standard)}$$

gut überein.

Unter Berücksichtigung der vorangegangenen Betrachtungen läßt sich mit Gl. (6.13) nun folgender Zusammenhang zwischen den gemessenen Innenströmen und ihrem zugehörigen Partialdampfdruck herstellen:

$$P_{Cs} = k \frac{\sigma_{Ag}^{+}}{\sigma_{Cs}^{+}} \frac{\gamma_{Ag}}{\gamma_{Cs}} I_{Cs}^{+} Mb T \qquad (6.13)$$

k = Druckkalibrierungskonstante

- $\sigma_{Ag}^{+/\sigma}Cs^{+} = Verhältnis der Ionisationsquerschnitte$ von Standard¹) und Cäsium
 - γ_{Ag}/γ_{Cs} = Verhältnis der Verstärkungsfaktoren von Standard zu Cäsium
 - I⁺Cs = Signalhöhe der Cs-Ionen auf dem Schreiber (=Ionenstrom) Mb = Meßbereich
 - T = absolute Temperatur in der Knudsenzelle

l) Hier Silber

6.1.3 Verfahren zur Bestimmung der Druckkalibrierungskonstante

Zur Berechnung der Partialdampfdrücke gemäß Gl. (6.12) kommt der experimentell zu ermittelnden Druckkalibrierungskonstanten $k^{1)}$ eine besondere Bedeutung zu, da er als Proportionalitätsfaktor einen direkten Zusammenhang zwischen dem gemessenen Ionenstrom I und dem zugehörigen Dampfdruck p herstellt. k berücksichtigt anlagenspezifische Verluste (vgl. <u>Kap. 6.1.2</u>), wie sie u.a. durch die begrenzte Transmission der Ionenquelle und des Trennsystems des Massenspektrometers auftreten.

Für die Bestimmung des Faktors k durch Eichung kamen für die Cs-Dampfdruckmessungen grundsätzlich zwei Verfahren in Frage:

- 1. Eichung durch quantitative Verdampfung
- 2. Eichung mit bekannten Dampfdrücken eines Standards

Das Eichverfahren 1 beruht auf der Hertz-Knudsengleichung

$$p = p = \frac{1}{aq} \left(\frac{2\pi RT}{M}\right)^{1/2} \frac{dm}{dt}$$
(6.14)

- p = Druck der Eichsubstanz
- a = Durchlaßwahrscheinlichkeit der Knudsen-Effusionsöffnung
- q = Querschnittsfläche der Knudsen-Effusionsöffnung
- R = allgemeine Gaskonstante

- M = Atom- bzw. Molekulargewicht der Eichsubstanz
- $\frac{dm}{dt}$ = Massenverlustrate durch die Knudsen-Effusionsöffnung

^{1) = (}Nachweis-)Empfindlichkeit

Gl. (6.14) stellt also eine Beziehung zwischen dem bei der Verdampfung aus der Knudsenzelle auftretenden Gewichtsverlust und dem in ihr herrschenden Partialdruck her.

Bei der Eichung durch quantitative Verdampfung wird eine genau abgewogene Menge g einer Eichsubstanz aus einer Knudsenzelle in der Zeit t bei konstanter Temperatur T vollständig verdampft und der hierbei gemessene konstante Ionenstrom I⁺ erfaßt. Die Empfindlichkeit k kann dann berechnet werden mit

$$k = \frac{p}{I^{+}T} = \frac{1}{I^{+}T} \frac{1}{aq} \left(\frac{2\pi RT}{M}\right)^{1/2} \frac{g}{\Delta t}$$
(6.15)

Der Zeitpunkt, an dem die Eichsubstanz völlig verdampft ist, wird durch eine plötzliche starke Abnahme des Ionenstroms I⁺ angezeigt.

Die Nachteile dieses Verfahrens bestehen im großen Zeitaufwand und der schwierigen Reproduzierbarkeit.

Es wurde daher das Eichverfahren 2 angewandt. Voraussetzung für diese Methode ist die genaue Kenntnis¹⁾ der Gleichgewichtsdrücke p im gewünschten Druckbereich (hier etwa zwischen 10⁻⁵ und 1 Pa). Gemessen wird dann jeweils ein Ionenstrom I⁺ des Eichstandards und die dazugehörige Temperatur T in der Zelle. k ergibt sich dann aus der Beziehung:

$$k = \frac{p}{I^{+}Mb T}$$
(6.16)

wobei der Meßbereich Mb des Ionennachweissystems nur zu berücksichtigen ist, falls bei der Eich- und Probenmessung aufgrund starker Intensitätsunterschiede in mehreren Meßbereichen gearbeitet werden muß.

¹⁾ Muß aus der Literatur bekannt sein.

Als Eichsubstanz wurde Silber verwendet, da es nicht mit der Wandung der Knudsenzelle in Wechselwirkung tritt und zusätzlich wegen seiner großen Schmelzwärme für die notwendige Temperatureichung (vgl. Kap. 6.2) verwendet werden kann. Zwar käme theoretisch auch reines metallisches Cäsium in Frage, wodurch die mit Unsicherheiten behafteten Umrechnungsfaktoren (σ_{Ag}/σ_{Cs}) und (γ_{Ag}/γ_{Cs}) der Gl. (6.11)¹⁾ entfielen. Jedoch ist Cs schlecht handhabbar (sehr reaktiv) und, da die Meßbereiche zwischen der Eichtemperatur und den späteren Versuchstemperaturen stark differieren, ungeeignet.

6.2 Temperaturmessung

Die Temperatur T in der Zelle ist neben dem Ionenstrom I⁺ die zweite Meßgröße bei der Knudsen-Effusionsmethode.

Zunächst wurden hierzu die beiden grundsätzlichen Verfahren der Temperaturmessung mit Thermoelement oder Pyrometer auf ihre Eignung unter den gegebenen anlagen- und versuchsspezifischen Gegebenheiten untersucht.

Für die pyrometrische Temperaturmessung befindet sich in den Mo-Knudsenzellen eine 6 mm lange Bohrung mit einem Durchmesser von 1 mm (vgl. <u>Abb. 4.2</u>). Unter Berücksichtigung des Verhältnisses Länge 1/Durchmesser d der Bohrung und des Werkstoffs der Zellen stellt der Boden der Bohrung praktisch einen schwarzen Strahler mit einem Emissionsvermögen von 1 dar. Die theoretischen Grundlagen können der Literatur /34,35/ entnommen werden.

Die Messung der Temperatur erfolgte durch Leuchtdichteabgleich mit einem geeichten Glühfadenpyrometer (Mikro Pyrometer, No. 3385, Fa. Pyro-Werk GmbH, Hannover).

1) Vgl. <u>Kap. 6.1.2</u>

Eichmessungen an einer Knudsenzelle ergaben unter Berücksichtigung der Absorption des Fensters und der beim Pyrometer verwendeten Vorsatzlinse zunächst einen maximalen Fehler von \pm 4 K, wobei die Temperatur mittels der bekannten Schmelzpunkte von Silber (1234 K) überprüft wurde. Jedoch war eine definierte, reproduzierbare Ausrichtung der Bohrung in den Knudsenzellen bzgl. des Pyrometers nach dem Raus- und Reinfahren in den Induktor und vorherigem Drehen mit dem Manipulator (vgl. <u>Abb. 4.2</u> und <u>4.4</u>), wie es bei jedem Wechsel zwischen der Eich- und der Probenzelle erforderlich ist, nicht möglich. Diese Tatsache wurde durch stark schwankende maximale Meßfehler von \pm 4 K bis \pm 18 K belegt, wodurch eine verläßliche Fehlerkorrektur nicht möglich war.

Für die Cs-Dampfdruckuntersuchungen wurden daher Mantelthermoelemente aus EL-18¹⁾ (Fa. Philips, Kassel) eingesetzt, die über eine Ausgleichsleitung mit einem geeichten Digitalanzeiger verbunden sind. Dieser rechnet über eine programmierte Linearisierung die durch die Temperaturdifferenz im Element entstandene EMK in einen Temperaturwert um. Der Durchmesser der Thermoelemente beträgt 1 mm und die Eintauchtiefe in die Knudsenzelle 8 mm, was einem 1/d-Verhältnis von 8 entspricht. Somit ist der Einfluß der Wärmeableitung auf die Temperaturmessung zu vernachlässigen.

Der Fehler des Digitalanzeigegerätes wurde mit einem geeichten Temperatur-Simulator²⁾ (Fa. Linseis, Selb) ermittelt. Er beträgt <u>+</u> 1°C im Temperaturbereich von 850 bis 1950 K. Die Temperatureichung wurde mit Hilfe der bekannten Schmelztemperaturen von Silber und Gadolinium (1585 K) durchgeführt, indem die Temperatur langsam erhöht und hierbei die dem Dampfdruck proportionale Intensität der ¹⁰⁷Ag⁺- bzw. Gd⁺-Ionen beobachtet wurde. Wird der jeweilige Schmelzpunkt

¹⁾ Positiver Pol: 70 % Pt/30 % Rh; negativer Pol: 94 % Pt/6 % Rh

²⁾ Spannungsgeber

erreicht, so bleibt trotz kontinuierlicher Energiezufuhr die Temperatur und die Ionenintensität infolge der Phasenumwandlungswärme für kurze Zeit konstant, wie dies in <u>Abb. 6.3</u> beispielhaft für ¹⁰⁷Ag verdeutlicht wird.

Abb. 6.3: Intensitätsverlauf des ¹⁰⁷Ag⁺-Ionenstroms bei langsamer Über- und Unterschreitung der Schmelztemperatur

Die beiden Pfeile in <u>Abb. 6.3</u> markieren die beiden "Intensitätssprünge" nach Über- bzw. Unterschreitung der Schmelztemperatur.

Die Eichung der beiden Knudsenzellen anhand der beiden Schmelzpunkte ermöglicht Fehlergrenzen von <u>+</u> 2 K, wobei die Eichung mit Gd nur zur Kontrolle nach längeren Meßpausen (ca. 1 Woche), die Ag-Temperatureichung jedoch vor jeder Meßserie (vgl. <u>Kap. 6.6</u>) durchgeführt wurde.

6.3 Gammaspektrometrische Konzentrationsbestimmung

Zur radiologischen Bestimmung der Cs-Konzentration in den graphitischen Proben wurde, wie im <u>Kap. 5.2</u> beschrieben, das 133 CsNO₃ mit einer sehr kleinen Menge¹⁾ 134 CsNO₃ gemischt, die von ihrer Aktivität ausreichte, um die kleinste zu messende Konzentration (ca. 0,1 mmol/kg) mit dem Gammaspektrometer noch erfassen zu können.

Die Messungen erfolgten mit einem Vielkanalanalysator (System BS 27/N; Fa. Berthold, Wildbad), der über 1018 Kanäle verfügt. Für eine möglichst genaue Konzentrationsbestimmung wurde die γ -Linie mit der größten Energie (796 keV) und einer γ -Häufigkeit von 89 Photonen auf 100 Zerfälle /36/ erfaßt. Hierzu wurden die auftretenden Impulse des Energie-Peaks mit 40 Kanälen über einen Zeitraum von jeweils 100 s gezählt, wobei gemäß <u>Abb. 6.4</u> die Fläche unter dem Energie-Peak die Impulssumme repräsentiert.

Abb. 6.4: Darstellung eines mit einem Vielkanalanalysator gemessenen γ -Energie-Peaks

1) Der Massenanteil des $^{134}\mathrm{CsNO}_3$ lag bei <2.10 $^{-5}\%$ bezogen auf die $^{133}\mathrm{CsNO}_3$ -Menge

Für die Konzentrationsbestimmung wurden vier Eichstandards mit 10, 100, 300 und 500 μ l¹⁾ der angesetzen CsNO₃-Lösung (vgl. <u>Kap. 5.2</u>) verwendet. Diese wurden zunächst auf ihre Linearität überprüft, wie aus <u>Abb. 6.5</u> zu ersehen ist.

Abb. 6.5: Cs-Konzentrationen der Eichstandards als Funktion der gammaspektrometrisch gemessenen mittleren Impulsraten unter Brücksichtigung der Totzeiten

Die aus jeweils drei Einzelmessungen gemittelten Impulswerte Imp_m und ihre Standardabweichungen von weniger als <u>+</u> 2 % können der <u>Tab. 6.3</u> entnommen werden, wobei die Totzeiten²⁾ mit berücksichtigt werden. Ein differentieller Fehler kann daher im Rahmen der Meßgenauigkeit vernachlässigt werden.

¹⁾ Entsprechen 2,3, 23,3, 69,9 und 116,5 µmol Cs

²⁾ Zeiten, in denen der Analog-Digital-Wandler keine Impulse entgegennehmen kann. Hier gilt: Je größer die Impulsrate, desto größer die Totzeit.

Cs-Eichstandard	^{Imp} 1	Imp ₂	Imp ₃	Imp _m	Standard-
(µmol)	(1/s)	(1/s)	(1/s)	(1/s)	abweichung
2,3	302	301	304	302	<u>+</u> 1,5
23,3	3033	2998	3047	3026	<u>+</u> 25,2
69,9	8944	9012	9189	9048	<u>+</u> 126,5
116,5	15386	14887	14909	15060	<u>+</u> 281,7

Tab. 6.3: Impulsraten der Cs-Eichstandards

Das Kontrollverfahren wurde von Zeit zu Zeit wiederholt. Zur Bestimmung der Cs-Konzentration wird jeweils der Eichstandard gewählt, der der Probenkonzentration am nächsten kommt. Sie kann dann gemäß der folgenden Formel berechnet werden:

$$c = \frac{Imp_{Probe}}{Imp_{Cs-Eich}} \qquad \begin{array}{c} C_{Cs-Eich} \\ \hline m_{Probe} \end{array} \qquad (6.17)$$

Imp Probe = Gemessene Impulsrate der Probe (1/s)

Imp Cs-Eich = Gemessene Impulsrate des Cs-Eichstandards (1/s)

Cs-Eich = Cs-Konzentration des Cs-Eichstandards (mmol)

Die gemessenen Impulsraten stellen wieder einen aus drei Einzelmessungen gemittelten Wert dar. Hierbei lagen die berücksichtigten Totzeiten je nach Größe der Cs-Konzentration zwischen 0 und 15 %.

6.4 Bestimmung und Aussagekraft der inneren und äußeren Oberfläche

Zur Charakterisierung des Sorptionsvermögens wird die spezifische Cs-Konzentration häufig nicht nur auf die Masse oder das Volumen des graphitischen Materials, sondern auf seine innere und äußere Oberfläche bezogen. Hierzu wird üblicherweise die spezifische Oberfläche nach Brunauer-Emmett-Teller (B.E.T.) /37,38/ angegeben, bei der die Oberfläche von porösen Körpern aus der Gasadsorptionsisothermen ermittelt wird. Inwieweit diese Methode die tatsächliche Oberfläche erfaßt, hängt im wesentlichen von folgenden Voraussetzungen und Annahmen ab:

- Die Gasmoleküle werden auf definierten, energetisch gleichwertigen Plätzen der Sorptionsoberfläche adsorbiert.
- Eine laterale (horizontale) Wechselwirkung zwischen benachbarten Adsorpt-Molekülen¹⁾ wird ausgeschlossen.
- Die unterste Schicht der Adsorpt-Moleküle bildet die Sorptionsfläche für die nachfolgenden.
- Das Adsorpt befindet sich außer in der ersten Schicht in einem flüssigkeitsähnlichen Zustand.
- Es besteht dynamisches Gleichgewicht zwischen der Adsorptionswärme q₁ der ersten Adsorpt-Schicht bzw. der konstanten Kondensationswärme q_k aller weiteren Schichten und der

¹⁾ Bei der B.E.T.-Methode ist das sorbierter Stickstoff

Desorption. Hierbei muß $q_1 > > q_k$ sein, damit sich die erste Schicht¹⁾ vollständig aufbauen kann, bevor die folgenden entstehen./39/

In der Praxis kommt eine B.E.T.-Auswertungsformel zur Anwendung, wie nachfolgend erläutert wird. Die für die Regression und graphische Auftragung linearisierte Form lautet:

$$\frac{x}{V_{ads}(1-x)} = \frac{1}{V_m C} + \frac{C-1}{V_m C} x$$
(6.18)

Trägt man den Ausdruck auf der linken Seite von Gl. (6.18) gegen den Relativdruck x auf, so erhält man eine Gerade, aus deren Steigung und Achsenabschnitt die Stoffkonstante C eliminiert werden kann, also

$$C = \frac{a}{b} + 1$$
 (6.19)

mit

$$a = \frac{C-1}{V_m C}$$
$$b = \frac{1}{V_m C}$$

Das Volumen V einer monomolekularen Schicht kann man dann für C >> l und l/C <<x mit der Gl. (6.18) berechnen:

$$V_{\rm m} = V_{\rm ads} \ 1 - \frac{p}{p_{\rm o}}$$
 (6.20)

(6.21)

und

 $A_{BET} = Lf \frac{V_m}{V_0}$

¹⁾ Ihr Volumen spielt eine wichtige Rolle in der B.E.T.-Theorie.

mit A_{BET} = B.E.T.-Oberfläche

- L = Loschmidt-Zahl
- f = Flächenbedarf eines Moleküls¹⁾

v = Molvolumen des Gases (hier Stickstoff)

Die B.E.T.-Oberfläche kann somit mit nur einem Meßpunkt (=1-Punkt-Methode) und dem Nullpunkt berechnet werden, indem das adsorbierte Gasvolumen V_{ads} bei einem Druck p gemessen wird. Für den i. d. Regel verwendeten flüssigen Stickstoff (77°K) gilt obiger linearer Ansatz jedoch nur bis $p_0 = 0,108$ MPa und einem Relativdruck von $p/p_0 = 0,255$.

Als Meßgerät für die in dieser Arbeit untersuchten graphitischen Reaktormaterialien diente ein AREA-Meter der Fa. Ströhlein. Der Anwendungsbereich liegt bei 0,2 m² - 1000 m²/g, wobei bei 1 g Einwaage B.E.T.-Oberflächen von ca. 7 -50 m²/g angezeigt werden. Die mittlere Abweichung der Einzelmessung beträgt \pm 1 % (max. \pm 3,6 %).

Anzumerken ist, daß die B.E.T.-Oberfläche mit steigendem Anteil an Mikro-Poren (d < 2nm) immer stärker von der tatsächlichen inneren und äußeren Oberfläche abweicht, da eine freie Mehrschichtbelegung bei Mikro-Poren, deren Größe im Bereich weniger Atomdurchmesser liegt, nicht mehr bzw. unzureichend gewährleistet ist. Nach theoretischen Überlegungen von Dubinin /40,41/ ist in Mikroporen mit einer Füllung des Volumens gemäß TVFM²⁾ zu rechnen. Somit ist die Ausbildung einer kompletten monomolekularen Schicht nach dem zugrunde gelegten Langmuir-Mechanismus fraglich.

¹⁾ Für Stickstoff 0,162 nm²/Molekül;d=0,354 nm (bei 77K)

²⁾ Theory of Volume Filling of Micropores

Da die graphitischen Reaktormaterialien sehr unterschiedliche Mikroporenanteile aufweisen, gibt die B.E.T.-Oberfläche in diesem Zusammenhang daher häufig weniger die absolute Größe der Oberfläche wieder, sondern dient vielmehr als Vergleichszahl. Über die im einzelnen abzuleitende Aussagekraft wird auch noch im <u>Kap.</u>7 diskutiert.

6.5 Durchführung der massenspektrometrischen Versuche

Die Durchführung der Cs-Untersuchungen mit dem im <u>Kap. 4.1</u> beschriebenen Quadrupol-Massenspektrometer mit zwei Knudsenzellen kann in drei Verfahrensschritte unterteilt werden:

- 1. Ermittlung der optimalen Geräteparameter,
- 2. Überprüfung der Geräteparameter hinsichtlich ihrer Konstanz im Meßzeitraum und
- 3. Durchführung der Eich- und Versuchsmessungen

1. Ermittlung der optimalen Geräteparameter

Zunächst wurden nach einer ersten Grundeinstellung der Massenspektrometer-Elektronik für die beiden Knudsenzellen jeweils die optimalen x-, y-, z-Werte des Knudsenzellen-Manipulators (vgl. <u>Abb. 4.2</u>) ermittelt. Diese liegen vor, wenn die jeweils gemessene Ionenintensität des Ag-Eichstandards für T = konst. bei konstanter Einstellung der Elektronik maximal ist.

Anschließend erfolgte die Einstellung der Massenspektrometer-Elektronik so, daß die gemessene Dampfdruckgerade des Ag-Eichstandards die gleiche Steigung aufwies, wie die der aus der Literatur /42/ bekannten. Hierdurch konnten Fehler bei der Berechnung der Cs-Dampfdrücke sowie bei der aus der Steigung resultierenden Verdampfungsenthalpien vermieden werden. Die für die Cs-Dampfdruckmessungen verwendeten Geräteparameter sind in der Tab. 6.4 aufgeführt. Tab. 6.4: Einstellung der Massenspektrometer-Elektronik¹⁾

Elektronenstoßenergie	:		31,4	eV
Emissionsstrom der Glühkathode	:		3,0	mA
Ziehblende	:		2,4	V
Blende 1	:	-	15,8	v
Blende 2	:		138,0	V
Blende 3	:	_	4,5	V
angelegte Spannung am Channeltro	on:		2,4	kV

Abb. 6.6 zeigt eine typische gemessene Ag-Ionenintensitätskurve im Vergleich zur "Literatur"-Dampfdruckkurve, wie sie zur Kontrolle vor jeder Meßserie ermittelt wurde.

Abb. 6.6: Ag-Dampfdruckkurven (1 = gemessene Eichkurve; 2 = Dampfdruckkurve gem. Literatur)

1) Hier werden nur die wichtigsten Parameterwerte genannt (vergl. Kap. 4.1)

Die Standardabweichungen der Steigung s

s =
$$\frac{\ln (I_{Ag}^{+MB} T)}{(1/T)} = \frac{\ln (p_{Ag})}{(1/T)}$$
 (6.22)

I_Ag = Signalhöhe der Ag-Ionen auf dem Schreiber (= Ionenstrom)

MB = Meßbereich (V)

T = absolute Temperatur (K)

p_{Ag} = Ag-Dampfdruck gemäß (Pa)

können mit weniger als <u>+</u> 0,8 % im Rahmen der Meßgenauigkeit vernachlässigt werden.

2. Überprüfung der Geräteparameter hinsichtlich ihrer Konstanz im Meßzeitraum

Der wichtigste Indikator für eine insgesamt konstant arbeitende Massenspektrometer-Elektronik ist die Druckkalibrierungskonstante k (vgl. <u>Kap. 6.1.3</u>, Gl.(6.16)). Hierzu wurde k über einen Zeitraum von 12 Stunden¹⁾ im Abstand von einer Stunde registriert (s. h. Tab. 6.5).

