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Abstract 
Counterfactual definiteness must be used as at least one of the postulates or axioms 
that are necessary to derive Bell-type inequalities. It is considered by many to be a 
postulate that not only is commensurate with classical physics (as for example Eins-
tein’s special relativity), but also separates and distinguishes classical physics from 
quantum mechanics. It is the purpose of this paper to show that Bell’s choice of ma-
thematical functions and independent variables implicitly includes counterfactual 
definiteness. However, his particular choice of variables reduces the generality of his 
theory, as well as the physics of all Bell-type theories, so significantly that no mea-
ningful comparison of these theories with actual Einstein-Podolsky-Rosen experi-
ments can be made. 
 

Keywords 
Foundations of Quantum Mechanics, Foundations of Probability, Bell Inequality 

 

1. Introduction 

Bell’s theorem [1] has an unusual standing among mathematical-physical theorems. No 
other theorem has ever been discussed with respect to so many “loopholes”, physical 
situations that make it possible to escape the mathematical strictures of the theorem. It 
is shown that the reason for this fact is that Bell’s theorem is based on the postulate of 
counterfactual definiteness. The postulate of counterfactual definiteness to derive 
Bell-type inequalities is clearly asserted in the books of Peres [2] and Leggett [3]. 

Some of Einstein’s reasoning regarding Einstein-Podolsky-Rosen (EPR) experiments 
also contain counterfactual realism and Einstein’s special relativity is counterfactually 
definite in the mathematical sense presented below. This fact may have contributed to 
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the opinion that counterfactual realism is the major defining trait of “classical” theories. 
It will be shown, however, that great care must be exercised with respect to the choice 
of independent variables in the argument of the functions that are used to formulate a 
counterfactually definite physical theory. It will also be shown that the particular choice 
of variables, used for the derivation of Bell’s inequality and Bell’s theorem, imposes 
significant restrictions to the physical situations that can be described by Bell’s 
functions and excludes dynamic processes of classical physics, no matter whether 
deterministic or stochastic. To show this fact, we first repeat the main features of Bell’s 
functions that describe Einstein-Podolsky-Rosen-Bohm (EPRB) experiments and then 
connect them to a precise definition of counterfactual definiteness. 

2. EPRB Experiments and Bell’s Functions Representing Them 

EPRB experiments have been described extensively in the literature [4] [5] and measure 
the spins of entangled particle pairs at two space-like separated locations. The two 
particles of each pair are emanating from a source and propagate toward the space-like 
separated locations. The properties of these particles are measured by instruments that 
are described by a “setting” such as the direction of a polarizer or magnet which is 
characterized by a unit vector of three dimensional space denoted by j = a, b, c, ∙∙∙. 
Measurements of this type have been performed by a number of researchers and have 
had a checkered history with respect to the results. These, at first, contradicted and then 
confirmed quantum theory [4]. There are still significant deviations from quantum 
theory in current experiments, which are, however, mostly ignored [6]. We proceed 
here by just stipulating that indeed these experiments showed a violation of the, by now, 
famous Bell inequality and describe in the following only Bell’s postulates and 
assumptions, thereby focusing on the simplest case involving only three settings and 
not four, as used in actual experiments, see also [7]. Bell’s postulates and assumptions 
are considered by many researchers to be entirely general and valid for all EPR like 
experiments and Gedanken-experiments as long as they can be described by classical 
physics such as Einstein’s relativity. 

Bell’s classical-physics model for the system of measurement equipment and 
entangled pairs of the EPRB experiments is constructed as follows (see page 8 of [1]). 
He assumed that all experimental results, all data, can be described by using functions 
A that map the independent measurement results onto ±1 which symbolizes the two 
possible outcomes of the spin measurements. The variables in the argument of the 
function always include the settings j = a, b, c, ∙∙∙ and another variable, or set of 
variables, that Bell denoted by λ. Bell then proceeded to present a proof of his now 
celebrated inequality: 

( ) ( ) ( ) ( ) ( ) ( ), , , , , , 1,A A A A A Aλ λ λ λ λ λ+ − ≤ +a b a c b c          (1) 

where ⋅  indicates the average over many measurements. The left and right factor of 
each term correspond to the data taken at the two corresponding space like separated 
measurement stations. The events of measurements and corresponding data are linked 
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to clock times of two synchronized laboratory clocks. Therefore, the functions A as well 
as the variables j and λ must, for each of the products, correspond to pairs of clock 
times ,n nt t ′  where n is the measurement number. These clock times are not explicitly 
included as indexes or variables of Bell’s functions. 

