

KERNFORSCHUNGSANLAGE JÜLICH GmbH
 Institut für Chemische Technologie

Als Manuskript gedruckt

Berichte der Kernforschungsanlage Jülich - Nr. 1770

 Institut für Chemische Technologie Jül - 1770Zu beziehen durch: ZENTRALBIBLIOTHEK der Kernforschungsanlage Jülich GmbH
Postfach 1913 - D-5170 Jülich (Bundesrepublik Deutschland) Telefon: 02461/610. Telex: 833556 kfa d

A Study of Pulse Columns for Thorium Fuel Reprocessing

by
H. Fumoto

Abstract

Pulse columns have been studied long and a great variety of experimental investigations have been carried out, using them. In this study, two 5 m pulse columns with the same cartridge geometries are installed to investigate the performances. First of all, the characteristic differences of the aqueous continuous and the organic continuous columns were investigated experimentally. Secondly, a ternary system of $30 \% \mathrm{TBP}$ in dodecane-acetic acid-water was adopted for the mass-transfer study. It was concluded that the overall mass-transfer coefficient K_{x} was independent of whether the mass-transfer is from the dispersed to the continuous phase or from the continuous to the dispersed phase. Next, thorium nitrate was extracted and reextracted using both modes of operation for comparison. Both HETS and HTU were obtained. According to the results for the extraction, the aqueous continuous column gave much shorter HTU than the organic continuous column. On the other hand, in reextraction the organic continuous column gave shorter HTU. Finally, the Thorex-processes for uranium and thorium co-extraction, co-stripping, and partitioning were studied. As for the extraction process, both acid feed solution and acid deficiend feed solution were investigated for comparison. The concentration profiles along the column height were obtained. The data were analysed with McCABE-THIELE diagrams to evaluate HETS.

Zusammenfassung

Fur Solventextraktions-Prozesse werden Pulskolonnen schon lange benutzt, und eine Vielzahl von experimentellen Untersuchungen sind mit ihnen durchgefuhrt worden. In dieser Arbeit sind zwei 5 m lange Pulskolonnen mit der gleichen Sieb-boden-Geometrie auf ihr Betriebsverhalten untersucht worden. Zunächst sind die charakteristischen Unterschiede ermittelt worden, die sich ergeben, wenn in der kolonne entweder die wäßrige oder die organische phase kontinuierlich vorliegt. Dann sind Stofftransport-Phänomene mit den ternären Systemen - 30 告 TBP in Dodekan - Essigsäure - Wasser - untersucht worden. Aus den Versuchen kann geschlossen werden, daß der Stofftransport-Koeffizient K_{x} nicht davon abhängig ist, ob der Stofftransport von der dispersen zur kontinuierlichen oder umgekehrt erfolgt. Weiterhin ist ein Vergleich beider Verfahrensweisen (organisch bzw. wäßrig kontinuierlich) fir die Extraktion und Reextraktion von Thoriumnitrat durchgefuhrt worden. Sowohl HETS- als auch HTU-Werte sind dabei ermittelt worden. Nach den Ergebnissen besitzt die wäßrig kontinuierliche Kolonne bei der Extraktion wesentlich kurzere HTU-Werte als die organisch kontinuierliche. Andererseits zeigt die organisch kontinuierliche Kolonne kurzere HTU-Werte bei der Reextraktion. Schließlich ist der THOREX-Prozeß für die Ko-Extraktion, das Ko-Stripping und die Trennung von Thorium und Uran untersucht worden. Der Extraktions-Prozeß ist sowohl mit saurer als auch mit saureunterschüsiger Speiselösung vergleichend durchgeführt worden. Die Konzentrationsprofile entlang der Kolonnenhohe sind bestimmt worden. Die experimentell ermittelten Werte sind dann durch MCCABE-THIELE-Diagramme interpretiert worden.
Table of contents
Page

1. Introduction 1
2. Thorium fuel cycle 3
3. Thorium fuel reprocessing 4
3.1 Head-end process 4
3.2 Feed adjustment, particularly for acid deficient feed solutions 4
3.3 Separation process 5
4. Equipment for extraction 7
4.1 Pulse column 7
4.2 Mixer-settler 9
4.3 Centrifugal extractor 9
5. Description of the equipment employed here 10
6. General flow characteristics of the columns 15
6.1 Flooding 15
6.2 Holdup 16
6.3 Axialmixing 28
7. Evaluation of the extraction efficiency 36
7.1 Extraction of acetic acid 36
7.1.1 Experimental results 36
7.1.2 Evaluation of HETS and HTU 40
7.1.3 Comparison of the two modes of operation 41
7.2 Extraction of thorium 43
7.2.1 start up characteristics of the columns 45
7.2.2 Experimental results of extraction 50
7.2.3 Evaluation of HETS and HTU 54
8. Thorex process 57
8.1 Co-extraction process with acid feed solution 58
8.1.1 Experimental results 59
8.1.2 Evaluation of HETS 62
8.2 Co-extraction process with acid deficient feed solution 62
8.2.1 Experimental results 63
8.2.2 Evaluation of HETS 66
8.3 Co-stripping process 67
8.3.1 Experimental results 68
8.3.2 Evaluation of HETS 71
8.4 Partitioning process 71
8.4.1 Experimental results 72
8.4.2 Evaluation with McCABE-THIELE diagrams 75
9. Discussion 76
9.1 Comparison of the aqueous continuous and the organic continuous mode of operation 76
9.2 Co-extraction process 78
9.3 Co-stripping and partitioning process 80
10. Conclusion 80
11. Appendix 83
11.1 Analytical procedure 83
11.2 Flow sheets of uranium-thorium fuel separation process 83
11.3 Experimental data 90
11.4 MCCABE-THIELE diagrams for thorium in the extraction section
Nomenclature 98
Literature cited 100
Table Page
6.1 Holdup and contact time (solute free) 24
7.1 Upper 1 m HETS for acetic acid in extraction 40
7.2 Lower 1 m HETS for acetic acid in reextraction 40
 42
7.4 Experimental conditions for thorium extraction 47
7.5 HETS for thorium 55
7.6 HTU for thorium 56
8.1 HETS in the co-extraction process (acid feed solution) 62
8.2 HETS in the co-extraction process (acid deficient feed solution) 67
8.3 HETS in the co-stripping process 71
8.4 HETS in the partitioning process 75
11.1 Flooding flow rates 90
11.2 Thorium concentration profile along the column height 91
11.3 Profiles of thorium, uranium, and nitric acid concentration along the column height in the co-extraction process with acid feed solution 92
11.4 Profiles of thorium, uranium, and nitric acid concentration along the column height in the co-extraction process with acid deficient feed solution 93
11.5 Profiles of thorium, uranium, and nitric acid concentration along the column height in the co-stripping process 94
11.6 Profiles of thorium, uranium, and nitric acid concentration along the column height in the partitioning process 95

List of figures

Figure Page
5.1 Upper part of the experimental equipment 11
5.2 Lower part of the experimental equipment 12
5.3 Sieve-plate and spacer 12
5.4 Schematic diagram of equipment 13
6.1 Visual flooding at no cartridge section 15
6.2 Flooding curve of the aqueous continuous column 17
6.3 Flooding curve of the organic continuous column 17
6.4 Flooding curves at $A / O=0.33$ 18
6.5 Flooding curves at $A / O=1.0$ 18
6.6 Holdup distribution in the aqueous continuous column 20
6.7 Holdup distribution in the aqueous continuous column 20
6.8 Holdup distribution in the organic continuous column 21
6.9 Holdup distribution in the organic continuous column 21
6.10 Holdup distribution in the aqueous continuous column 22
6.11 Holdup distribution in the aqueous continuous column 22
6.12 Holdup distribution in the organic continuous column 23
6.13 Holdup distribution in the aqueous continuous column 23
6.14 Holdup vs. R in the aqueous continuous column at $\mathrm{A} / \mathrm{O}=0.33$ 25
6.15 Holdup vs. R in the organic continuous column at $\mathrm{A} / \mathrm{O}=0.33$ 26
6.16 Holdup vs. R in the aqueous continuous column at $\mathrm{A} / \mathrm{O}=1.0$ 27
6.17 Holdup vs. R in the organic continuous column at $\mathrm{A} / \mathrm{O}=1.0$ 27
6.18 Continuous phase residence time distribution inthe aqueous continuous column ($A / O=0.33, \mathrm{f}=32$) 29
6.19 Continuous phase residence time distribution in the aqueous continuous column ($\mathrm{A} / \mathrm{O}=1.0, \mathrm{f}=48$) 30
6.20 Continuous phase residence time distribution in the aqueous continuous column $(A / O=0.33, \mathrm{f}=77$) 30

6.21	Continuous phase residence time distribution in the aqueous continuous column $(A / O=1.0$, $\mathrm{f}=77$)	31
6.22	Effect of pulse frequency on axial mixing in the aqueous continuous column ($\mathrm{A} / \mathrm{O}=0.33$, $\mathrm{R} \approx 60 \%$)	31
6.23	Effect of pulse frequency on axial mixing in the aqueous continuous column $(A / O=1.0$, $\mathrm{R} \approx 60 \%$)	32
6.24	Effect of pulse frequency on axial mixing in the aqueous continuous column ($A / O=0.33$, $R \approx 80 \%$	32
6.25	Effect of pulse frequency on axial mixing in the aqueous continuous column $(A / O=1.0$, $R \approx 80 \%$)	33
6.26	Dispersed phase residence time distribution in the organic continuous column $(A / O=0.33$, $\mathrm{f}=32$)	34
6.27	Dispersed phase residence time distribution in the organic continuous column $(A / O=1.0$, $\mathrm{f}=32$)	34
6.28	```Dispersed phase residence time distribution in the organic continuous column (}A/O=0.33\mathrm{ , f=63)```	35
6.29	Dispersed phase residence time distribution in the organic continuous column $(A / O=1.0$, $f=63$)	35
7.1	Distribution of acetic acid along the column height in extraction	37
7.2	Distribution of acetic acid along the column heigt in reextraction	38
7.3	Equilibrium curve of $30 \% \mathrm{TBP}$ in dodecane-acetic acid-water	39
7.4	Dispersion of droplets in the aqueous continuous column.	44
7.5	Dispersion of droplets in the organic continuous column	44
7.6	Dispersion of droplets in the aqueous continuous column in the absence of thorium	46
7.7	Dispersion of droplets in the aqueous continuous column in the presence of thorium	46
7.8	Transient curve of thorium (aqueous continuous column in extraction)	48
7.9	Transient curve of thorium (organic continuous column in extraction)	48

Figure Page
7.10 Transient curve of thorium (aqueous continuous column in reextraction) 49
7.11 Transient curve of thorium (organic continuous column in reextraction) 50
7.12 Thorium concentration profile along the column height in extraction 51
7.13 Thorium concentration profile along the column height in reextraction 52
7.14 HNO3 concentration profile along the column height in extraction 53
7.15 HNO_{3} concentration profile along the column height in reextraction 54
8.1 Schematic diagram of the co-extraction process (acid feed solution) 58
8.2 Distribution profiles of thorium, uranium, and nitric acid along the column height in the co- extraction process (acid feed solution) 59
8.3 Transient curve of thorium in the co-extraction process (acid feed solution) 60
8.4 Transient curve of uranium in the co-extraction process (acid feed solution) 61
8.5 Transient curve of nitric acid in the co- extraction process (acid feed solution) 61
8.6 Schematic diagram of the co-extraction process (acid deficient feed solution) 63
8.7 Distribution profiles of thorium, uranium, and nitric acid along the column height in the co- extraction process (acid deficient feed solution) 64
8.8 Transient curve of thorium in co-extraction process (acid deficient feed solution) 65
8.9 Transient curve of uranium in co-extraction process (acid deficient feed solution) 65
8.10 Transient curve of nitric acid in co-extraction process (acid deficient feed solution) 66
8.11 Schematic diagram of co-stripping process 67
8.12 Distribution profiles of thorium, uranium, and nitric acid along the column height in the co- stripping process 68
8.13 Transient curve of thorium in the co-stripping process 69
8.14 Transient curve of uranium in the co-stripping process 70
8.15 Transient curve of nitric acid in the co- stripping process 70
Figure Page
8.16 Schematic diagram of the partitioning process 72
8.17 Distribution profiles of thorium, uranium, and nitric acid along the column height in the par- titioning process 73
8.18 Transient curve of thorium in the partitioning process 74
8.19 Transient curve of uranium in the partitioning process 74
8.20 Transient curve of nitric acid in the partitioning process 75
9.1 Concentration of organic phase in the middle of the aqueous continuous column 77
9.2 Concentration of aqueous phase at the wall of the organic continuous column 78
9.3 Nitric acid concentration vs. column height in co- extraction process 79
11.1 Acid interim 23 process flowsheet 84
11.2 Thorex process no. 2 flowsheet 85
11.3 KAPL Acid Thorex process flowsheet 86
11.4 Acid Thorex Elowsheet for Consolidated Edison fuel 87
11.5 Two-cycle Thorex process flowsheet 88
11.6 Third uranium cycle flowsheet 89
11.7 MCCABE-THIELE diagram for thorium in extraction (acid feed solution) 96
11.8 McCABE-THIELE diagram for thorium in extraction (acid deficient feed solution) 97

Acknowledgment

The author would like to thank sincerely:

Professor Dr. E. Merz for his guidance and promotion of this study.