¹⁾ Entspricht der maximalen Länge eines Meßzyklus mit Eich- und Versuchsmessungen

Zeitpunkt (Stunde)	k *) (Pa/mm V K)	k _m **) (Pa/mm V K)
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.	$\begin{array}{r} 2,39 & 10^{-5} \\ 2,43 & 10^{-5} \\ 2,44 & 10^{-5} \\ 2,32 & 10^{-5} \\ 2,34 & 10^{-5} \\ 2,36 & 10^{-5} \\ 2,41 & 10^{-5} \\ 2,40 & 10^{-5} \\ 2,43 & 10^{-5} \\ 2,45 & 10^{-5} \\ 2,39 & 10^{-5} \\ 2,38 & 10^{-5} \end{array}$	2,40·10 ⁻⁵ <u>+</u> 0,04·10 ⁻⁵
*)Bei T=119	5 <u>k +</u> 2 k; **)	Mittelwert von k

Tab. 6.5: Kontrolle der Druckkalibrierungskonstante k über die Dauer eines Meßzyklus

Die k-Schwankungen lagen auch bei den wiederholt durchgeführten Kontrollen unter <u>+</u> 2 %. Da die Massenspektrometer-Elektronik jedoch sehr empfindlich auf Veränderungen der Umgebungsverhältnisse reagiert, kam der häufigen Überprüfung der Druckkalibrierungskonstanten k eine besondere Rolle zu.

3. Durchführung der Eich- und Versuchsmessungen

Unmittelbar vor jeder Cs-Meßserie wurde sowohl eine Temperatur- als auch Druckeichung mit dem Ag-Standard mit folgenden Verfahrensschritten durchgeführt:

1. Temperatureichung (vgl. Kap. 6.2)

Hierzu wurden die beiden Knudsenzellen jeweils bis zum Ag-Schmelzpunkt hochgeheizt und der konstante Temperaturmeßfehler ΔT_Z des Anzeigegerätes und der Thermoelemente erfaßt:

$$\Delta T_{z} = T_{Ag-Schmelz} - T_{z}$$
(6.23)

 ΔT_Z lag bei maximal <u>+</u> 16 K. Die Temperaturkorrektur erfolgte dann für jede Zelle gemäß:

$$\mathbf{T} = \mathbf{T}_{\mathbf{Z}} + \Delta \mathbf{T}_{\mathbf{Z}} \tag{6.24}$$

mit T = absolute Temperatur

 T_{Z} = angezeigte Temperatur der jeweiligen Zelle

2. Druckeichung (vgl. Kap. 6.1.3)

Die Ermittlung der Druckkalibrierungskonstanten k_Z erfolgte ebenfalls für jede Zelle im Temperaturbereich von 1123 K bis 1273 K als Mittelwert aus je 3 bis 4 Einzelmessungen k_i bei unterschiedlichen Temperaturen:

$$k_{Z} = \frac{1}{n} \sum_{i=1}^{n} k_{i}$$

$$k_{i} = \frac{p_{Ag}}{(I_{Ag} + MB T)}$$
(6.25)

mit

Unter Berücksichtigung der in der Praxis nie ganz gleich großen Werte der Druckkalibrierungskonstanten der beiden Knudsenzellen ergibt sich dann folgender Zusammenhang:

$$k_{Z1} = ak_{Z2}^{(1)}$$
 (6.26)

mit 1 < a < 1,06

D. h. die Abweichung der beiden k-Faktoren lag also bei maximal 6 % und blieb während der Meßserie konstant.

Anschließend wurde in die Knudsenzelle Z 1 eine Cs-beladene Probe eingesetzt und die mit Ag gefüllte Zelle Z 2 erneut zur Ermittlung der aktuellen" Druckkalibrierungskonstanten k_{Z2} hochgeheizt. Dieses Verfahren ist erforderlich, da zum Einsetzen der Probe der Rezipient geöffnet wird und hierzu die Massenspektrometer-Elektronik kurzzeitig abgeschaltet werden muß. Mit \bar{k}_{Z2} wird also zum einen indirekt die unveränderte Einstellung der Elektronik überprüft und kleinere Abweichungen (\pm 1 %) vom Wert der Druckkalibrierungskonstanten k_{Z2} berücksichtigt. \bar{k}_{Z2} wird wieder gem. Gl. (6.25) über 3 bis 4 Einzelmessungen gemittelt. Somit gilt für die zur Cs-Druckberechnung verwendete Druckkalibrierungskonstante k die Berechnungsformel (6.27):

$$k = \frac{k_{Z1}}{k_{Z2}} \bar{k}_{Z2}$$
 (6.27)

Als nächstes wird eine Graphit-Probe mit einer konstanten Cs-Konzentration hochgeheizt. Die Ionenströme I_{Cs}+ der einzelnen Meßpunkte der Cs-Dampfdruckgeraden wurden nach folgendem Verfahren auf dem Schreiber erfaßt und später mit einem Rechenprogramm (vgl. <u>Kap. 6.6</u>) ausgewertet:

¹⁾ Index Z 1 und Z 2 beziehen sich jeweils auf Knudsenzelle 1 und 2

- Probe auf die gewünschte Temperatur hoch- bzw. runterheizen,
- 2. Cs-Untergrund-Signal bei geschlossenem Abschatter messen,
- 3. Abschatter öffnen und warten bis sich ein konstantes Ionenstromsignal I_{Cs} + (für T=konst.) einstellt,
- 4. Abschatter schließen.

Aus der Differenz des Schreiber-Ausschlags (<u>Abb. 6.7</u>) zwischen dem Cs-Untergrundsignal I_u und dem Cs-Signal I bei geöffnetem Abschatter ergibt sich dann der zu einer jeweilig konstanten Temperatur gehörende Cs-Ionenstrom I_{Cs}+ eines Meßpunktes.

<u>Abb. 6.7:</u> Schematische Darstellung eines mit dem Schreiber registrierten Ionenstroms $I_{Cs}^{+} = I - I_u (T_1 > T_2)$
Unterschiedliche Cs-Probenkonzentrationen erhält man, indem man nach Abschluß einer Meßserie eine Probe mit einer hohen Konzentration in einer Knudsenzelle mit großer Öffnung hochheizt und bei konstanter Temperatur über einen längeren Zeitraum bis zur gewünschten Cs-Konzentration abreichert. Im vorliegenden Fall wurde hierzu ein Durchmesser der Effusionsöffnung von 1,5 mm verwendet. Die Verlustraten können grob über die Gl. (6.5) abgeschätzt werden. Anschließend erfolgt eine erneute genaue Konzentrationsbestimmung mit dem Gammaspektrometer (vgl. Kap. 6.4).

6.6 Auswertungsverfahren für die massenspektrometrischen Ergebnisse

Da die Massenspektrometer-Elektronik über keine Schnittstellen für die Datenverarbeitung verfügt, wurden zunächst für jede Meßserie die Meßwerte (Temperatur und Ionenintensität) erfaßt und die absoluten Temperaturen, Ionenintensitäten und Eichfaktoren mit einem Basic-Programm berechnet, wie in <u>Tab.</u> <u>6.6</u> zusammengefaßt ist.

Die weitere Auswertung erfolgte mit einem in Fortran geschriebenen Rechenprogramm, nachdem die gem. <u>Tab. 6.6</u> berechneten Daten aller Meßserien vorlagen. Folgende Eingabeparameter wurden hierzu benötigt (vgl. <u>Tab. 6.6</u>):

- Eichfaktor E zu jeder Meßserie,
- Temperatur T und Cs-Ionenstrom I_{Cs}^+ der Meßpunkte,
- Cs-Konzentrationen c_{Cs} der Meßserien,
- Übergangs-Cs-Konzentration c_t, bei der der Freundlich-Bereich in den Henry-Bereich übergeht.

Art der	Genessen	Berechnet	L C H	4		
Elchung					кгіацте	rungen
Ag-Elchung:	$\begin{bmatrix} T_{Z/Ag-Scimelz} \end{bmatrix}$	$\Delta r_{\rm Z}^{(1)}$	$\Delta T_{Z} = T_{Ag-Schm}$	elz ^{-T} Z/Ag-Schmelz	TZ/Ag-Schmelz	= Mit Thermoelement remoccane 7.11
	$T_{z}^{(1)}$	E4	$T = T_{Z} + \Delta T_{Z}$		TAg-Schmelz	Temperatur, bei der Ag schmilzt = 1234°K = Ag-Schmelztemperatur
	I _{Ag} +				$\Delta \mathbf{T}_{\mathbf{Z}}$	= Temperatur-Korrektur
	1 	يد. م	k, =/ p)		$\mu_{\mathbf{Z}}$	= Mit dem Thermoelement gemessene Zellen-Temperatur
		4	$\frac{1}{1} \frac{1}{Mb} \frac{m}{T} \frac{1}{Mc}$	<u>م</u>	H	= absolute Temperatur
		$k_{2}^{1};k_{22}^{2}$	$k_{Z} = \frac{1}{n} \sum_{i=1}^{n} k_{i}$		^t Ag ⁺ /	 Signalhöhe der Ag-/Cs-Ionen auf den Schreiber
			ید بد ۱	σ, Υ, 3)	qW	= Meßbereich des Verstärkers
		<u>ы</u>	$\mathbf{E} = \mathbf{k}_{\mathbf{Z}2} \frac{\mathbf{z}_1}{\mathbf{k}_{\mathbf{Z}2}}$	Cs Cs	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	= Druckkalibrierungskonstante
Cs-Messung:	T _{Z2} ³⁾	E			κ Σ	<pre>= Druckkalibrierungskonstante (Mittel- wert)</pre>
	I _{Cs} +		(Analog wie bei /	49-Eichung)	"	<pre>- Ionisationsquerschnitt</pre>
		PCs	$\mathbf{P}_{\mathbf{C}_{\mathbf{S}}} = \mathbf{E} \mathbf{I}_{\mathbf{C}_{\mathbf{S}}} + \mathbf{M}$	ЪД	" 	 Verstärkungsfaktor des Channeltrons
1) Für jede 2) Val kan	 der beiden Zeller و رع میں این	 1 1 (=Probenzell	e) und 2 (=Eichzell		"	 Gesamt-Bichfaktor zur Cs-Druckbe- rechnung
3) Index '21	bzw. Z2 bezieht	sich auf Zelle (1/2			

Tab. 6.6: Erfaßte Meßwerte und berechnete Werte bzw. Faktoren

Die Übergangskonzentration c_t wurde hierzu vorher so berechnet, daß die Fehler der Polynomkoeffizienten der Sorptionsisothermen minimal wurden. Eine Temperaturabhängigkeit konnte anhand der vorliegenden Daten nicht festgestellt werden, wie in Kap. 7 noch diskutiert wird.

- 68 -

Als Ergebnis erhält man:

- Cs-Dampfdruckkurven ln p = $A_D \frac{1}{T} + B_D$ (c = konst.),
- Cs-Verdampfungsenthalpien ΔH_V^o für jede Cs-Konzentration c (nach der Methode des 2. H.S.):

$$\Delta H_{v}^{o} = d (\ln I^{\dagger}MbT) / d (1/T),$$

- Cs-Sorptionsisothermen für den <u>Freundlich-Bereich</u> ($c \ge c_t$):

$$\ln p_{F} = (A + B/T) + (D + E/T) \ln c$$
,

und für den <u>Henry-Bereich</u> ($c < c_t$):

 $\ln p_{H} = (A + B/T) + (D-1 + E/T) \ln c_{t} + \ln c.$

Die Fehler der Polynomkoeffizienten A_D, B_D, A, B, D und E sowie von ΔH°_{V} werden nach der Methode der kleinsten Quadrate berechnet.

6.7 Durchführung der isopiestischen Versuche

Vor jedem Experiment wurden alle Tiegel und die offene Ofenzelle bei ca. 1700°K über 12 Stunden geglüht, nachdem sie zuvor 1 Stunde in einem Propanol-Ultraschallbad gereinigt wurden.

Für einen isopiestischen Versuch wurden jeweils die zunächst Cs-freien Proben und der Cs-Quelltiegel (vgl. Kap. 5.2) in die Ofenzelle eingesetzt. Anschließend erfolgte ein stufenweises (10 K/2 min) Hochheizen bis auf ca. 470 K, um das Restwasser der CsNO2-Lösung zu verdampfen. Danach wurde die Temperatur mit einer Heizrate von ca. 10 K/5 min weiter auf 770 K erhöht. Hierbei stellten die beiden Heizraten Erfahrungswerte dar, bei denen das Vakuum bei geöffneten Ofenzellen nicht niedriger als $4*10^{-2}$ Pa¹⁾ lag. Da sich die notwendige Überführung des CsNO, in reines Cs (Nitratzersetzung) bei Temperaturen zwischen 780 K und 870 K vollzog, wurde die Ofenzelle anschließend stufenweise (ca. 5 K/10 min) unter ständiger Beobachtung der Vakuumanzeige erhöht. Das Erreichen der Nitratzersetzungstemperatur kündigte sich durch den sprunghaften Anstieg des Vakuumdrucks bis auf ca. 5*10⁻¹ Pa über einen Zeitraum von etwa 1 min an, bevor er wieder normale Werte von kleiner 5*10⁻³ Pa annahm. Erst dann durfte die Ofenzelle mit dem Stopfen verschlossen werden, wobei die Temperatur auf ca. 600 K gesenkt werden mußte. Nur bei diesen niedrigen Temperaturen (wie sich aus Vorversuchen ergab) war es möglich, die Zelle mit dem Stopfen ausreichend dicht zu verschließen (vgl. Kap. 4.2). Anschließend wurde zunächst mit einer Heizrate von lo K/10 min bis ca. 1070 K und danach bis zur maximalen Temperatur mit 10 K/60 min hochgeheizt. Die Beladung der Proben mit Cs erfolgte somit über die Gasphase in der verschlossenen Zelle bei einer konstanten Temperatur bis sich das thermodynamische Gleichgewicht einstellte. Je nach Art und Körnung des graphitischen Probenmaterials wurden Glühzeiten von 240 - 360 Stunden gewählt.

¹⁾ Maximaldruck, bei dem der HV-Ofen betrieben werden darf

Auf die gleiche Weise wurden auch die für die massenspektrometrischen Untersuchungen benötigten Proben mit Cs sorptiv über die Gasphase beladen.

- 70 -

7. DARSTELLUNG DER ERGEBNISSE UND DISKUSSION ZUR CS-SORPTION

7.1 Untersuchte graphitische Reaktorwerkstoffe

Die in dieser Arbeit untersuchten Materialien sind in <u>Tab.</u> <u>7.1</u> zusammengefaßt. Hierbei beschränkt sich die Betrachtung auf unbestrahlte und nicht korrodierte "Graphite". Zum besseren Verständnis werden im <u>Anhang 11.3</u> einige grundsätzliche Informationen über die Zusammensetzung, Herstellungsverfahren, Struktur und Eigenschaften dieser Werkstoffe gegeben und erläutert.

Tab. 7.1: Graphitische Reaktorwerkstoffe an denen Untersuchungen zur Cs-Sorption erfolgten

Untersuchungs- verfahren	<u>"Graphit-Sorte"</u> (nicht korrodiert/unbestrahlt)	Herste	ellerland (Firma)
Knudsen-Effusions- Massenspektrometrie	A3-3 (1800) ¹⁾	D	(Hobeg)
	A3-3 (1800) ¹⁾	D	(Hobeg)
	А3–27 (1950) ¹⁾	D	(Hobeg)
Isopiestische Methode	ASR-1RG ²⁾	D	(Sigri)
	ASR-1RS	D	(Sigri)
	ASR-2RS	D	(Sigri)
	P3-JHAN	F	(S.d.E.e.R.S.) 2)
	PAN	F	(S.d.E.e.R.S.)
	PXA2N	F	(S.d.E.e.R.S.) ³⁾
	H-451	USA	(G.L.C.) ⁵⁾
	H-327	USA	(G.L.C.) ⁵⁾
	IG-110	Japan	-
	$(M-100^{4})$ $(M-30^{4})$	D D	(KFA/IFW) ⁶⁾ (KFA/IFW) ⁶⁾
 Temperaturbehandlu Referenzreflektorg Societé des Electri Coat Mix Material Creat Falco Carbon 	mg bei der Herstellung (°C) praphit rodes et Refractaires Savoi aus Phenolharzbinder und Elektrog	graphit	

6) Kernforschungsanlage Jülich; Inst. f. Reaktorwerkstoffe

A3-Matrix

Das graphitische A3-Matrixmaterial für die kugelförmigen Brennelemente ist im Zusammenhang mit den für die Sicherheitsanalysen relevanten Cs-Sorptionsisothermen von besonderem Interesse.

Die beiden A3-Matrixgraphite weisen die gleichen Grundbestandteile auf und werden kalt isostatisch bei einem Druck von 310 MPa gepreßt. Die Zusammensetzung der A3-Matrixmaterialien kann der Tab. 7.2 entnommen werden.

Tab.	7.2:	Zusammensetzung	der	A3-Brennel	lement-Matrix	/43/
------	------	-----------------	-----	------------	---------------	------

Matrix-Sorte	A3-3	A3-27
Naturgraphit Petrolkoks Phenolharzbinder	72 Gew% 18 Gew% 10 Gew%	71,2 Gew% 17,8 Gew% 11,0 Gew%
max. Glühtempe- ratur ¹⁾	1800°C	1950°C

Im Gegensatz zu A3-3, bei dem die Komponenten gleichzeitig verarbeitet werden, wird beim Herstellungsprozeß des A3-27 <u>vorweg</u> eine Methanol-Lösung mit dem <u>fertigen</u> Phenol-Formaldehyd-Harz (2 Komponenten) und dem Füller angesetzt und anschließend getrocknet und gemahlen.

1) Im Vakuum

A3-Matrix ist als annähernd isotropes feinkörniges (≤100 µm) Material klassifiziert mit Verunreinigungen von 60 ppm (A3-3) bzw. 32 ppm (A3-27). Hierzu zählen im wesentlichen Schwefel, Chlor, Silizium, Eisen, Chrom, Nickel und Magnesium /44/.

Wie aus <u>Tab. 7.2</u> zu ersehen ist, liegen die maximalen Herstellungstemperaturen bei 1950°C. Ein Graphitierungsprozeß bei ≥ 2500°C unterbleibt wegen der einzulagernden beschichteten Brennstoffteilchen, da sonst mit einer Diffusion von Schwermetallatomen aus dem Kern durch die Hüllschichten in die Matrix zu rechnen ist und zudem unerwünschte Veränderungen der Brennstoffkerne auftreten. Wichtige Materialeigenschaften von A3-Matrix werden in Tab. 7.3 angegeben.

Aus der <u>Tab. 7.3</u> ist ersichtlich, daß A3-Matrixgraphit zu ca. 20 - 25 Vol.% aus Poren besteht. Ihr Radius beträgt etwa 1 nm bis 0,1 mm. Hierbei liegt der größte Teil der offenen Poren im Mikro- und Mesoporenbereich¹⁾. Die makroporenfreien Bereiche findet man in den "Füller"-Körnern. Der Binderkoks ist amorph. /19/ Auf ihn wird später in diesem Kapitel noch eingegangen.

Graphitische Reaktorwerkstoffe

Für die isopiestischen Sorptionsuntersuchungen sollte der Referenz-Reflektorgraphit ASR-1RG, der für künftige HTR-Anlagen im Gespräch ist, vor allem mit "Reaktorgraphiten" ähnlicher Zusammensetzung und Herstellungsverfahren verglichen werden. Diesen graphitischen Materialien²⁾ (vgl. <u>Tab. 7.1</u>) sind gemeinsam:

- Füllermaterialien (Petrol- und Pechkokse),
- Bindermaterial (Steinkohlenteerpech),
- Graphitisierungstemperaturen (2500 bis 2800°C).

¹⁾ Nach IUPAC-Klassifikation: Mikroporen $\emptyset < 2nm$, Mesoporen $2nm \le \emptyset \le 50$ nm, Makroporen $\emptyset > 50$ nm

²⁾ Abgesehen von A3-Matrix und Coat-Mix-Material

Eigenschaft	Methode ¹⁾	Matrix A3-3 ²⁾ (1800°C)	Matrix A3-3 ³⁾ (1950°C)	Matrix A3-27 ³⁾ (1950°C)
geometrische_3 <u>Dichte (g</u> am ⁻³)	geometrische Vermessung	1,703 ± 0,002	1,731 <u>+</u> 0,001	1,764 ± 0,001
<u>Dichte</u> (g cm ⁻³)	Eintauchen	1,979 <u>+</u> 0,001	1,936 <u>+</u> 0,002	1,926 ± 0,001
Porosität offen (Vol.%)		13,95 ± 0,08	10,57 ± 0,06	8,41 ± 0,04
geschlossen (Vol.%)	ri	11,03 ± 0,09	13,16 ± 0,08	13,88 ± 0,04
$\frac{Poren}{mon}$ offen (mm ³ g ⁻¹)	Xylol	81,89 <u>+</u> 0,46	61,17 ± 0,34	47,68 ± 0,23
$\sqrt{100000000000000000000000000000000000$		64,77 <u>+</u> 0,53	76,00 ± 0,43	78,68 ± 0,23
B.E.TOberfläche (m ² g ⁻¹)	N ₂ -Adsorption bei 77°K	0,57 ± 0,14	0,22 <u>+</u> 0,02	0,22 <u>+</u> 0,02
 Beschreibung der Methc Gemäß /45/ Gemäß /19/ 	den und Formeln /	/61,		

.

Tab. 7.3: Einige Eigenschaften von Matrix A3

- 74 -

Lediglich die einzelnen Herstellungsschritte bzw. Herstellungsverfahren sind z. T. unterschiedlich, was aber im Zusammenhang mit den isopiestischen Cs-Sorptionsuntersuchungen von untergeordneter Bedeutung ist. Da insbesondere neben dem ASR-1RG auch ASR-1RS und ASR-2RS als Deckenreflektor-Werkstoffe für künftige HTR in Frage kommen, sollen in der <u>Tab.</u> <u>7.4</u> einige Angaben zur Herstellung und den Materialeigenschaften gemacht werden. Wie aus <u>Tab. 7.4</u> zu ersehen, bestehen Unterschiede im wesentlichen nur in der Koksbasis und dem Aschegehalt.

Graphitische Coat-Mix-Materialien

Neben den graphitischen Reaktorwerkstoffen wurden zusätzlich zwei Coat-Mix-Materialien¹⁾ (CM-30 und CM-100; vgl. Tab. 7.1) untersucht, wobei dem CM-100 die Füllerkomponente²⁾ fehlt.³⁾ Sie zeichnen sich durch einen hohen Phenol-Formaldehyd-Harz-Anteil aus und kommen als mögliches "Filtermaterial" zur Rückhaltung von metallischen Spaltprodukten in Frage. Es handelt das gleiche Phenolharz, das auch für um sich hierbei A3-Matrixgraphit als Binder verwendet wird. CM-30 besteht aus 30 Gew.-% Phenolharz und 70 Gew.-% Elektrographit. Die Körner des Elektrographits werden vom Phenolharz umschlossen. CM-100 besteht aus 100 Gew.-% Phenolharz vor der Verkokung bei ca. 800°C. Beide Materialien wurden vor dem isopiestischen Versuch l Stunde bei einer maximalen Temperatur von 1200°C im Hochvakuum geglüht.