Note that Bell’s original paper (see page 7 of [1]) assigned to λ only properties of the 
entangled pair. It is now generally assumed [8] that λ may stand for a set of arbitrary 
physical variables including space and time coordinates or even Einstein’s space-time st. 
Therefore, λ may also describe some properties of the measurement equipment (in 
addition to the magnet or polarizer orientation j), such as dynamical effects arising 
from many-body interactions of the entangled pair with the constituent particles and 
fields of the measurement equipment. Bell agreed with this assumption in his later 
work [1]. 

It is the purpose of this paper to show that the postulate of counterfactual definiteness 
in conjunction with the use of a setting variable j does not permit the introduction of 
general space and time related variables that describe the said many body dynamics. 
Therefore, Bell’s assumptions are not general enough to describe classical theories of 
EPRB experiments that include dynamic processes involving the measurement equip- 
ment. 

3. Counterfactual Reasoning and EPRB Experiments 

Peres [2] gave the following definition of counterfactual realism, which roughly agrees 
with the definition of Leggett [3]. Peres claims, as does Leggett, not to use traditional 
concepts of mathematics and physics to start with, but only “what could have possibly 
been the results of unperformed experiments” and bases his definition of counterfactual 
realism on the following statement: 

It is possible to imagine hypothetical results for any unperformed test, and to do 
calculations where these unknown results are treated as if they were numbers. 

We agree that it is possible, as a purely intellectual activity, to imagine hypothetical 
results for any unperformed tests. However, without significant additional assumptions, 
it is not possible “to do calculations where these unknown results are treated as if they 
were numbers”. Here we encounter the so often unrecognized gulf between sense im- 
pressions, even just imagined ones, and conceptual frame-works such as the axiomatic 
system of numbers or the probability theory of Kolmogorov. Peres, Leggett and a 
majority of quantum information theorists did not and do not recognize that giant gulf, 
that giant separation, between events of nature, recorded as data, and the axiomatic 
edifices of human thought. 

If Peres wishes to treat hypothetical “results” of unperformed tests as if they were 
numbers, he must be sure that these abstractions at least follow the axioms of numbers. 
There are several steps necessary to connect the “events” of the physical world to 
numbers. Boole derived ultimate alternatives and a Boolean algebra while Kolmo- 
gorov’s axiomatic system introduces an event algebra and probability space. It is true 
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that mathematicians often describe experimental situations or ideas about them by the 
Kolmogorov framework and just postulate that a probability space and σ-algebra exists. 
It is known, however, from the work of Boole [9] and Vorob’ev [10] that a given 
particular set of variables may not be able to describe certain correlations in any given 
set of data. 

In more elementary terms, we have to consider the following facts. If we perform 
“calculations where these unknown results are treated as if they were numbers”, then 
we must use the mathematical concept of functions or something equivalent in order to 
link the imagined but possible tests with numbers. A one to one correspondence of the 
possible tests and the numbers needs to be established and it needs to be shown that no 
logical-mathematical contradictions arise from such procedure. If no such corres- 
pondence exists, then the “purely intellectual activity” is nothing more than child’s play 
and the mathematical abstractions of such activity can certainly not be treated as if they 
were numbers with some relation to physics. 

Take any set of data derived from measurements on spin-1/2 particles with Stern- 
Gerlach magnets, that lists the measured spins as “up” or “down” together with magnet 
settings j = a, b, c, ∙∙∙. Can we replace “up” with +1 and “down” with −1 and expect that 
the so obtained set follows the axioms of integers? The “trespass” to deal with tests as if 
they were numbers has been committed by several textbook authors, in particular by 
Peres [2] and Leggett [3]. This point appears in clear relief, if we write down the data 
according to the way in which they are imagined to be taken in testing e.g. the Bell-type 
inequality. The data are recorded in pairs corresponding to detector-events that are re- 
gistered together with equipment settings and the clock times of synchronized labora- 
tory clocks. Thus we obtain data lists of the kind: ( ) ( ) ( )1 1 2 2