Dr. E. Zimmer and his analytical group for their friendly suggestions to complete this investigation.

Mr. E. Schumacher for his technical assistance in the construction of the equipment.

Miss B. Hanke for her kindly help in typing up this work. Mr. H. Wetzler and his grapnics staff for their patience in preparing a lot of figures.

Professor Dr. R. Kiyose for his continuous encouragement during the course of study.
and all the people of the Institut for Chemical Technology of the KFA Jülicn, who made further contributions too numerous to be mentioned indiviciually.

A nuclear fuel reprocessing plant separates and purifies the fissile and fertile materials from the fission products. The main separation procedure practically used today is only the solvent extraction process. The dry process using fluoride volatilization, has been studied extensively because of its advantage of reducing the waste volume, However, the dry process has many problems involving fluorine corrosion problems. Therefore, the aqueous process of solvent extraction would be adonted for the nuclear fuel reprocessing plant for the time being. As for plutonium-uranium fuel cycle, the Purex process was adopted commonly for LWR fuel reprocessing. Diluted TBP is used as extractant in almost all reprocessing plants.

In the head-end of reprocessing, the fuel elements are prepared for the dissolution of the fuel by nitric acid. Nowadays the head-end procedure provides the so-called chop-leach method. The fuel rods are chopped into segment 2.5 to 12.5 cm long and then, the dissolution of the fuel can take place. After dissolution, the concentrations of uranium and nitric acid are adjusted for the first extraction cycle. In the first decontamination cycle, uranium and nlutonium are extracted together. The heavy elements are separated by re-extracting the plutonium after reduction of $\mathrm{Pu}^{4+} \rightarrow \mathrm{Pu}^{3+}$ with $\mathrm{U}\left(\mathrm{NO}_{3}\right)_{4}$. Also the electrolytic reduction is under development. After the partitioning, the plutonium and the uranium are purified in the second cycles.

For the reprocessing of thorium-uranium fuel, the Thorex process has been developed. Since the thorium-uranium fuel cycle is not widely in use, there is not much experience with the reprocessing of this fuel by the Thorex process. There are two choices for the Thorex process flow sheet; they are the single-cycle Thorex process and the two-cycle Thorex process. In the single-cycle Thorex process,
thorium and uranium are co-extracted and partitioned in the first cycle corresponding to the Purex process. In the twocycle Thorex process, uranium and thorium are co-extracted and co-striped in the first cycle and partitioned in the second cycle. First, 41% diluted TBP was used for solvent but 30% TBP is used now. Though the aluminium nitrate-salted process was used first, nitric acid is adopted as the salting agent these days. In order to improve the decontamination factors, acid deficient feed solution was developed for fuel of high burn-up.

The solvent extraction process can be performed in three different types of extraction equipment; pulse columns, mixersettlers, and centrifugal extractors. Among these three types of extractors, mixer-settlers and pulse columns have been long used in the actual Purex-reprocessing plants. They seem to give about the same performances in the point of mechanical maintenance. However, pulse columns have less holdup and a shorter contact time than mixer-settlers, though they need much more head room. Centrifugal extractors have the shortest contact time, about a few seconds for one stage. They are well suited for high burn-up fuel reprocessing like FBR fuel reprocessing, preventing the solvent from radiation damage. However, in comparison with pulse columns and mixersettlers, centrifugal extractors have the disadvantages of difficult maintenance and less reliability for long term operation.

Pulse columns have been studied for several decades in the separation process of nuclear fuel reprocessing. However, their behaviour has not yet been understood completely, since it is very hard to analyse the complicated flowing effects of the two phases. In this study, two 5 m high columns are installed and studied for thorium fuel reprocessing. The characteristic differences between the aqueous and the organic continuous operation were examined first. The flow characteristics of flooding, holdup and axial mixing were investigated in both modes of operation. Secondly, the mass-transfer behaviour was studied in experiments using acetic acid for solute. The concentration profile along the column
height was obtained. In the next step, thorium nitrate was extracted in both aqueous and organic continuous modes of operation for comparison. Both HETS (Height Equivalent Theoretical Stage) and HTU (Height of a Transfer Unit) were evaluated. Then uranium and thorium were co-extracted, costripped and partitioned for the study of thorium fuel reprocessing. HETS was calculated in each cases. As for coextraction process, both acid feed solution ($\mathrm{H}^{+}=1.0 \mathrm{M}$) and acid deficient feed solution $\left(\mathrm{H}^{+}=-0.14 \mathrm{M}\right)$ were investigated for comparison. Throughout the experiment, different profiles of the HNO_{3} concentration were obtained along the column height.

2. Thorium fuel cycle

Thorium itself has a very small cross section for fission but it can be used as a fertile material. Thorium is converted into the fissile ${ }^{233} \mathrm{U}$ by the capture of a neutron ${ }^{(1)}$.

$$
232 \mathrm{Th}(\mathrm{n}, \gamma) \rightarrow 233 \mathrm{Th} \frac{\beta^{-}}{\mathrm{T}=22.1 \mathrm{~min}}{ }^{233} \mathrm{~Pa} \frac{\beta^{-}}{\mathrm{T}=27.4 \mathrm{~d}}{ }^{233} \mathrm{U}\left(\mathrm{~T}=1.6 \times 10^{5} \mathrm{yr}\right)
$$

${ }^{232} \mathrm{Th}$ captures a neutron and is transformed into ${ }^{233} \mathrm{Th}$, releasing γ rays. ${ }^{233} \mathrm{Th}$ decays to ${ }^{233} \mathrm{pa}$ by β^{-}emission and ${ }^{233} \mathrm{~Pa}$ decays again to ${ }^{233} \mathrm{U}$ by β^{-}emission. ${ }^{233} \mathrm{~Pa}$ has a relatively long halflife of about 27 days. In order to reduce the loss of ${ }^{233} \mathrm{pa}$, the cooling time of the spent fuel must be decided, considering the half-life, since protactinium cannot be extracted in the Thorex process. ${ }^{233} \mathrm{U}$ releases the largest number of fast neutrons on thermal fission compared with ${ }^{235} \mathrm{U}$ and ${ }^{239} \mathrm{Pu}$. Thorium-uranium fuel cycle has the advantage of producing fewer actinide nuclides, which simplifies the waste management. However, the presence of 232 U and ${ }^{228} \mathrm{Th}$ in the products causes handling problems since their daughter nuclides have considerable activities ${ }^{(2)}$.

Thorium fuel has been studied and developed mainly for HTR fuel. The HTR (High Temperature Reactor) is expected to be used not only for electric power production but also for producing
industrial process heat at temperatures of up to nearly $1000^{\circ} \mathrm{C}$. Since the utilization of the thorium fuel cycle in the HTR yields a high breeding ratio, the fuel reprocessing and the fuel recycling is necessary from the economic standpoint. However, for the performance of the $T h / \mathrm{U}$ fuel cycle, ${ }^{235} \mathrm{U}$ is necessary for the start and the make-up.
3. Thorium fuel reprocessing
3.1 Head-end process

Coated particle fuel has been used for the HTR. The fuel elements are composed of $0.6-1.0 \mathrm{~mm}$ particle fuels and carbon as moderator. The fuel particle of UO_{2} is coated by two or three layers of pyrocarbon and SiC ${ }^{(3)}{ }^{2}$. These layers are very hard and stable, which adds some difficulties to the head-end process of the reprocessing plant. As for the dissolution process, grind-leach ${ }^{(4)}$ and burn-leach methods were investigated before ${ }^{(5)}$. Off-gas treatment is also different from that of LWR fuel dissolution since the dissolution process is different. After the dissolution, the solution is adjusted for the following solvent extraction process.

3.2 Feed adjustment, particularly for acid deficient

 feed solutionThough acid deficient feed solutions give good results for decontamination factors, they need a more complicated feed adjustment, using evaporator. Rainey and Moore ${ }^{(6)}$ prepared the acid deficient solution by two different methods. One method is using steam strio to remove the nitric acid. The solution was evaporated to a boiling point of $135^{\circ} \mathrm{C}$ first. Then steam strip was started to remove the remainder. The alternative feed adjustment method was to evaporate the solution to a boiling point of $165^{\circ} \mathrm{C}$. The latter method does not need the steam stripping process, but it has the
disadvantage of increasing corrosion rate at the higher temperature. In ICT in KFA Julich GmbH, Germany, the acid aeficient feed adjustment was carried out with formaldehyde in laboratory-scale ${ }^{(7)}$. It was reported that this method reduces the waste volume by about half, compared with former method without using formaldehyde.

3.3 Separation process

The Interim 23 process ${ }^{(8)}$ was developed for the recovery of U-233 from irradiated thorium when recovery of thorium was not required. This process was used for short cooled irradiated thorium fuel to recover only uranium 233, using lower concentration of diluted TBP (1.5 to 5%) for solvent. In some cases ${ }^{(9)}$ di-sec-butylphenylphosphate was chosen as extractant since the selectivity of di-sec-butylphenylphosphate for uranium is higher than that of TBP.

The single-cycle Thorex process was designed to recover both uranium and thorium from the irradiated fuel. Gresky et al ${ }^{(8)}$ developed the Thorex process No. 2 in 1952. In this process, 41% TBP in Amsco was used for the solvent and aluminium nitrate was chosen as the salting agent in the first coextraction process. Thorium and uranium were co-extracted in the first extraction column and only thorium was stripped at the second partitioning column. Then, in the third stripping column, U-233 was stripped as product.

More severe requirements were imposed on the thorium fuel reprocessing, when the fuel of high burn-up from power reactors was to be processed. From this point of view, the two-cycle Thorex process ${ }^{(10)}$ was developed to reduce the inventory charges of the fuel, shortening the cooling time. The process consists of a co-extraction and co-strip in the first cycle, followed by the equivalent of the single-cycle Thorex process. In the first design, 41% TBP in Amsco was used for solvent. A third uranium cycle ${ }^{(10)}$ was developed to increase the fission product decontamination in the case of high burn-up and short cooled spent fuel and also for the
decontamination of long stored U-233 from the decay products of U-232. In this process, 5 to 10% diluted TBP or 2.5% di-sec-butylphenylphosphonate was used for solvent.