¹⁾ Das Coat-Mix-Verfahren wird in /46/ beschrieben

²⁾ Nach dem Verkokungsprozeß besteht diese aus Elektrographit

³⁾ Um einen maximalen Phenolharz-Anteil einsetzen zu können

Tab.	7.4:	Einige	Merkmale	der	ASR-Reflektrographite"

	ASR - 1 RG	ASR - 1 RS	ASR - 2 RS
Formgebung:	Rüttelverdichtung	Rüttelverdichtung	Rüttelverdichtung
Nachverdichtung:	1malige Pechimpräg- nierung mit Nach- brennen	1malige Pechimpräg- nierung mit Nach- brennen	2malige Pechimpräg- nierung mit Nach- brennen
Koksbasis:	mäßig anisotroper Pechkoks	isotroper Sekundär- koks aus einem ge- brannten Vorprodukt von Pechkoksstaub und Bindepech	isotroper Sekundär- koks aus einem ge- brannten Vorprodukt von Pechkoksstaub und Bindepech
Eigenschaften:			
<u>Dichte</u> (DIN 51918) (g cm ⁻³)	1,79 <u>+</u> 0,02	1,81 <u>+</u> 0,02	1,87 <u>+</u> 0,01
(dyn) E-Modul ¹⁾ (KN mm ⁻²)	8,7 <u>+</u> 0,5	10,2 <u>+</u> 0,3	10,5 <u>+</u> 0,2
$\frac{(dyn) E - Modul^{2}}{(KN mm^{-2})}$	7,7 <u>+</u> 0,5	9,9 <u>+</u> 0,3	10,1 <u>+</u> 0,2
Wärmeleitfähigkeit ¹⁾ (Wm ⁻¹ K ⁻¹)	157 <u>+</u> 6	134 <u>+</u> 5	146 <u>+</u> 4
$\frac{\text{Wärmeleitfähigkeit}^{2)}}{(\text{Wm}^{-1} \text{ K}^{-1})}$	136 <u>+</u> 7	130 <u>+</u> 8	142 + 3
$\frac{\text{Wärmeausdehnungs-}}{\text{koeffizient } 20-200^{\circ}\text{C}}^{1)}$ (10 ⁻⁶ K ⁻¹)	3,1 <u>+</u> 0,1	3,8 <u>+</u> 0,1	3,5 <u>+</u> 0,1
$\frac{\text{Wärmeausdehnungs-}}{\text{koeffizient } 20-200 ^{\circ}\text{C}^2}$ $(10^{-6} ^{\text{K}^{-1}})$	3,5 <u>+</u> 0,1	4,0 <u>+</u> 0,1	3,7 + 0,1
Aschewert (DIN 51903) (ppm)	130 <u>+</u> 100	490 <u>+</u> 210	35 <u>+</u> 18
 1) In Richtung parallel 2) In Richtung senkrecht 	zur Kornvorzugsorientier zur Kornvorzugsorientie	ung bei 20 - 200°C	

1) Herstellerangaben (Sigri)

7.2 Zusammenstellung bisher durchgeführter Untersuchungen

In diesem Kapitel sind die wichtigsten Ergebnisse der bisherigen Untersuchungen getrennt nach (unbestrahlten) "Reaktorgraphitsorten" zusammengefaßt, die im Zusammenhang mit dieser Arbeit von Interesse sind. Die angewandten Untersuchungsmethoden werden im Anhang 11.4 näher erläutert.

H-451

Dieses Material wurde sowohl mit der isopiestischen als der Knudsen-Effusionsmethode untersucht. Die wesentlichen experimentellen Ergebnisse zur Berechnung der Sorptionsisothermen werden zur Übersicht in der Tab. 7.5 aufgeführt.

Die Cs-Sorptionsuntersuchungen wurden an Pulverproben mit einer Körnung von 44 - 74 μ m durchgeführt. <u>Abb.7.1</u> zeigt die Sorptionsisothermen gemäß <u>Tab. 7.5</u>, wobei die gemessenen Cs-Konzentrationen c aus /48/ um einen Faktor 2,2 verkleinert wurden, um das geringere Sorptionsvermögen des Vollmaterials gegenüber dem vorliegenden Pulver zu berücksichtigen. D. h. die Cs-Sorptionsisothermen nach Meyers und Bell sollen direkt für das Vollmaterial gelten. Vergleicht man die isopiestisch ermittelte Sorptionsisotherme aus /47/ mit der entsprechenden um den Faktor 2,2 der Cs-Konzentration "bereinigten"¹⁾, massenspektrometrisch ermittelten Sorptionsisothermen nach /48/, so ergibt sich eine befriedigende Überstimmung mit Abweichungen der Cs-Konzentration um einen Faktor 1,3 - 1,8.

¹⁾ Also der tatsächlich in der Pulverprobe gemessenen Konzentration

Lit Quelle	/47/	/48/ /49/	
Autoren (Organi- sation)	Zumwalt Kazi	Meyers Bell (G.A.) ⁴)	
ғотме 1 п	$ ^{1)} P_{F} = K_{F} c^{u} + \ln p = A + B(10^{3}/T) + (D + E(10^{3}/T) \ln c \\ mit \ln K_{F} = A + B(10^{3}/T) = - 9,682 \\ u = D + E(10^{3}/T) = 4,036 \\ A,B,D = konst., p_{F}(Pa), T(K), c(mnoL/kg) $	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	
Untersuchungs- nethode	isopiestisch (2.1 gem. <u>Tab. 11.2)</u>	Knuisen-Zelle mit Masenspektrometer (1.1 gem. <u>7ab. 11.2</u>)	iver); Lionsver- Ligen.
Geanetrie der Probe	Pulver (44-74 µm)	Pulver (44-74 µm)	untersuchte <u>Pul</u> geringere Sorpt zu berückslicht
eraturen der C3-Quelle T _Q (K) (<u>+</u> 2 K)	297 - 430,5	1 .	erial (nicht auf einert ³⁾ , um das Pulver (41-74 µm)
Temp der Probe T(K) (<u>+</u> 10 K)	1273	873- 1373	: H 451- <u>Vollma</u> ktor 2,2 verk I vorliegenden
Cs-Gleichgewichts- dampfdrücke p (Pa)	3,31 - 10 ⁻⁴ - 1,75	8,96 • 10 ⁻⁵ - 5,43 • 10 ⁻¹	umen beziehen sich hler au den die c-Werte un einen Fa Vollmaterials gegenüber den ven
Cs-Konzentrationen c (mol/kg)	0,520 - 12,300 (genessen)	0,618 - 17,496 (genessen)	Armerkung: Die Isothe hierzu wur mögen des (mögen des (liervilich-Isothermen 1) Freundlich-Isothermen 2) Henvi-Isothermen 3) Empirisother Paktor 4) General Atomic Comp (In = natür), Logar

Tab. 7.5: Übersicht der Cs-Sorptionsuntersuchungen an H-451 unter Gleichgewichtsbedingungen

Abb. 7.1: Cs-Sorptionsisothermen für H-451 (log-Skala) (1) nach /48/, (2) nach /47/

H-327 Reaktorgraphit

Dieses dem H-451 sehr ähnliche graphitische Reaktormaterial wurde in zahlreichen massenspektrometrischen Meßserien untersucht. Die berechneten Werte der Sorptionsisothermen nach Freundlich und Henry können der <u>Tab. 7.6</u> entnommen werden. Hierbei wurden wie bei H-451 die in den Pulverproben gemessenen Cs-Konzentrationen c zur Anwendung der Isothermen auf das Vollmaterial wieder um den empirischen Faktor 2,2 verkleinert.

Cs-Konzentrationen c(mmol/kg)	Cs-Gleichgewichts- dampfdrücke p (Pa)	Temperaturen T (k)	Geometrie der Proben	Untersuchungs- methode	Fоrm_е l п	Autoren (Organi- sation)	Lát Quelle
0,125 - 17,402 (genessen)	6,65 • 10 ⁻⁶ ~ 4,06 • 10 ⁻¹	873 - 1573 -	Pullver (44-74 µm)	Knudsen-Zelle mit Massenspak- trameter (1.1 gem. <u>Tab.11.2</u>)	1) In $P_{F} = (A+B/T) + (D+E/T)$ In c 2) In $P_{H} = (A+B/T) + (D-1 + E/T)$ In $c_{E} + In$ c A = 19,747, $B = -30368$, $D = -2,077E = 6710; In c_{E} = 0,545 - 7,775 \cdot 10^{-4}TP_{F/H}(Ea), T(K), c (mmol/Kg)$	Meyers Bell (G.A.) ⁴)	/48/
Armerkung: Die Isot hierzu w mögen de	chermen beziehen sich hier nurden die c-Werte um eine s Vollmaterials gegenüber	: auf H-327- <u>Vol</u> n Faktor 2,2 ³⁾ dem vorliegen	Jmaterial (ni verkleinert, den Pulver (4	.cht auf das untersu um das geringere S(4 - 74 µm) zu berüch	hte <u>Pulver</u>); xrptionsver- sichtigen.		
 Freundlich-Isothe Henry-Isothermen Empirischer Fakto General Atomic Co (In = natürl. Log 	emen r aritimus)						

Tab. 7.6: Übersicht der Cs-Sorptionsuntersuchungen an H-327 unter Gleichgewichtsbedingungen

Aus <u>Abb. 7.2</u> können zusammengefaßt die Meßwerte und die sich daraus ergebenden Sorptionsisothermen (gem. <u>Tab.7.6</u>) ersehen werden.

Abb. 7.2: Cs-Sorptionsisothermen für H-327 /48/ (log-Skala)

Vergleicht man die Cs-Sorptionsisothermen für H-327 mit denen für H-451 (vgl. <u>Abb. 7.1</u>), so erkennt man keine signifikanten Unterschiede. Jedoch liegt beim H 327 das Cs-Druckniveau im Henry-Bereich um etwa 1 Größenordnung niedriger.

Der Umrechnungsfaktor "2,2", der auch bei den Sorptionsisothermen für H-451 (vgl. <u>Tab. 7.5</u>) berücksichtigt wird, wurde mit Hilfe von isopiestischen Versuchen bei 1423 K - 1473 K ermittelt. Hierbei wurde der Umrechnungsfaktor aus dem Cs-Konzentrationsverhältnis von H-327 mit einer Korngröße von 1,65 -3,33 mm zu der von (massenspektrometrisch untersuchten) Pulverproben mit 44 - 74 µm berechnet. D. h. die Körnung von 1,65 - 3,33 mm wurde als "Vollmaterial-Aquivalent" gewählt. /48,49/

P 3 JHAN

P₃JHAN wurde sowohl massenspektrometrisch /48/ als auch mit der "Kaskaden-Methode" /50/ auf seine Sorptionsfähigkeit untersucht. Bei der "Kaskaden-Methode" wird die Probe in einem geschlossenen Behälter einem Cs-haltigen Heliumstrom ausgesetzt und bis zum Gleichgewicht mit Cs sorptiv beladen. In Tab. 7.7 sind die wichtigsten Angaben zusammengefaßt.

Die Cs-Sorptionsisothermen mit den Meßwerten sind in der <u>Abb.</u> 7.3 dargestellt.

Abb. 7.3: Cs-Sorptionsisothermen für P3JHAN /48/ (log-Skala)

lchgew	vichtsbedingung	Jen
Lit Quelle	/48/ (/50/) ⁵)	
Autoren (Organi- sation)	Meyers Bell (G.A.) ³⁾ (C.E.A.) ⁴	
Formeln	¹⁾ In $P_{H}^{=}$ (A+B/T) + (D + E/T) In c ²⁾ In $P_{H}^{=}$ (A+B/T) + (D-1 + E/T) In c_{t}^{+} In c A = 27,73, B = - 42, 153, D = - 4,1 E = 8611; In c_{t}^{-} = 2,386 - 1,86 $10^{-3}T$ $P_{F/H}$ (Pa), T(K) c(mnol/kg)	ite <u>Pulver</u>); Sorptions- Ichtigen.
Untersuchungs- methode	Knudsen-Zelle mit Massenspektrometer (1.1 gen. <u>Tab. 11.2</u>)	nicht auf das untersuch nert, um das geringere r (44-74µm) zu berücks
Geometrie der Proben	Pulver (44-74 µm)	ollmaterial (r 2,2 verklei egenden Pulve
Temperaturen T (K)	873 - 1373	nier auf P ₃ JHBN- <u>V</u> empirischen Fakto genüber dem vorli leichbar
Cs-Gleichgewichts- dampfdrücke p(Pa)	4,6 · 10 ⁻⁵ - 2 · 10 ⁻¹	thermen beziehen sich wurden die c-Werte um n des Vollmaterials ge hermen comp. 1'Phergie Atomique 1'Phergie Atomique gebristen in /48/ verg
Cs-Konzentrationen c(mol/kg)	0,471 - 16,887 (genessen)	Armerkung: Die Isod hierzu v vermöge vermöge 1) Freundlich Isoti 2) Henry Isotherme 2) General Atoric 3) General Atoric 4) Comisariat a 5) Sind mit den Er (ln = natürl. L

Tab. 7.7: Übersicht der Cs-Untersuchungen an P₃JHAN unter Glei

REAR

A3-Matrixgraphit

Die Cs-Sorptionsisothermen für A3-Matrixgraphit (A3-3) wurden bisher nur im Bereich niedriger Konzentrationen ermittelt. Hierzu wurde <u>den Proben</u> eine Cs-Nitrat-Lösung zugegeben. - Es erfolgte also <u>keine</u> indirekte Cs-Beladung über die Gasphase bis zur Einstellung des Gleichgewichtspartialdruckes. - Anschließend wurden die Proben ca. 140 Stunden bei 1273 K im Vakuum geglüht, um eine möglichst konstante Verteilung der Cs-Konzentration zu erreichen. Die Dampfdruckmessungen erfolgten danach mit der Knudsen-Effusionsmethode mit Kühlfinger¹⁾ (<u>Tab.</u> <u>7.8</u>). Weitere bereits in /51/ im Rahmen dieser Arbeit veröffentlichte erste Ergebnisse werden im <u>Kap. 7.3.1</u> zusammen mit den abschließenden Untersuchungen aufgeführt und diskutiert.

In <u>Abb. 7.4</u> sind die Cs-Sorptionsisothermen für den Henry-Bereich nach Pummery /52/ und die Druckmeßbereiche (= senkrechte Linien) sowohl von Pummery als auch Hooper $/53/^{2}$ zu sehen.

Die von Pummery gemessenen Dampfdrücke wurden zur Korrektur des Diffusionseinflusses um einen Faktor 1,3 vergrößert. D. h. bedingt durch das gewählte Präparationsverfahren traten in den Proben Diffusionsprofile auf. Das gleiche galt für die Messungen von Hooper, jedoch wurde hier keine Diffusionskorrektur vorgenommen. Es lag also in beiden Fällen während der Messungen kein Gleichgewicht vor. Inwieweit der Korrekturfaktor die-Tatsache Rechnung trägt, ist fraglich. ser So liegen die Dampfdrücke von Hooper, obwohl nicht "diffusionskorrigiert", deutlich höher als bei Pummery. Vergleicht man z. B. die Werte bei ca. 1273 K, so unterscheiden sich die Drücke etwa um einen Faktor 5.

¹⁾ Vgl. Anhang 11.4

²⁾ Isothermen wurden von Hooper nicht berechnet, da insbesondere im Freundlichbereich nur 1 Dampfdruckkurve

Cs-Konzentrationen c (mol/kg)	Cs-Gleichgewichts- dampfdrücke p(Pa)	Temperaturen T (K)	Geometrie der Proben	Untersuchungs- methode	Formeln	Autoren- (Organi sation)	Lit Quelle
3,83 • 10 ⁻⁶ - 4,68.10 ⁻⁴¹⁾	9,39•10 ⁻⁷ - 1,18•10 ⁻³	_ 1092 <i>-</i> 1483	Vollmaterial ($\beta = 7 \text{ mm}$, d = 2 mm)	Knudsen-Zelle mit Kühlfinger (1.2 gem. <u>Tab.11.2</u>)	log $p = (A + B/T) + D \cdot log c$ A = - 1,788, B = - 10670 D = 0,860 (Henry-Bereich)	Putnery	/52/
5 • 10 ⁻³ - 2,25 (gemessen)	6,15.10 ⁻⁶ 1,44.10 ⁻¹	- 1112 1773	Vollmaterial (Ø = 7 mm, d = 2 mm)	Knudsen-Zelle mit Kühlfinger (1.2 gem. <u>Tab.11.2)</u>	p (atm), T(K) c (mg/kg) (Isothermen nicht berechnet)	Hooper Faircloth (AERE)	/53/
 Diffusionskorrigiert um den Faktor 1,3 ve 	e Drücke; d.h. Drücke wu rgrößert.	nden					

Tab. 7.8: Übersicht der Sorptionsuntersuchungen an A3-3

<u>Abb. 7.4:</u> Cs-Sorptionsisothermen von A3-3; (1) nach /52/, (2) nach $/53/^{1}$ (Senkrechte Linien geben die Meßbereiche p=f(T) für c=konst. an)

7.3 Ergebnisse und Diskussion

7.3.1 Massenspektrometrische Experimente

Da für die Sicherheitsanalysen eines HTR insbesondere das Cs-Sorptionsvermögen des Brennelementmatrixgraphites von Bedeutung ist und die bisherigen Ergebnisse (insbesondere im Freundlich-Bereich) nicht ausreichen bzw. aufgrund nicht vorliegender Gleichgewichtsbedingungen (vgl. A3-Matrixgraphit, <u>Kap. 7.2</u> und <u>7.3.3</u>) fragwürdig sind, wurde im Rahmen dieser Arbeit A3-3 Matrixgraphit massenspektrometrisch untersucht¹⁾.

Die Ergebnisse der Cs-Dampfdruckmessungen sind in <u>Tab.7.9</u> zusammengefaßt.

¹⁾ Vergleichbare Untersuchungen wurden auch für Strontium in /77/ durchgeführt

Meßserie: [Probe] (Charge)	Cs-Konzentration [mol/kg]	$\ln p_{cs} \approx \frac{-\bar{\Lambda}}{T} + p_{cs} \ln[Pa],$ $\bar{\Lambda}$	Ē Tin [K]	Temperaturbereich [K]	mittlere Temperatur [K]
1 [4] (1) 2 [6] (1) 3 [5] (3) 4 [1] (2) 5 [8] (4) 6 [9] (4) 7 [8] (3) 8 [9] (4) 9 [2] (2) 10 [7] (4) 11 [7] (3) 12 [3] (2) Anmerkung:	1,70 10 ⁻⁴ 6,52 10-3 3,17 10-3 4,22 10-3 4,95 10-3 8,31 10-3 12,38 10-3 12,28 10-3 21,20 10-3 22,24 10-3 28,34 10-3 34,76 10 ⁻³ Meßserien 1 und 2 1: Meßserien 3 bis 12	41975 + 2383 39824 + 1916 32481 + 177 35585 + 412 32717 + 257 30106 + 468 29451 + 403 29037 + 569 30978 + 377 27939 + 234 27798 + 331 28500 + 427 Liegen im Henry-E	21,68 + 1,75 21,22 + 1,40 17,95 + 0,11 20,70 + 0,33 19,12 + 0,16 18,24 + 0,29 18,12 + 0,26 18,32 + 0,42 20,95 + 0,32 18,81 + 0,16 20,11 + 0,25 21,56 + 0,41 Bereich Llich-Bereich	1268 - 1473 $1263 - 1473$ $1517 - 1819$ $1109 - 1396$ $1498 - 1785$ $1495 - 1697$ $1391 - 1742$ $1302 - 1402$ $1053 - 1279$ $1263 - 1624$ $1226 - 1500$ $930 - 1140$	1371 1368 1668 1253 1642 1596 1567 1352 1166 1444 1363 1035

Tab. 7.9: Übersicht der massenspektrometrischen Cs-Sorptionsuntersuchungen an A3-3

Bei dem verwendeten A3-3 Matrixgraphit handelt es sich um <u>Pulverproben mit einer Körnung von 40 - 80 µm</u>, wodurch die Entstehung von Diffusionsprofilen vermieden wird (vgl. <u>Kap.</u> <u>5.1</u>). Eine Übertragung dieser Werte auf <u>Vollmaterial</u> ist ohne Korrektur möglich, da durch die Zerkleinerung das Sorptionsvermögen praktisch nicht verändert wird. Dies zeigten entsprechende Experimente von Hilpert et al. /51/

Es wurden Cs-Dampfdrücke bei für die Sicherheitsanalysen geforderten Temperaturen bis 1820 K und Konzentrationen bis 34,76 mmol/kg gemessen. Die einzelnen Daten für jede Meßserie und die jeweils dazugehörige Dampfdruckkurve können dem <u>An-</u> hang 11.5 entnommen werden.

Anzumerken ist, daß die Meßserien Nr. 4, 9 und 12 bereits zu einem früheren Zeitpunkt mit einem anderen Massenspektrometer¹⁾ ermittelt wurden (vgl. /51/).

In <u>Abb. 7.5</u> sind die Cs-Dampfdruckkurven gemäß <u>Tab. 7.9</u> in einem Diagramm dargestellt. Die Drücke p sind hierbei in einer logarithmischen Skala aufgetragen.

-88-

¹⁾ Stand nicht mehr zur Verfügung

Betrachtet man die Standardabweichungen der Konstanten A und B (Tab. 7.9), so lassen sich die gemessenen Cs-Dampfdrücke für eine bestimmte Konzentration c im "Graphit" im jeweils untersuchten Temperaturbereich gut mit einer logarithmischen Geradengleichung wiedergeben. Die Messungen wurden an neun Proben (s. Tab. 7.9) aus vier Präparations-Chargen vorgenommen, um zum einen mögliche präparationsbedingte Fehler erkennen zu können, und zum anderen die Reproduzierbarkeit der Cs-Dampfdruckmessungen zu belegen. Diese wird zusätzlich durch die Meßserien 4, 9 und 12 bestätigt, die, obwohl mit einem zweiten Massenspektrometer gemessen und die Proben aus einer anderen Präparationscharge stammen, gut mit den übrigen Dampfdruckmessungen korrelierbar sind.

