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Density Distributions from Radiation Measurents During the Fast 

Magnetie Compression of a Plasma. 

by 

* P. Bogen and E. Hintz 

Institut für Plasmaphysik, Kernforsehungsanlage Jülieh/Germany 

I. Introduetion, 

For the fast magnetie eompression of a deuterium plasma, as 

deseri bed in another pa1per of this eonferenee, (1 ), the eompres-

sion ratio and end losses are of high interest. For the deter-

mination of these quantities the radial density distribution 

must be known as a funetion of time. 

Present theoretieal ealeulations, eoneerned with the fast aom-

pression of plasma with parallel or reverse maßnetie bias field 

are in need of experimental data, whieh also ean be taken from 

density and ~ntensity distributions. 

This information ean partly be obtained from smear eamera pie-

001 



2 

tures. For this purpose the film density must be transformed 

into light intensity. The interpretation of the intensity dis­

tribution requires information on the composition of plasma ra­

diation and on the dependence of the intensity on plasma densi­

ty and temperature. In some cases the density distributions can 

be derived from the observed intensity. 

11. Deteruination of densities from intensity measurements. 

The observed radiation may be composed of 

1. Impurity radiation 

2 e :i (J,t:L on 

3. Free-bound radiation 

4. Free-free radiation 

The contribution of the impurity radiation to the observed 

lifoht intensity was determined experimentally, because a theore­

tical calculation was believed to be impossible. For this pur­

pose pure hydrogen was mixed with methane or oxygen. 

From the increase of the intensity of C or 0 spectral lines as 

functions of the added amount of impurity the concentration of 

C and 0 in the "pure" hydrogen plasma can be determined. The 
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contribution of impurities to the total visible radiation was 

estimated in a similar way. 

The line radiation intensity is given by 

I = 1 
-W h .y N.N 

l e 

An m = transition probability, Ni = ion density, 

T = electron temperature, Ne = electron density, 

n = quantum number of the upper level, 

Un = ionization energy from the upper level, 

the free-bound radiation intensity by 

I .. C • J gfb N'i Ne [.i ;rexp (U /K1r)1 exp(.oohV/KT)dv 
~ 41- n J 

gfb = free bound Gaunt faetor, C = 6,36 • 10-47 egs units. 

The free-free radiation intensity by 

exp ( -h v /KT) d I( 

These equations show that the intensities of different kinds of 

hydrogen radiation are proportional to Ni Ne' but they depend 

on the temperature in a different way. In all eases the exponen-

tial is elose to one if T is higher than 10 eV. Furthermore, at 

these temperatures the intensity of free-free radiation is 
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higher than that of the free-bound and line radiations together. 

Therefore, with Te > 10 eV and Ni = Ne one gets 

As Ni is only weakly dependent on T the assumption that the tem-

perature aeross the diameter of the plasma is nearly eonstant, 

ean often be used for the quantitative interpretation of smear 

eamera'pictures. 

As will be shown later, this assumption is not correct in all 

cases. At low temperatures (1-10 eV) a simple test can be made 

b,y phot phing Lhe dis e one L in tbe 1 t be en 

:5 700 A 6 400 A and another time in the light between 5 100 A 

and 6 400 A. Caused by hydrogen line radiation, the region be-

tween 3 700 and 5 100 A is very sensitive to temperature ehan-

ges. If no strong temperature gradient exists, the pictures 

must be identieal in both spectral regions. 

111. Methods of measurement. 

The smear eamera pictures were taken from the discharge with 

a Beckmann 339b streak eamera. A slit width of 0,15 mm was cho-

sen, giving a time resolution of 2°10-8 sec at 2 600 r.p.s. 
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Observations have been made both side on and end on. Intensity 

distributions taken from side on pictures can be transformed in­

to radial distributions .in the case of rotational symmetry by 

Abel 's integral equation. As this symmetry is not always com­

pletely given, the interpretation of results has to be done 

with care. 

End on pictures give directly the intensity distribution I (r). 

But this intensity is integrated over inhomogeneous zones pa~ 

rallel to the axis of the plasma cylinder. The plasma region 

not focused gives a broadening of the observed diameter. 

Because both side on and end on observations have their advan­

tages and disadvantages, in one case the plasma was photogra­

phed by both methods under identical conditions. Unfortunately, 

at lower densities side on observations were impossible because 

the intensity was not high enough. 

The standardization of the films was performedby a Pt-filter 

at the slit of a quartz spectrograph. As light source, a spark 

with a duration of about O.2/usec was used. This way, the error 

cause.d by the Schwarzschild exponent was made as low as pos­

sible. The standardization could be obtained for all wavelengths 
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between 3 700 and 6 400 A. But the error in the intensity dis­

tribution caused by neglecting wavelength dependenee was lower 

than 10%, if the standardization at 5000 .A was taken. 