Because, the HTR fuel elements have no cladding, there was not much incentive to use aluminium nitrate as the salting agent. Therefore nitric acid tended to be used for salting agent. First the Acid Thorex process ${ }^{(11)}$ was investigated in Savannah River and Knolls Atomic Power Laboratories. It was called KAPL Acid Thorex process and the solvent used was 30% diluted TBP. According to the results, the process had the defects of lower ruthenium decontamination. In order to increase the decontamination and to decrease the stage height for the extraction column, the acid Thorex process using an acid deficient feed ${ }^{(6)}$ was developed in ORNL. Decontamination factors obtained in the experiment were $1000,5000,10000$, and 100,000 for ruthenium, zirconium-niobium, protoactinium, and rare earths, respectively. The recovery of protoactinium was studied to shorten the cooling time ${ }^{(12)}$ in some institutes. In the German JUPITER project, 5 various kinds of extraction processes are to be investigated; they are

```
Single-cycle Thorex process
Two-cycle Thorex process
Interim process with acid feed solution
Interim process with acid deficient solution
Uranium purification cycle
```

In both single-cycle and two cycle Thorex processes, nitric acid should be used for salting agent and acid deficient feed solution should be used for the co-extraction nrocess in the partitioning cycle. 30% TBP in dodecane has been chosen as solvent in the Thorex process and $5 \% \mathrm{TBP}$ in dodecane has been chosen in Interim and uranium purification processes.

Some flow sheets of the processes are shown in the Appendix.
4.1 Pulse column

A pulse column is a vertical countercurrent liquid-liquid extraction device. With the help of the reciprocating motion to the liquids, the extraction efficiencies are improved in comparison to other extraction columns. The pulsing motion was supplied mechanically first, but these days a so-called air pulser is likely to be adopted, since it has better reliability. Packed and plate type columns have been investigated with pulsing. They were apolied for a long time to the extraction of radioactive materials to recover heavy metals. Nowadays plate type columns are in use mainly. The reports handling irradiated nuclear fuel with pulse columns were classified first, but after the Atom-For-Peace conference at Geneve in 1955, they became declassified.

In 1960^{\prime} s pulse columns were extensively studied in the field of chemical engineering. The characteristics of their flooding, holdup, and axial mixing and evaluation of extraction efficiencies were investigated. L.D. Smoot ${ }^{(15)}$ gave the following correlation for the flooding velocity

$$
\begin{gather*}
U_{C}+U_{d}=8.04 \times 10^{3} \frac{\Delta \rho^{0.63} d^{0.458}}{\gamma^{0.1 \Delta 4} \psi_{f}^{0.207}{ }_{\mathrm{d}}^{0.20}}{\left(\frac{U_{C}}{U_{d}}\right)^{0.0143}}_{(3-1)} \\
\psi_{f}=\frac{\pi^{2}\left(1-\varepsilon^{2}\right)(\text { fa })^{3}}{2 \varepsilon^{2} C_{0}^{2} 1} \tag{3-2}
\end{gather*}
$$

where C_{0} is the orifice coefficient. As for holdup G.A. Sehmel (16) observed that the dispersed phase holdup was a minimum at the transition frequency between mixer-settler and emulsion type of operation. The following empirical correlation was given to predict the transition frequency for water-Hexane, water-Benzene, and water-Methyl Isobutyl Keton systems

$$
\begin{equation*}
f_{H}=4.0\left(0.832 \times 10^{-5} \mu_{\mathrm{d}} \gamma \Delta p-\ln a-5.237\right) \tag{3-3}
\end{equation*}
$$

R.L. Bell (17) shows the next correlation to estimate the holdup

$$
n=\frac{V_{\text {org }}}{8.6}\left(\mathrm{~F}+\left(1.25 \times 10^{-5}+7.93 \times 10^{-7} \mathrm{~V}_{\mathrm{aq}}\right)(23.6 \mathrm{af}-\mathrm{G})\right) \quad(3-4)
$$

where

$$
\begin{array}{lll}
F=0.03 & \text { (n-hexane) }, 0.05 & \text { (MIBK) } \\
G=64 & \text { (n-hexane) }, 38 & \text { (MIBK) }
\end{array}
$$

Axial mixing cannot be avoided in pulse columns. As for the longitudinal eddy diffusion coefficient, M.W. Mar (18) gave the following correlation using a steady state technique

$$
\begin{equation*}
E=\frac{K 1^{0.68} U_{d}^{0.30} f^{0.36} a^{0.07} d^{0.30} \gamma^{0.42}}{U_{c}^{0.45} t^{0.06}} \tag{3-5}
\end{equation*}
$$

HTU and HETS (Height of a Transfer Unit and Height Equivalent Theoretical Stage) are the parameters for the efficiency of extraction columns. HETS can be defined as the height of the column equivalent to one theoretical extraction stage. HTU based on the aqueous phase can be calculated by equations (3-6) and (3-7) for a piston flow system ${ }^{(19)}$

$$
\begin{align*}
\operatorname{HTU} & =\frac{h}{N T U} \tag{3-6}\\
\text { NTU } & =\int x_{0} \frac{d x}{x_{i}} \frac{x_{e}}{x-x_{e}} \tag{3-7}
\end{align*}
$$

L.D. Smoot ${ }^{(15)}$ gave the simplified HTU correlation as follows

$$
\begin{equation*}
(\mathrm{HTU})_{O C}=\frac{K \Delta \rho^{1.04} \gamma^{0.97} \mathrm{v}_{\mathrm{c}}^{0.539} \mathrm{D}^{0.317} 1^{0.683}}{\mathrm{~V}_{\mathrm{O}}^{0.434} \mathrm{~d}^{0.434} \rho_{\mathrm{d}}^{2.342} \mu_{\mathrm{d}}^{3.27} \mathrm{D}_{\mathrm{V}}^{0.865} \mathrm{v}_{\mathrm{d}}^{0.636}} \tag{3-8}
\end{equation*}
$$

J.D. Thornton ${ }^{(20)}$ gave another method for the evaluation of HTU. However, it is too complicated for practical use. Generally speaking, pulse columns have the advantages of relatively easy maintenance. The residence time in pulse columns is shorter than in mixer-settlers. Moreover, it is easier in pulse
columns to control the interface since there is only one interface in pulse columns whereas in mixer-settlers are as many interfaces as chambers. Since pulse columns have less holdup than mixer-settlers, they can start up and shut down in shorter time ${ }^{(21)}$. However, they have the disadvantage of requiring a high head room.

As for thorium fuel reprocessing, pulse columns have long been used. For examples, R.H. Rainey ${ }^{(6)}$ developed the Acid Thorex process with a pulse column and A.D. Ryon ${ }^{(9)}$ investigated pulse columns for the separation of uranium from thorium.

4.2 Mixer-settler

A mixer-settler is a countercurrent stagewise contacting device. In every stage the mixing is accomplished mechanically by an impeller with variable speed. Air-pulsed mixer-settlers were also investigated ${ }^{(22)}$. The two immiscible phases are separated by gravity.

Mixer-settlers are in use in some nuclear fuel reprocessing plants. However, they are being replaced now by pulse columns for LWR fuel reprocessing, since they have the disadvantage of larger holdup. Concerning the thorium fuel cycle, A.T. Gresky examined the batch countercurrent extraction in a laboratory scale to give the basic data for the stage extraction devices. J. Klitgaard ${ }^{(24)}$ investigated mixer-settlers for the Acid Thorex process and evaluated the extraction efficiencies.

4.3 Centrifugal extractor

A centrifugal extractor is a countercurrent liquid-liquid contacting device. The basical concept is the same as that of mixer-settlers, consisting of stages in which both the mixing and the separation of the two phases are carried out, but accelerated by centrifugal forces. Though one unit consists of one stage in the design of $S R L^{(25)}$, the Robatel contactor ${ }^{(26)}$ developed in France contains a lot of stages in one unit.

This type of extractor has the great advantage of a short contact time about a few seconds for a stage. The shorter contact time is very favorable to prevent the solvent from radiation damage, especially on handing the high burn-up fuel. However, centrifugal extractors have less mechanical reliability than other extractors since they use more than 1500 rpm to generate the centrifugal forces. And moreover, it must be noticed that a centrifugal extractor doesn't stand well against the impurities of the feed solutions since they have the narrow and complicated flowing pass of fluids and weirs to keep the interface in the device.
5. Description of the equipment employed here

Figure 5.1 shows the upper part of the experimental equipment and Fig. 5.2 shows the lower part.

The column geometries are the same for the aqueous continous and the organic continuous column. The height of the cartridge section is 5 m for each column. The inside diameter of the column is 38 mm . The diameter of the holes in the plate is 2 mm and their triangular pitch is 4 mm , which gives a free area of 22.6%. The plate spacing is 29 mm . Figure 5.3 shows the sieve plate and spacer.

The columns and the pulse pumps are supplied by QVF Glastechnik GmbH, Germany. The pulse amplitude is fixed at 15 mm throughout the experiment. The frequency can be changed from 16 to 133 (cycle/min). The pulse is produced by teflon bellows and the shape is a sinusoidal curve.

Figure 5.4 shows the schematic diagram of this equipment.
For the organic continuous column, a proportionating pump is installed for the aqueous feed and a gear pump for the organic feed. Two gear pumps are installed to supply both phases for the aqueous continuous column. The flow rates of the gear pumps are measured by a rotameter. In order to calibrate the scale, graduated glass tubes are installed between the tanks and the pumps. The scaled tubes stand vertically and with the help of

Fig. 5.1: Upper part of the experimental equipment

Fig. 5.2: Lower part of the experimental equipment

Fig. 5.4: Schematic diagram of equipment
a vacuum line, they are filled with liquid. Then, changing the valves, the liquid is pumped out. By timing the change of volume, the correct flow rate will be obtained. This procedure is also adopted to determine the flow rate through the proportionating pump. The interface in the columns is controlled by a vegator 420 S supplied by QVF. This equipment determines the interface by measuring the electrical capacity. Responding to the signal from the electrode, the solenoid valve is switched on and off to open and close the by-pass in the aqueous phase outlet.

The pulse column is composed of 1 m long glass tubes and at every connection, samplers are installed. The sampling outlet is positioned in the middle of the cell. In the extraction experiment, the continuous phase was sampled for titration. When the sampling rate was very small, the continuous phase could be collected. Almost none of the dispersed phase was obtained for the aqueous continuous column. In the organic continuous column, however, penetration of water could not be avoided. In the case of the holdup study, both phases are collected together at higher sampling rate (valve fully opened). The sampling point of the collected dispersed phase is located 4 cm above the interface in the aqueous continuous column or 4 cm below the interface in the organic continuous column. That of the continuous phase is installed 5 cm below the dispersed phase inlet in the aqueous continuous column or 5 cm above the inlet in the organic continuous column. Since this pulse column is of multi-purpose design, it has an additional inlet pipe in the middle, which is located 2 meters above the bottle of the cartridge section in the organic continuous column. In the aqueous continuous column, the additional inlet pipe is 3 meters above the bottle of the cartridge section. As a result, both columns have a 24 cm long section of no cartridges (see Fig. 6.1). In this study, the third inlet was used in the case of the Thorex process. The details of the experiment will be explained in chap. 8

To investigate flooding, holdup, and axial mixing characteristics, the columns are operated, using distilled water for aqueous phase and 30% TBP in dodecane for organic. The aqueous to organic flow rate ratio was chosen to be $1 / 3$ as representative for extraction and $1 / 1$ for reextraction.

6.1 Flooding

First of all, the flooding characteristics were investigated, changing the pulse frequency. The columns were operated for 30 minutes to observe whether the visual flooding occurs or not. Fig. 6.1 shows the typical flooding in the middle of the column at the no cartridge section.

Fig. 6.1: Visual flooding at no cartridge section

The pulse amplitude was kept constant at 15 mm and the frequency was changed from 16 to 133 per minute. The A/O ratio was chosen to be 0.33 or 1.0 as explained before.

Figure 6.2 shows the flooding curve of the aqueous continuous column and Fig. 6.3 shows that of the organic continuous column. The correlation by L.D. Smoot et al. (15) is also shown in these figures. It will be seen that the results are reasonable compared with other experiments. However, in this experiment the dependency on A / O ratio is greater than that of the correlation, especially at lower frequency.

