
330

Energie & Umwelt /  
Energy & Environment
Band/ Volume 330
ISBN 978-3-95806-160-6

En
er

gi
e 

& 
U

m
w

el
t

En
er

gy
 &

 E
nv

iro
nm

en
t

Th
e 

Ro
le

 o
f N

at
ur

al
 N

an
op

ar
tic

le
s 

fo
r P

ho
sp

ho
ru

s 
Bi

nd
in

g 
N

in
a 

G
ot

ts
el

ig

M
em

be
r o

f t
he

 H
el

m
ho

ltz
 A

ss
oc

ia
tio

n

Energie & Umwelt /  
Energy & Environment
Band/ Volume 330
ISBN 978-3-95806-160-6

The Role of Natural Nanoparticles and Colloids for  
Phosphorus Binding in Forested Headwater Catchments

Nina Gottselig



Schriften des Forschungszentrums Jülich
Reihe Energie & Umwelt / Energy & Environment Band / Volume 330





Forschungszentrum Jülich GmbH
Institute of Bio- and Geosciences
Agrosphere (IBG-3)

The Role of Natural Nanoparticles and Colloids 
for Phosphorus Binding in Forested Headwater 
Catchments

Nina Gottselig

Schriften des Forschungszentrums Jülich
Reihe Energie & Umwelt / Energy & Environment Band / Volume 330

ISSN 1866-1793  ISBN 978-3-95806-160-6



Bibliographic information published by the Deutsche Nationalbibliothek.
The Deutsche Nationalbibliothek lists this publication in the Deutsche 
Nationalbibliografie; detailed bibliographic data are available in the 
Internet at http://dnb.d-nb.de.

Publisher and Forschungszentrum Jülich GmbH
Distributor: Zentralbibliothek
 52425 Jülich
 Tel:  +49 2461 61-5368 
 Fax:  +49 2461 61-6103
 Email:  zb-publikation@fz-juelich.de
  www.fz-juelich.de/zb
 
Cover Design: Grafische Medien, Forschungszentrum Jülich GmbH

Printer: Grafische Medien, Forschungszentrum Jülich GmbH

Copyright: Forschungszentrum Jülich 2016

Schriften des Forschungszentrums Jülich
Reihe Energie & Umwelt / Energy & Environment, Band / Volume 330

D 82 (Diss. RWTH Aachen University, 2016)

ISSN 1866-1793
ISBN 978-3-95806-160-6

The complete volume is freely available on the Internet on the Jülicher Open Access Server (JuSER)  
at www.fz-juelich.de/zb/openaccess.

 This is an Open Access publication distributed under the terms of the Creative Commons Attribution License 4.0,  
 which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://creativecommons.org/licenses/by/4.0/


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“Don't gain the world and lose your soul, wisdom is better than silver or gold.” 

Robert 

  

I 
 





Abstract 

Stream waters reflect the natural load of nutrients and minerals cycled within or released from 
ecosystems; yet, little is known about natural colloids (1-1000 nm) and especially nanoparticles (NNP, 
1-100 nm) as nutrient carriers in the complex biogeochemical system of forested headwater 
catchments. NNP and colloids are recognized as ubiquitous components in natural aqueous phases 
and have the potential to encapsulate and bind nutrients, yet are often not included in the analysis of 
terrestrial nutrient cycling processes. The distribution of elements between the different 
physicochemical forms in solution is an important precursor to understand the mechanisms of 
ecosystem nutrition, especially for limiting nutrients like phosphorus (P). The size and composition of 
NNP and colloids in aqueous phases is therefore relevant for the transport of essential nutrients like 
P.  

Asymmetric Flow Field Flow Fractionation (AF4) was coupled online to a UV detector for 
approximation of organic C, a dynamic light scattering device for recording of the hydrodynamic 
particle diameter, a quadrupole inductively coupled plasma mass spectrometer with collision cell 
technology (ICP-MS) for elemental size-resolved detection and to an organic carbon detector (OCD) 
for high sensitive size-resolved organic carbon detection. Method development of hyphenated AF4 
was performed whereas online P detection represented a specific challenge due to the low 
concentrations in many natural waters. Methodological considerations on the oxidation efficiency of 
OCD, the capability of ICP-MS to detect organic C and on a setup to be able to determine the 
bioavailability of NNP and colloid bound P were assessed. Stream waters of forested headwater 
catchments were sampled as representative medium for mobile components in ecosystems. To 
assess a more universally valid role of NNP and colloids, an upscaling approach of the catchment 
based analysis was chosen from regional to national to continental scale.  

The aim of the regional sampling study was to characterize NNP and colloidal bound P of distinct 
hydromorphological areas in stream water of the Wüstebach catchment. The NNP and colloidal P 
could be fractionated in two size fractions (2-20 nm and >20-300 nm), which constituted up to 100% 
of the total river P discharge depending on hydromorphology. For the small size fraction, variations in 
P concentrations followed the Al variations; in addition, a high Fe presence in both fractions was 
accompanied by high P concentrations. Moreover, organic C was approximated together with P in 
the presence of Fe and Al, suggesting that Fe and Al are potential carriers of P and associated with 
organic matter. Tracing the origin of NNP and colloid fractions revealed mixed inputs from soil and 
vegetation of the catchment. The data enables the inputs and source regions of NNP and colloidal 
fractions to be traced and conceptually defined for the first time within a small river of a headwater 
catchment. 