Die Ergebnisse der Sorptionsisothermenberechnung können aus der <u>Tab. 7.10</u> ersehen werden und sind in <u>Abb. 7.6</u> dargestellt. Tab. 7.10: Cs-Sorptionsisothermen für A3-3

Abb. 7.6: Cs-Sorptionsisothermen für A3-3 (Senkrechte Linien geben die Meßbereiche p=f(T) für c=konst. an)

-90-

Die eingezeichneten Intervalle (= senkrechte Linien; <u>Abb.</u> <u>7.6</u>) geben die in <u>Tab. 7.9</u> ermittelten 12 Dampfdruckmeßserien an. Der Schwerpunkt der Messungen liegt hierbei im für die Sicherheitsanalysen besonders interessierenden Freundlich-Bereich.

Im untersuchten Bereich konnten die Daten der Isothermen nach Henry und Freundlich dargestellt werden. Betrachtet man die gemäß der Gleichungen (3.2) und (3.3) zugehörigen Verdampfungs- und Sorptionsenthalpien wie in <u>Tab. 7.11</u> und <u>Abb.</u> <u>7.7 und 7.8</u> dargestellt, so weisen diese auf eine starke Chemisorption hin mit einer exponentiellen Verteilung der Sorptionsplätze. Und zwar mit Plätzen höchster (theoretisch¹⁾ konstanter) Energie im Henry-Bereich und im Freundlich-Bereich mit energetisch unterschiedlichen Plätzen deren Zahl mit abnehmender Energie exponentiell ansteigt..

Meßserie:	с	Tm	-∆H°vTm	-∆H°*)	
	[mmol/kg]	[K]	[kJ/mol]	[kJ/mol]	
1	0,170	1371	349 + 19,8	290 + 20,3	
2	0,652	1368	331 <u>+</u> 15,9	272 + 16,4	
3	3,170	1668	270 + 1,5	218 + 2,0	
4	4,220	1253	296 + 3,4	235 <u>+</u> 3,9	
5	4,950	1642	272 + 2,1	219 <u>+</u> 2,6	
6	8,310	1596	250 + 3,9	196 + 4,4	
7	12,380	1567	245 + 3,4	191 + 3,9	
8	18,060	1352	241 + 4,7	182 + 5,2	
9	21,200	1166	258 + 3,1	195 <u>+</u> 3,6	
10	22,240	1444	232 + 1,9	175 + 2,4	
11	28,340	1363	231 + 2,9	172 + 3,4	
12	34,760	1035	237 <u>+</u> 3,5	171 <u>+</u> 4,0	
*) Die zur Berechnung erforderlichen Verdampfungsenthalpien $\Delta \widetilde{H}^o_V$ des metallischen Cs wurden /54/ entnommen.					

Tab. 7.11: Verdampfungs- und Sorptionsenthalpien des an A3-3 sorbierten Cs

¹⁾ Die im Henry-Bereich ermittelten Daten reichen zur experimentellen Verifizierung nicht aus.

Abb. 7.7: Verdampfungsenthalpie des an A3-3 sorbierten Cs

Abb. 7.8: Sorptionsenthalpie des an A3-3 sorbierten Cs

Hierbei wird das Cs fast ausschließlich im verkokten Phenolharzbinder gebunden. D. h. die Cs-Sorption liegt hier praktisch nur im verkokten Binder vor, wie im Kap. 7.3.2 noch gezeigt und diskutiert wird. Der lineare Verlauf der Sorptionsisothermen bestätigt weiterhin die sorptive Bindung des Cs an der äußeren und inneren Oberfläche des "Graphites". Die Bildung von Interkalationsverbindungen kann ausgeschlossen werden, wenn man zusätzlich die ermittelten Cs-Dampfdruckkurven mit der von Merz und Scharf /55/ aufgestellten Schwellendampfdruckkurve vergleicht (Abb. 7.9). Sie besagt, daß es bei Cs-Drücken unterhalb des Schwellendampfdruckniveaus zu keiner zwischen den Netzebenen Einlagerung von Cs des Reaktorgraphitgitters kommt. Im vorliegenden Fall liegen die gemessenen Dampfdrücke um mehr als 4 Größenordnungen unter den Schwellendampfdrücken.

Abb. 7.9: Vergleich der Schwellendampfdruckkurve zu den gemessenen Cs-Dampfdruckkurven

7.3.2 Isopiestische Experimente

Es wurden insgesamt 4 isopiestische Experimente durchgeführt, wobei pro Werkstoff bzw. Kornklasse und Experiment jeweils 2 Proben verwendet wurden. Hierbei wurden jeweils die beiden gleichen Proben in unterschiedlichen Chargenlagen im Ofentiegel verteilt, um die isopiestischen Experimente hinsichtlich eines möglichen Temperaturgradienten überprüfen zu können. Dieser kann im Rahmen der Meßgenauigkeit für alle 4 Versuche ausgeschlossen werden, da der Cs-Konzentrationsunterschied zwischen zwei gleichen Proben nach der Beladung weniger als 5 % betrug. Anzumerken ist, daß die ermittelten Cs-Konzentrationen in allen Experimenten versuchsbedingt (vgl. Kap. 5.2 u. 6.7) nicht unbedingt die jeweils maximal möglichen Cs-Beladungen darstellen.

Im ersten Versuch wurden Pulverproben der beiden deutschen A3-Brennelementgraphite und drei für HTR-Reflektoren in Frage kommenden graphitischen Werkstoffe 240 Stunden bei einer Temperatur von 1473 K sorptiv mit Cs beladen. Hierbei galt das besondere Interesse dem derzeit favorisierten ASR-1RG "Reflektorgraphit", da er in der Herstellung wesentlich preiswerter ist.

Wie aus <u>Abb. 7.10</u> zu ersehen, weist der ASR-1RG zunächst eine um etwa 100 % höhere Cs-Beladung im Vergleich zu den beiden anderen "Reflektorgraphiten" (ASR-1RS/-2RS) auf. Berücksichtigt man jedoch die Tatsache, daß bei den Reflektorgraphiten die Geometrie der Proben (Pulver/Würfel) das Sorptionsvermögen beeinflußt, wie dies nachfolgend noch gezeigt wird, so ergibt die Berechnung der auf die B.E.T.-Oberfläche "A_{B.E.T.}" bezogenen Cs-Konzentrationen C_{B.E.T.} keinen wesentlichen Unterschied. D. h. im vorliegenden Fall weniger als 22 % von der mittleren Konzentration C_{B.E.T.} = 0,198 µmol/kg (<u>Tab.</u> <u>7.12</u>) abweicht.

Abb. 7.10: 1. isopiestisches Experiment (T=1473 K, t=240 h, d=40-80 μm (Pulver)

Tab. 7.1	2:	B.E.Toberflächenbezogene Cs-	Konzentrationen	der	ASR-Reflek-
		torgraphite (l. isopiestisches	Experiment)		

T = 1473 K, t = 240 h, Pulver					
Reflektor-	A _{B.E.T.}	^С в.е.т.			
graphit	(m²/kg)	$(\mu mol/m^2)$			
ASR-1RG	28000	0,241			
ASR-1RS	15700	0,182			
ASR-2RS	18400	0,170			

Der Vergleich der beiden A3-Matrixgraphite zeigt für A3-27 eine um ca. 30 % höhere Cs-Beladung, wie dies auch durch Untersuchungen von Hilpert et al. /51/ bestätigt wird. Grund hierfür könnte neben dem etwas unterschiedlichen Herstellungsverfahren (vgl. <u>Anhang 11.3.1</u>) vor allem der um ca. 10 % höhere Bindergehalt sein.

Darüber hinaus sollte für den Referenzgraphit ASR-1RG anhand von Pulverproben mit 5 Kornklassen im Bereich 20 – 800 μ m geprüft werden, ob die sorptive Cs-Beladung von der B.E.T.--Oberfläche abhängt. In <u>Tab. 7.13</u> und <u>Abb. 7.11</u> sind die Ergebnisse dargestellt.

ASR-1RG; $T = 1473$ K, $t = 240$ h, Pulver					
d _{Korn}	^d m,Korn	Ав.Е.Т.	С	$C_{B.E.T.} = \frac{C}{A}$	
(µm)	(µm)	(m²/kg)	(mmol/kg)	(µmol/m²)	
20 - 40	30	37800	9,316	0,246	
40 - 80	60	28000	6,759	0,241	
80 - 100	90	20600	4,692	0,228	
100 - 400	250	9500	2,564	0,270	
400 - 800	600	2000	0,519	0,259	

Tab. 7.13: Cs-Beladung verschiedener ASR-1RG Pulverproben

Der konstante Wert der B.E.T.-spezifischen Cs-Konzentration zeigt, daß die B.E.T.-Oberfläche den Sorptionsplätzen im verwendeten Körnungsbereich proportional ist.

Für das zweite isopiestische Experiment wurden würfelförmige Proben mit einer Kantenlänge von 5 mm aus Vollmaterial aus drei deutschen, zwei amerikanischen (H-451 u. H-327) und einem französischen (P3-JHAN) graphitischen Material 720 Stunden bei 1473 K sorptiv mit Cs beladen (<u>Abb. 7.12</u>).

Abb. 7.11: Cs-Konzentration im ASR-1RG als Funktion der B.E.T.-Oberfläche

Abb. 7.12: 2. isopiestisches Experiment (T = 1473 K, t = 240 h, l = 5 mm (Würfel)

Als Ergebnis fallen zwei signifikante Merkmale auf:

- Die drei deutschen und der französische "Reaktorgraphit" liegen mit einer Abweichung von weniger als 2,5 % von der mittleren Konzentration von $\overline{c} = 0,256$ mmol/kg auf dem gleichen Beladungsniveau.
- Die beiden amerikanischen "Reaktorgraphite" weisen eine deutlich niedrigere Cs-Beladung auf. D. h. bezogen auf die mittlere Cs-Konzentration der übrigen "Reaktorgraphite" um 53 - 60 %.

Ein weiteres isopiestisches Experiment wurde mit gleicher Probengeometrie wie im 2. Versuch, jedoch bei 1373 K mit H-451, ASR-1RG und zwei weiteren französischen (PXA-2N u. PAN) und einem japanischen graphitischen Reaktorwerkstoff durchgeführt. Das Ziel dieses Versuchs war es, Vergleichsdaten für den ASR-1RG zu weiteren geeigneten Werkstoffen zu erhalten.¹⁾ Das Ergebnis ist aus <u>Abb. 7.13</u> zu ersehen.

Bei diesem Experiment treten keine signifikanten Unterschiede in der Cs-Konzentration auf. Die Abweichungen von der mittleren Konzentration $\overline{c} = 3,21$ mmol/kg betragen maximal 32 %. Die im Verhältnis zum zweiten Versuch (vgl. <u>Abb. 7.12</u>) sehr hohen Cs-Konzentrationen kommen hier in erster Linie durch ein erhöhtes "Cs-Angebot" aufgrund einer vergrößerten Cs-Quelle (vgl. <u>Kap. 5.2</u>) zustande, wie sie auch im 4. isopiestischen Experiment verwendet wurde.

Im vierten isopiestischen Experiment sollte der Einfluß des Phenolharzbinders auf die Cs-Beladung untersucht werden. Hierzu wurden neben A3-3 (ca. 10 Gew.% Phenolharzbinder²⁾)

2) Vor der Verkokung

¹⁾ Die Zusammenfassung des 2. und 3. Experiments zu einem Experiment war aus Gründen der begrenzten Ofenkapazität (vgl. Kap. 4.2) nicht möglich

zwei Coat-Mix-Materialien mit 30 bzw. 100 Gew.% Phenolharzbinder¹⁾ und zum Vergleich ein "Reflektorgraphit" (ASR-1RG) verwendet (Abb. 7.14).

Das Cs-Sorptionsvermögen des phenolharzfreien ASR-1RG ist im Vergleich zu den drei anderen graphitischen Materialien um bis zu 2 Größenordnungen kleiner.

Betrachtet man die <u>Abb. 7.15</u>, so erkennt man (auf der Grundlage dieser drei Materialien) einen linearen Zusammenhang zwischen <u>der sorptiv</u> gebundenen Cs-Konzentration und dem Phenolharzanteil.

Abb.7.13: 3. isopiestisches Experiment (T = 1373 K, t = 360 h, l = 5 mm (Würfel)

1) Vor der Verkokung

<u>Abb. 7.14:</u> 4. isopiestisches Experiment (T = 1373 K, t = 360 h, l = 5 mm (Würfel)

Abb. 7.15: Cs-Beladung als Funktion des Phenolharzgehaltes

Der als verkoktes Phenolharz vorliegende Binder verfügt also über ein beträchtliches Cs-Sorptionsvermögen bei hohen Temperaturen. Im Gegensatz zu phenolharzfreien graphitischen Reaktorwerkstoffen (wie z. B. ASR-1RG u. H-451) erfaßt die B.E.T.-Oberfläche nicht die Sorptionsplätze im verkokten Binder. Sie liegt lediglich bei etwa 1 m²/g. Eine genauere Betrachtung der Struktur ist daher erforderlich.

Die <u>Abb. 7.16</u> zeigt eine TEM¹⁾-Aufnahme des verwendeten Phenolharzbinders (Bakelite-Harz 1949, Fa. Hobeg), der bei einer maximalen Temperatur von 1473 K im Argonstrom verkokt wurde.

Abb. 7.16: TEM-Aufnahme einer verkokten Phenolharzbinderstruktur $(T_{max} = 1473 \text{ K})$

¹⁾ Transmissionelektronenmikroskopie

Hierbei handelt es sich um ein Kohlenstoffmaterial mit wenig geordneten Strukturen. Man spricht im vorliegenden Fall von einer turbostratischen Struktur, wie schematisch in <u>Abb. 7.17</u> dargestellt.

Abb. 7.17: Schematische Darstellung der turbostratischen Struktur eines verkokten Phenolharzes /56/

Im Unterschied zu geordneten Kohlenstoffstrukturen (z. B. Graphit, vgl. <u>Anhang 11.3.2</u>, <u>Abb. 11.9</u>) sind die hexagonal angeordneten C-Atome nicht in Ebenen, sondern in stark verdrillten und gebogenen Bändern miteinander verbunden, wobei sie mit anderen in einem Bündel parallel zueinander verlaufen können.

Betrachtet man zusätzlich die Röntgen-Beugungsaufnahme (Abb. 7.18) des in Abb. 7.16 gezeigten Bereichs einer Binderkoksstruktur, so ergibt eine Messung¹⁾ der Abstände der beliebig orientierten Gitterebenen Werte zwischen 0,72 und 3,3 \Re^{2} . Die stark differierenden Werte bestätigen somit den niedrigen Ordnungsgrad des vorliegenden Phenolharzes.

¹⁾ Geschieht durch Eichung der gemessenen Abstände mit einer Goldfolie, deren Gitterparameter bekannt sind.

^{2) 0,72; 0,81; 1,05; 1,2; 1,6; 2,1; 3,3}

Abb. 7.18: Röntgen-Beugungsaufnahme eines Binderkoksstrukturbereichs

Die Struktur eines verkokten Phenolharzbinders, der aus nichtgraphitierbaren Kohlenstoffen besteht, unterscheidet sich von den Pechkoks- bzw. Petrolkoksbindern, die bei der Hochtemperaturbehandlung (bis 3073 K) graphitiert werden, durch die Bildung einer flüssigen Mesophase während der Pyrolyse, in der die Kristalle wachsen und sich orientieren /57, 58/.

Der Grund für das sehr gute Cs-Sorptionsvermögen läßt sich somit durch das sehr große Angebot an turbostratischen Zwischenräumen erklären, die in gut graphitierten Materialien aufgrund ihrer hohen Ordnung nicht gegeben sind.

7.3.3 Vergleichende Betrachtungen

Für einen direkten Vergleich wurden Cs-Sorptionsisothermen von H-451, H-327, P3-JHAN und A3-3 im interessierenden Temperaturbereich in <u>Abb. 7.19</u> gegenübergestellt. Die Daten und Versuchsbedingungen können den <u>Tab. 7.5 bis 7.8</u> entnommen werden.

 Abb.7.19:
 Cs-Sorptionsisothermen von H-451 /48,49/----;

 H-327 /48/-----,
 P3-JHAN /48,50/-----,

 A3-3 /52/-----,
 A3-3 /diese Arbeit/------(log-Skala)

Folgende Punkte fallen auf:

Im Henry-Bereich zeigen die Sorptionsisothermen definitionsgemäß die gleiche Steigung. Dies wurde bei der Ausgleichrechnung im allgemeinen mit Ausnahme der Isothermen aus /52/ (vgl. Kap. 7.2, Tab. 7.8) vorausgesetzt. Die Sorptionsplätze weisen also sehr ähnliche Sorptionsenergien auf. Die Dampfdruckniveaus variieren bei den "Reaktorgraphiten" (ausgenommen die in dieser Arbeit ermittelten Cs-Dampfdrücke über A3-3) lediglich bis zu einer Größenordnung. Dies war insbesondere aufgrund des zweiten isopiestischen Experimentes (vgl. Abb. 7.12) zu erwarten. Dagegen liegen die im Rahmen dieser Arbeit gemessenen Dampfdrücke über A3-3 im Vergleich zu den übrigen graphitischen Materialien aufgrund des besseren Sorptionsvermögens (vgl. Kap. 7.3.2) erwartungsgemäß um mehr als zwei

Größenordnungen niedriger. Die in /52/ gemessenen Cs-Dampfdrücke über A3-3 erscheinen fraglich, da während der Messungen kein Gleichgewicht herrschte (vgl. Kap. 7.2, Tab. 7.8).

- Im <u>Freundlich-Bereich</u> gibt es signifikante Unterschiede in der Steigung der Sorptionsisothermen (vgl. <u>Abb.</u> 7.19). Außerdem liegen die Dampfdrücke bei vergleichbarer Temperatur und Konzentration mehr als drei Größenordnungen unter denen der "Vergleichsgraphite". Hier wird das wesentlich bessere Cs-Sorptionsvermögen von phenolhaltigem A3-Matrixgraphit in Übereinstimmung mit den isopiestischen Experimenten (vgl. <u>Abb.</u> 7.14) noch deutlicher als im Henry-Bereich.

Anzumerken ist, daß bei den "Reaktorgraphiten" H-451, H-327 und P3-JHAN die Übergangskonzentrationen c_t temperaturabhängig berechnet wurden, was für die obigen grundsätzlichen Aussagen aber von untergeordneter Bedeutung ist.

Die Temperaturabhängigkeit beruht hierbei weniger auf Meßdaten als vielmehr auf konservativen Annahmen. Eine Temperaturabhängigkeit des A3-3 konnte aufgrund der vorliegenden Meßdaten nicht festgestellt werden (vgl. <u>Kap. 6.6 und 7.3.1</u>).

8. ZUSAMMENFASSUNG UND AUSBLICK

Es wurde das Cäsium-Sorptionsverhalten verschiedener graphitischer Reaktorwerkstoffe bei störfallrelevanten Temperaturen und Cs-Konzentrationen eines deutschen Hochtemperaturreaktors untersucht.

Die drei Schwerpunkte dieser Arbeit konzentrierten sich hierbei auf:

- Die Entwicklung und den Aufbau geeigneter experimenteller Einrichtungen (Kap. 4),
- die Ausarbeitung notwendiger Präparations-, Eich-, Meßund Auswertungsverfahren (Kap. 5 u. 6),
- 3. die Untersuchung zur Cäsium-Sorption an Brennelement und Reflektorgraphiten (Kap. 3 u. 7).

Zu 1.:

Für die Ermittlung der Cs-Dampfdrücke über A3-3 Matrixgraphit wurde ein System Quadrupol-Massenspektrometer mit zwei induktiv beheizbaren Knudsen-Zellen aufgebaut. Die vergleichenden Sorptionsuntersuchungen (isopiestische Experimente) wurden in einem Hochvakuumofen mit einem speziellen "isopiestischen" Ofentiegel durchgeführt.

Zu 2.:

<u>Präparationsverfahren</u>: Es wurden Pulverproben im Körnungsbereich von 20 bis 800 µm sowie Proben aus Vollmaterial mit einer Kantenlänge von 5 mm verwendet. Die sorptive Cs-Beladung erfolgte mit einer "Cs-Quelle" über die Gasphase bei konstanten Temperaturen von 1373 und 1473 K bis zur Einstellung des Gleichgewichts in einem Hochvakuumofen. Eichverfahren: Zur Temperatur- und Druckeichung wurden als Eichstandards Silber und Gadolinium verwendet. Hierbei wurde die Temperatureichung der Mantelthermometer mit Hilfe der bekannten Schmelzpunkte von Ag und Gd vorgenommen. Die Druckeichung erfolgte anhand der bekannten Ag-Dampfdrücke.

Meßverfahren: Die Cs-Gleichgewichtsdampfdrücke wurden unter Anwendung der Knudsen-Effusionsmethode über die massenspektrometrisch gemessenen Cs-Ionenströme ermittelt. Die Cs-Konzentrationen in den Proben wurden radioanalytisch gemessen.

Auswertungsverfahren: Zur Auswertung der Cs-Dampfdruckdaten wurde ein Programm zur Berechnung der Verdampfungs- und Sorptionsenthalpien sowie der Sorptionsisothermen nach Henry und Freundlich eingesetzt.

Zu 3.:

Ergebnisse: Es wurden Cs-Gleichgewichtsdampfdrücke über sorptiv beladenem A3-3 Matrixgraphit im Temperaturbereich zwischen 950 und 1820 K gemessen. Die Cs-Konzentrationen in den Proben lagen im für die Sicherheitsanalysen relevanten Bereich zwischen 0,17 und 34,76 mmol/kg. Die Größe der Sorptionsenthalpien von 171 bis 290 kJ/mol weisen auf eine eindeutige Chemisorption hin mit einer exponentiellen Verteilung der Cs-Sorptionsplätze. Im untersuchten Bereich könnten die Daten der Isothermen nach Henry und Freundlich dargestellt werden. Dies bedeutet für den Henry-Bereich Sorptionsplätze mit höchster Energie (Sorptionsenthalpie: 290 + 20 kJ/mol) und im Freundlich-Bereich energetisch unterschiedliche Plätze, deren Zahl mit abnehmender Energie exponentiell ansteigt. Die nicht temperaturabhängige Übergangskonzentration liegt bei 1,13 mmol/kg. Der lineare Verlauf der Sorptionsisothermen bestätigt eine sorptive Bindung des Cs am A3-3. D. h. die Bildung von Interkalationsverbindungen im untersuchten Druckbereich (bis maximal 5 Pa) kann ausgeschlossen werden, wie dies auch ein Vergleich mit der von Merz und Scharf aufgestellten Schwellendampfdruckkurve zeigt.

Mit der vergleichenden isopiestischen Methode wurde das Cs-Sorptionsvermögen von A3-3, A3-27, ASR-1RG, ASR-1RS, ASR-2RS, PAN, P3-JHAN, PXA-2N, H-451, H-327, IG-110 und den Coat-Mix Materialien CM-100 und CM-30 untersucht.