Figure 6.4 shows the difference of the flooding curves between the two modes of operation at $A / O=1 / 3$ and $F i g .6 .5$ shows that at $A / O=1.0$.

These figures show that, at A / O ratios around 0.33 , the organic continuous column has higher capacity than the aqueous continuous column. On the other hand, at an A / O ratio of 1.O, the aqueous continuous column has a higher flooding velocity. And moreover, in the case of the organic continuous column, the peak of the flooding curve occurs at lower frequency (lower pulse intensity) than that in the aqueous continuous column. The peak of flooding velocity in the aqueous continuous column was 67% of that in the organic continuous column at $A / O=0.33$. On the other hand, at an A / O ratio of 1.0 , the peak in the organic continuous column was 89 \% of that in the aqueous continuous column.
6.2 Holdup

From the results of flooding experiment, the pulse frequency for the following experiment was decided. As for the mixersettler type operation, the pulse frequency giving the highest flow velocity was chosen. This frequency is thus determined to be 32 per minute for the organic continuous column both in extraction and reextraction. On the other hand, in the aqueous continuous column, $f=32$ gives the maximal capacity for extraction and $f=48$ for reextraction. As for the higher frequency of the so-called emuslion region, $f=64$ was chosen

for the organic continuous column and $f=77$ for the aqueous continuous column, so as to reduce the disadvantages of decreasing the capacity. At each frequency, holdup dispersion along the axis of the column was measured, while changing the throughputs at the A/O ratio of $1 / 3$ or $1 / 1$.

In this experiment, the dispersed phase fraction was determined by taking samples of 100 ml . The whole volume was measured in a 100 ml cylinder and the dispersed phase was measured in a 10 ml cylinder. In this method, the obtained holdup might be smaller than the real value, since the sample does not contain the dead space which can be seen on the plate. However, from the result it can be said that the value is fairly good. The flow rates were chosen in the range from 60% to 90% of the flooding flow rate.

Figures 6.6 to 6.13 show the holdup distribution along the column height. The abscissa shows the distance from the dispersed phase inlet.

At higher flow rates, holdup is increasing with the distance from the inlet of the dispersed phase. R.L. Bell studied the integral holdup and the axial distribution of holdup ${ }^{(27)}$. According to the report, it was concluded that the holdup was uniform throughout the column for columns having 23 cells or more. However, contrary to the former report these experiments have shown that the holdup tends to increase with distance from the dispersed phase inlet especially at a higher flow rate. High holdup rates improve the mass-transfer, because the contact time is longer. Therefore, the column sections remote from the inlet of the dispersed phase have a better extraction efficiency at the operational flow rates.

The average holdup can be calculated by integrating the holdup with respect to the column height. Since in some cases, the graphical integration was equal within a few percent to the average of 6 samples disregarding the value at the dispersed phase inlet, the mean value was figured out by averaging the 6 values. Table $6-1$ shows the holdup, flowrate, pulse frequency and contact time.

Fig. 6.6: Holdup distribution in the aqueous continuous column

$$
(A / O=0.33, f=32)
$$

Fig. 6.7: Holdup distribution in the aqeuous continuous column
$(\mathrm{A} / \mathrm{O}=0.33, \mathrm{f}=77)$

Fig. 6.8: Holdup distribution in the organic continuous column $(A / O=0.33, f=32)$

[^0]

Fig. 6.10:
Holdup distribution in the aqueous continuous column
($\mathrm{A} / \mathrm{O}=1.0, \mathrm{f}=48$)
Fig. 6.11: Holdup distribution in the
aqueous continuous column
$(\mathrm{A} / \mathrm{O}=1.0, \mathrm{f}=77$)

Fig. 6.12:
Holdup distribution in the
organic continuous column

[^1]Table 6-1

Holdup and contact time (solute free)

Continuous phase	$\mathrm{f}\left(\mathrm{min}^{-1}\right)$	$\mathrm{U}_{\mathrm{aq}}(1 / \mathrm{h})$	$\mathrm{U}_{\text {org }}(1 / \mathrm{h})$	Holdup $(\%)$	Contact time (min)
Aqueous	32	4	12	5.8	1.8
	32	6	18	12.4	2.5
	77	3.5	10.5	8.8	2.9
	77	4.5	13.5	11.2	3.0
	48	11	11	6.3	2.1
	48	15	15	9.1	2.2
	77	11	11	8.8	2.9
Organic	77	14	14	11.2	3.0

Regarding the contact time, there is not much difference between the two columns. In order to find the effect of frequency, the flow rate ratio R, defined by the ratio of operating flow rate to the flooding rate, is introduced. Figures 6.14 to 6.17 show the average holdup plotted against R. It is evident that the pulse frequency has no great effect on the holdup.

Fig. 6.14: Holdup vs. R in the aqueous continuous column

$$
(A / 0=0.33)
$$

Fig. 6.15: Holdup vs. R in the organic continuous column $(\mathrm{A} / \mathrm{O}=0.33)$

As in other chemical reactors, the effects of longitudinal mixing cannot be avoided in pulse columns. These effects cause the so-called back mixing problem, about which B.W. Mar (18) have given much information. There are two tracing methods for observing the residence time and the back mixing in a continuous flow system. They are called F-diagram and C-diagram, respectively ${ }^{(28)}$. To explain an F-diagram, one can assume that the colour of the inflowing fluid changes from clear to red at time $\theta=0$ first. $F(\theta)$ is defined as the fraction of the red tracer at the outlet as a function of θ. The plot $F(\theta)$ against $\mathrm{U} \cdot \theta / \mathrm{V}_{\mathrm{m}}$ is called an F-diagram. On the other hand, if a quantity Q of a tracer is injected into the inlet, the residence time and the back mixing can be evaluated by observing the concentration in the exit stream. $C(\theta)$ is defined as the tracer concentration in the outlet at time θ.
The plot $\frac{V_{m} C(\theta)}{Q}$ vs. $\frac{U_{\theta}}{V_{m}}$ is called a C-diagram.
The continuity equation for the delta injection technique is given by equation ${ }^{(29)}(6-1)$

$$
\begin{equation*}
\frac{d C}{d \theta}=\nabla(E \nabla C)=E \frac{d^{2} C}{d h^{2}} \tag{6-1}
\end{equation*}
$$

The equation shows the mixing of the injected tracer with the surrounding fluid. This equation can be solved and modified for a flowing fluid ${ }^{(29)}$.

$$
\frac{C V_{\mathrm{m}}}{Q}=\frac{1}{2 \sqrt{\pi \frac{U \theta}{V_{m}} \frac{E}{V L}}} e^{-\frac{\left(1-\frac{U \theta}{V_{m}}\right)^{2}}{4\left(\frac{\mathrm{U} \theta}{V_{m}}\right)\left(\frac{\mathrm{E}}{\mathrm{VL}}\right)}}
$$

In this study, the delta injection technique was adopted, using methylene blue for a tracer in the aqueous phase. Since the investigation of the tracer distribution is difficult for the organic phase (solvent recycling), only the tracer distribution in the aqueous phase was examined. Concentration of methylene
blue was determined by photometric analysis. The injecting concentration of the tracer was $546 \mathrm{mg} / 1$ for the aqueous continuous column and that of $24.1 \mathrm{mg} / 1$ was used for the organic continuous column. The injected volume was $16.4 \mathrm{~cm}^{3}$ for both columns. The tracer was injected at the column height of 4 m in the aqueous continuous column in order to avoid the interference by the turbulences at the dispersed phase inlet. In the organic continuous column it was injected at $h=5 \mathrm{~m}$. As for the aqueous continuous column, the obtained distribution was plotted against T defined by $U \theta / V_{m}$. In this case V_{m} was estimated by calculating the continuous phase volume as a fraction of continuous phase holdup, which can be figured by dispersed holdup in Table 6.1. The experimental condition is the same as that of holdup study (Table 6.1). Figures 6.18 to 6.21 show the age-distribution to find the effect of the flow rate. It has been observed that the effect of the flow rate on the axial mixing is not so important, especially at lower frequency.

Fig. 6.18:
Continuous phase residence time distribution in the aqueous continuous column $(A / O=0.33, f=32)$

Fig. 6.19: Continuous phase residence time distribution in the aqueous continuous column $(A / O=1.0, f=48)$

Fig. 6.20: Continuous phase residence time distribution in the aqueous continuous column ($\mathrm{A} / \mathrm{O}=0.33$, $\mathrm{f}=77$)

Fig. 6.21: Continuous phase residence time distribution in the aqueous continuous column ($\mathrm{A} / \mathrm{O}=1.0, \mathrm{f}=77$) On the other hand, Figs. 6.22 to 6.25 shows the effect of pulse frequency on axial mixing.

Fig. 6.22: Effect of pulse frequency on axial mixing in the aqueous continuous column ($A / O=0.33, R \approx 60 \%$)

Fig. 6.23: Effect of pulse frequency on axial mixing in the aqueous continuous column ($A / O=1.0, R \approx 60 \%$)

Fig. 6.24: Effect of pulse frequency on axial mixing distribution in the aqueous continuous column ($\mathrm{A} / \mathrm{O}=0.33, \mathrm{R} \approx 80 \%$)

Fig. 6.25: Effect of pulse frequency on axial mixing distribution in the aqueous continuous column ($\mathrm{A} / \mathrm{O}=1.0, \mathrm{R} \approx 80 \%$)

From these figures, it is noticed that the longitudinal mixing becomes stronger with increasing frequency.

In the organic continuous column, the dispersed phase residence time and the back mixing were investigated using the same tracer. In this case the fluid was sampled about 1 to 2 cm below the interface in the column.

The ideal residence time, assuming a piston flow system, can be calculated with the dispersed phase holdup. However, in practice the labelled dispersed phase just arriving at the interface cannot be collected immediately. After arriving the interface, the droplets coalesce first and the tracer material is distributed in the aqueous phase. Then, a fraction of the colored aqueous phase is sampled through the sampling outlet for analysis. Since the sampling is made by this complicated procedure, the dimensionless time $T,\left(\frac{U \theta}{V_{m}}\right)$ cannot be used for the organic continuous column. Neither the volume V_{m} nor the
time for coalescence can be determined precisely. Consequently, the obtained data have been plotted against the absolute time in minutes. Figures 6.26 to 6.29 show the residence time distribution in the organic continuous column.

Fig. 6.26: Dispersed phase residence time distribution in the organic continuous column $(A / O=0.33, f=32)$

Fig. 6.27: Dispersed phase residence time distribution in the organic continuous column $(A / O=1.0, f=32)$

Fig. 6.28: Dispersed phase residence time distribution in the organic continuous column $\mathrm{A} / 0=0.33, f=63\left(\mathrm{~min}^{-1}\right)$

Fig. 6.29: Dispersed phase residence time distribution in the organic
continuous column
$A / O=1.0, E=63\left(\mathrm{~min}^{-1}\right)$

Contrary to the results of the continuous phase distribution, there is not so much difference in the deviation of the curves. According to the results, it is qualitatively concluded for the aqueous phase that the flow rates do not play an important role on axial mixing in both the continuous and the dispersed phase. However, with increasing frequency, the longitudinal mixing becomes remarkably stronger in the continuous phase, whereas there is not much effect on axial mixing in the dispersed phase.
7. Evaluation of the extraction efficiency

7.1 Extraction of acetic acid

A ternary system of 30% TBP in dodecane-acetic acid-water was applied to the columns to investigate the differences in extraction efficiency. The feed concentration of the acetic acid was chosen so that many extraction stages were necessary to complete the mass-transfer. The operating frequencies are the same in the holdup experiment. That is $f=32$ and 64 for the organic continuous and $f=32$ (or 48) and 77 for the aqueous continuous column. The throughput was chosen as 60% or 80% of the flooding rate in order to find the effect of flow rates on mass-transfer.

The columns were operated for 3 hours at every run to reach the steady state. To confirm the steady state, the mass loaded phase was sampled and titrated regulary. After attaining the steady state, 5 samples along the column height were taken for analysis. Both the extract and the rafinate were also sampled.