1 2 21
, , , , , , ,M M

N M

t t t t t tD D D D D D′ ′ ′
′ ′ ′j j j j j j  

the ,n n′j j  representing the randomly chosen setting pair and ,n nt t′  denoting the 
times of measurement. Here the D’s are symbols that represent the measured up/down 
spin in the example above but may as well represent the red/green color of a flash of 
light, etc. For numerical processing of this list of symbols, it is expedient to introduce 
new symbols ˆ tD j  taking values +1 and −1 that are in one-to-one correspondence with 
the original symbols tD j . The number of times that the setting (a, b), (a, c), and (b, c) 
was chosen is denoted by Na,b, Na,c, and Nb,c, respectively. The total number of pairs is 
then M = Na,b + Na,c + Nb,c. One cannot do justice to the number of different data-pairs 
by using models with three pairs of mathematical symbols such as Aa, Ab, Aa, Ac, and Ab, 
Ac as they are used in Bell-type proofs. One runs into problems even if one regards 
these mathematical symbols as “variables” (such as Boolean variables [11]) and not just 
as numbers; the reason being that one cannot cover all the different possible 
correlations of the data by such few variables. If we admit the two values +1 and −1 
for the D̂ ’s at different times of the same experiment, then we obtain Na,b + 1 
different values for the sum of the pair product , ,1

ˆ ˆn n
n n

M t t
j jn D Dδ δ ′

′=∑ a b a b . If we have three 
such sums with all independent variables, the number of possibilities is 
( )( )( ) ( )3

, , ,1 1 1 3 1N N N M+ + + ≈ +a b a c b c  for M sufficiently large. In contrast, we have 
for the Bell type variables Aa, Ab, Aa, Ac, and Ab, Ac only about ( )23 1M +  independent 
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choices of all possible different correlations of possible outcomes of these variables. 
This fact arises from Bell’s description of 3 M different pairs of measurements (6 M 
measurements) by only 3 different variables and represents another typical trespass that 
is explicitly made in both the book of Peres [2] and Leggett [3]: they use a model with a 
severe restriction of choices before any physics is introduced and thus”overburden” 
their variables in a way which cannot do justice to the complexity of the data. In real 
EPRB experiments, one uses four not three different randomly chosen settings [12] [13] 
but the above argument equally holds for this case, with ( )33 1M +  and ( )23 1M +  
being replaced by ( )44 1M +  and ( )34 1M +  for 4 M different pairs (8 M 
measurements), respectively. 

This more subtle problem, a well known problem in the area of computer 
simulations, reveals once more the enormous gulf between data and mathematical 
abstractions that describe the data. In the framework of Boole [11], we need to be sure 
that the data can be described by ultimate alternatives (the Boolean variables) and in 
the framework of Kolmogorov we must be sure to deal with random variables 
(functions on a Kolmogorov probability space). But how can we be sure? As a 
minimum requirement we need to introduce functions, with sufficiently many physical 
variables in their arguments, to enable the description of all the possible correlations 
and to guarantee a one to one correspondence of mathematical abstractions and the 
massive amount of data. 

To describe EPRB experiments in the general way that Bell intended and purported 
to actually have done, we need to introduce functions A with variables additional to j in 
their argument (or indexes, see below). We need to have variables such as tn, sn, stn, ∙∙∙ 
that are taken out of the realm of Einsteinian physics and do indeed guarantee the one 
to one correspondence to the data. For example, we may need to include tn, the time of 
measurement at one location and sn representing any property of the objects emanating 
from the source. It may also be necessary to include a more general four dimensional 
space-time vector stn instead or in addition to the measurement time tn and we include 
it here just for completeness. This way we obtain functions ( ), , , ,n n n nA A t s= j st  . 

Some may ask whether that is not precisely what Bell used by introducing his λ that, 
as he claimed [1], can stand for any set of variables and, therefore, also for the set 
( ), , ,n n nt s st  . We thus may have ( ) ( ), , , , ,n n n n n nA A t s A λ= =j st j . Indeed it is true 
that this is what Bell claimed. However, as we will see below his claim is incorrect, 
because he and followers have postulated complete independence of λ and j and thus 
postulated counterfactual definiteness in conjunction with the setting variable j 
according to the precise definition given in the next section. Einstein locality does not 
require independence of λ of the local setting (see Section 5). 

Note that quantum mechanics does not use any setting-type of variable as 
independent variable in the argument of the wave-function. There, the setting-type 
variables label the operators. A helpful discussion of explicit and implicit assumptions 
of Bell, with emphasis of the mathematical structure and consistency, was given by 
Khrennikov [14]. 
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4. Mathematical Definition of Counterfactual Definiteness and 
Bell’s Inequality 

Counterfactual definiteness requires the following. We must be able to describe a 
measurement or test by using a given set of variables in the argument of the function A, 
and thus for example a setting j = b. Then, we must also be able to reason that we could 
have used instead of setting b the setting c and would have obtained the outcome 
corresponding to the value of A, now calculated with setting c and all other variables in 
its argument unchanged. Although this type of reasoning is not permitted in the courts 
of law, its mathematical restatement looks natural and general enough: 

A counterfactually definite theory is described by a function (or functions) that 
map(s) tests onto numbers. The variables of the function(s) argument(s) must be 
chosen in a one to one correspondence to physical entities that describe the test(s) 
and must be independent variables in the sense that they can be arbitrarily chosen 
from their respective domains. 