The intensity distributions obtained from the densitometer eur­

ves were plotted in a logarithmie seale. If the numbers on the 

seale are devided by two, the density distributions are obtained. 

At low film densities errors must be expected from stray~light, 

eaused by the eamer~ by low temperature plasma in front of the 

high temperature zone, and by light from the hot quartz tube. 

This effects t~at the measured i ensity differences are Jowcr 

than in reality. 

IV. Results. 

The observed impuri.ty radiation belongs to oxygen and carbon. 

Fig.1 shows the intensity of a C V speetral line as a function 

of the added amount of methane. Extrapolating the plot to zero 

intensity a coneentration of 0.02% carbon in the "pure" hydro­

gen is estimated. From the second eurve of this figure a eon­

tribution of carbon to the visib~e radiation below 10% was eon­

cluded. 
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In the same way the percentage of Qxygen in the "pure" hydrogen 

was estimated to be lower than 0.04%. Fig.2 shows the intensity 

of an ° V line in a discharge in "pure" hydrogen and in 230jU 

1 (H2 + 7bö 02)· In the second half cycle both amplitudes are 

equa~ whereas in the first half-cycle the amplitude in pure gas 

is much lower than with oxygen added. It folIows, that the im-

purities come mainly from the walls at the end of the first half-

cycle caused by interaction of plasma with the walls and not by 

high electric fields at the start of the first half-cycle 

As was shown, the plasma is of high purity in the first half~ 

10 cU1d Lt :10 S[3 ble -Go Lect LIW 1 rad ation .Ln 

the visible region. Therefore the observed radiation can belong 

only to hydrogen and is proportional Ni Neo 

In figs.3,4 end on and side on intensity distributions of the 

discharge without a magnetic bias field at a line density of 

2.2 • 1017jcm are given. 

The observed side on intensity distribution was transformed by 

Abel 's integral equation. From this figure the following con-

clusions can be drawn: 



1. The intensity distributions obtained end on and side on 

are not exaetly equal. The halfwidth observed side on has a 

ma.ximum deviation of 30% from the "end on" measurement. The 

plasma diameter ean be defined by the halfwidth of the den-

sity distribution. Then one obtains from side on observation 

a volume eompression of 1:20 at the first maximum eompres-

sion and of 1 :26 at the seeond maximum eompression. From 

end on observation, lower ratios are ealeulated. 

2. At the first eompression the intensity has its maximum in 

the eentre of the tube. But in the following expansion, the 

intensity in the eentre amounts to 60% 01' the maximum inten­

sity. Consequently the ratio of the maximum density to the 

density on the tube axis is 1 :0.75. 

3. The intensity side on deereases faster than the intensity 

end on whlch lllCL.Y oe caw:::ied by dens:L ty ations along thc 

axis. 

4. An upper limit for the end losses ean be obtained by eompa-

ring the line densities at the seeond eompression maximum 

and O.s/usee later. The integration aeross the radius must 

be interrupted at a eertain value to reduee the eontribution 

from stray light. The integration is terminated both times 

at the same value of r, to obtain the volume mass losses. 

Assuming that the temperature is only inereasing, irre obtain 

a mass loss lower than 30%. 

As mentioned before, at lower pressures only end on photographs 

were possible. In fig.5 tlle smear eamera pietures of the dis-

charge without a magnetie bias field at a line density of 
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1.1 • 1017jem and with parallel or antiparallel magnetic bias 

field at a line density of 8.8 . 10 16/cm are given. From these 

photographs the intensity distributions were evaluated (fig.6-8). 

The dynamie behaviour of the plasma without a ~agnetie bias 

field at a line density of 1.1 • 10 17/cm is similar to that at 

higher density. The average plasma diameter between compression 

and expansion deereases with increasing field as expeeted. But 

at the low line densities used in fig.6, even with deereasing 

field the diameter deereases. This pheno~enon ean be explained 

by assuming that tlle kinetie pressure deereases faster than the 

magnetie pressure (1). 

'1'11e jntc;rpretcdion of intensity distrilnltjo11E1 of phwmtl vrith 

strong internal magnetie field js diffieult, because~emperatu-

re inhomogeneities must be expeeted eaused by the low thermal 

conduetivity aeross the magnetic field. 

With a steady magnetie field parallel to the external field the 

intensity distribution has two maxima at the first eompression. 