7.1.1 Experimental results

Figure 7.1 shows the acetic acid concentration along the column height for extraction and Fig. 7.2 shows that for reextraction.

Fig. 7.1: Distribution of acetic acid along the column height in extraction

Fig. 7.2: Distribution of acetic acid along the column height in reextraction

In both figures, dispersed phase concentration was estimated from continuous phase by calculating the material balance. Figure 7.1 shows that acetic acid is transfered faster in the aqueous continuous column. However, the relation is opposite in Fig. 7.2. In Fig. 7.1, the acetic acid concentration in the raffinate is higher than that of the organic continuous column. But this may be caused by the acetic acid left in organic feed from an inadequate solvent washing. In the organic phase for the evaluation of the results, it must be emphasized that acetic acid concentrations <0.01 (mol/1) can be analysed only with high error. Therefore, only the upper 1 m for extraction and the lower 1 m for reextraction can be used for the evaluation of characteristic differences. The equilibrium curve for the system, 30% TBP in Dodecane-acetic acid-water is shown in Fig. 7.3. The acetic acid determination was carried out as described in chapter 11.

Fig. 7.3: Equilibrium curve of 30 \% TBP in dodecane-acetic acid-water

7.1.2 Evaluation of HETS and HTU

Table 7.1 shows the HETS in extraction at the upper 1 m obtained in this experiment and Table 7.2 shows the HETS in reextraction.

Table 7.1
Upper 1 m HETS for acetic acid in extraction

Continuous phase $R(\%)$	Pulse frequency (min		
		HETS (cm)	
Organic	57	32	59
Organic	86	32	50
Organic	63	63	45
Organic	81	63	34
		32	17
Aqueous	57	32	15
Aqueous	86	77	15
Aqueous	64	77	11
Aqueous	82		

Table 7.2
Lower 1 m HETS for acetic acid in reextraction

Continuous phase	$R(\%)$	Pulse Erequency (min	

It will be seen that in extraction, the aqueous continuous column has much shorter HETS at the upper 1 m . On the other hand, in reextraction, the organic continuous column has shorter HETS. Figures 7.1 and 7.2 will show the situation clearly. Through this experiment, it is ensured that HETS becomes shorter by increasing the pulse frequency from $f=32$ to 64 (organic continuous column) or $\mathrm{f}=32$ (48) to 77 (aqueous continuous column). Except for the case of extraction in the organic continuous operation at a frequency of 32 per minute, a larger flow rate of about 80% of a flooding rate gives a shorter HETS than that of lower flow rate around 60%. This may suggest that the pulse column can be operated stably even at a flow rate over 80 \% of the flooding flow rate.

Next, HTU was calculated to evaluate the overall mass-transfer coefficient based on aqueous phase. NTU (Number of Transfer Units) can be calculated by integrating equation (3-7).

$$
\begin{equation*}
N T U=\int_{x_{i}}^{x_{o}} \frac{d x}{x-x_{e}} \tag{3-7}
\end{equation*}
$$

In this study, it is assumed that the operating line is linear. Table 7.3 shows the NTU and HTU obtained for a flow rate of 80 \% of the flooding rate.

7.1.3 Comparison of the two modes of operation

NTU can also be defined with respect to $K_{X} A$ by equation (7-1) (19)

$$
\begin{equation*}
N T U=K_{X} A h / V \tag{7-1}
\end{equation*}
$$

If the NTU values are known, $K_{x} A$ can be determined. The values of $K_{X} A$ and holdup are also shown in table 7.3. As for $K_{X} A$, there is not much difference in the aqueous continuous operation between extraction and reextraction. However, in the organic continuous column the difference is significant. Comparing $\mathrm{K}_{\mathrm{x}} \mathrm{A}^{\mathrm{A}}$ with holdup of the two columns, some kind of mutual relation is observed; that is in extraction

Table 7.3
HTU, $K_{X} A$, and holdup at 80 of flooding flow rate
$f\left(\min ^{-1}\right) \quad R(\%) \quad \operatorname{HTU}(\mathrm{cm}) \quad \operatorname{NTU} \quad K_{X} A\left(h^{-1}\right) \quad$ Holdup (\%)

Extraction						
Org. continuous	32	86	61	1.6	12	2.8
Extraction						
Aq. continuous	32	86	12	8.2	43	13
Reextraction						
Org. continuous	32	88	15	6.9	84	10
Reextraction						
Aq. continuous	48	83	28	3.5	48	6.0

$$
\begin{align*}
& \left(\mathrm{K}_{\mathrm{x}}^{\mathrm{A})} \mathrm{aq}=4.7\left(\mathrm{~K}_{\mathrm{x}}^{\mathrm{A})}\right. \text { org }\right. \tag{7-2}\\
& \text { Holdup }_{\mathrm{aq}}=3.8 \text { Holdup org } \tag{7-3}
\end{align*}
$$

and in reextraction

$$
\begin{align*}
& \left(\mathrm{K}_{\mathrm{x}}^{\mathrm{A}}\right)_{\mathrm{org}}=1.6\left(\mathrm{~K}_{\mathrm{x}}^{\mathrm{A})} \mathrm{aq}\right. \tag{7-4}\\
& \text { Holdup }_{\mathrm{org}}=1.8 \text { Holdup } \tag{7-5}
\end{align*}
$$

This may suggest $\mathrm{K}_{\mathrm{x}} A$ is nearly proportional to holdup. Observing the droplets by photos, there is not much difference between the diameters observed in the aqueous continuous column and the organic continuous column. Figures 7.4 and 7.5 shows the droplets in the both columns.

If it is accepted that drop diameters are the same, the specific contact surface area, A, is proportional to holdup. Therefore, it follows that $\left(K_{X}\right)$ aq and (K_{x}) org would have the similar value. Although this may be a rough estimation, the assumption was applicable for both extraction and reextraction systems in this experiment. The same idea might be expected to apply to other systems.

7.2 Extraction of thorium

Next, HTU and HETS were evaluated for thorium nitrate in both modes of operation. The solvent was $30 \% \mathrm{TBP}$ in dodecane as in the prior experiment. The A / O ratio of $1 / 3$ was chosen for extraction and that of $1 / 1$ for reextraction. The nitric acid concentration plays an important role on the equilibrium line for uranium and thorium. In this study, in order to use the equilibrium line, which is given by Siddall ${ }^{(30)}$, the nitric acid concentration of 1.1 (mol/l) was chosen for the aqueous feed solution and that of 0.01 (mol/l) for the aqueous strip. Since no scrub was used in this extraction experiment, the thorium feed concentration was confined to 0.4 (mol/1) for

Fig. 7.4: Dispersion of droplets in the aqueous continuous column

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{aq}}=5(1 / \mathrm{h}), \mathrm{V}_{\text {org }}=15(1 / \mathrm{n}) \\
& \mathrm{f}=32\left(\mathrm{~min}^{-1}\right)
\end{aligned}
$$

Fig. 7.5: Dispersion of droplets in
the organic continuous column
$V_{\mathrm{aq}}=5(1 / \mathrm{h}), V_{\text {org }}=15(1 / \mathrm{h})$
$\mathrm{f}=32\left(\mathrm{~min}^{-1}\right)$
fear of the third phase formation. The same flow rates as in the experiment before were chosen, i.e. 80% of the flooding flow rate. The pulse frequency was chosen to be 48 per minute for reextraction in the aqueous continuous column and 32 per minute for other cases. To confirm that the steady state was reached, samples for analysis were taken regularly at the organic and the aqueous outlets. After attaining the steady state, 5 samples along the axis of the columns were taken to obtain the thorium concentration profile.

During extraction, the droplets tend to be larger than in the absence of thorium, since the interfacial tension increases with thorium concentration. Figures 7.6 and 7.7 illustrate the situation clearly.

In these figures, the column was operated in the aqueous continuous mode. They show the difference of the droplets behavior in the column. It can be seen that coalescence occured much more rapidly in Fig. 7.7 than in 7.6 . In Fig. 7.7, the organic phase has coalesced, making a layer under the sieve plates, while coalescence has taken place to a lesser extent in Fig. 7.6. Holdup was expected to increase with the thorium concentration because of the increasing interfacial tension. Table 7.4 shows the experimental conditions. It can be seen in this table that the aqueous continuous column has a longer contact time than the organic continuous column, whereas they have about the same value in Table 6.1
7.2.1 Start up characteristics of the columns

Figures 7.7 and 7.8 show how the aqueous and the organic outlet phases attain the steady state in extraction.

It is noticed that the thorium concentration in the raffinate is remarkably high at the beginning of the operation. It took two hours to reach the steady state in the organic continuous column. On the other hand in the aqueous continuous column, the thorium concentration in the aqueous outlet attains the steady state in one hour. The difference comes from the different modes

Fig. 7.6: Dispersion of droplets in the aqueous continuous column in the absence of thorium $\mathrm{V}_{\mathrm{aq}}=6(1 / \mathrm{h}), \mathrm{V}_{\mathrm{org}}=18(1 / \mathrm{h})$, $f=32 \mathrm{~min}^{-1}$)
 aqueous continuous column in the presence of thorium
$\mathrm{V}_{\mathrm{aq}}=6.1(1 / \mathrm{h}), \mathrm{V}_{\mathrm{org}}=18.2(1 / \mathrm{h})$, $\mathrm{f}=32\left(\mathrm{~min}^{-1}\right)$

Table 7.4
Experimental conditions for thorium extraction

Fig. 7.8: Transient curve of thorium (aqueous continuous column in extraction)

Fig. 7.9: Transient curve of thorium (organic continuous column in extraction)
of start-up operation in the two columns. In the first run, the aqueous continuous column was started up, filled witn distilled water. However, the column could not attain the steady state within three hours. Then, in the next run, at the beginning of extraction the aqueous continuous column was filled with $1.1 \mathrm{M}_{\mathrm{HNO}}^{3}$, while the organic continuous column was filled with solute-free solvent. As expected, the aqueous continuous column attained the steady state faster than the organic continuous column. From this fact, it is concluded that the aqueous continuous mode of operation needs longer time to reach the steady state than the organic continuous mode of operation.

Figures 7.10 and 7.11 show how the thorium concentration at the outlets attain the steady state in reextraction.

Fig. 7.10: Transient curve of thorium (aqueous continuous column in reextraction)

It was observed that the concentration at the organic outlet attained the steady state in 1.5 hours in the aqueous and in

Fig. 7.11: Transient curve of thorium (organic continuous column in reextraction)
2.5 hours in the organic continuous column. In reextraction, the organic continuous mode of operation needs more time to reach the steady than the aqueous continuous mode of operation. In this extraction experiment with thorium, it was observed that the mass-transfer from the continuous to the dispersed phase needs more time to attain the steady state than the mass-transfer from the dispersed to the continuous phase.

7.2.2 Experimental results of extraction

Figures 7.12 and 7.13 show the thorium concentration plotted along the column height in the steady state. Figure 7.12 shows the profile in extraction and Fig. 7.13 shows that in reextraction.

In order to find the effect of nitric acid, the nitric acid concentration was also measured. Figure 7.14 shows the nitric acid concentration along the column height in extraction and

Fig. 7.12: Thorium concentration profile along the column height in extraction

Fig. 7.13: Thorium concentration profile along the column height in reextraction

Fig. 7.15 shows that in reextraction.

Fig. 7.14: HNO_{3} concentration profile along the column height in extraction

In Fig. 7.14, the nitric acid concentration increases at first with distance from the feed point at 5.24 m . However, below the column height of about 4 m , it decreases slowly to the value of the aqueous outlet. The outlet concentration agrees with the material balance. On the other hand, the nitric acid concentration decreases very fast in the reextraction columns. It reaches about 0.01 (mol/1) at the height of 1.5 m . There is not much difference between the aqueous continuous and the organic continuous columns concerning the nitric acid distribution along the column height. From the results, it seems to be reasonable for a first approximation that the nitric acid concentration is constant along the column height. Therefore, the thorium equilibrium curve at the nitric acid concentration of 1.1 (mol/l) was used for the extraction and that of 0.01 (mol/1) was used for the reextraction.

