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with and without Magnetic Bias Fields for Magnetic Compression 

Experiments, 

by 

H. Beerwald, P. Bogen, T. El-Khalafawy, H. Fay, E. Hintz 

* and H. Kever 

Institut für Plasmaphysik der Kernforschungsanlage Jülich des 

Landes Nordrhein-Westfalen e.V. JÜlich/Germany 

1. Introduction 

For the compression of a cylindrical plasma by fast rising axial 

magnetic fields, the initial state of this plasma is of critical 

importance (1). Therefore experiments with a preheating dis-

charge for the production of an initial plasma with known and 

reproducible properties were started at this laboratory simul-

taneously with the first experiments on the compression of a 

weakly preionized deuterium gas. 

An electrodeless ring discharge was chosen. The absence of elec-

trodes makes a high degree of purity of the plasma possible. 

Kolb's experience with a preheating discharge for magnetic com-

*Paper presented at the Conference on Plasma Physics and Con­
trolled Nuclear Fusion Research, Salzburg 1961. 
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pression experiments (2) confirmed this conception and gave fur­

ther impulse to this work. 

Early experiments were made with a RF-transmitter as current 

generator, in pulsed as weIl as in stationary operation. Due 

to the low inductance of the compression coil considerable 

difficulties are met in coupling the RF power to the discharge~ 

The maximum available power is limited to some hundred kilowatts. 

By discharging a low inductance condenser on the compression 

coil a damped RF pulse with apower of 100 M Watt is easily 

obtained. To avoid prefiring of the main condenser bank, the 

voltage of the coil must be lirnited. With the spark gaps used 

at this laboratory the maximum permissible voltage at the coil 

was about 5 kV. This voltage, however, is sufficient to start 

an electrodeless ring discharge in hydrogen. 

Investigations on this electrodeless ring discharge were made 

with and without a steady magnetic bias field in a wide pres­

sure range. Preliminary results, concerning the breakdown of 

the gas, the formation of a highly ionized plasma, and the sub­

sequent decay of the plasma dtie to end losses and recombination 

are reported in this paper. 



2. Diagnostic Methods. 

For the formation and the decay of the plasma electron tempera-

ture and electron density are of main interest. The appropriate 

diagnostic method for the measurement of these quantities de-
~t 

pends on the range of temperatures and densities expected. 

Between 1010 - 1013 electrons/cm3 electron density and density 

changes were measured with an 8,5 mm microwave interferometer(3). 

Above 1015 electrons/cm3 the electron density was determined, 

by Stark broadening of Hß • The profile of Hß is weIl known from 

theoretical (4) and experimental work (5). Ne can be determined 

experimentally from the half width of this line. This half width 

can be obtained by measuring the intensity as a function of time 

for various distances from the line centre, at consecutive dis-

charges. 

Above 2 eV the electron temperature was determined by the rela-

tive intensities of C 11 (4267 A) and C 111 (2297 A) spectral 

lines, as described elsewhere (6). 

Below 2 eV an estimate of the electron temperature can be ob-

tained at the intensity maximum of Hß , if the plasma is not be-
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ing compressed. 

Magnetic probe measurements give additional information on the 

heating mechanism and on the homogeneity of the plasma. From 

measured magnetic field distributions one gets the skindepth 
I:) 

and the magnetic pressure sradient, the electron temperature 

and the particle density can be derived therefrom. 

3. Experimental Arrangement. 

A single turn, cylindrical compression coil of 40 mm inner dia-

meter and 150 mm length is used both for the generation of the 

alternating magnetic field and of the steady magnetic field. 

The dis charge tube of 2 mm wall thickness and 600 mm length is 

closely fitted to the coil. 

A diagram of the electric circuit is shown in fig.1. The cur-

rent generator for the steady magnetic field i8 an artificial 

delay line, terminated by its im~edance, which produces a near-

ly rectangular current pulse. The duration of the pulse is about 

100/usec, the risetime 4/usec and the maximum current 35 000 A, 

the maximum B-field correspondingly 3 000 Gauss. By discharging 

C1 an oscillating magnetic field with a maximum amplitude of 
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-1 5 000 Gauss, an oscillation frequency of goo kc sec and a 

damping constant of 2.6 j usec can be produced. 