This definition means that the outcomes of measurements must be described by 
functions of a set of independent variables. The definition applies, of course, to the 
major theories of classical physics, including Einstein’s special relativity. Counterfactual 
definiteness appears, therefore, as a reasonable and even necessary requirement of 
classical theories. However, most importantly, counterfactual definiteness restricts the 
use of variables to those that can be independently picked from their respective 
domains. However, a magnet- or polarizer-orientation, mathematically represented by 
the variable j, cannot be picked independently of the measurement times, which are 
mathematically represented by tn and registered by the clocks of the measurement 
stations. Once a setting is picked at a certain space-time coordinate, no other setting 
can be linked to that coordinate, because of the relativistic limitations for the 
movement of massive bodies and the fact that Bell’s theory is confined to the realm of 
Einsteinian physics and, therefore, excludes quantum superpositions. Thus any 
measurement is related to spatio-temporal equipment changes and the mathematical 
variables that describe the measurement need to represent the possible physical 
situations. 

Enter probability theory and we certainly cannot use the setting j as a random 
variable and the measurement time t as another independent random variable on the 
same probability space. The reason for this fact is rooted in the above explanation and 
can be further crystallized as follows. It is possible to define the setting j as a random 
variable on one probability space meaning that we may regard j as a function which 
assigns to each elementary event ω of a sample space Ω a so called realization of j e.g. 
( )1ω =j b . It is also possible, at least under very general circumstances, to formulate the 

measurement times as another random variable ( )t ω′ , where ω′  is an elementary 
event of a second sample space Ω'. Again, given some specific 1ω′  we obtain a 
realization e.g. ( )1 1t tω ′ = . 

However, the formation of a product probability space on which both random 
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variables j and t are defined presents now a problem. That space would necessarily 
contain impossible events (such as different settings for the same measurement times) 
with a non-zero product probability measure assigned to them. These facts can actually 
be formulated as a theorem stating that setting and time variables of EPRB experiments 
cannot be defined on one probability space [15]. 

Thus, the postulate of counterfactual definiteness in conjunction with the use of a 
setting variable restricts the independent variables additional to j in the argument of 
Bell’s functions A to a, physically speaking, narrow subset of variables that we denote 
by NB. This subset permits the physical description of static properties but cannot 
handle dynamic properties expressed by space-time dependencies. 

As a consequence, the choices that can be made for variables in addition to the 
setting variable j in Bell’s theory are extremely limited, particularly if these variables are 
related to space-time (or space and time). This limitation is so severe that it is 
impossible to describe general dynamic processes of classical physics with Bell’s 
independent variables. The way to describe general dynamic processes in Kolmogorov’s 
framework is by using stochastic processes. 

To describe a dynamics of EPRB experiments one needs to use two dimensional 
vector stochastic processes, which involves several subtleties that, if neglected, lead to 
incorrect conclusions. A general vector stochastic process is in essence a vector of 
random variables, such a (A1(tn), A2(tn), A3(tn), ∙∙∙), whose statistical properties change 
in time (we use here discrete time only). A precise mathematical definition can be 
found in Ref. [16], pp. 11-15. In relation to EPRB experiments we thus consider vectors 
such as (A1(tn), A2(tn)). 

A first difficulty that is usually encountered is related to the physics of spin mea- 
surements. According to Bohr, the outcomes of measurements on each separate side of 
the EPRB experiment are spin-up or spin down with equal likelihood, which appears to 
suggest stationarity or time-independence of the random variables A1(tn) and A2(tn). 
Bohr’s postulate, however, does not necessitate a time-independence of the statistical 
correlations between the random variables. This fact has been explained on the basis of 
a mathematical model involving time in Ref. [5] (pp. 55-60) and demonstrated by 
actual EPRB related computer experiments [7]. 

A second difficulty arises from the fact, explained in detail above, that the time and 
setting related variables of EPRB experiments cannot be treated as independent. This 
difficulty can be resolved by use of the following two-dimensional system of functions 
(vector stochastic process) on a probability space Ω: 

( ) ( )( ), .n
n n

t tnA Aω ω′
′j j                           (2) 

Settings and times are now included as indexes that are not independent. jn = a, b 
represents the randomly chosen settings at one measurement place and ,n′ =j b c  at the 
second. tn as well as nt′  are the respective measurement times. n = 1, 2, 3, ∙∙∙ indicates 
just the number of the experiment. Only one setting can occur at one given time in 
order to avoid physical contradictions and incorrect assignments of probability 
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measures. (Note that a generalization of the time-indexes to space-time stn is straight- 
forward.) 