Fig. 7.15: HNO_{3} concentration profile along the column height in reextraction

7.2.3 Evaluation of HETS and HTU

The experimental results shown in Figs. 7.12 and 7.13 were analysed by McCABE-THIELE diagrams. Table 7.5 shows the HETS obtained in this study assuming the operating line to be linear. The value is 28 to 98 cm for extraction and 62 to 130 cm for reextraction.

Table 7.6 shows the HTU calculated by equation (3-7)

$$
\begin{equation*}
N T U=\int_{x_{i}}^{x_{0}} \frac{d x}{x-x_{e}} \tag{3-7}
\end{equation*}
$$

The operating line was also assumed to be linear. In this case, the integration of equation (3-7) was carried out numerically by computer. The equilibrium curve was approximated as follows;

```
in extraction, }\quady=0.688\times(x\leq0.138
y=0.386 x 0.708 (x>0.138) (7-7)
in reextraction, }\quady=4.84 \mp@subsup{x}{}{3.08
```

Table 7.5
HETS for thorium (cm)

Column height (m)	$0 \sim 1$	$1 \sim 2$	$2 \sim 3$	$3 \sim 4$	$4 \sim 5$	overall
Extraction (Org. continuous)	75	98	93	71	42	78
Extraction						
(Aq. continuous)						
Reextraction						
(Org. continuous)						
Reextraction						
(Aq. continuous)						

It is noticed in Table 7.6 that the aqueous continuous column has the better performance of shorter HTU than the organic continuous column in extraction. On the other hand in reextraction, the organic continuous column gives shorter HTU than the aqueous continuous column. However, the difference is greater in extraction. Corresponding to this fact, the difference of the contact time between the two modes of operation is much greater in extraction than in reextraction. HTU can be expected to decrease with increasing contact time, if it is assumed that the droplets diameters are the same between the two modes of operation. If the droplets diameters are the same, the specific surface area A is proportional to holdup η while contact time is proportional to n / V_{d}. Consequently,
the contact time is proportional to A / V. On the other hand, in equation ($7-1$). NTU is proportional to A / V

$$
\begin{equation*}
\operatorname{NTU}=K_{x} A h / V \tag{7-1}
\end{equation*}
$$

Thus, NTU might be expected to increase with increasing contact time. The great difference of HTU in extraction might be explained as above.

> Table 7.6
> HTU of thorium (cm)

| Column height (m) | $0 \sim 1$ | $1 \sim 2$ | $2 \sim 3$ | $3 \sim 4$ | $4 \sim 5$ | overall |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Extraction
 (Org. continuous) | 128 | 69 | 65 | 50 | 34 | 58 |
| Extraction
 (Aq. continuous) | - | - | 28 | 22 | 32 | 24 |
| Reextraction
 (Org. continuous) | 146 | - | - | - | - | - |
| Reextraction | | | | | | |
| (Aq. continuous) | | | | | | |

Uranium and thorium were co-extracted, co-stripped, and partitioned, using the columns. The thorium/uranium concentration ratio was chosen to be $16: 1$ as is the case for HTR fuel. The organic continuous flow was adopted for the extraction column since in actual reprocessing, this mode reduces the penetration of fission products to the organic product at the interface. For the same reason, i.e. to obtain a pure product, the aqueous continuous flow was chosen for the partitioning and the co-stripping column. The extraction column has a 2 m high scrub and 3 m high extraction section. In this column, the salting agent of $13 \mathrm{M}_{\mathrm{HNO}_{3}}$ solution was fed at 1 m above the bottom. In the partitioning column, the uranium scrub section is 2 m high and the thorium strip section is 3 m . The pulse frequencies were 64 per minute for the extraction column and 77 per minute for the partitioning and the costripping column.

The obtained data wereanalysed by the MCCABE-THIELE diagram to evaluate HETS for uranium and thorium. In this calculation, the uranium equilibrium curve was constructed by assuming that the salting effect of thorium was equivalent to that of nitric acid ${ }^{(31)}$. The equilibrium data by J.W. Codding for uranium ${ }^{(32)}$ were used in this study. The equilibrium data for thorium by T.H. Siddall ${ }^{(30)}$ were used to set up the MCCABE-THIELE diagram. In this experiment the feed, the scrub, and the salting agent were supplied to the extraction column by proportionating pumps. The solvent of 30 \% TBP in dodecane was fed by a gear pump. In the partitioning column, the organic feed and the thorium strip were supplied by gear pumps and the uranium scrub solvent was fed by a proportionating pump. In the co-stripping column, both the organic feed and the strip were supplied by gear pumps. The flow rates through the pumps were determined as explained in chapter 5.

The acid deficient feed solution was prepared by a evaporator without steam stripping as explained in Chap. 3.3. The solution was made acid deficient by evaporating to a boiling point of $155^{\circ} \mathrm{C}$.

Figure 8.1 shows the schematic diagram of this experiment.

Fig. 8.1: Schematic diagram of the co-extraction process (acid feed solution)

The feed concentrations of thorium, uranium, and nitric acid were $0.800,0.0796$, and $1.0(\mathrm{~mol} / 1)$ respectively. The nitric acid concentration of the scrub solution was chosen as 0.1 M and that of salting agent as 13 M . The flow rates of the feed, scrub, salting agent, and solvent were $3.5,3.55,0.735$, and $24.2(1 / h)$ respectively.

8.1.1 Experimental results

Figure 8.2 shows the distribution of thorium, uranium and nitric acid along the column height in the co-extraction process.

Fig. 8.2: Distribution profiles of thorium, uranium, and nitric acid along the column height in the co-extraction process (acid feed solution)

It can easily be seen that the uranium concentration decreases much faster than thorium in the extraction section. In contrast, in the scrub section the uranium concentration does not change, while the thorium concentration decreases from the feed point to the top of the column.

In this experiment, the extraction column was operated first about 2 hours without thorium and uranium in order to attain the steady state of nitric acid distribution. The feed solution was an $1.0 \mathrm{M} \mathrm{HNO}_{3}$. After two hours, a solution of 0.800 M Th , $0,08 \mathrm{M} \mathrm{U}$, and $1.0 \mathrm{M}_{\mathrm{MNO}}^{3}$ was fed into the column turning a threeway valve which is located at the inlet of the proportionating pump. Fig. 8.3 shows the transient curve of thorium in the aqueous and the organic outlet.

Fig. 8.3: Transient curve of thorium in the co-extraction process (acid feed solution)

Figures 8.4 and 8.5 show the same transient curves for uranium and nitric acid.

It is noticed that thorium takes about 2 hours to reach the steady state, while uranium needs only 1 hour.

Fig. 8.4: Transient curve of uranium in the co-extraction process (acid feed solution)

Fig. 8.5: Transient curve of nitric acid in the co-extraction orocess (acid feed solution)

8.1.2 Evaluation of HETS

Table 8.1 shows the obtained HETS for this process.

Table 8.1
HETS in the co-extraction nrocess with acid feed solution (cm)

Column height (m)	$0 \sim 1$	$1 \sim 2$	$2 \sim 3$	$3 \sim 4$	$4 \sim 5$
	extraction	scrub			
HETS for thorium	50	62	56	183	143
HETS for uranium	-	-	55	-	-

HETS of about 55 cm was obtained in the extraction section for both uranium and thorium. No great difference was observed in the extraction section for the HETS values of thorium and uranium, Since uranium is extracted into the organic phase faster than thorium, it is impossible to obtain its HETS values in the column parts from 0 to 2 m . On the other hand, in the scrub section HETS of about 160 cm was obtained for thorium, and no back washing was observed for uranium. In the scrub section HETS becomes shorter with increasing the column height.

8.2 Co-extraction process with acid deficient feed solution

Figure 8.6 shows the schematic diagram of this experiment. The feed concentrations of thorium, uranium, and nitric acid were $0.805,0.0810$ and $-0.143(\mathrm{~mol} / 1)$, respectively. The nitric acid concentration of the scrub solution was chosen to be 1.0 M and that of salting agent as 13 M . The flow rates of the scrub, feed, salting agent, and solvent were $3.46,3.5,1.02$, and $24.0(1 / h)$ respectively.

Fig. 8.6: Schematic diagram of the co-extraction process (acid deficient feed solution)
8.2.1 Experimental results

Figure 8.7 shows the concentration profiles of thorium, uranium, and nitric acid.

It is noticed in Fid. 8.7 that in the extraction section the nitric acid concentration decreases faster than that of acid feed solution with increasing column height (h>1). And the thorium and the uranium concentrations decrease more slowly from the feed boint ($\mathrm{h} \approx 3 \mathrm{~m}$) to the bottom comoared with those of acid feed solution. On the other hand, in the scrub section the profile of the uranium and the thorium concentrations is about the same as that of acid feed solution. Uranium was not washed back there. The nitric acid concentration increases from

Fig. 8.7: Distribution profiles of thorium, uranium, and nitric acid along the column height in the coextraction process (acid deficient feed solution)
the feed point to the top with acid deficient feed solution, while it decreases with acid feed solution.

Figures 8.8 to 8.10 show the transient curves of this experiment for thorium, uranium, and nitric acid.

Prior to the heavy metal extraction, the column was operated 1.5 hours with distilled water as feed to reach the hydraulic stability, but the scrub and the salting agent were fed as usual during this time. Fig. 8.10 shows that the HNO_{3} concentration in the organic outlet decreases after starting the acid deficient feed solution, whereas the HNO_{3} concentration

Fig. 8.8: Transient curve of thorium in the co-extraction process (acid deficient feed solution)

Fig. 8.9: Transient curve of uranium in the co-extraction process (acid deficient feed solution)

Fig. 8.10: Transient curve of nitric acid in the co-extraction process (acid deficient feed solution)
in the aqueous outlet keeps the same value. The nitric acid needs 1 h to reach the steady state, while the uranium in the product (organic out) needs only 0.5 h and the thorium 1.5 h .

8.2.2 Evaluation of HETS

Table 8.2 shows the HETS obtained in this experiment.
The obtained values both for uranium and thorium agree well with those of acid feed solution, which were shown in Table 8.1. No great difference was observed as for the HETS values of the extraction column between the acid feed and the acid deficient feed operations.

Table 8.2
HETS in the co-extraction process (acid deficient feed solution) (cm)

| Column height (m) | $0 \sim 1$ | $1 \sim 2$ | $2 \sim 3$ | $3 \sim 4$ | $4 \sim 5$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | extraction | | | | scrub |
| HETS for thorium | 49 | 70 | 43 | 186 | 152 |
| HETS for uranium | - | - | 56 | - | - |

8.3 Co-strin process

Fig. 8.11 shows the flow sheet of this process.

Fig. 8.11: Schematic diagram of the co-stripping process

The organic feed concentrations of thorium, uranium, and nitric acid were $0.113,0.0114$, and 0.132 (mol/1) respectively. The stripping nitric acid concentration was 0.01 M . The flow rates of feed and strip were 13.1 and 10.7 (1/h) respectively.

8.3.1 Experimental results

Figure 8.12 shows the profiles of the thorium, uranium, and nitric acid concentrations along the column height after attaining the steady state.

Column height (m)

Fig. 8.12: Distribution profiles of thorium, uranium, and nitric acid along the column height in the costripping process

It is noticed in Fig. 8.12 that the uranium concentration increases with column height in the lower part of the strinping column ($\mathrm{h}: 0 \sim 1 \mathrm{~m}$). This may be caused by the presence of thorium. The uranium was reextracted well in higher parts of the column where the thorium concentration is $<0.01 \mathrm{M}$. The nitric acid concentration was decreased very fast with column height as already observed in Chap. 7.2.2.

Fig. 8.13 to 15 show the transient curve of thorium, uranium, and nitric acid.