4. Results. 

In an electrodeless ring discharge the electrons are moving in 

crossed electric and magnetic fields, in contrast to many other 

types of dischargcs. This strongly influences ionization growth, 

in particular at low pressures. AssuminC;\>e < "c (Ve = electron-
\ 

atom collision frequency,~ = electron cylotron frequency) and 

w« Vt' (w = resonance frequency of the dtscharge circuit), 

the energy transfer to t11e eleetrons ean bc caIeuIated for times 

of the order ( 7 ) . 

Assuming a sinusoidal I:lagnetic fieId, two time intervals can 

be distinguished 

1 ) 
1 

)Je 

1 
B 

dB > 1 
dt 2) 1 

B 
dB 
dt < 1 

Case (1): Tl1e electron obtains a maximum velocity of about 

• 11 
, at a time t ~ 2 . w,. - ~ m .. where 

W c = 211 Vc • The corresponding energy of the electron is 

1 
E ~ --=ro U (eV), where U is the vol tage at the coil. Prom this 

relation one gets an esttmate for maximum ionization growth due 
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to this mechanism 

U 
30 U. ' 

1 

where neo is the initial electron density and Ui the ionization 

energy. 

ease (2): Two cases can be distinguished: 

a) W c (T» wp ; wp= plasma frequency 

T = time since the start of the discharge. 

The maximum velocity is 2 • ~, which means that the electron 

energy can exceed the ionization enerey only for times of the 

order 10-8 sec in the experiment described above . 

. 
The electron velocity tends to ~ r t 

c
2 

rvE· t. In contrast to 

the other cases, the velocity increases linearly with time. 

Ionization can therefore proceed as long as the E-field is high 

enough. 

The main conclusionfrom these results is that a good preioniza-

tion of the gas, resulting in a high initial electron density 

and plasma frequency, is essential for the fast growth of ioni-

zation. 
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For the bre.akdown of the gas wi th a steady magnetic 'bias field 

BsteadY the sign and the magnitude of the ratio K = B ~ are of 
pulsed 

importance. 

In order to obtain favourable conditions for breakdown in the 

first halfcycle, it is necessary 

1) to choose the negative sign for K, 

2) to choose K smaJ.ler than 1, because~ stays small for K ~ 1 • 

A rapid ionization will not oecur in either of the eases (2a), 

(2b) • 

This ean be eonfirmed by measurements. Fig.2 shows oseilloseope 

traees of the mierowave signal for two typieal eases at 50/u D2 • 

ease (a): K = - 1/2 10 -1 
WjO = 10 sec • 

About 0.1 /usee after the rnaxiraum of Ee the eyelotron frequency 

of the electrons becomes sr:laller than the plasma frequency and 

a short time later the magnetic fieId goes through zero. In this 

time interval there should be a rapid increase in electron den-

sity. This is in good agreement with the experimental results. 

Within 2 • 10-7sec the electron density increases by a factor of 

100. 



case (b): K = 0. 
1 Ö -1 

Wp «10 . sec • 

This picture shows the importance of a high initial electron 

density for the breakduwn of the gas. The first two half cycles 

of the discharge are used to build up an electron density of 

about 5 • 1010 - 10 11 cm-3 , which in the other case exists al-

ready at the start of the discharge. At the following fourth 

voltage maximum the gas breaks down. 

2) Development of the plasma after breakdown. 

Most of the measurements have been made at an initial pressure 

of 230ju H2 without a magnetic bias field, this being the most 

interesting case for present compression experiments at this 

laboratory. It could be shown, however, that with other inte-

resting sets of initial parameters the maximum electron tempe-

rature and ionization degree in the plasma are not essentially 

different. 

Fig.3 shows photomultiplier traces of C 11 and C 111 lines and 

the temporal development of the electron temperature, derived 

from their relative intensities at 230jU H2 • 

The plotted curve gives a minimum value of T • The true electron e 
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temperature is probably higher due to incomplete equilibrium 

and nonuniform distribution of the electron temperature. 

Magnetic field measurements can give information on the homoge-

neity of the plasma. Fig.4 shows the internal and external field 

at 230/u and at 120/U D
2

• The magnetic field signals at these 

two pressures are very similar and show clearly that during the 

third current half cycle internal and external fields are of 

opposite sign, with high magnetic field gradients in between. 