Bell’s inequality then transforms to: 

( ) ( ) ( ) ( ) ( ) ( ) 3,n k mt t tt t tn k mA A A A A Aω ω ω ω ω ω′ ′ ′+ − ≤a b a c b c             (3) 

where the labels n, k, m are the appropriate, all different, experiment numbers for 
which the particular settings have been chosen. Equation (3) puts no restrictions on the 
correlations of EPRB experiments, because the actual experiments may now be 
represented by a countable infinite number of different functions instead of the three or 
four functions used by Bell. 

There do exist theorems that appear to prove the validity of Bell’s inequality for 
stochastic processes (the Martingales discussed in [17] are just special forms of 
stochastic processes). These theorems, however, do not use two-dimensional vector 
stochastic processes as used in Equation (2). They use, instead, counterfactual de- 
finiteness in conjunction with setting variables to arrive at three-, four- or higher 
dimensional stochastic processes (Martingales). Thus these theorems cannot encom- 
pass dynamic measurement processes [18] and time- (space-time-) related variables, 
because they would then imply the existence of events with more than one setting at a 
given measurement time and, therefore, involve impossible events with non-zero 
probability measure. Such theorems apply, therefore, only to the set of variables NB as 
defined above and do not apply to EPRB types of experiments that may involve 
dynamical processes in the measurement equipment. 

It is, therefore, imperative to view EPRB experiments in a different light. A violation 
of Bell-type inequalities need not be seen as crossing the border between the reasoning 
of classical Einstein type of physics and quantum mechanics, but indicating a possible 
dynamics in the interactions of particles and measurement equipment. This possible 
dynamics is what needs to be investigated, particularly as contrasted to the charac- 
terization of the measurement equipment by a completely static symbol [19]. 

5. Einstein Locality and Bell’s Reasoning Revisited 

Up to now, experimentalists have not used Bell’s theorem and its implications to search 
for a many body dynamics of local equipment. Instead, they have attempted to 
“uncover” the instantaneous dynamic influences of remote measurements, the so called 
quantum non-localities. Some consider these non-localities to be the most profound 
development of modern physics [5]. They maintain that the measurement of the 
entangled partner causes instantaneous influences over arbitrary distances. 

This search for influences due to distant events is based on the conviction, dating 
back to Bell’s original paper, that Einstein locality is necessary to derive Bell’s inequality. 
However, this is not the case. Bell’s assumption that λ is independent of the setting 
variable j is already contained in the postulate of counterfactual definiteness. The 
postulate of Einstein locality is not only redundant because of this fact, but does not 
require at all that λ be independent of all settings. Variables dependent on the local 
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setting and describing local many body interactions with the incoming particles are 
entirely permitted and necessary. It is counterfactual definiteness that requires that all 
additional variables represented by λ be independent of the setting variable. But why 
does our classical theory need to involve the setting variable in the way Bell has 
included it? One can use the setting variable as an index together with another index 
related to or representing space-time. These indexes are, of course not independent as 
was pointed out above for stochastic processes. 

From these facts, we can deduce that Einstein locality is not a necessary condition for 
Bell’s derivation, rather the opposite. Its correct implementation prevents the deriva- 
tion of Bell to go forward, as shown in Equation (3). 

6. Conclusion 

The major premise for the derivation of Bell’s inequality is counterfactual definiteness, 
which in connection with Bell’s use of setting variables restricts the domain of the 
variables in the argument of Bell’s functions A to a subset NB of general physical 
independent variables. NB does not encompass the variables that are necessary to 
describe a general dynamics of many body interactions with the measurement equip- 
ment. Using only the independent variables defined by NB, it is impossible to find a 
violation of Bell’s inequality, which therefore represents a demarcation between 
possible and impossible experience [9], not between classical and quantum physics. For 
a wider parameter space that permits the description of dynamic processes and includes 
space-time coordinates, the validity of Bell-type inequalities cannot be and has not been 
derived. This situation is reminiscent of that with the last theorem of Fermat before 
1984. There existed only rather trivial proofs of Fermat’s theorem for subsets of 
conditions, while a general proof was not known until Andrew Wiles supplied it in 
1984. Such more complicated and general proofs of Bell’s theorem have not been 
presented and, in the authors opinion, are not likely to be presented in the future, 
because they would need to remove the use of the setting variable j. 
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