Fig. 8.13: Transient curve of thorium in the co-stripping process

In this experiment the column was filled with water before starting. At time $=0$, the organic feed was started. Though the hydraulic steady state was not attained on starting, the column reached steady state in 3 hours. These figures show that the uranium needs more time than the thorium. However,

Fig. 8.14: Transient curve of uranium in the co-stripping process

Fig. 8.15: Transient curve of nitric acid in the co-stripping process
it may be explained by the fact that the column contains a relative larger quantity of uranium than thorium in the steady state.

8.3.2 Evaluation of HETS

Table 8.3 shows the HETS obtained in this experiment.

Table 8.3
HETS in the co-stripping process (cm)

| Column height (m) | $0 \sim 1$ | $1 \sim 2$ | $2 \sim 3$ | $3 \sim 4$ | $4 \sim 5$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| HETS for thorium | 100 | 105 | - | - | - |
| HETS for uranium | - | 112 | 147 | - | - |

According the results, this stripping column gives shorter HETS for thorium than for uranium. However, the difference is not so great.
Contrary to these results, a report by General Atomic (33) gives HETS for uranium as 59 cm and that for thorium as 153 cm .

8.4 Partitioning process

Fig. 8.16 shows the flow sheet of this process. The organic feed concentrations of thorium, uranium, and nitric acid were $0.111,0.0114$, and 0.088 ($\mathrm{mol} / \mathrm{l}$) respectively. The stripping HNO_{3} concentration was 0.01 M . The flow rates of the feed, strip, and uranium scrub were 13.2, 7.91, and 2.73 (1/h) respectively.

Fig. 8.16: Schematic diagram of the partitioning process

8.4.1 Experimental results

Figure 8.17 shows the uranium, thorium and nitric acid concentration along the column height in the partitioning column.

It is noticed in this figure that the highest concentration of uranium appears at the height of about 4 m in the thorium strip section; this despite the fact that the organic feed point is located at the height of 2 m . This may be caused by the presence of thorium in the strip section. The figure also shows that the nitric acid concentration decreases sharply in the strip section as in Fig. 7.15.

Fig. 8.17: Distribution profiles of thorium, uranium, and nitric acid along the column height in the partitioning process

Figures 8.18 to 20 shows the transient curve of thorium, uranium, and nitric acid in this experiment.

In these figures, the thorium and the uranium concentrations at the outlets seem not to reach the steady state perfectly within 3 hours. However, the error of material balance was within 3 \% (see Appendix). From this fact, it may be reasonable to analyse the results by McCABE-THIELE diagrams.

Fig. 8.18: Transient curve of thorium in the partitioning process

Fig. 8.19: Transient curve of uranium in the partitioning process

Fig. 8.20: Transient curve of nitric acid in the partitioning process

8.4.2 Evaluation with McCABE-THIELE diagrams

For the thorium strio section of the partitioning column, it was too complicated to calculate HETS for uranium, since the thorium concentration changed extremely there. Therefore, only the thorium was analysed to evaluate HETS. Table 8.4 shows the obtained HETS.

Table 8.4
HETS in the partitioning process

| Column height (m) | $0 \sim 1$ | $1 \sim 2$ | $2 \sim 3$ | $3 \sim 4$ | $4 \sim 5$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | U scrub | Th strin | | | |
| HETS for thorium | - | - | 81 | 71 | - |

In the uranium scrub section, both uranium and thorium were pinchedout, according to the MCCABE-THIELE diagram. Thorium was pinched at the concentration of 0.204 (mol/l), following the MCCABE-THIELE diagram. In this experiment, the thorium concentration of 0.218 (mol/l) was obtained. The values agree fairly well. In the uranium scrub section of the partitioning column, uranium was pinched at the concentration of 0.00113 (mol/l) according to the McCABE-THIELE diagram, while it was 0.00616 in experiment. The nitric acid concentration was 0.18 ($\mathrm{mol} / \mathrm{l}$) and that of thorium was 0.22 (mol/l) in the scrub section. Therefore, for a first approximation the equilibrium curve at a nitric acid concentration of 0.40 (mol/I) was used in this case for the diagram. The uranium distribution coefficient was 1.8 at that nitric acid concentration, although it must be 2.3 following the experimental results. If the equilibrium data of uranium in the presence of thorium were available, the results of this experiment might show better agreement with the theory.
9. Discussion
9. 1 Comparison of the aqueous continuous and the organic continuous mode of operation

In Chap. 6, general flow characteristics have been investigated for the comparison between the two different modes of operation. Concerning the extraction process $(A / 0 \approx 1 / 3)$ the organic continuous column is favorable since this mode of operation has a larger capacity than the aqueous continuous mode. As for the extraction of acetic acid (Chap. 7.1), it is observed that the overall mass-transfer coefficient K_{X} is independent of whether the column is being operated in the aqueous continuous or in the organic continuous mode. In addition, in a solute free condition, the two modes of operation do not give greatly different contact times.

In Chap. 7.2, the two modes of operation was examined with thorium nitrate. The aqueous continuous column shows better
performances (lower thorium loss and shorter HTU). However, it is noticed that the contact time is much longer in the aqueous continuous column than in the organic continuous column. The difference might be explained by the different holdups.
In reextraction $(A / O \approx 1 / 1)$ the laqueous continuous column has a larger capacity than the organic continuous column. No difference of overall mass-transfer coefficient K_{x} was observed in reextraction of acetic acid between the two modes of operation. However, in the operation with thorium, a problem of wettind was observed in the aqeuous continuous column.

Fig. 9.1: Concentration of organic phase in the middle of the aqueous continuous column

It can be seen in Fig. 9.1 that the organic phase passes upward along the center spacing oines without forming droplets. The plates are wetted with the organic phase, formind a film on the olates. This phenomenon was observed after recycling the solvent three times. In the presence of higher uranium, thorium or
nitric acid concentration, this problem was not encountered. Since extraction was made at higher HNO_{3} concentrations, the wetting problem never occurred in extraction. Once wetting occurs, the column must be washed perfectly for the next operation. This may be caused by thorium containing organic compound adhered to the plates.

9.2 Co-extraction process

A co-extraction process was carried out in the organic continuous mode of operation. Flow problems also occurred here, which disturbed the performance in the scrub section. Figure 9.2 shows the wetting problem.

Fig. 9.2: Concentration of aqueous phase at the wall of the organic continuous column

It can be seen that the aqueous phase (dispersed phase) goes down through the column along the inside wall of the glass tube and no droplets are formed. The column was operated at the pulse frequency of 32 per minute. This problem was solved by increasing the frequency. At the frequency of 63 per minute, this kind of problem has never occurred.

Figure 9.3 shows the difference of the nitric acid distribution between the acid feed solution and the acid deficient feed solution along the column height.

Column height (m)

Fig. 9.3: Nitric acid concentration vs. column height (coextraction process)

It is observed that the acid deficient feed solution gives lower HNO_{3} concentration between the column height of 1 to 4 m . Acidity plays an important role on decontamination factors. Most fission products show better decontamination with lower acidity, though some elements with higher acidity. The acid deficient feed solutions gives much higher decontamination factors as explained in Chap. 3.3. However, in order to obtain
still higher D.F., split scrub streams ($0.01 \underline{\mathrm{MNO}_{3}}$ and $5 \mathrm{M} \mathrm{HNO}_{3}$) have been adopted in ORNL (10) instead of a single $1.0 \mathrm{MHO}_{3}$ scrub stream. But split scrub streams can cause greater column instability than a single scrub stream relating to flow variations (33)

9.3 Co-stripoing and partitioning process

In the presence of thorium, uranium is not reextracted. After reextraction of thorium ($<0.01 \mathrm{M}$), uranium is stripped at an acidity of 0.01 M . The HETS values are similar as those of thorium. In the strip section, the uranium concentration increases first with the distance from the organic feed point while the thorium concentration decreases.

In the partitioning column, a uranium concentration of 0.084 M (about 7.3 times higher than that of organic feed) was obtained at the column height of 4 m . This fact must be observed, because the uranium in actual reprocessing is mainly the $\mathbb{U}-233$. The concentration must be limited in view of criticality.
10. Conclusions

The conclusions of the experiments are:

1. The capacity depends critically on A / O ratio.
2. At the same cartridge conditions (free area of 23 \%), the organic continuous column has a capacity about 1.5 times larger than that of the aqueous continuous column at $A / O=0.33$. On the other hand, at $A / O=1.0$, the aqueous continuous column has a 12 : larger throughput.
3. Holdup can be estimated as a function of flow rate devided by flooding flow rate, independent of pulse frequency for both modes of operation. At least for the column used, the holdun tends to increase with distance from the dispersed phase
inlet, contrary to a former report (27).
4. Analysing the results of extraction and reextraction runs, it is concluded that there is not much difference between K_{x} values for operation in the organic continuous mode and for operation in the aqueous continuous mode. However, on account of the difference of holdup distribution, the solute is transfered differently along the column height.
5. The droplet diameters and the coalescence characteristics are changed by the presence of thorium in comparison to the pure aqueous phase. The droplet diameter increases and the coalescence time becomes shorter as the thorium concentration increases. In this study, the aqueous continuous column gives shorter HTU and shorter HETS than the organic continuous column in thorium extraction. However, comparing the contact time, it must be noticed that the aqueous continuous operation gives a contact time 1.37 times longer than that of the organic continuous operation. On the other hand, the organic continuous operation gives shorter HTU than the aqueous continuous operation in thorium reextraction, though the diffference is smaller.
6. Uranium and thorium were co-extracted, co-stripped, and partitioned in this study. They were extracted in the organic continuous column and co-stripped and partitioned in the aqueous continuous column. Both acid feed solution and acid deficient feed solution were investigated in the extraction column. The obtained HETS values in the extraction section are $\approx 54 \mathrm{~cm}$ for thorium and $\approx 56 \mathrm{~cm}$ for uranium. In the scrub section the HETS for thorium is $160 \sim 170 \mathrm{~cm}$, whereas no decrease of the uranium concentration has been observed. As for HETS values, no great differences exist between the acid feed solution and the acid deficient feed solutions. However, in the extraction section, a much lower HNO_{3} concentration has been
observed with acid deficient feed solution, which might give higher D.F. for this process.

In the co-stripping column a HETS of $\approx 100 \mathrm{~cm}$ has been obtained for thorium and of $\approx 130 \mathrm{~cm}$ for uranium. In the lower part of the stripping column uranium is not reextracted because thorium is present.

In the partitioning process the HETS for thorium is $\approx 76 \mathrm{~cm}$ in the stripping section. In the uranium scrub section, both uranium and thorium are pinched out. The analysis of uranium using McCABE-THIELE diagrams is very hard in the presence of thorium. The agreement of the experimental results with the diagram is poor for uranium. If the equilibrium data of uranium in the presence of thorium were available, a better agreement might be observed.

11. Appendixes

11.1 Analytical procedures

Acetic acid determination

The acetic acid concentration was measured by direct titration with standard 0.1 N NaOH . Some ethylalcohol was added in the case of the organic phase analysis. Phenolphtalein was used as an inaicator.

Nitric acid determination

The nitric acid concentration was measured by potentiometric titration. In order to remove the interference of thorium, potassium oxalate $\left(\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)$ was added, which formes oxalatocomplexes with thorium.

Thorium determination

The thorium concentration was determined by titration with EDTA in 0.05 N NaOH in the pH range of 2.6 to 2.8 (Buffer system) ${ }^{(34)}$. Alizarin S was used for the indicator.