Es ergab sich für den A3-Matrixgraphit ein signifikant höheres Cs-Sorptionsvermögen im Vergleich zu den anderen Reaktorgraphiten (sowohl bei den isopiestischen Experimenten als auch bei den Sorptionsisothermen). Dieses Ergebnis kann im Rahmen der Sicherheitsanalysen in künftigen Spaltproduktfreisetzungsrechnungen über die hier ermittelten CsSorptionsisothermen berücksichtigt werden.

Weiterhin konnte gezeigt werden, daß das sehr gute Cs-Sorptionsvermögen im A3-Matrixgraphit auf der Verwendung von Phenolharzbinder beruht.

Untersuchungen an verkoktem Phenolharzbinder zeigten außerdem, daß dieses Material besonders zur Spaltproduktrückhaltung geeignet ist. Denkbar wäre ein Einsatz vor allem im Bereich des Deckenreflektors in Form einer Auskleidung, die bei Störfällen eine starke "Filterfunktion" übernehmen könnte.

Der für zukünftige HTR-Anlagen vorgesehene und in der Herstellung wesentlich preiswertere ASR-1RG Reflektorgraphit wies gegenüber dem ASR-1RS und ASR-2RS ein vergleichbares Cs-Sorptionsverhalten auf

Für weiterführende Arbeiten auf dem Gebiet der Spaltprodukt-Graphit-Wechselwirkung erscheinen folgende Themen von Relevanz: - Die Kosorption von Metallen an A3-Matrixmaterial: Cs + Sr (Rb, Ba),

- der Einfluß von Jod (Tellur) auf die Sorption von metallischen Spaltprodukten an graphitischen Reaktormaterialien,
- die Sorptionskinetik bei der Metall/Spaltprodukt-Wechselwirkung,
- Cs-/Sr-Sorptionsisothermen von deutschen graphitischen ASR-Reflektorwerkstoffen.

9. LITERATURVERZEICHNIS

- /l/ H. Nickel: Present Status of the High Temperature Reactor in the Federal Republic of Germany; KFA Report, Jül-Conf-71, Jülich (1989), pp. 59-79
- /2/ H. Nickel, K. Hofmann, W. Wachholz, I. Weisbrodt: Helium Cooled High Temperature Reactors in the Federal Republic of Germany; Int. Atom. Energy Agency, IAEA-SM-307/31, Vienna (1989), pp. 221-235
- /3/ H. Michaelis: Handbuch der Kernenergie; Bd. 2, ECON-Verlag, (1986), S. 842-844
- /4/ Status of High Temperature Reactor Development in the Federal Republic of Germany; KFA Report, Jül-Spez-5, Jülich (1978)
- /5/ HTR-Statusbericht, 26. September 1978, KFA Report, Jül-Spez-21, Jülich (1978)

/6/ H. Krohn: Freisetzung von Spaltprodukten aus dem Core eines Kugelhaufenreaktors bei Störfällen mit Core-Aufheizung; KFA Report, Jül-1791, (1982), S. 3

/7/ H. Nickel, F. Schubert, H.J. Penkalla: Stand der Qualifikation der Werkstoffe für HTR; Sammelband VGB-Sondertagung: Kohleumwandlung und Hochtemperaturreaktor - Bausteine neuer Energierezepte, (1985), S. 258 - 293

- /8/ W. Warzawa, W. Heit, H. Huschka: Coated Particles - Entwicklungsstand -; Jahrestagung Kerntechnik '80 in Berlin, (1980), S. 578 -581
- /9/ M. Tokar: Evaluation of High Temperature Gas Cooled Reactor Fuel Particle Coating Failure Models and Data; NUREG-0111, NRC-8 (1976)
- /10/ Zum Störfallverhalten des HTR-500; KFA Report; Jül-Spez-220, Jülich (1983), pp. 33 - 47
- /11/ K. Verfondern, et al.: Sicherheitstechnische Untersuchungen zum Störfallverhalten des HTR-500; KFA Report, Jül-Spez-240, Jülich (1984), S. 163 - 186
- /12/ G. Wedler: Adsorption/Eine Einführung in die Physisorption und Chemisorption; Verlag Chemie, Weinheim/Bergstr. (1970), S. lff
- /13/ G. W. Herzog: Physikalische Chemie; G. M. Barrow, Vieweg-Verlag, Braunschweig (1984)

/14/ G. M. Barrow: Gasmoleküle und ihre Energie; Physikalische Chemie, Bohmann Verlag, Wien (1984), (Teil 1) S. 14 - 16

/15/ J.M. Thomas, W.J. Thomas: Introduction to the Principles of Heterogeneous Catalyses; Academic Press, London - New York (1967), pp. 14-66

- /16/ D.M. Young, A.D. Crowell: Physical Adsorption of Gores, Butterworth, London (1962)
- /17/ S. J. Gregg, K. S. W. Sing: Adsorption Surface Area and Porosity; Academic Press, London (1982)
- /18/ N. Hansen, W. Littmann: Trans. Third International Vakuum Congress; Bd. 2, Pergamon Press, Oxford-London-Edinburgh-New York-Toronto-Paris-Frankfurt (1966), pp. 465
- /19/ H. Gaus, W. Hensel, E. Hoinkis, D. Stritzke: Untersuchungen zum Cäsium-Transport in Graphit; HMI-B 315; Hahn-Meitner-Institut, Berlin (1979), S. 2 ff.
- /20/ S. Ross, J. P. Olivier: The Various Heats of Adsorption; On Physical Adsorption; Interscience Publishers, New York-London-Sydney (1964); pp. 103-112
- /21/ T. L. Hill: An Introduction to Statistical Thermodynamics; Addison-Wesley Publishing Compnay, Inc., Reading, London (1960)
- /22/ A.J.H. Boerboom: High Temperature Mass Spectrometry; Mass Spectrometry, Academic Press, New York (1965), p. 251
- /23/ J. L. Margrave: The Characterisation of High Temperature Vapors; J. Wiley & Sons, Inc., New York (1967); pp. 115

/24/ J. Drowart; P. Goldfinger: Die Massenspektrometrie bei hohen Temperaturen. Angewandte Chemie 79 (1967), S. 589-604

- /25/ P.G. Wahlbeck: Comparison and Interrelations for Four Methods of Measurements of Equilibrium Vapor Pressures at High Temperatures; High Temperature Science, Vol. 21 (1986), pp. 189-232
- /26/ K. Hilpert: Beitrag zum Studium kondensierter Phasen und gasförmiger Verbindungen; KFA Report, Jül-1744 (1981), S. 21 ff.
- /27/ D.H. Davis: Monte Carlo Calculation of Molecular Flow Rates through a Cylindrical Elbow and Pipes of other Shapes; Journal of Applied Physics, Vol. 31, Nr. 7 (1960), pp. 1169-1176
- /28/ J.B. Mann: Ionisation Cross Sections of the Elements; Recent Developments in Mass Spectrometry, Proc. of the Int. Conference on Mass Spectrometry, Kyoto (1970), pp. 814-819
- /29/ J.B. Mann: Ionisation Cross Sections of the Elements Calculated from Mean-Square Radii of Atomic Orbitals; Journal of Chemical Physics 46 (1967), S. 1646-1651
- /30/ F. E. Stafford: Electron-Impact Ionisation Sections. II. Classical Calculations; Journal of Chemical Physis, Vol. 45, No. 3 (1966), pp. 859-862

- /31/ J. W. Otvos, D.P. Stevenson: Cross-sections of Molecules for Ionisation by Electrons; Journal of American Chemical Society 78 (1956), pp- 546
- /32/ K. Hilpert; H.W. Nürnberg: Massenspektrometrische Hochtemperaturuntersuchungen zur Aufklärung des Rückhaltemechanismus fester Spaltprodukte in UO₂-Kernbrennstoffteilchen durch Al₂O₃-Zusatz; KFA-Report, Jül-953-AC (1973), S. 32-42
- /33/ P. Goldfinger: Mass Spectrometrie Investigation of High Temperature Equilibria in "Mass Spectrometry"; Hrsg. R.I. Reed; Academic Press, New York (1965); pp. 265-281
- /34/ J. Euler, R. Ludwig: Arbeitsmethoden der optischen Pyrometrie; Verlag G. Braun; Karlsruhe (1960), S. 1 ff.

/35/ W. Pepperhoff: Temperaturstrahlung; Wissenschaftliche Forschungsberich-te; Verlag D. Steinkopff, Darmstadt (1956); S. 5 ff.

/36/ G. Erdtmann, W. Soyka: Die Y-Linien der Radionuklide; Bd. 1 KFA-Report, Jül-1003-AC (1974), S. 102

/37/ A.J. Lecloux: Texture of Catalysts; in: Catalysts and Science Technology 2, Springer Verlag, Berlin-Heidelberg (1981), S. 172 ff.

/38/ S.J. Gregg, K.S.W. Sirg: Adsorption Surface Area and Porosity; Academic Press, London (1982).

- /39/ J. Seifert: Methoden zur rechnerischen Ermittlung von Porenradien- verteilungen aus Sorptionsisothermen; Dipl.-Arbeit, Univ. Erlangen-Nürnberg, Inst. f. Techn. Chemie I, Erlangen (1985), S. 31 ff.
- /40/ M.M. Dubinin: Chemistry and Physics of Carbon; Ed. P.L. Walker 2, London (1966), S. 51
- /41/ M.M. Dubinin: Inhomogeneous Microporous Structures of Carbonaceous Adsorbents; Carbon 19 (1981), pp. 321-324
- /42/ R.C. Paule; J. Mandel: Analysis of Interlaboratory Measurements on the Vapor Pressures of Cadmium and Silver; National Bureau of Standards Special Publication 260-21; Washington (1971)
- /43/ R.E. Schulze, H.A. Schulze, W. Rind: Graphitic Matrix Materials for Spherical HTR Fuel Elements; KFA-Report, Jül-Spez-167, Jülich (1982), S. 118 ff.
- /44/ H.K. Hinnssen, W. Katscher, R. Moormann: Kinetik der Graphit/Sauerstoff-Reaktion im Porendiffu- sionsbereich, Teil 1: Matrixmaterialien A3-3 und A3-27; KFA-Report, Jül-1875, Jülich (1983), S. 25 ff.
 - 「「「「「「「「」」「「」」「「」」 スムの主き合語です。
- /45/ E. Hoinkis, W.P. Eatherly, P. Krautwasser, E. Robens: Corrosion- and Irradiation-induced Porosity Changes of a Nuclear Graphitic Material; Journal of Nuclear Materials 141-143 (1986), S. 87-95

- /46/ W. Delle, K. Koizlik, H. Nickel: Graphitische Werkstoffe für den Einsatz in Kernreaktoren, Teil 2: Polykristalliner Graphit und Brennelementmatrix; K. Thiemig Verlag, München (1983), S. 7 ff.
- /47/ L.R. Zumwalt, N.I. Kazi: Kinetics and Equilibrium of Cesium Sorption and Desorption by Particulate Nuclear Graphite; Carbon Vol. 19, No. 6 (1981), pp. 449-455
- /48/ B.F. Myers, W.E. Bell: Cesium Transport Data for HTGR Systems; GA-A 13990, UC-77, General Atomic Comp. (1979), pp. (5-1) - (5-42)
- /49/ HTGR Base Program, Quartely Progress Report for the Period Ending February 28, 1974; USAEC Report GA-A 12916, General Atomic Company, March 29 (1974)
- /50/ Programme Concrete de Recherche et de Development CEA-GAI sur les Reacteurs a Haute Temperature (Partie Combustible), Rapport d'Advancement Pour le Periode du l Junvier au 30 Juin, 1974; Commissariat a l'Energie Atomique, Division de Metallurgie et d'Etude des Combustibles Nucleaires, Report DMECN-HTR 74/615, No. 3, August 14 (1974)

/51/ K. Hilpert, H. Gerads, D. Kath, D. Kobertz: Sorption of Cesium and its vaporisation from graphitic materials at high temperatures; High Temperatures - High Pressures, vol. 20 (1988), pp. 157-164

- /52/ F.C.W. Pummery: The Vapour Pressure of Cs over A3 and IS03 Matrix Graphites; Harwell, DW 7 (74); (1974)
- /53/ E.W. Hooper, R.L. Faircloth: Measurements of Diffusion Coeficients on Graphites and Fuel Particles and of Absorption Isotherms on Graphites; AERE-G 960 Harwell, Oxon (1977)
- /54/ R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser: Selected Values of the Thermodynamic Properties of the Elements; Metals Park, American Society for Metals, (1973), pp. 142-148
- /55/ E. Merz, H. Scharf: Zum Verhalten von Spalt-Cäsium in graphitischen Brennelementen; Atomenergie 17, Lfg. 4, (1971), S. 292
- /56/ G.M. Jenkins, K. Kawamura: A second secon
- /57/ A. Oberlain: Carbonization and Graphitization; Carbon 22 (1984), S. 521-541

/58/ J.D. Brooks, G.H. Taylor: The Formation of Graphitizing Carbons from the Liquid Phase Carbon 3, (1965), S. 185-193 - 117 -

- Theory of Physical Adsorption; Advances in Catalysis and Related Subjects/Vol. IV, Academic Press, New York (1952), pp. 212 - 258
- /60/ D.H. Everett: Some Developments in the Study of Physical Adsorption Proc. chem. Soc., London (1957), pp. 38 - 55
- /61/ H. Kienitz: Massenspektrometrie; Verlag Chemie, Weinheim/Bergstr. (1968), S. 29 ff.
- /62/ C. Brunée, H. Voshage: Massenspektrometrie; Teil I; Verlag K. Thiemig, München (1964), S. 3 ff.
- /63/ J. Drowart, P. Goldfinger: Die Massenspektrometrie anorganischer Systeme bei hohen Temperaturen; Angew. Chemie Nr. 13, Jahrg. 79 (1967); S. 589-604
- /64/ W. Paul, H. Steinwedel: Ein neues Massenspektrometer ohne Magnetfeld; Z. Naturforschung 8 a (1953), S. 448-450
- /65/ W. Paul, M. Raether: Das elektrische Massenfilter; Z. f. Physik 140 (1955), S. 262-273

/66/ W. Paul, H. P. Reinhard, U. von Zahn: Das elektrische Massenfilter als Massenspektrometer und Isotopentrenner; Z. f. Physik 152 (1958), S. 143-182

^{-1 (}general and space of the second second

- /67/ Sonderdruck der Firma Balzers: Partialdruckmessung in der Vakuumtechnik; Pfeifer/Bakers-Vakuumtechnik GmbH, Asslar, S. 5
- /68/ Particle Multipliers and Enclosures / Instruction Manual; Extranuclear Laboratories Inc. (USA)
- /69/ H. Roßwurm, G. Pietzka, W. Ulsamer: Anisotropie von Formkörpern in Abhängigkeit vom Koks und von den Herstellungsbedingungen; Carbon 72 (1972), pp. 403-405
- /70/ E. Fitzer: Reaktorwerkstoffe; Vortragsveröffentlichungen Haus der Technik e.V., Essen, Heft 20, Vulkan Verlag (1964)
- /71/ G. B. Engle: Density and Structural Distributions in Artificial Graphites Carbon 8 (1970), pp. 485-495
- /72/ K. Janssen, G. Wilhelmi: A New Grade of Isotropic Nuclear Graphite for HTR Reflector Components; 15th Biennial Conf. on Carbon, Philadelphia (1981), pp. 542-543

/73/ H. Nickel: Reaktorwerkstoffe und Brennstoffe; Vorlesungsmanuskript; Lehrstuhl f
ür Reaktorwerkstoffe u. Brennelemente d. RWTH Aachen, Aachen (1987), S. 5-1 ff.

/74/ M.J. Haire, L.R. Zumwalt: Mixed Sorption Models and Isotherms of the Cesium-Rubidium-Graphite System at High Temperatures; Nuclear Science and Engeneering 50, (1973), pp. 91 - 97

- /75/ J.H. Norman, P. Winchell: Techniques of Metals Research; Edited by R.A. Rapp, Interscience, Vol. 4. Part 1, New York (1970), pp- 131 - 159
- /76/ A.B. Riedinger, C.E. Milstead, L.R. Zumwalt: Experiments on the Diffusion of Cesium and Barium through Graphites of low Helium Permeability; Fifth Carbon Conference (1961), pp. 405-410
- /77/ K. Hilpert, H. Gerads, D. Kobertz: Sorption of Strontium by Graphitic Materials; Ber. Bunsenges. Phys. Chem. 89, (1985), pp. 43-48

- 120 -

10. SYMBOLVERZEICHNIS

A	innere Oberfläche des graphitischen Reaktor- werstoffes bzw. Festkörperoberfläche
A _o	Avogadro Konstante
α	Akkomodationskoeffizient
с	Cäsium-Konzentration des graphitischen Werkstoffe
d _{Korn}	Korndurchmesser des Pulvers
d _{m,Korn}	mittlerer Korndurchmesser des Pulvers
dm dt	Cs-Effusionsrate aus der Knudsenzelle
ΔF	freie Energie für die Reaktion Cs (flüssig) ≓ Cs (sorbiert)
${}^{\Delta H^{o}}_{V}$	Verdampfungsenthalpie des sorbierten Cs
∆H° s	Sorptionsenthalpie des Cs
∆H°v	Verdampfungsenthalpie des metallischen Cs
$\Delta \widetilde{s}_v^{\circ}$	Verdampfungsentropie des metallischen Cs
Е	Eichfaktor zur Dampfdruckberechnung
Н	Haftkoeffizient
k	Boltzmannkonstante
k _S	stoffabhängige Sorptionskonstante

m	Masse
Mb	Meßbereich
μ _A	chemisches Potential des Adsorbens
μs	chemisches Potential des Adsorpts
n	Anzahl der Teilchen
n _A	Molen des Adsorbens
ⁿ s	Molen des Adsorpts
P _{Cs}	Cs-(Dampf-)druck im Gleichgewicht
φ	Spannung an den Quadrupol Stäben
đ	Sorptionswärme
q _{st}	isostere Sorptionswärme
R	allgemeine Gaskonstante
ρ	Dichte
S	Entropie
s S	partielle molare Entropie des Adsorpts
Ξ _A	partielle molare Entropie des Adsorbens
s	molare Entropie des Adsorpts
s _A	molare Entropie des Adsorbens

- 121 -

T _m	mittlere Temperatur
т	absolute Temperatur
Ω ^T	absolute Temperatur der Cs-Quelle
t	Zeitdauer
υ	innere Energie
V	Volumen
\bar{v}_{s}	partielles Molvolumen des Adsorpts
\bar{v}_{A}	partielles Molvolumen des Adsorbens
^v s	Molvolumen des Adsorpts
v _A	Molvolumen des Adsorbens

11. ANHANG

Seite

11.1	Grundlegende Betrachtung zur Sorptionswärme	124
11.2	Apparative Aspekte zur Massenspektrometrie	127
11.3	Polykristalline Reaktorgraphite	135
11.3.1	Zusammensetzung und Herstellungsverfahren	135
11.3.2	Struktur und Eigenschaften	140
11.4	Vergleich der angewandten Methoden zur Untersuchung der Cs-Sorption	143
11.5	Cs-Dampfdruckmessungen an A3-3	147

11.1 Grundlegende Betrachtung zur Sorptionswärme

Für das in dieser Arbeit untersuchte Sorptionssystem ist die isostere Sorptionswärme von besonderem Interesse. Ihre Annahmen und ihre Anwendbarkeit werden im folgenden dargestellt und erläutert.

Die Grundlage bildet die Gibbsche Fundamentalgleichung:

$$dU = TdS - pdV + \mu_A dn_A + \mu_S dn_S^{(1)}$$
(11.1)

oder anders ausgedrückt:

$$dG = -SdT + Vdp + \mu_A dn_A + \mu_S dn_S$$
(11.2)

Hierbei setzt sich das Sorbat mit einer bestimmten inneren Energie U, der Entropie S und dem Volumen V aus n_A Molen des nicht flüchtigen Adsorbens und n_S Molen des Adsorpts (vgl. <u>Kap. 3.2</u>) zusammen. Die Oberfläche des Adsorbens sei seinem Volumen proportional, da bei der Sorption die Vorgänge an der Oberfläche von besonderem Interesse sind.

Weiterhin gilt für das chemische Potential des Adsorpts, dargestellt als totales Differential:

$$d\mu_{S} = \left(\frac{\partial \mu_{S}}{\partial T}\right)_{P,\Gamma} dT + \left(\frac{\partial \mu_{S}}{\partial P}\right)_{T,\Gamma} dP + \left(\frac{\partial \mu_{S}}{\partial \Gamma}\right)_{P,T} d\Gamma$$
(11.3)

¹⁾ Index A für Adsorbens. Index S für Adsorpt.

- 125 -

sofern $\Gamma = n_S / n_A$. Da nach Gleichung (11.2)

$$\mu_{\rm S} = \left(\frac{\partial G}{\partial n_{\rm S}}\right)_{\rm p,T,n_{\rm A}} \tag{11.4}$$

erhält man die partielle molare Entropie des Adsorpts:

$$\left(\frac{\partial \mu_{\rm S}}{\partial {\rm T}}\right)_{\rm p,\Gamma} = \left(\frac{\partial^2 {\rm G}}{\partial {\rm n}_{\rm S} \partial {\rm T}}\right)_{\rm p,T,n_{\rm A}} = - \left(\frac{\partial {\rm S}}{\partial {\rm n}_{\rm S}}\right)_{\rm p,T,n_{\rm A}} = -\overline{{\rm s}}_{\rm S}$$
(11.5)

Entsprechend ist

$$\left(\frac{\partial \mu_{\rm S}}{\partial p}\right)_{\rm T,\Gamma} = \overline{\rm v}_{\rm S} \tag{11.6}$$

das partielle Molvolumen des Adsorpts. Mit Gleichung (11.3) ergibt sich dann:

$$d\mu_{\rm S} = -\overline{s}_{\rm S} dT + \overline{v}_{\rm S} dp + \left(\frac{\partial \mu_{\rm S}}{\partial \Gamma}\right)_{\rm p, T} d\Gamma \qquad (11.7)$$

Außerdem gilt für das Adsorptiv in der Gasphase¹⁾:

$$d\mu_{\rm G} = -s_{\rm G}dT + v_{\rm G}dp \tag{11.8}$$

Für die in diesem Zusammenhang interessierende Gleichgewichtsbetrachtung sind die chemischen Potentiale gleich groß.