But the pieture in the light between 5 100 ahd 6 400 A shows 

only one maximum. As mentioned before, ·the seeond maximum there-

fore is due to the low plasma temperature in that region. The 

intensity minimum in the axis ean not be understood by a den-

sity effeet, beeause the magnetie field measurements give a 

homogeneous distribution. But as shown by theoretieal ealeula­

tions (3) a strong inerease of the eleetron temperature is to 

be expeeted in the eentre eausing a minimum in the intensity 
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distribution. 

In the following oseillations, this intensity distribution is 

frozen in. This is to be expeeted due to the low field diffu­

sion. Probably the temperature distribution will likewise be 

unehanged due to low thermal eonduetivity. 

In the ease of antiparallel magnetie bias fields, there is a 

high magnetie field gradient eaused by high eurrents in the 

sheath between parallel and antiparallel fields. Beeause apart 

of the antiparallel field is dissipated in this layer j a mass 

flow results from the eentral part to the plasma boundary. As 

a eonsequenee there should be a hole in the density distribu­

tion at the eentre. In this ease the temperature differenees 

bo on c und intensi m,J,ximum scom to bo not 

very high (3). fl'he observed mirümum of t~le intensi ty in the cen~o 

tre ean then only be understood by a density minimum. 

As ean be seen from the following plots, the sheath broadens ra­

pidly, and the hole disappears after about three oseillations. 

At higher densities it ean be observed during the whole dis­

charge. 

v. Summary 

Sinee the plasma observed has a low impurity eoneentration, only 

the hydrogen radiation has to be taken into aeeount for the in­

terpretation of smear eamera pietures. This radiation is propor­

tional to Ni
2 • Without a steady magnetie field, it seems pos-
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sible to neglect the radial temperature inhomogeneity for the 

calculation of thc density distribution. 

Side on and end on photographs give not exactly the same results 

for the radius of the plasma and for the intensity as function 

of time. The differences are probably caused by inhomogeneities 

of the density along the axis. Side on observations have the 

disadvantage that for the calculation of the radial intensity 

distribution radial symmetry is necessary. In the case discussed 

above this seems to be allowed beeause no eruptions ete. were 

observed. 

In this way it aould be shown in one aase that particle losses 

are lower than 30%. At lower pressures end los ses seem to be 

higher. The plasma radius decreases even after the magnetic 

field has reaehed its maximum. This ean be understood by mass 

losses because a rapid temperature decrease is not expeeted by 

theory. Furthermore, in this ease an increase of the intensity 

should be observed which is not the case. 

For an aecurate caleulation of densities from intensities in the 

ease of strong trapped magnetie fields, a measurement of the ra­

dial temperature distribution is necessary. Without this only 

a rough estimate for a plasma with trapped antiparallel field 

is possible. A comparison with theoretical ealculations (3) 

shows that the intensi ty minirlum observed on the axis eannot be 

attributed to temperature differenees alone. A density minimum 

must be therefore in the centre. 
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Captions: 

Fig.1 Intensity of a CV spectral line and of the total visible 

radiation as a function of the added aDount of C at a 

pressure of 230/u H2 " 

sure 01' 230/Ll II 2 (0.) emd 230/Ll (11 2 + 1/760 O2 ) (b) .... 

Fig.3 Radial intensity distributions observed end on in D2 
17 -1 Line density N = 2.2 • 10 cm . 

Fig.4 Radial intensity distribution observcd side on in D2 

after transformation with Abel's integral equation. Line 

density N = 2.2 • 10 17 cm- 1 • 

Fig.5 Smear camera pictures without o.nd with a steady magnetic 

field of 2 500 Gauss. 

Fig.6 Radial intensity distributions observed end on in D2 • 

Line density 1.1 17 -1 . 10 cm • 

Fig.7 Radial intensity distributions observed end on in D2 • 

Line density 8.8 . 1016cm-1 B = + 2 500 Gauss. • Zo 

Fig.8 Radial intensity distribution observed end on in D2 " 

Line density 8.8 • 1016 cm- 1 • B
ZO 

= -2 500 Gauss. 
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Fig 7 Jntensityofa CV spectralline and of the total visible 
in tensity os 0 funcfion of the added amount of C at a 
pressure of 2301-' H 



a) 

Time 5ccr(e O)5jJsec/div. 

( x Jv1 a x im um in te n 5 i t Y ) 

Total visible 
radiation 

OJ! 2478 Ä 

Total visible 
radia tion 

O.r- 2478..4 

Fig.2 Total visible radiation and OV spectral line at 
apressure of 230p ~ (a) and 230f.l ~ +7/760 q (b), 
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after transformation with 
e densl = 2.2· 10 17 cm-7. 
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Fig.5 Smear camera pictures without and 
with 0 steady magnetic field of 2500 Gauss. 
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Fig.8 Radial intensily distribution observed in D2 . Line density 8.8·10'6cm-1 .Bz =-2500gauss. 
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