Uranium determination

The uranium concentration was measured by titration with 0.01 N cerium (IV) sulfate solution. $\mathrm{UO}_{2}{ }^{2+}$ was reduced first with titanium (III) chloride in the presence of amidosulfonic acid. The indicator was ferroin solution.
11.2 Flow sheets of uranium-thorium separation processes

Eig. 11.2: Thorex process no. 2 flowsheet (8)

Fig. 11.3: KAPL acid thorex process flowsheet ${ }^{(11)}$

Fig. 11.6: Third uranium cycle (14)

Table 11.1
Flooding flow rate, $\mathrm{U}_{\mathrm{aq}}{ }^{+\mathrm{U}}$ org $(1 / \mathrm{h})$

	(Aqueous continuous)		(Organic continuous)	
frequency $\left(\mathrm{min}^{-1}\right)$	$\mathrm{A} / \mathrm{O}=0.33$	$\mathrm{~A} / \mathrm{O}=1.0$	$\mathrm{~A} / \mathrm{O}=0.33$	$\mathrm{~A} / \mathrm{O}=1.0$
17	22	20	32	28
24	-	-	40	30
32	28	34	42	32
48	28	36	42	30
63	26	34	32	26
77	22	28	21	18
91	18	24	-	16
106	14	20	-	-
120	-	16	-	-
133				

Table 11.2
Thorium concentration profile along the column height (Chap. 7.2)

	Extracti phase)	(M in Aq.	Reextraction (M in Org. phase)	
Continuous phase	*organic	aqueous	organic	*aqueous
Frequency (min^{-1})	32	32	32	48
$\mathrm{U}_{\mathrm{a}}(1 / \mathrm{h})$	8.1	6.1	14.2	15.3
$U_{0}(1 / \mathrm{h})$	24.2	18.2	13.8	15.1
Column height $\mathrm{h}=1$ (m)	0.0043	0.0002	0.0022	0.0103
2	0.0113	0.0003	0.0007	0.0010
2.24		0.0003		0.0009
3	0.0275		0.0006	
3.24	0.0279	0.0036	0.0005	0.0004
4.24	0.0815	0.0395	0.0004	0.0003
Aqueous inlet (M)	0.397	0.397	-	-
Organic inlet (M)	-	-	0.116	0.0983
Aqueous outlet (M)	0.0022	0.0003	0.110	0.0955
Organic outlet (M)	0.131	0.129	0.0004	0.0003
Error of material				
Balance (\%)	0.8	3.4	2.8	1.9
Thoriumloss (\%)	0.5	0.08	0.3	0.3

[^2]Table 11.3
Profiles of thorium, uranium, and nitric acid concentration along the column height in the coextraction process with acid feed solution (mol/1 in organic phase)

	thorium	uranium	nitric acid
$\mathrm{h}=1$	0.00245	0.00003	0.495
Extraction 2	0.0192	0.00004	0.405
Section 3	0.131	0.0088	0.234
Scrub 3.24	0.153	0.0115	0.188
Section 4.24	0.143	0.0115	0.125
Feed	0.800	0.0796	1.0
Scrub	-	-	0.1
Salting agent	-	- .	13
Organic outlet	0.114	0.0114	0.084
Aqueous outlet	0.00035	0.00002	1.48
Error of material balance (\%)	1.4	2.4	1.1
\% Loss	0.1	0.06	

Organic continuous operation, $f=63\left(\mathrm{~min}^{-1}\right), U_{f}=3.5(1 / \mathrm{h})$, $U_{S}=3.55(1 / h), U_{S a}=0.74(1 / \mathrm{h}), U_{O}=24.2(1 / \mathrm{h})$

Table 11.4
Profiles of thorium, uranium, and nitric acid concentration along the column height in the co-extraction process with acid deficient feed solution (mol/l in organic phase)

	thorium	uranium	nitric acid
$h=1$	0.0124	0.00004	0.505
Extraction 2	0.064	0.00016	0.218
Section 3	0.156	0.0173	0.083
Scrub 3.24	0.151	0.0116	0.083
Section 4.24	0.135	0.0116	0.11
Feed	0.805	0.0810	-0.143
Scrub	-	-	1.0
Salting agent	-	-	13
Organic outlet	0.114	0.0115	0.128
Aqueous outlet	0.0018	0.00003	1.70
Error of material balance (\%)	2.4	2.6	2.6
\% loss	0.5	0.1	-

Organic continuous operation, $f=63\left(\mathrm{~min}^{-1}\right), U_{f}=3.5(1 / \mathrm{h})$, $U_{S}=3.46(1 / \mathrm{h}), U_{s a}=1.02(1 / \mathrm{h}), U_{O}=24(1 / \mathrm{h})$

Table 11.5
Profiles of thorium, uranium, and nitric acid concentration along the column height in the co-stripping process (mol/l in aqueous phase)

	thorium	uranium	nitric acid
h $=1$ (m)	0.0124	0.0255	0.0135
	2	0.0006	0.00387
	0.24	0.0005	0.00305

Aqueous continuous operation, $f=77\left(\min ^{-1}\right), U_{f}=13.1(1 / \mathrm{h})$, $U_{S t}=10.7(1 / \mathrm{h})$

Table 11.6
Profiles of thorium, uranium, and nitric acid concentration along the column height in the partitioning process (mol/l in aqueous phase)

	thorium	uranium	nitric acid	
U-Scrub	$h=1$	0.214	0.00096	0.183
Section	2	0.218	0.00264	0.18
Th strip	2.24	0.202	0.00438	0.148
Section	3.24	0.0202	0.00636	0.013
	4.24	0.0005	0.00836	0.01
Organic feed	0.111	0.0114	0.088	
Th strip		0.00008	0.0091	0.01
Organic outlet	0.185	0.00051	0.163	
Aqueous outlet		0.05	1.1	1.3

Aqueous continuous operation, $f=77\left(\mathrm{~min}^{-1}\right), \mathrm{U}_{\mathrm{f}}=13.2(1 / \mathrm{h})$, $U_{S t}=7.91(1 / \mathrm{h}), U_{S C}=2.73(1 / \mathrm{h})$

Fig. 11.7: MCCABE-THIELE diagram for thorium in extraction (acid feed solution)

Fig. 11.8: MCCABE-THIELE diagram for thorium in extraction (acid deficient feed solution)

Nomenclature

A: Specific contact surface area $\left(\mathrm{cm}^{2} / \mathrm{cm}^{3}\right)$
A/O: Aqueous to organic flow rate ratio
a:
C: Tracer concentration (mg/l)
$C(\theta): \quad$ Concentration at exit of a system at time $\theta(\mathrm{mg} / \mathrm{l})$
$C_{0}: \quad$ Orifice coefficient
D: Column diameter (m)
D_{V} :
d: Hole diameter (m)
E: Longitudinal eddy diffusivity ($\mathrm{m}^{2} / \mathrm{h}$)
F: Constant
$F(\theta): \quad$ Fraction of material in outflow at time θ
f: Pulse frequency (cycle/min)
f_{H} : Transition frequency (cycles/min)
G: Constant
HETS: Height Equivalent Theoretical Stage (cm)
HTU: Height of a Transfer Unit (cm)
$\mathrm{h}: \quad$ Column height (m)
K: Constant
K_{X} : Overall mass-transfer coefficient based on aqueous phase (m / h)

L: Length of the column (m)
1: Plate spacing (m)
NTU: Number of Transfer Units
R: Flow rate ratio to flooding flow rate
Q: Quantity of tracer material injected
$T: \quad U \theta / V_{m}$
t: Plate thickness (m)
U: Volumetric flow rate ($1 / \mathrm{h}$)

V : \quad Superficial flow velocity (m / h)
V_{m} : Volume of a continuous flow system
$V_{0}: \quad \mathrm{fa} / \varepsilon(\mathrm{m} / \mathrm{h})$
x: \quad Solute concentration in aqueous phase (mol/1)
Y: Solute concentration in organic phase (mol/1)
$\gamma: \quad$ Interfacial tension ($\mathrm{kg} / \mathrm{hr}^{2}$)
ع: Free area
η : Holdup fraction of dispersed phase
$\theta: \quad$ Time intervals
$\mu: \quad$ Viscosity $(\mathrm{kg} / \mathrm{m} * \mathrm{~h})$
$\Delta \rho:$

Subscription
aq: aqueous phase
c: continuous phase
d: dispersed phase
e: equilibrium
f: feed
OC: Overall based on the continuous phase
org: organic phase
sa: salting agent
sc: scrub
st: strip

Literature cited

(1) E. Merz

Wiederaufarbeitung von Kernbrenn- und Bratstoffen KFA-ICT-IB-418/77, S. 12
(2) R.C. Dahlberg, K. Asmussen, D. Lee, L. Brooks, and R.K. Lane

Nuclear Engineering and Design,Vol. 26, 1974, pp. 58
(3) T.D. Gulden, C.L. Smith, P.P. Harmon, and W.W. Hudritch Nuclear Technology, Vol. 16, 1972, pp. 101
(4) M.J. Bradley and L.M. Ferris

I\&EC, Vol. 53. 1961, pp. 279
(5)
R. Böhnert, G. Kaiser, and E. Merz

Advances in chemistry, ser. 133
Chemical Reaction Engineering II. 1974, pp. 25
(6) R.H. Rainey and J.G. Moore

ORNL-3155, 1962
(7) F.G. Bodewig

Jahres-Tätigkeitsbericht fur den Zeitraum vom

1. Juli 1973 bis 30. Juni 1976, ICT, KFA Jülich,
S. 42
(8) A.T. Gresky, M.R. Bennett, S.S. Brandt, W.T. McDuffee, and J.E. Savolainen

ORNL-1367 (rev) , 1952
(9) A.D. Ryon and R.S. Lowrie

ORNL-3732, 1965
(10) F.R. Bruce, E.M. Shank, R.E. Brooksbank, J.R. Parrott, and G.S. Sadowski

Proceedings of the second United Nations International Conference on the Peaceful Uses of Atomic Energy 17 , 49. 1958
(11)
S.M. Stoller and R.B. Richards Reactor Handbook, vol. II Fuel Reprocessing, 1969, pp. 219
E. Zimmer and H. Ringel

Chemie-Ing. Techn. 47 /Jahrg. Nr. 17, 1975, S. 710
L. Küchler, L. Schäfer, and B. Wojtech Kerntechnik, 13, 1971, S. 225
L. Küchler, L. Schäfer, and B. Wojtech Kerntechnik, 13, 1971, S. 319
L.D. Smoot, B.W. Mar, and A.L. Babb I\&EC, Vol. 51, 1959, pp. 1005
G.A. Schmel and A.I. Babb I\&EC, PDD, Vol. 2, 1963, pp. 38
R.L. Bell and A.L. Babb I\&EC, PDD, Vol. 8, 1969, pp. 392
B.W. Mar and A.I. Babb I\&EC, Vol. 51. 1959, pp. 1011
L.D. Smoot and A.L. Babb I\&EC Fundamentals, Vol. 1, 1962, pp. 93
J.D. Thornton

British Chemical Engineering, May 1958, pp. 247
R.G. Geier and L.W. Brown

BNWL-2186 Pt 1 UC-10, Jan. 1977
W. Johannisbauer

Jül-1073-CT, KFA Jülich GmbH, 1974
A.T. Gresky

ORNL-1367, 1952
J. Klitgaard ORNL-TM-1256, 1965
(25) A.A. Kishbaugh DP-841, 1963
(26)
(28) P.V. Danckwerts

Chemical Engineering and Science Vol. 2, 1953, pp. 1
(29) Octave Levenspiel and W.K. Smith Chemical Engineering Science, Vol. 2, 1953, 227
(30) T.H. Siddall

DP-181, 1956
A.D. Ryon

ORNL-3045, 1961
J.W. Codding, W.O. Haas, Jr., and F.K. Heumann I\&EC, Vol. 50, 1958, pp. 145

Thorium Utilization program GA-A 13593, UC-77, pp. 6-1, 1975
E. Merck AG Darmstadt Bestimmungsmethoden mit Titriplex R.H. Rainey, and J.T. Roberts TID-7583, 1959
R.E. Blanco, L.M. Ferris, and D.E. Ferguson ORNL-3219, 1962

[^0]: Eig. 6.9: Holdup distribution in the organic continuous column $(A / O=0.33, \mathrm{E}=63)$

[^1]: Fig. 6.13: Holdup distribution in the organic continuous column
 $(A / O=1.0, f=63)$

[^2]: *The concentrations are estimated by material balance