These are produced by strong currents giving a sudden increase 

of electron temperatureo 

Fig.5 shows a set of magnetic field distributions during the 

interdiffusion and heating phase in the third halfcycle and 

the following more stationary phase at 120/u D
2

0 From fig.5e 

one obtains the conductivity of the plasma 2.2/usec after the 

start of the discharge. ~he electron temperature derived from 

the conductivity is about 3 eV, at least in the boundary zone. 

Because the electron-ion collision frequency at these densities 

. 1 8 -1 
1S of the order ° sec ,the ion temperature should be appro-

ximately equal to the electron temperature. Assuming that the 

plasma temperature near the axis is much lower than 3 eV, a 

pressure front should travel towards the axis with a velo city 
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of about 2 em//usee. After 1/usec the Llagnetic field distribution 

should then clearly show a displacecent of the plasma boundary. 

This displacement is not observed. 

Smear camera pictures likewise s~ow that in this time interval 

velocity changes of the plasma boundary are negligible. There-

fore inertial effects can be neglected and the external magne-

tic pressure is balanced by the kinetic pressure. Assuming the 

particle density to be 10 16 particles per cc, one derives a 

plasma tenperature of about 18 000 °K fig. 5g. 

At 230/u H2 the electron density was measured by Stark broade-

ning of Hß . Fig.6 shows a photouultiplier trace at the centre 

of Hß and at~~ = 5A. The half width of Hß and the calculated 

electron density as a function of time is shown in fig.7. 

3/usec after the start of the discharge a half width of 12 A 

was measured, which corres]Jonds to an electron density of 

16 -3 1.4 ·10 cm • From streak camera pictures the maximum volUt-ne 

compression was estimated to be smaller than 2:1. Therefore 

the degre8 of ionization at that time is higher than 50%, 

probably near 100%. 

The percentage of carbon in the "pure" hydrogen plasma was ob-
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tained by comparing the photomultiplier traces of C 11 and 

C 111 lines in initially pure hydrogen and in H2 + 

The earbon line intensities in the latter ease are a factor of 

three higher. The concentration of carbon in the plasma was 

then estimated to be 0.02%. For oxygen a value of the same or-

der of maBnitude was obtained. The impurity degree was not con-

stant but always below a value of 0.05%. 

Both streak camera and magnetic field measurements indicate 

that the plasma is fairIy uniformly distributed after about 

5/usec. With the asswlption that at this time the degree of 

ionization is above 50% one would expect a maximum of Rß after 

some time. Fig.8 shows thc intcncity of Hß as a function of 

time at an initial pressure of 230/u. The maximum appears after 

about 11/usec, indicating a temperature of about 13 OOOoK 

at this time. 

Further investigations on the eleetrodeless ring discharge were 

made at 60/u and 500/u without superimposed steady magnetic 

field and at 230/u with steady magnetic fields oi' various ampIi-

tudes and a field direction opposite to the pulsed field during 

the first haIf-cycle (8). 

The neasured I:laximum electron temperatures are cOI:lpiIed in the 
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following table: 

= 50 230 500 230 

= o o o 1 200 2 400 Gauss 

Te = 27 000 22 000 16 000 32 000 27 000 °K 

Hß intensity and magnetic field measurements show in all cases 

that the electron temperature is higher than 13 OOOoK at the 

time when plasma and ~agnetic field are nearly homogeneously 

distributed. However with a superimposed steady magnetic field 

it takes much more time to re ach this phase. 

The time needed to obtain a reasonably uniform radial distri bu-

tion of plasma and magnetic field, must be compared with the 

f":'--/ i characteristic time for end losses ~v' where v is the sound 

velocity in the plasma and j the length of the coil. If these 

two times are comparable then the particle density differs appre-

ciably from the initial particle density and should be nonuni-

form along the axis. This is demonstrated by fig.7 which shows 

the changes in electron density due to end losses. 

Experiments also show that end losses are influenced by the pre-

sence of an internal field. To fix the initial conditions for a 

magnetic compression experiment, the particle density for each 
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set of initial conditions therefore mustbe measured seperate-

ly at the appropriate time. 
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To Main Condenser Bank 
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Fig.l 
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0) 

Timf! scale O,5f1secldiv. 

Fig.6 HiJ line intt?nsity in tht? lint? cen tre (0) 
and al L'lA= 5A (b). 
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