1) Die kleinen Buchstaben s und v geben immer die molaren Größen an.

$$\mu_{S} = \mu_{G} \quad \text{und auch} \quad d\mu_{S} = d\mu_{G} \quad (11.9)$$

D. h. das Sorbat befindet sich mit der Gasphase im Gleichgewicht. Dann ist mit Gleichung (11.7) und (11.8):

$$-\overline{s}_{g}dT + \overline{v}_{g}dp + \left(\frac{\partial \mu_{g}}{\partial \Gamma}\right)_{p,T} d\Gamma = -s_{g}dT + v_{g}dp \qquad (11.10)$$

und bei konstanter Belegung (d Γ =0) gilt:

$$(\partial_{\mathbf{p}}/\partial_{\mathbf{T}})_{\Gamma} = (\mathbf{s}_{\mathbf{G}} - \overline{\mathbf{s}}_{\mathbf{S}})/(\mathbf{v}_{\mathbf{G}} - \overline{\mathbf{v}}_{\mathbf{S}})$$
(11.11)

Berücksichtigt man weiterhin, daß das partielle Molvolumen $\bar{v}_{\rm S}$ < < $v_{\rm G}$ ist, folgt:

$$(\partial p/\partial T)_{\Gamma} = \frac{s_{G} - \overline{s}_{S}}{v_{G}}$$
(11.12)

Trifft man außerdem die Annahme, daß das gasförmige Adsorptiv sich ideal verhält, gilt mit

$$\mathbf{v}_{\mathbf{G}} = \mathbf{R}\mathbf{T}/\mathbf{p} \tag{11.13}$$

$$\left(\frac{\partial \ln p}{\partial T}\right)_{\Gamma} = \frac{s_{G} - \overline{s}_{S}}{RT}$$
(11.14)

und bei Gleichgewicht der beiden Phasen

- 126 -

$$\left(\frac{\partial \ln p}{\partial T}\right)_{\Gamma} = \frac{h_{G} - \bar{h}_{S}}{RT^{2}} = \frac{q_{st}}{RT^{2}}$$
(11.15)

$$q_{st} = RT^2 \left(\frac{\partial \ln p}{\partial T}\right)_{\Gamma} = -R \frac{\partial \ln p}{\partial (1/T)_{\Gamma}}$$
 (11.16)

Im Gegensatz zu chemischen Reaktionen mit ihren positiven und negativen Reaktionswärmen haben Sorptionswärmen demnach immer negative Werte. Dies folgt unmittelbar aus der Tatsache, daß die Sorptionsentropie negativ ist, denn der sorbierte Zustand ist immer geordneter als der gasförmige.

Anzumerken ist, daß sich die Zustandsgrößen in den Gleichungen (11.1) und (11.2) auf die gesamte kondensierte Phase beziehen. Dies bedeutet für eine Änderung der inneren Energie dU, daß sie sich aus der Summe der Änderungen der inneren Energie des Adsorpts und des Adsorbens zusammensetzt. Die isostere Sorptionswärme q_{st} läßt hier also keine Aussage über den Zustand des Adsorpts (in diesem Fall also des sorbierten Cäsiums) allein zu. /59,60/

Der eben beschriebene Ansatz ist jedoch nur für die hier interessierende Chemisorption sinnvoll, bei der es zu einer starken Wechselwirkung zwischen Adsorbens und Adsorpt kommt.

11.2 Apparative Aspekte zur Massenspektrometrie

Die Massenspektrometrie ermöglicht eine qualitative und quantitative Substanzanalyse. Hierzu sind grundsätzlich fünf Funktionselemente erforderlich: - 128 -

- Hochvakuumerzeugung,
- Probenzuführung,
- Ionenerzeugung,
- Massentrennung,
- Ionennachweis.

Hochvakuumerzeugung

Man unterscheidet im wesentlichen zwei Gründe, warum massenspektrometrische Untersuchungen im Hochvakuum stattfinden müssen. Zum einen sollen neben den Ionen der Probe nicht gleichzeitig auch eine große Menge Sauerstoff- und Stickstoff-Ionen erzeugt werden, die das Spektrum der Probe stören bzw. zu unerwünschten Oxidationsprozessen führen können. Zum anderen dürfen die gebildeten Ionen auf ihren Bahnen nicht mit Atomen bzw. Molekülen zusammenstoßen, da sie hierdurch von ihrer Sollbahn abgelenkt würden, so daß eine klare Trennung der einzelnen Massenpeaks nicht möglich wäre. Der Vakuumdruck im Rezipient muß i.a. unter 10^{-4} Pa liegen. Zur Vakuumerzeugung werden Öldiffusions-, Ionen-Getter- und Turbo-Molekular-Pumpen eingesetzt.

Probenzuführung

Das System zur Probenzuführung hat die Aufgabe, die zu untersuchende Substanz der Ionenquelle zuzuführen. Hierzu ist eine kontinuierliche Versorgung der Ionenquelle mit Probensubstanz durch ein entsprechendes Druck- bzw. Konzentrationsgefälle in der Ionenquelle erforderlich.

Dies wird im Zusammenhang mit der vorliegenden Arbeit durch Verdampfung in einer Knudsenzelle mit Effusionsöffnung erreicht. Die Zufuhr der gasförmigen Substanz in Form eines Molekularstrahls kann durch einen Abschatter (bewegliche Blende) unterbrochen werden. (Abb. 4.2). Durch die Messung des Ionenstroms mit geöffnetem und geschlossenem Abschatter kann man zwischen Untergrund- und Molekularstrahl-Ionenstrom unterscheiden./61/

Ionenerzeugung

Die zu trennenden Atome bzw. Moleküle müssen zunächst ionisiert werden, da elektrische und elektromagnetische Kräfte nur auf geladene Teilchen¹⁾ wirken. Hierbei ist die Verwendung positiver oder negativer Ionen aus ionenoptischer Sicht unwesentlich, da die elektrischen Beschleunigungs- sowie elektrischen und magnetischen Ablenkfelder lediglich umgepolt werden müssen. Der Grund, warum in der Massenspektrometrie meistens mit positiven Ionen gearbeitet wird, liegt vielmehr in der Erzeugung der Ionen: Positive Ionen können leichter und mit größerer Ausbeute erzeugt werden als negative.

Grundsätzlich werden an massenspektrometrische Ionenquellen zwei Forderungen gestellt:

- Ionenquellen sollen möglichst monoenergetische Ionen liefern,
- 2. Die Ionisation soll mit großer Ausbeute erfolgen.

Zur Erzeugung der Ionen gibt es verschiedene Möglichkeiten, wie z. B. die Elektronenstoß-Ionisation, die thermische Oberflächenionisation, die Funkenionisation und die Photoionisation. Hier soll nur auf die in dieser Arbeit eingesetzte Elektronenstoß-Ionisation eingegangen werden. Das Funktionsprinzip einer Ionenstoßquelle ist aus der <u>Abb. 11.1</u> ersichtlich.

Der aus der Knudsenzelle effundierende Molekularstrahl (1) gelangt in die Ionenquelle und kreuzt dort die von der Glühkathode (2) emittierten Elektronen, die mittels einer zwischen Kathode und Stoßraum angelegten Spannung beschleunigt werden.

¹⁾ Abgesehen von den relativ schwachen Kraftwirkungen auf neutrale Atome bzw. Moleküle mit einem elektrischen oder magnetischen Dipolmoment.

Abb. 11.1: Schema einer Elektronenstoß-Ionenquelle für Gase: (1) Molekularstrahl, (2) Glühkatode, (3) Blenden, (4) Eintrittsblende, (5) Ionenbündel /62/

Die Ionisierung der Gasmoleküle erfolgt durch Stöße schneller Elektronen, wobei die Wechselwirkung zwischen den beiden Teilchen darin besteht, daß das stoßende Elektron einen Teil seiner kinetischen Energie auf ein gebundenes Elektron des Moleküls überträgt.

Die beiden jeweils beteiligten Elektronen verlassen dann den Stoßraum. Voraussetzung hierzu ist, daß das stoßende Elektron noch genügend kinetische Energie besitzt und die auf das gebundene Elektron übertragene kinetische Energie ausreicht.

Die Ionisation durch Elektronenstoß eines neutralen Gasatoms erfolgt gemäß dem Schema /63/:

$$A + e \rightleftharpoons A^{\dagger} + 2e^{\dagger}$$

Bei Vorliegen eines Moleküls kommt es z. B. zur Ionisation entsprechend dem folgenden Schema:

- 130 -

$$AB + e^{-} \rightleftharpoons AB^{+} + 2e^{-}$$
oder
$$AB + e^{-} \rightleftharpoons A^{+} + B + 2e^{-}$$
oder
$$AB + e^{-} \rightleftharpoons A + B^{+} + 2e^{-}$$

Es können also beim Molekül neben dem Molekülion auch Fragmentationen und neutrale Molekülbruchstücke entstehen.

Die gebildeten Ionen werden aufgrund einer Spannungsdifferenz zwischen Ionisierungsgehäuse und den Blenden (3; <u>Abb. 11.1</u>) aus dem Stoßraum abgeführt und treten anschließend durch die Eintrittsblende (4) in das Trennsystem ein. Die Spannungen der Blenden wählt man hierbei so, daß die Ionen auf die Eintrittsblende (4) fokussiert werden und somit ein möglichst großer Anteil der Ionen das Trennsystem erreicht.

Massentrennung

Zur Massentrennung kommen eine Reihe von Trennsystemen in Frage. Hier soll jedoch nur auf das für diese Arbeit eingesetzte Quadropol-Massenspektrometer eingegangen werden, bei dem die Ionen nach ihren Massen/Ladungsverhältnis (m/e) getrennt werden.

Das Trennsystem besteht aus vier parallelen runden¹⁾ Stabelektroden, die äquidistant auf einem Kreis angeordnet sind (<u>Abb. 11.2</u>). An jeweils zwei gegenüberliegenden Elektroden wird eine aus einer Gleichspannung U und einer HF-Spannung V zusammengesetzte Spannung = $(U + V \cos \omega t)^2$ gelegt.

Die in Längsrichtung (z-Achse/Abb. 11.2) des Stabsystems eintretenden Ionen führen unter dem Einfluß des HF-Feldes osziellierende massenabhängige Schwingungen um die Längsachse aus. Die Schwingungsbahnen der Ionen in x- und y-Richtung lassen sich durch Mathieu'sche Differentialgleichungen beschreiben, wobei die Geschwindigkeit in z-Richtung beibehalten wird:

¹⁾ Im idealen Massenfilter mit hyperbelförmigem Querschnitt.

²⁾ Mit jeweils entgegengesetzten Vorzeichen.

$$x'' + (a + 2 q \cos 2 v) x = 0$$
 (11.17)

$$y'' - (a + 2 q \cos 2 v) y = 0$$
 (11.18)

mit

$$\omega t = 2 v; a = \frac{8 e U}{m r_o^2} v, q = \frac{4 e V}{m r_o^2} u^2$$
 (11.19)

Abb. 11.2: Schema eines Quadrupol-Massenspektrometers /64/

Nach der Gleichung (ll.17) bis (ll.18) erreichen nur Ionen¹⁾ mit bestimmten Werten der Variablen a und q das Ende des Quadrupols und damit das Nachweissystem, während die übrigen mit steigender Schwingungsamplitude auf die Stäbe oder die Gehäusewand treffen. /65,66/ Aus dem in <u>Abb. 11.3</u> dargestellten Stabilitätsdiagramm sind die für a und q relevanten Bereiche ersichtlich.

Man erhält also für jedes Ion, das sich auf einer stabilen Bahn durch das Stabsystem bewegt, einen Punkt (q, a) innerhalb der Dreiecksfläche. Für Ionen gleicher Masse ergibt sich nach den Gleichungen (ll.17 bis ll.19) derselbe "Arbeitspunkt" (q_m , a_m). Entsprechend liegen die Arbeitspunkte von Ionen unterschiedlicher Masse auf einer Geraden, da das Verhältnis a/q =(2U)/V nicht von der Masse abhängt. Hieraus folgt, daß durch Vergrößerung des Verhältnisses a/q der Massenbereich so weit begrenzt werden kann, bis nur noch Ionen einer Masse stabile Bahnen durchlaufen.

¹⁾ D. h. Ionen auf stabilen Bahnen.

Abb. 11.3: Stabilitätsdiagramm des Quadrupol-Massenspektrometers /67/

Ionennachweis

Die nach ihrem Massen-/Ladungsverhältnis getrennten Ionen werden elektrisch nachgewiesen, wobei die Nachweismethoden sich je nach Anforderungen an die Nachweisempfindlichkeit und Nachweisgeschwindigkeit unterscheiden.

Für einen reproduzierbaren und möglichst schnellen Nachweis der Ionenströme von i. d. Regel kleiner als 10⁻⁸ Ampère kommen im wesentlichen drei Einrichtungen in Frage:

- 1. Faraday-Auffänger,
- 2. Sekundär-Elektronenvervielfacher (SEV),
- 3. Photoplatte.

Beim <u>Faraday-Auffänger</u> werden die auf einen Kollektor treffenden Ionen in ihrer Ladung neutralisiert. Der zur Neutralisation in den Auffänger fließende Strom wird über einen Hochohmwiderstand geleitet. Gemessen wird der Spannungsabfall. Die Meßgrenze liegt bei 10^{-16} A. Die nachzuweisenden Ionen werden im <u>Sekundär-Elektronenver-</u> vielfacher auf eine (oder mehrere hintereinander geschaltete) Konversionsdynode(n) hin nachbeschleunigt. Aufgrund ihrer kinetischen Energie werden beim Auftreffen auf die Konversionsdynoden eine Anzahl Elektronen ausgelöst, wobei die Sekundärelektronenausbeute pro Dynode größer als eins ist. Dieser Vervielfachungseffekt ist in <u>Abb. 11.4</u> schematisch dargestellt.

Abb. 11.4: Funktionsprinzip eines Sekundär-Elektronenvervielfachers /68/

Durch dieses Verfahren können Stromverstärkungen von 10^4 bis 10^8 erzielt werden. /67/

Die häufigsten Ausführungsformen sind der mehrstufige Kupfer-Berylium-SEV und das Channeltron.

Beim Einsatz einer <u>Photoplatte</u> werden durch die auftreffenden Ionen aus den Silberhalogenkristallen Elektronen freigesetzt. Diese Elektronen führen beim Entwicklungsprozeß zu schwarzen Bildpunkten.

11.3 Polykristalline Reaktorgraphite

In diesem Kapitel werden einige grundlegende Aspekte zu den untersuchten graphitischen Reaktormaterialien erörtert. Weitere Informationen können den Arbeiten von Roßwurm /69/ und Delle et al./46/ entnommen werden.

11.3.1 Zusammensetzung und Herstellungsverfahren

Die beiden wesentlichen Grundkomponenten bei der Herstellung von polykristellinen Graphiten sind:

1. Füllermaterialien:

a)	natürlich		Naturgraphit,
			Gilsonitkoks,
b)	künstlich	-	Petrolkoks,
			Pechkoks.

2. Bindermaterialien:¹⁾: - Steinkohlenteerpech, - Kunstharze.

Hierbei werden prinzipiell die Füller-Kokskörner mit dem kohlenstoffhaltigen Bindemittel vermischt, gepreßt und anschließend einer thermischen Behandlung unterzogen. Die wesentlichen Verfahrensschritte können aus der Abb. 11.5 ersehen werden.

Bei der Auswahl der beiden o.g. Grundkomponenten müssen vor allem zwei Kriterien berücksichtigt werden:

- die Graphitierbarkeit und damit die Vorordnung der Kristallite in den Körnern und
- die Anisotropie und Anisometrie der Körner und damit im Zusammenwirken mit der Preßtechnik die Anisotropie des Formkörpers.

¹⁾ Und auch Imprägniermittel

Anzumerken ist, daß man hier unter "Graphitierbarkeit" eine Strukturveränderung versteht, bei der es zu einer zweidimensionalen Vergrößerung der im Koks vorhandenen Kohlenstoffringsysteme und zu einer Stapelung der entstehenden Kohlenstoffschichten zum dreidimensionalen Graphitgitter kommt (vgl. Anhang 11.3.2).

Im folgenden soll im einzelnen kurz auf die Feststoffkomponenten eingegangen werden:

1. Füllermaterialien

Die natürlich vorkommenden <u>Naturgraphite</u> sind anisotrop und hochkristallin. Sie unterscheiden sich je nach Lagerstätte in ihrer kristallinen Struktur und ihrem Aussehen. Man unterscheidet: makrokristalline Graphite (Flocken- und Flinzgraphite) und
mikrokristalline Graphite (erdige Graphite).

Die Kristallite in den Körnern sind so gut geordnet, daß nur wenige Mikroporen vorhanden sind. Ihre Größe liegt bei maximal 3000 \mathfrak{A} . Da eine Graphitierungsbehandlung bei Naturgraphit nicht erforderlich ist, wird er für die A3-Matrix von HTR Brennelementen verwendet.

<u>Gilsonitkoks</u> gehört ebenfalls zu den natürlichen Füllermaterialien, dessen kugelförmige, also isometrische Kornform (<u>Abb.</u> 11.6), die Herstellung isotroper Graphite gestattet.

Abb. 11.6: Mikrostruktur-Modell des Gilsonitkoks /71/

Es kommt in der Natur als Bitumen vor und wird nach der Verarbeitung für nicht austauschbare hochtemperatur- und neutronendosenbelastete Reflektoren verwendet. Die Kristallitgröße liegt bei maximal 600 \Re . Die beiden Hauptnachteile gegenüber Petrol- und Pechkoksen sind die hohen Herstellungkosten (Reinigungskosten aufgrund relativ starker Verunreinigungen und schwierige Bearbeitbarkeit) und die begrenzte Verfügbarkeit (nur 1 Rohstoffader in den USA).
Petrolkoks gehört zu den "künstlichen" Füllermaterialien. Man erhält ihn durch thermische Spaltung von hochsiedenden Rückstandsölen der Erdöldestillation. Als s. g. "Nadelkoks" (Abb. 11.7) verfügt er über eine für die Graphitierbarkeit wichtige gute Vorordnung der Schichtebenen. Die Petrolkokskörner weisen eine relativ hohe Anisotropie auf. Jedoch kann man heute einen isotropen Mischkoks herstellen, indem die Nadelkokskörner in einer Matrix (z. B. Steinkohlenteerpech) so fixiert werden, daß sie in allen drei Raumrichtungen statistisch verteilt sind. /72,69/

Abb. 11.7: Mikrostruktur-Modell des Nadelkoks /71/

<u>Pechkokse</u> sind in der Herstellung (aus Steinkohlenteerpech) billiger als Petrolkokse. Aufgrund ihrer geringen Vorordnung graphitieren sie jedoch schlechter. Daher sind die Kristallite nach dem Graphitierungsprozeß um einen Faktor drei kleiner, wodurch ihre isotrope Anordnung begünstigt wird. Pechkokse besitzen eine größere Härte und Festigkeit als Petrolkokse. An das Bindemittel werden eine Reihe von Anforderungen gestellt. Hierzu gehören:

- eine gute Bindung der Feststoffkomponenten
- eine gute Verformbarkeit der "grünen" Mischung (d. h. vor der thermischen Wärmebehandlung) aus Füller- und Bindermaterial und
- eine feste Verkettung der Füllerkörner durch Binderkoksbrükken

Für den Einsatz des Bindermaterials gelten daher folgende we- « sentliche Kriterien:

- 1. Viskosität,
- 2. Erweichungspunkt,
- 3. Oberflächenreaktivität bei der Verkokung,
- 4. Koksausbeute.

Die Viskosität muß einen guten Transport und eine gute Lagerung des "grünen" Formkörpers bei Zimmertemperatur und gleichzeitig eine gute Benetzung der Füllerkörner bei erhöhter Temperatur gewährleisten.

Je nach Verarbeitungstechnik der "grünen" Mischung liegt der Erweichungspunkt der Bindemittel gewöhnlich zwischen 330 und 425 K.

Bei der Verkokung kommt es nicht nur auf eine hohe Koksausbeute an, sondern der Binder muß hierbei auch über eine hohe Oberflächenreaktivität verfügen, um einen engen Kontakt mit dem Füllermaterial zu erreichen.

Das am häufigsten für Kernreaktoren verwendete Bindemittel ist Steinkohlenteerpech. Es stellt ein schweres Rückstandsprodukt bei der kontinuierlichen Destillation von Steinkohlenteer dar, wobei die Eigenschaften je nach Herkunft der Steinkohle sehr unterschiedlich sind. Die Binderkoksausbeute liegt bei etwa 55 Gew.-%.

Anzumerken ist, daß Peche (Steinkohlen- und Petrolpeche) mit geringen Anteilen hochmolekularer Substanzen auch zur Imprägnierung eingesetzt werden, da sie besser in die Poren der Formkörper eindringen.

Zu den am häufigsten verwendeten Kunstharzen gehören neben den Phenol-Benzaldehyd-Harzen vor allem die Phenol-Formaldehyd-Harze wie für A3-Matrixgraphit verwendet. Ihre Koksausbeute liegt bei etwa 37 bzw. 52 Gew.-%. Zwar ist die Graphitierbarkeit im Vergleich zum Pechbinder schlechter, dafür besitzen sie den Vorzug, leicht löslich zu sein. Dieser Vorteil ist besonders für die Herstellung der graphitischen Brennelement-Matrix von Bedeutung, bei der die Graphitierbarkeit eine untergeordnete Rolle spielt.

11.3.2 Struktur und Eigenschaften

Polykristalliner Graphit, wie er bei graphitischen Reaktormaterialien vorliegt, zeichnet sich durch einen heterogenen Gefügeaufbau aus.

Die bei der Pyrolyse bei etwa 1050 K (vgl. Abb. 11.5) entweichenden Pyrolysegase durchsetzen den Formkörper mit Poren unterschiedlicher Größe und Form. In der so entstandenen s. g. "Hartbrandkohle" ("Kohlestein") liegt jedoch noch keine ausgeprägte Graphitstruktur vor, sondern neben einem mehr oder weniger großen Anteil ungeordneten Kohlenstoffs noch einzelne Graphitkristalle mit wenigen Schichtebenen. Erst durch die "Graphitierung" bei Temperaturen zwischen 2500 und 2800°C entsteht eine ausgeprägte Graphitstruktur wie in <u>Abb. 11.8</u> dargestellt.

Abb. 11.8: Struktur eines polykristallinen Graphitformkörpers /46/ (1) Kristallit, (2) Binderbrücke, (3) Korn mit Kristalliten und Mikroporen, (4) Mikropore, (5) Makropore

Die aus Kristalliten (vgl. <u>Abb. 11.8</u>;(1)) aufgebauten Füllerkörner haben je nach Graphitsorte einen Durchmesser von 3μ m bis 10 mm, wobei die Kristallitgröße i. d. Regel zwischen 50 und 1000 \Re liegt. Der Gitteraufbau der Kristallite ist vergleichbar mit dem des Graphit-Einkristalls (<u>Abb. 11.9</u>).

Es besteht aus einem hexagonalen kondensierten Kohlenstoff-Ringsystem. In den Basisebenen ist jedes C-Atom durch drei σ -Bindungen und einer σ -Bindung in einem Abstand von 1,42 \mathfrak{P} an seinen Nachbarn gebunden. Die Basisebenen sind so gegeneinander versetzt, daß sich immer die C-Atome jeder zweiten Schicht decken, wenn man in Richtung der c-Achse (d. h. senkrecht zu den Basisebenen) auf das Gitter blickt. Der Abstand zwischen den Schichtebenen beträgt im idealen Graphitgitter 3,354 \mathfrak{P} und entspricht der Summe der van-der-Waal'schen Radien und bedeutet, daß zwischen den Ebenen nur sehr schwache Kräfte wirken. D. h. die Schichtebenen lassen sich sehr gut gegeneinander verschieben, weshalb der Graphit ein gutes Gleitmittel darstellt. Die Bindungsenergien der C-Atome betragen dort lediglich 16,7 kJ/mol, dagegen in den Basisebenen 477,3 kJ/mol.

Abb. 11.9: Hexagonale Gitterstruktur eines Graphit-Einkristalls /73/

Aufgrund der ausgeprägten Anisotropie des Gitteraufbaus sind verschiedene Eigenschaften des Graphitgitters stark richtungsabhängig, wie aus der Tab. 11.1 zu ersehen ist.

Abschließend kann gesagt werden, daß polykristalline Graphite vereinfacht eine mit dem Graphit-Einkristall vergleichbare Gitterstruktur aufweisen, jedoch Gitterdefekte verschiedener Art und unterschiedlichen Ausmaßes auftreten.

Eigenschafter	1	parallel zu den Schichtebenen (001)-Ebenen	senkrecht zu den Schichtebenen (001)-Ebenen
Dichte	g cm ⁻³	2,266	2,266
Elastizitätsmodul	kn mm ⁻²	~ 1000	~ 35
Spezif. elektr. Widerstand	Ohm $mm^2 m^{-1}$	~ 0,5	~ 10.000
Wärmeleitfähigkeit ¹⁾	$Wm^{-1} r_{K}^{-1}$	> 407	8
Wärmeausdehnungskoeffizient			
20 – 200°C	10 ⁻⁶ °K ⁻¹		
a) linear		- 1,5	+ 28,6
b) Volumen		25,6	25,6
1) Bei 20 - 200°C			

Tab. 11.1: Eigenschaften des Graphit-Einkristalls /73/

11.4 Vergleich der angewandten Methoden zur Untersuchung der Cs-Sorption

Zur Ermittlung von Cs-Sorptionsdaten werden unterschiedliche Methoden verwendet, wie in der Tab. 11.2 zusammengestellt.

Bei der <u>Knudsenzelle-Methode mit Massenspektrometer</u>, wie in dieser Arbeit eingesetzt (vgl. <u>Kap. 4.1</u>), wird eine mit Cs beladene Pulverprobe in einer s. g. Knudsen-Zelle im Vakuum erhitzt. Gemessen wird die Cs-Ionenintensität I_{CS}(T) der Gasphase über der Probe bei konstanter Temperatur T nach Einstellung des Gleichgewichtes. Hierzu wird vorher der durch die Effusionsöffnung austretende molekulare Cs-Dampfstrahl in der Ionenquelle des Massenspektrometers ionisiert.

 $I_{Cs}(T)$ wird anschließend in dem zugehörigen Cs-Gleichgewichtspartialdruck $p_{Cs}(T)$ umgerechnet. Die Cs-Konzentration c in der Probe wird radioanalytisch bestimmt.

Methode:	Gemessen:	Berechnet:	Forme.in:
1. Knudsenzellen-Methoden 1.1 mit Massenspektrometer	I _{Cs} (T-konst) ,T,c	P _{Cs} , ^{ΔH} , ^{ΔH} s	$P_{CS} = E I_{CS} Mb T; \Delta H_v = -R \frac{d(\ln P_{CS})}{d(1/T)}$ (Clausius-Clapeyron;
1.2 mit Kühlfinger	dm (T=konst),T,C	P _{CS} , ^{AH} , ^{AH} S	$\Delta H_{\rm S} = (\Delta H_{\rm V} - \Delta^0 \widetilde{H}_{\rm V}) \text{ (vgl. Kap. 3.5.1 u. 6.7)}$ $P_{\rm CS} = \frac{1}{\rm aq} \frac{2\pi {\rm RT}}{{\rm M}_{\rm CS}} \frac{2}{{\rm dt}} \frac{{\rm dm}}{{\rm dt}} \text{ (Hertz-Knudsen)}$
			ΔH _V ,ΔH _S wie bei 1.1 (vgl. <u>Kap. 6.1.3</u>)
 Isopiestische Methoden 1 mit separater Quelle 	$T = T_Q' c(T)$	P _{Cs} , ^{ΔH} _V , ^{ΔH} s	$\Delta F = RT$ in $P_{CS} + \Delta^{\circ} \widetilde{H}_{V} - T\Delta^{\circ} \widetilde{S}_{V}$; $\Delta F = \frac{1}{A}$ log c;
			ΔH _V ,ΔH _S wie bei 1.1 (A = stoffabhängige Konstante)
2.2 mit integrierter Quelle	T,C	I	1
<u>Bemerkung:</u> Die Messungen erfo Erläuterung der Sy	ulgen jeweils unter Gle mbole siehe Text und 9	eichgewichtsbedir Symbolverzeichnis	gungen ;

Tab. 11.2: Vergleich der verschiedenen Methoden zur Untersuchung der Cs-Sorption

Die <u>Knudsenzellen-Methode mit Kühlfinger</u> unterscheidet sich von der Methode 1.1 (vgl. <u>Tab. 11.2</u>) durch ein anderes Analysegerät. Hier wird statt eines Massenspektrometers ein Kühlfinger eingesetzt, an dem ein Teil des aus der Zelle austretenden Dampfes kondensiert. Die kondensierte Cs-Menge wird radioanalytisch bestimmt. Mit Hilfe der Effusionsrate $\frac{dm}{dt}$ und der Hertz-Knudsen-Gleichung kann dann wieder der Gleichgewichtspartialdruck $p_{CS}(T)$ berechnet werden.

Für die <u>isopiestische Methode mit separater Cs-Quelle</u> (2.1 in <u>Tab. 11.2</u>) werden Apparaturen verwendet, die aus einem L-förmigen, geschlossenen, evakuierten Rohr mit einem heizbaren Reservoir an metallischem, radioaktiv markiertem Cäsium im senkrechten Endstück und einem heizbaren waagerechten Endstück mit der graphitischen Probe bestehen (Abb. 11.10.).

Zur Durchführung der Sorptionsversuche werden zunächst die Cs-Quelle und die anfangs noch Cs-freie graphitische Probe auf eine konstante Temperatur (T=T_Q=konst.) erhitzt. Mit Hilfe des Gamma-Detektors (vgl. <u>Abb. 11.10</u>) kann dann nach Erreichen des Gleichgewichtes zwischen der Cs-Gasphase und der sorptiv beladenen Probe die Cs-Konzentration c(T) gemessen werden. Für eine Meßserie wird jeweils die Temperatur T(=T_Q) variiert und damit gleichzeitig der Cs-Dampfdruck über der Cs-Quelle verändert. Über die freie Energie-Funktion kann anschließend der jeweilige Gleichgewichtspartialdruck p_{CS} berechnet werden.

Die <u>isopiestische Methode mit integrierter Cs-Quelle</u> (2.2 in <u>Tab. 11.2</u>), wie in dieser Arbeit eingesetzt (vgl. <u>Kap. 4.2</u>), wird für vergleichende Sorptionsuntersuchungen eingesetzt. Hierzu werden anfangs Cs-freie Proben und die Cs-Quelle gemeinsam in einer verschlossenen Zelle hochgeheizt und bei einer konstanten Temperatur über einen längeren Zeitraum (mehrere Stunden bis Tage) gehalten. Die Heizdauer wird so gewählt, daß die Proben über die Gasphase bis zur Einstellung des Gleichgewichtes sorptiv beladen werden. Nach dem Versuch werden die Proben der Zelle entnommen und die Konzentration radioanalytisch bestimmt. Diese Methode ist sinnvoll für den direkten Vergleich entweder unterschiedlicher Materialien oder für Proben aus einem Werkstoff mit unterschiedlichen Korndurchmessern, Korrosions- und/oder Bestrahlungsgrad.

Anzumerken ist, daß alle Apparaturen entweder teilweise aus Glas bestehen bzw. mit Materialien (Wolfram, Molybdän) ausgekleidet sind, die störende Wechselwirkungen mit Cs und graphitischen Materialien im untersuchten Temperaturbereich ausschließen.

Abb. 11.10: Isopiestische Apparatur für Methode 2.1 (vgl. <u>Tab. 11.2</u>) /74,75/

Sollen neben den Sorptionsuntersuchungen zusätzlich Permeations- und Diffusionsversuche durchgeführt werden, wählt man eine ähnliche Anordnung, die aber zusätzlich gemäß <u>Abb. 11.11</u> mit einem Kondensator und einem zweiten Detektor ausgerüstet ist.

Abb. 11.11: Isopiestische Apparatur zur kombinierten Untersuchung von Sorptions-, Diffusions- und Permeationsprozessen für Methode 2.1 (vgl. <u>Tab. 11.2</u>)./76/

11.5 Cs-Dampfdruckmessungen an A3-3

Für die <u>Tab. 11.3</u> bis <u>Tab. 11.14</u> gilt gemäß <u>Tab. 6.6</u> (<u>Kap.</u> <u>6.6</u>):

p = E*I*MB*T

mit p = Cs-Dampfdruck (Pa)

$$E = Eichfaktor\left(\frac{Pa}{mm \ V \ K}\right)$$

I = Signalhöhe auf dem Schreiber (mm)

MB = Meßbereich (V)

T = absolute Temperatur in der Knudsenzelle (K)

- 147 -

Abb.11.12/Tab.11.3: Cs-Dampfdruckkurve für A3-3 (Meßserie 1/Henry-Bereich)

c = 0,	$c = 0,170 \text{ mmol/kg}; E = 5,780*10^{-6} \text{ Pa/mm VK}; 16 \text{ Meßpunkte}$				
Т	1/T	I*MB	p=E*I*MB*T	ln p	
1419 1398 1273 1368 1483 1373 1363 1332 1434 1332 1385 1307 1420 1304 1413 1268	7,047 *10-4 7,153 *10-4 7,855 *10-4 7,309 *10-4 6,743 *10-4 7,283 *10-4 7,283 *10-4 7,507 *10-4 7,507 *10-4 7,507 *10-4 7,507 *10-4 7,651 *10-4 7,651 *10-4 7,668 *10-4 7,077 *10-4 7,886 *10	6,400*10 ⁻² 3,700*10-2 2,625*10-2 1,076*10-1 1,420*10-2 1,500*10-2 1,500*10-3 4,566*10-3 1,270*10-3 9,239*10-3 2,000*10-3 2,888*10-3 5,168*10-2 3,100*10-4 9,188*10	$5,249 *10^{-4}$ $2,989 *10^{-5}$ $1,931 *10^{-5}$ $8,507 *10^{-5}$ $1,217 *10^{-4}$ $1,666 *10^{-4}$ $1,181 *10^{-5}$ $1,089 *10^{-5}$ $1,089 *10^{-5}$ $1,601 *10^{-5}$ $1,601 *10^{-5}$ $1,601 *10^{-5}$ $4,924 *10^{-5}$ $3,895 *10^{-4}$ $2,531 *10^{-6}$ $6,733 *10^{-6}$	$-7,552 *10^{\circ}$ $-8,115 *10^{\circ}$ $-1,085 *10^{-1}$ $-9,371 *10^{\circ}$ $-6,711 *10^{\circ}$ $-8,699 *10^{\circ}$ $-9,043 *10^{\circ}$ $-1,025 *10^{-1}$ $-6,822 *10^{\circ}$ $-9,550 *10^{\circ}$ $-8,739 *10^{\circ}$ $-1,073 *10^{-1}$ $-7,616 *10^{\circ}$ $-1,015 *10^{-1}$ $-8,281 *10^{\circ}$ $-1,190 *10^{-1}$	

Abb.11.13/Tab. 11.4: Cs-Dampfdruckkurve für A3-3 (Meßserie 2/Henry-Bereich)

c = 0,	$c = 0,652 \text{ mmol/kg}; E = 1,219*10^{-5} \text{ Pa/mm VK}; 20 \text{ Meßpunkte}$				
Т	1/T	I*MB	p=E*I*MB*T	ln p	
1400 1403 1375 1449 1455 1371 1343 1406 1403 1337 1323 1367 1366 1306 1293 1317 1423 1403 1262 1473	$\begin{array}{c} 7,142 & *10^{-4} \\ 7,127 & *10^{-4} \\ 7,272 & *10^{-4} \\ 7,272 & *10^{-4} \\ 6,901 & *10^{-4} \\ 6,872 & *10^{-4} \\ 7,293 & *10^{-4} \\ 7,446 & *10^{-4} \\ 7,112 & *10^{-4} \\ 7,112 & *10^{-4} \\ 7,127 & *10^{-4} \\ 7,558 & *10^{-4} \\ 7,558 & *10^{-4} \\ 7,593 & *10^{-4} \\ 7,593 & *10^{-4} \\ 7,593 & *10^{-4} \\ 7,923 & *10^{-4} \\ 7,923 & *10^{-4} \\ 7,923 & *10^{-4} \\ 6,788 & *10 \\ \end{array}$	$\begin{array}{c} 4,600*10 \overset{-2}{-2}\\ 3,800*10 \overset{-2}{-2}\\ 2,181*10 \overset{-1}{-1}\\ 1,300*10 \overset{-1}{-1}\\ 1,140*10 \overset{-1}{-2}\\ 1,954*10 \overset{-2}{-2}\\ 1,185*10 \overset{-2}{-2}\\ 1,185*10 \overset{-2}{-2}\\ 4,800*10 \overset{-2}{-2}\\ 1,168*10 \overset{-3}{-3}\\ 6,638*10 \overset{-2}{-2}\\ 3,100*10 \overset{-2}{-2}\\ 2,253*10 \overset{-2}{-3}\\ 7,443*10 \overset{-3}{-3}\\ 3,319*10 \overset{-2}{-2}\\ 5,400*10 \overset{-2}{-2}\\ 5,400*10 \overset{-2}{-2}\\ 3,272*10 \overset{-3}{-3}\\ 1,897*10 \overset{-1}{-1}\\ 1,620*10 \overset{-2}{-2}\end{array}$	7,850 $*10^{-4}$ 6,498 $*10^{-4}$ 3,655 $*10^{-3}$ 2,296 $*10^{-3}$ 2,021 $*10^{-4}$ 3,265 $*10^{-4}$ 1,939 $*10^{-3}$ 1,234 $*10^{-4}$ 3,209 $*10^{-4}$ 1,903 $*10^{-4}$ 1,903 $*10^{-4}$ 1,070 $*10^{-4}$ 3,751 $*10^{-4}$ 3,751 $*10^{-4}$ 3,751 $*10^{-4}$ 3,751 $*10^{-4}$ 3,751 $*10^{-4}$ 3,751 $*10^{-4}$ 5,231 $*10^{-4}$ 5,595 $*10^{-5}$ 2,918 $*10^{-3}$ 2,908 $*10^{-3}$	-7,149 *10° -7,338 *10° -7,914 *10° -6,076 *10° -8,026 *10° -8,026 *10° -8,547 *10° -7,105 *10° -7,105 *10° -9,142 *10° -7,568 *10° -7,568 *10° -7,888 *10° -9,040 *10° -9,858 *10° -9,858 *10° -7,488 *10°	

Abb.11.14/Tab. 11.5: Cs-Dampfdruckkurve für A3-3 (Meßserie 3/Freundlich-Bereich)

$c = 3,17 \text{ mmol/kg}; E = 1,107*10^{-5} Pa/mm VK; 13 MeBpunkte$					
T	1/T	I*MB	p=E*I*MB*T	ln p	
1517 1729 1541 1756 1565 1775 1588 1794 1623 1819 1648 1678 1701	6,591 *10-4 5,783 *10-4 6,489 *10-4 5,694 *10-4 5,694 *10-4 5,633 *10-4 5,633 *10-4 6,297 *10-4 5,574 *10-4 5,747 *10-4 5,497 *10-4 5,959 *10-4 5,878 *10	1,900*10° 2,320*10° 2,520*10° 3,050*10° 3,520*10° 3,635*10° 4,580*10° 4,260*10° 6,950*10° 5,235*10° 1,330*10° 1,746*10°	$3,189 *10^{-2} \\ 4,439 *10^{-1} \\ 4,297 *10^{-1} \\ 5,927 *10^{-1} \\ 6,096 *10^{-1} \\ 7,140 *10^{-2} \\ 8,049 *10^{-1} \\ 8,457 *10^{-1} \\ 1,248 *10^{-1} \\ 1,053 *10^{-1} \\ 1,725 *10^{-1} \\ 2,469 *10^{-1} \\ 3,286 *10^{-1} \\ $	$\begin{array}{c} -3,445 & *10 \\ -8,120 & *10 \\ -3,147 & *10 \\ -5,230 & *10 \\ -2,797 & *10 \\ -3,367 & *10 \\ -2,519 & *10 \\ -1,674 & *10 \\ -2,080 & *10 \\ -2,080 & *10 \\ 5,245 & *10 \\ -1,757 & *10 \\ -1,398 & *10 \\ -1,112 & *10 \end{array}$	

c = 4,2	22 mmol/kg; $E = $	7,873*10 ⁻⁶ Pa/mm	VK; 20 Meßpunkte	
T	1/T	I*MB	p=E*I*MB*T	ln p
1306 1252 1295 1396 1390 1217 1238 1330 1357 1135 1198 1258 1328 1328 1328 1328 1328 1328 1328 1349 1109 1128	7,656 $*10^{-4}$ 7,987 $*10^{-4}$ 7,722 $*10^{-4}$ 7,163 $*10^{-4}$ 7,194 $*10^{-4}$ 8,216 $*10^{-4}$ 8,216 $*10^{-4}$ 8,077 $*10^{-4}$ 7,518 $*10^{-4}$ 7,369 $*10^{-4}$ 8,810 $*10^{-4}$ 8,847 $*10^{-4}$ 7,949 $*10^{-4}$ 7,204 $*10^{-4}$ 7,204 $*10^{-4}$ 8,741 $*10^{-4}$ 8,741 $*10^{-4}$ 8,741 $*10^{-4}$ 8,488 $*10^{-4}$ 7,733 $*10^{-4}$ 7,412 $*10^{-4}$ 9,017 $*10^{-4}$ 8,865 $*10^{-4}$	$\begin{array}{c} 1,600*10 \overset{-1}{-1} \\ 5,200*10 \overset{-1}{-1} \\ 5,200*10 \overset{-1}{-1} \\ 1,100*10 \overset{-1}{-1} \\ 6,950*10 \overset{-1}{-1} \\ 2,400*10 \overset{-2}{-2} \\ 3,300*10 \overset{-1}{-1} \\ 2,050*10 \overset{-1}{-3} \\ 3,950*10 \overset{-3}{-3} \\ 3,028*10 \overset{-1}{-2} \\ 1,200*10 \overset{-1}{-2} \\ 5,100*10 \overset{-1}{-1} \\ 2,280*10 \overset{-1}{-1} \\ 2,957*10 \overset{-3}{-3} \\ 8,000*10 \overset{-3}{-3} \\ 1,220*10 \overset{-1}{-1} \\ 2,950*10 \overset{-3}{-3} \\ 1,145*10 \overset{-3}{-3} \\ 2,952*10 \end{array}$	$\begin{array}{c} 1,645 & *10^{-3} \\ 5,125 & *10^{-3} \\ 1,121 & *10^{-3} \\ 7,089 & *10^{-3} \\ 7,605 & *10^{-4} \\ 2,299 & *10^{-4} \\ 3,216 & *10^{-3} \\ 4,220 & *10^{-3} \\ 2,146 & *10^{-3} \\ 4,220 & *10^{-5} \\ 1,131 & *10^{-4} \\ 5,051 & *10^{-3} \\ 2,383 & *10^{-5} \\ 3,388 & *10^{-5} \\ 7,419 & *10^{-3} \\ 3,133 & *10^{-6} \\ 9,997 & *10^{-5} \\ 1,822 & *10 \\ \end{array}$	$\begin{array}{r} -6,409 & *10^{\circ} \\ -7,576 & *10^{\circ} \\ -6,793 & *10^{\circ} \\ -4,949 & *10^{\circ} \\ -4,878 & *10^{\circ} \\ -8,042 & *10^{\circ} \\ -6,143 & *10^{\circ} \\ -6,143 & *10^{\circ} \\ -5,467 & *10^{\circ} \\ -1,051 & *10^{\circ} \\ -1,051 & *10^{\circ} \\ -7,590 & *10^{\circ} \\ -7,590 & *10^{\circ} \\ -6,039 & *10^{\circ} \\ -5,061 & *10^{\circ} \\ -5,061 & *10^{\circ} \\ -5,061 & *10^{\circ} \\ -5,765 & *10^{\circ} \\ -1,151 & *10^{-1} \\ -1,091 & *10^{-1} \\ \end{array}$

Abb.11.16/Tab. 11.7: Cs-Dampfdruckkurve für A3-3 (Meßserie 5/Freundlich-Bereich)

$c = 4,95 \text{ mmol/kg}; E = 1,107*10^{-5} Pa/mm VK; 13 Meßpunkte$					
т	1/T	I*MB	p=E*I*MB*T	ln p	
1498 1612 1727 1521 1638 1758 1541 1661 1785 1560 1679 1586 1700	6,675 *10-4 6,203 *10-4 5,790 *10-4 6,574 *10-4 6,105 *10-4 6,105 *10-4 5,688 *10-4 6,489 *10-4 6,020 *10-4 5,602 *10-4 5,602 *10-4 5,955 *10-4 6,305 *10-4 5,882 *10	3,860*10° 1,744*10-1 6,435*10 2,435*10-1 8,210*10-1 7,040*10° 3,095*10-1 1,058*10° 9,180*10° 3,790*10-1 1,286*10-1 4,835*10-1	$\begin{array}{c} 6,399 & *10^{-2} \\ 3,111 & *10^{-1} \\ 1,229 & *10^{-2} \\ 8,921 & *10^{-2} \\ 4,414 & *10^{-1} \\ 1,597 & *10^{-1} \\ 1,200 & *10^{-1} \\ 5,689 & *10^{-1} \\ 2,090 & *10^{-1} \\ 1,584 & *10^{-1} \\ 7,042 & *10^{-1} \\ 2,257 & *10^{-1} \\ 9,096 & *10^{-1} \end{array}$	$\begin{array}{c} -2,748 & *10^{\circ} \\ -1,167 & *10^{\circ} \\ -2,069 & *10^{-1} \\ -2,416 & *10^{\circ} \\ -8,177 & *10^{-1} \\ 4,683 & *10^{-1} \\ -2,119 & *10^{\circ} \\ -5,639 & *10^{-1} \\ 7,371 & *10^{-1} \\ -1,842 & *10^{\circ} \\ -3,506 & *10^{-1} \\ -1,488 & *10^{\circ} \\ -9,469 & *10^{-2} \end{array}$	

Abb.11.17/Tab. 11.8: Cs-Dampfdruckkurve für A3-3 (Meßserie 6/Freundlich-Bereich)

$c = 8,31 \text{ mmol/kg}; E = 1,107*10^{-5} \text{ Pa/mm VK}; 10 \text{ MeBpunkte}$				
т	1/T	I*MB	p=E*I*MB*T	ln p
1495 1612 1523 1635 1548 1658 1567 1678 1592 1697	$\begin{array}{c} 6,688 & *10-4 \\ 6,203 & *10-4 \\ 6,565 & *10-4 \\ 6,565 & *10-4 \\ 6,116 & *10-4 \\ 6,459 & *10-4 \\ 6,031 & *10-4 \\ 6,381 & *10-4 \\ 5,959 & *10-4 \\ 6,281 & *10-4 \\ 5,892 & *10 \end{array}$	8,660*10° 3,715*10-1 1,256*10-1 4,865*10-1 1,775*10-1 5,860*10-1 2,295*10-1 7,100*10-1 2,865*10-1 8,380*10	1,432 *10-1 6,627 *10-1 2,116 *10-1 8,802 *10-1 3,040 *10-1 1,075 *10° 3,979 *10-1 1,318 *10° 5,047 *10-1 1,573 *10°	$\begin{array}{c} -1,942 & *10^{\circ} \\ -4,113 & *10^{\circ} \\ -1,552 & *10^{\circ} \\ -1,274 & *10^{\circ} \\ -1,274 & *10^{\circ} \\ 7,255 & *10^{\circ} \\ 7,255 & *10^{\circ} \\ -9,213 & *10^{\circ} \\ 2,764 & *10^{\circ} \\ -6,836 & *10^{\circ} \\ 4,535 & *10 \end{array}$

Abb.11.18/Tab.: 11.9: Cs-Dampfdruckkurve für A3-3 (Meßserie 7/Freundlich-Bereich)

$c = 12,38 \text{ mmol/kg}; E = 3,937*10^{-5} Pa/mm VK; 16 Meßpunkte$					
Т	1/T	I*MB	p=E*I*MB*T	ln p	
1391 1479 1579 1682 1416 1511 1601 1697 1435 1533 1625 1723 1456 1559 1655 1742	7,189 *10 -4 6,761 *10 -4 6,333 *10 -4 5,945 *10 -4 7,062 *10 -4 6,618 *10 -4 6,246 *10 -4 6,246 *10 -4 5,892 *10 -4 6,968 *10 -4 6,523 *10 -4 6,153 *10 -4 6,868 *10 -4 6,868 *10 -4 6,868 *10 -4 6,414 *10 -4 5,740 *10 -4	8,340*10 ⁻¹ 2,935*10 <u>-</u> 1 1,005*10 <u>-</u> 1 2,696*10 1,160*10° 4,485*10° 1,262*10 ⁻¹ 3,104*10 ⁻¹ 1,414*10° 5,956*10° 1,617*10 ⁻¹ 3,160*10 ⁻¹ 2,118*10° 8,115*10° 2,328*10 ⁻¹ 4,550*10 ⁻¹	$\begin{array}{c} 4,566 & *10 \overset{-2}{-1} \\ 1,708 & *10 \overset{-1}{-1} \\ 6,246 & *10 \overset{-1}{-1} \\ 1,785 & *10 \overset{-2}{-2} \\ 6,465 & *10 \overset{-2}{-2} \\ 2,667 & *10 \overset{-1}{-1} \\ 7,953 & *10 \overset{-1}{-1} \\ 2,073 & *10 \overset{-2}{-2} \\ 3,594 & *10 \overset{-1}{-1} \\ 1,034 & *10 \overset{-1}{-1} \\ 1,213 & *10 \overset{-1}{-1} \\ 4,980 & *10 \overset{-1}{-1} \\ 1,516 & *10 \overset{\circ}{-1} \\ 3,120 & *10 \overset{\circ}{-1} \end{array}$	$\begin{array}{c} -3,086 \\ *10^{\circ} \\ -1,766 \\ *10^{\circ} \\ -4,705 \\ *10^{-1} \\ 5,794 \\ *10^{-1} \\ -2,738 \\ *10^{\circ} \\ -1,321 \\ *10^{\circ} \\ -2,289 \\ *10^{-1} \\ 7,292 \\ *10^{-1} \\ -2,527 \\ *10^{\circ} \\ -1,023 \\ *10^{\circ} \\ 3,378 \\ *10^{-1} \\ 8,954 \\ *10^{-1} \\ 8,954 \\ *10^{-1} \\ -2,108 \\ *10^{\circ} \\ -1,65 \\ *10^{-1} \\ 4,165 \\ *10^{\circ} \\ 1,137 \\ *10^{\circ} \end{array}$	

Abb.11.19/Tab. 11.10: Cs-Dampfdruckkurve für A3-3 (Meßserie 8/Freundlich-Bereich)

c = 18,	$c = 18,06 \text{ mmol/kg}; E = 3,937*10^{-5} Pa/mm VK; 5 Meßpunkte$				
Т	1/T	I*MB	P=E*I*MB*T	ln p	
1302 1402 1327 1354 1376	$7,680 *10^{-4}$ $7,132 *10^{-4}$ $7,535 *10^{-4}$ $7,385 *10^{-4}$ $7,267 *10^{-4}$	3,660*10 ⁻¹ 1,648*10°1 5,480*10 ⁻¹ 8,060*10 ⁻¹ 1,184*10°	$1,875 *10^{-2}$ 9,095 *10^2 2,862 *10^2 4,295 *10^2 6,413 *10	-3,976 *10° -2,397 *10° -3,553 *10° -3,147 *10° -2,746 *10°	

Abb.11.20/Tab. 11.11: Cs-Dampfdruckkurve für A3-3 (Meßserie 9/Freundlich-Bereich)

17

c = 21,20 mmol/kg; E = 1,519*10 ⁻⁵ Pa/mm VK; 29 Meßpunkte				
т	1/т	I*MB	p=E*I*MB*T	ln p
$\begin{array}{c} 1111\\ 1221\\ 1279\\ 1244\\ 1076\\ 1245\\ 1252\\ 1201\\ 1053\\ 1271\\ 1240\\ 1174\\ 1115\\ 1251\\ 1212\\ 1140\\ 1086\\ 1230\\ 1185\\ 1117\\ 1116\\ 1203\\ 1185\\ 1117\\ 1160\\ 1187\\ 1179\\ 1135\\ 1218\\ 1141\\ \end{array}$	9,000 $*10-4$ 8,190 $*10-4$ 7,818 $*10-4$ 7,818 $*10-4$ 9,293 $*10-4$ 8,032 $*10-4$ 8,032 $*10-4$ 8,326 $*10-4$ 7,987 $*10-4$ 8,326 $*10-4$ 7,987 $*10-4$ 8,326 $*10-4$ 7,867 $*10-4$ 8,064 $*10-4$ 8,517 $*10-4$ 8,517 $*10-4$ 8,517 $*10-4$ 8,517 $*10-4$ 8,517 $*10-4$ 8,517 $*10-4$ 8,510 $*10-4$ 8,771 $*10-4$ 8,710 $*10-4$ 8,720 $*10-4$ 8,730 $*10-4$ 8,732 $*10-4$ 8,730 $*10-4$ 8,732 $*10-4$ 8,734 $*10-4$ 8,764 $*10-4$ 8,764 $*10-4$	$5,589*10^{-2}$ $7,800*10^{-1}$ $1,790*10^{\circ}$ $9,100*10^{-1}$ $2,081*10^{-1}$ $1,040*10^{\circ}$ $1,170*10^{\circ}$ $4,300*10^{-1}$ $1,238*10^{-2}$ $1,238*10^{-2}$ $1,560*10^{\circ}$ $8,200*10^{-1}$ $2,450*10^{-1}$ $1,120*10^{\circ}$ $1,150*10^{-1}$ $1,150*10^{-1}$ $1,500*10^{-1}$ $2,795*10^{-1}$ $7,800*10^{-1}$ $3,200*10^{-1}$ $4,900*10^{-1}$ $1,850*10^{-1}$ $4,900*10^{-1}$ $1,050*10^{-1}$ $1,050*10^{-1}$ $1,050*10^{-1}$ $1,050*10^{-1}$ $1,050*10^{-1}$ $1,050*10^{-1}$ $1,050*10^{-1}$ $1,050*10^{-1}$ $1,000*10^$	9,432 $*10^{-4}$ 1,446 $*10^{-2}$ 3,477 $*10^{-2}$ 1,719 $*10^{-4}$ 3,401 $*10^{-2}$ 1,719 $*10^{-4}$ 3,401 $*10^{-2}$ 2,225 $*10^{-2}$ 7,844 $*10^{-3}$ 7,844 $*10^{-3}$ 7,844 $*10^{-3}$ 1,980 $*10^{-2}$ 3,011 $*10^{-2}$ 1,544 $*10^{-3}$ 1,087 $*10^{-2}$ 2,128 $*10^{-3}$ 1,087 $*10^{-2}$ 9,665 $*10^{-3}$ 1,991 $*10^{-4}$ 4,610 $*10^{-2}$ 1,457 $*10^{-3}$ 1,102 $*10^{-3}$ 1,102 $*10^{-3}$ 1,102 $*10^{-3}$ 1,102 $*10^{-3}$ 3,259 $*10^{-3}$ 3,259 $*10^{-3}$ 3,259 $*10^{-3}$ 3,259 $*10^{-3}$ 3,251 $*10^{-2}$ 1,810 $*10^{-2}$ 1,184 $*10^{-2}$ 2,426 $*10^{-2}$	$\begin{array}{c} -6,966 & *10^{\circ} \\ -4,235 & *10^{\circ} \\ -3,358 & *10^{\circ} \\ -4,063 & *10^{\circ} \\ -7,986 & *10^{\circ} \\ -3,928 & *10^{\circ} \\ -3,928 & *10^{\circ} \\ -3,805 & *10^{\circ} \\ -4,847 & *10^{\circ} \\ -4,847 & *10^{\circ} \\ -4,847 & *10^{\circ} \\ -3,502 & *10^{\circ} \\ -4,170 & *10^{\circ} \\ -3,502 & *10^{\circ} \\ -4,170 & *10^{\circ} \\ -5,433 & *10^{\circ} \\ -6,823 & *10^{\circ} \\ -6,823 & *10^{\circ} \\ -6,218 & *10^{\circ} \\ -6,218 & *10^{\circ} \\ -6,218 & *10^{\circ} \\ -6,218 & *10^{\circ} \\ -6,809 & *10^{\circ} \\ -6,741 & *10^{\circ} \\ -6,741 & *10^{\circ} \\ -5,726 & *10^{\circ} \\ -5,726 & *10^{\circ} \\ -5,193 & *10^{\circ} \\ -5,193 & *10^{\circ} \\ -6,314 & *10^{\circ} \\ -4,436 & *10^{\circ} \\ -6,021 & *10^{\circ} \\ \end{array}$

Abb.11.21/Tab. 11.12: Cs-Dampfdruckkurve für A3-3 (Meßserie 10/Freundlich-Bereich)

1

$c = 22,24 \text{ mmol/kg}; E = 3,937*10^{-5} \text{ Pa/mm VK}; 16 \text{ MeBpunkte}$					
т	1/T	I*MB	p=E*I*MB*T	ln p	
1263 1369 1461 1552 1288 1390 1483 1575 1317 1415 1508 1595 1337 1437 1539 1624	7,917 $*10^{-4}$ 7,304 $*10^{-4}$ 6,844 $*10^{-4}$ 6,443 $*10^{-4}$ 7,763 $*10^{-4}$ 7,194 $*10^{-4}$ 6,743 $*10^{-4}$ 6,743 $*10^{-4}$ 7,593 $*10^{-4}$ 7,593 $*10^{-4}$ 7,067 $*10^{-4}$ 6,631 $*10^{-4}$ 6,269 $*10^{-4}$ 7,479 $*10^{-4}$ 6,958 $*10^{-4}$ 6,958 $*10^{-4}$ 6,497 $*10^{-4}$ 6,157 $*10^{-4}$	6,500*10 ⁻¹ 4,035*10° 1,295*10 ⁻¹ 3,790*10 ⁻¹ 1,075*10° 5,325*10° 1,655*10 ⁻¹ 4,685*10 ⁻¹ 1,800*10° 7,175*10° 2,156*10 ⁻¹ 5,735*10 2,470*10° 9,180*10° 3,210*10 ⁻¹ 7,310*10	$\begin{array}{c} 3,231 & \pm 10^{-2} \\ 2,174 & \pm 10^{-1} \\ 7,447 & \pm 10^{-1} \\ 2,315 & \pm 10^{\circ} \\ 5,450 & \pm 10^{-2} \\ 2,913 & \pm 10^{-1} \\ 9,661 & \pm 10^{-1} \\ 2,904 & \pm 10^{\circ} \\ 9,331 & \pm 10^{-1} \\ 3,996 & \pm 10^{-1} \\ 1,279 & \pm 10^{\circ} \\ 3,600 & \pm 10^{-1} \\ 1,299 & \pm 10^{-1} \\ 5,192 & \pm 10^{-1} \\ 1,944 & \pm 10^{\circ} \\ 4,673 & \pm 10^{\circ} \end{array}$	$\begin{array}{c} -3,432 & *10^{\circ} \\ -1,525 & *10^{\circ} \\ -2,946 & *10^{-1} \\ 8,396 & *10^{-1} \\ -2,909 & *10^{\circ} \\ -1,233 & *10^{\circ} \\ -3,442 & *10^{-2} \\ 1,066 & *10^{\circ} \\ -2,371 & *10^{-1} \\ 2,467 & *10^{-1} \\ 1,281 & *10^{\circ} \\ -2,040 & *10^{\circ} \\ -2,040 & *10^{\circ} \\ -6,552 & *10^{-1} \\ 6,651 & *10^{-1} \\ 1,541 & *10^{\circ} \end{array}$	

Abb.11.22/Tab. 11.13: Cs-Dampfdruckkurve A3-3 (Meßserie 11/Freundlich-Bereich)

$c = 28,34 \text{ mmol/kg}; E = 4,031*10^{-5} Pa/mm VK; 15 Meßpunkte$						
т	1/T	I*MB	p=E*I*MB*T	ln p		
1226 1270 1370 1458 1232 1301 1397 1480 1248 1326 1415 1500 1255 1347 1435	$\begin{array}{c} 8,156 \\ *10 \\ -4 \\ 7,874 \\ *10 \\ -4 \\ 7,299 \\ *10 \\ -4 \\ 6,858 \\ *10 \\ -4 \\ 8,116 \\ *10 \\ -4 \\ 7,686 \\ *10 \\ -4 \\ 7,686 \\ *10 \\ -4 \\ 6,756 \\ *10 \\ -4 \\ 6,756 \\ *10 \\ -4 \\ 7,541 \\ *10 \\ -4 \\ 7,067 \\ *10 \\ -4 \\ 7,968 \\ *10 \\ -4 \\ 7,968 \\ *10 \\ -4 \\ 7,423 \\ *10 \\ -4 \\ 6,968 \\ *10 \\ -4 \end{array}$	1,390*10° 3,460*10° 1,598*10-1 4,820*10-1 1,619*10° 5,885*10° 2,210*10-1 6,100*10-1 2,235*10° 8,750*10° 2,770*10-1 7,440*10-1 2,665*10° 1,176*10-1 3,655*10-1	$\begin{array}{c} 6,869 & *10 \\ 1,771 & *10 \\ 1,771 & *10 \\ 3,825 & *10 \\ 2,832 & *10 \\ 2,832 & *10 \\ 2,832 & *10 \\ 2,832 & *10 \\ 3,086 & *10 \\ 1,244 & *10 \\ 3,639 & *10 \\ 1,244 & *10 \\ 1,124 & *10 \\ 1,124 & *10 \\ 1,580 & *10 \\ 4,498 & *10 \\ 1,348 & *10 \\ 1,348 & *10 \\ 1,348 & *10 \\ 1,348 & *10 \\ 2,114 & *10 \\ \end{array}$	$\begin{array}{c} -2,678 \ *10^{\circ} \\ -1,730 \ *10^{\circ} \\ -1,249 \ *10^{-1} \\ 1,041 \ *10^{\circ} \\ -2,520 \ *10^{\circ} \\ -1,175 \ *10^{\circ} \\ 2,187 \ *10^{-1} \\ 1,291 \ *10^{\circ} \\ -2,185 \ *10^{\circ} \\ -2,185 \ *10^{-1} \\ 4,574 \ *10^{-1} \\ 1,503 \ *10^{\circ} \\ -2,003 \ *10^{\circ} \\ -4,485 \ *10^{-1} \\ 7,487 \ *10^{-1} \end{array}$		

Abb.11.23/Tab.11.14: Cs-Dampfdruckkurve für A3-3 (Meßserie 12/Freundlich-Bereich)

$c = 34,76 \text{ mmol/kg}; E = 1,325*10^{-5} \text{ Pa/mm VK}; 31 \text{ Meßpunkte}$					
т	1/T	I*MB	p=E*I*MB*T	ln p	
1133 1057 9320 1067 1108 1014 1051 1140 1086 9690 1140 1097 1066 9340 1118 1026 1034 1135 1048 9830 1099 1090 9740 9570 1134 1029 9330 9300 1095	$\begin{array}{c} 8,826 & *10 & -4 \\ 9,460 & *10 & -3 \\ 9,460 & *10 & -3 \\ 1,072 & *10 & -4 \\ 9,025 & *10 & -4 \\ 9,025 & *10 & -4 \\ 9,861 & *10 & -4 \\ 9,861 & *10 & -4 \\ 9,514 & *10 & -4 \\ 9,208 & *10 & -3 \\ 1,031 & *10 & -4 \\ 9,208 & *10 & -3 \\ 1,031 & *10 & -4 \\ 9,380 & *10 & -3 \\ 1,070 & *10 & -4 \\ 9,380 & *10 & -4 \\ 9,746 & *10 & -4 \\ 9,541 & *10 & -4 \\ 9,541 & *10 & -4 \\ 9,541 & *10 & -4 \\ 9,541 & *10 & -4 \\ 9,541 & *10 & -4 \\ 9,541 & *10 & -4 \\ 9,541 & *10 & -4 \\ 9,541 & *10 & -4 \\ 9,541 & *10 & -4 \\ 9,541 & *10 & -4 \\ 9,541 & *10 & -4 \\ 9,541 & *10 & -4 \\ 9,541 & *10 & -4 \\ 9,541 & *10 & -4 \\ 9,541 & *10 & -4 \\ 9,541 & *10 & -4 \\ 9,718 & *10 & -3 \\ 1,074 & *10 & -3 \\ 1,075 & *10 & -4 \\ 9,132 & *10 & -3 \\ 1,026 & *10 & -3 \\ 1,026 & *10 & -3 \\ 1,026 & *10 & -3 \\ 1,071 & *10 & -3 \\ 1,075 & *10 & -4 \\ 9,132 & *10 & -3 \\ 1,026 & *10 & -3 \\ 1,026 & *10 & -3 \\ 1,071 & *10 & -3 \\ 1,075 & *10 & -4 \\ 1,026 & *10 & -3 \\ 1,026 & *10 & -3 \\ 1,071 & *10 & -3 \\ 1,075 & *10 & -4 \\ 1,026 & *10 & -3 \\ 1,026 & *10 & -3 \\ 1,026 & *10 & -3 \\ 1,026 & *10 & -3 \\ 1,026 & *10 & -3 \\ 1,071 & *10 & -3 \\ 1,071 & *10 & -3 \\ 1,071 & *10 & -3 \\ 1,071 & *10 & -3 \\ 1,071 & *10 & -3 \\ 1,071 & *10 & -3 \\ 1,026 $	2,080*10° 3,320*10 ⁻¹ 7,000*10 ⁻³ 3,650*10 ⁻¹ 1,240*10° 1,240*10° 1,240*10° 1,240*10° 1,240*10° 1,750*10° 7,550*10° 1,700*10° 1,870*10° 1,870*10° 1,300*10° 1,140*10° 1,240*10° 1,240*10° 1,240*10° 1,240*10° 1,240*10° 1,240*10° 1,240*10° 1,240*10° 1,240*10° 1,240*10° 1,240*10° 1,900*10° 1,900*10° 1,900*10° 1,900*10° 1,920*10° 1,640*10° 1,640*10° 1,00*10° 1,640*10° 1,00*10° 1,640*10° 1,00*10° 1,640*10° 1,00*10° 1,900*	$\begin{array}{c} 3,122 & \pm 10 & -2 \\ 4,649 & \pm 10 & -3 \\ 8,644 & \pm 10 & -5 \\ 8,644 & \pm 10 & -3 \\ 5,160 & \pm 10 & -2 \\ 1,820 & \pm 10 & -2 \\ 1,820 & \pm 10 & -2 \\ 1,820 & \pm 10 & -2 \\ 1,666 & \pm 10 & -3 \\ 3,871 & \pm 10 & -2 \\ 1,086 & \pm 10 & -2 \\ 1,086 & \pm 10 & -2 \\ 1,086 & \pm 10 & -2 \\ 1,024 & \pm 10 & -2 \\ 1,024 & \pm 10 & -2 \\ 1,024 & \pm 10 & -2 \\ 1,688 & \pm 10 & -3 \\ 3,123 & \pm 10 & -3 \\ 1,688 & \pm 10 & -2 \\ 1,068 & \pm 10 & -3 \\ 1,470 & \pm 10 & -4 \\ 2,884 & \pm 10 & -2 \\ 2,236 & \pm 10 & -3 \\ 1,359 & \pm 10 & -5 \\ 9,858 & \pm 10 & -2 \\ 1,211 & \pm 10 & -4 \\ 4,904 & \pm 10 & -4 \\ \end{array}$	$\begin{array}{c} -3,466 & *10^{\circ} \\ -5,370 & *10^{\circ} \\ -9,356 & *10^{\circ} \\ -5,266 & *10^{\circ} \\ -4,006 & *10^{\circ} \\ -6,397 & *10^{\circ} \\ -5,554 & *10^{\circ} \\ -3,650 & *10^{\circ} \\ -4,522 & *10^{\circ} \\ -7,652 & *10^{\circ} \\ -3,566 & *10^{\circ} \\ -4,580 & *10^{\circ} \\ -4,580 & *10^{\circ} \\ -5,025 & *10^{\circ} \\ -6,385 & *10^{\circ} \\ -6,385 & *10^{\circ} \\ -5,768 & *10^{\circ} \\ -6,385 & *10^{\circ} \\ -5,788 & *10^{\circ} \\ -7,585 & *10^{\circ} \\ -6,522 & *10^{\circ} \\ -4,538 & *10^{\circ} \\ -7,731 & *10^{\circ} \\ -8,331 & *10^{\circ} \\ -8,902 & *10^{\circ} \\ -9,224 & *10^{\circ} \\ -4,413 & *10^{\circ} \\ -7,620 & *10^{\circ} \\ \end{array}$	