For the national sampling campaign it was tested if the majority of P is bound to NNP in forest 
streams but that their size and composition varies for different forested headwater systems. Five 
forested sites, which differ in total P content, were sampled for stream water during base flow 
conditions and analyzed for NNP and colloidal fractions. Through the refined AF4 method combined 
with exploratory data analysis, the results showed that the NNP and colloids of all sites could be 
distinguished into three distinct fractions (approx. 1 nm-20 nm, >20 nm-60 nm, >60 nm-300 nm), yet 
the elemental concentrations in the fractions were not homogenously distributed. Exploratory data 
analysis showed that each fraction had unique elemental signatures with different preferential P 
binding partners. P was preferentially associated to Fe in the smallest size fraction, with increasing 
contribution of organic C associated P as the hydrodynamic diameter of the fractions increased. The 
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largest fraction was dominated by aluminosilicate minerals. The relative contribution of the NNP and 
colloidal fractions for ecosystem nutrient supply can be expected to rise as total P concentrations 
decline. Moreover, the stream water C to P ratio revealed that NNP and colloids are potentially 
capable of predicting the nutritional status of an ecosystem. The first flush effect is a potential major 
loss factor of nutrients bound to NNP and colloids but showed no significant effect on the identified 
fractions. The factors influencing NNP and colloid inputs to the stream were investigated in a first 
approach. 

On continental scale, a systematic variation with respect to size and composition of NNP and colloids 
across Europe was found. 96 stream water samples from 26 forested headwater catchments along 
two transects across Europe were simultaneously collected from base flow. Three fractions (approx. 
1 nm-20 nm, >20 nm-60 nm, >60 nm-300 nm) of NNP and colloids were identified. NNP and colloids 
contributed up to 100% to total element concentrations, indicating a variable but potentially 
significant contribution of particles for element transport across different geographic regions. Two 
types of distribution patterns were found: org C, Fe and Al showed linear distribution patterns among 
particle bound to total concentrations, whereas Si, Mn, P and Ca was independent of total 
concentrations. Within the fractions, element patterns were able to discriminate sites according to 
pH value. These analyses suggested a geographical divide of NNP and colloid bound element 
transport at 45° and 57° latitude in Europe, corresponding to a categorization of streams into pH 
classes. Hence, NNP and colloids are a relevant component of element cycles across Europe. Site 
specific ecosystem parameters also showed to have relevant impacts on the composition of NNP and 
colloid fractions with a clear effect of dominant tree type (coniferous) and mean annual 
temperature. 

NNP and colloids play an important role in forest stream waters for P transport and thus P cycling by 
binding up to 100% of total P present in the stream. Three fractions of NNP and colloids, each with 
unique composition patterns and variable P binding, are present throughout European forested 
headwaters. The fractions follow predictive element specific patterns and compositions on all scales, 
also allowing a first assessment based on their ecological relevance. This work enhances the 
understanding of NNP and colloids for P transport and facilitates their inclusion into terrestrial 
ecosystem cycling processes.  
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Kurzfassung 

Gewässer reflektieren die natürliche Nähr- und Mineralstofffracht, die innerhalb eines Ökosystems 
zirkuliert oder von ihm freigegeben wird, jedoch ist bisher wenig bekannt über natürliche Kolloide (1-
1000 nm) und besonders Nanopartikel (NNP, 1-100 nm) als Nährstoffträger in einem komplexen 
biogeochemischen System wie das eines bewaldeten Quellgebietes. NNP und Kolloide sind anerkannt 
als ubiquitäre Komponenten in natürlichen wässrigen Phasen und haben ein hohes Potential 
Nährstoffe zu binden und einzukapseln, dennoch sind sie oftmals nicht in die Betrachtung 
terrestrischer Nährstoffkreisläufe eingeschlossen. Die Verteilung eines Elements zwischen den 
verschiedenen physikochemischen Formen in Lösung ist eine wichtige Vorstufe um 
Ökosystemernährung zu verstehen, besonders für limitierende Nährstoffe wie Phosphor (P). Die 
Größe und Zusammensetzung von NNP und Kolloiden in wässrigen Lösungen ist daher relevant für 
den Transport von essentiellen Nährstoffen wie P. 

Asymmetrische Fluss Feld Fluss Fraktionierung (AF4) wurde an einen UV Detektor zur Abschätzung 
des organischen C Gehaltes, ein Gerät zur Messung der dynamischen Lichtstreuung zur Bestimmung 
des hydrodynamischen Durchmessers der Partikel, ein Quadrupol induktiv gekoppeltes Plasma 
Massenspektrometer mit Kollisionszellentechnologie (ICP-MS) zur Bestimmung von Größen-
spezifischen Elementgehalten und an einen organischen Kohlenstoff Detektor (OCD), zur hoch 
empfindlichen Bestimmung von organischem C, gekoppelt. Methodenentwicklung für gekoppelte AF4 
wurde zunächst durchgeführt, wobei P Detektion eine zentrale Rolle gespielt hat auf Grund der 
niedrigen Konzentrationen in vielen natürlichen Gewässern. Methodischen Überlegungen wurden 
angestellt über die Oxidationseffektivität des OCD, die Möglichkeiten organische C Konzentrationen 
mit ICP-MS zu bestimmen und über einen Aufbau zur Bestimmung der Bioverfügbarkeit von NNP und 
kolloidal gebundenem P. Bachläufe von bewaldeten Quellgebieten wurden beprobt als 
repräsentatives Medium für mobile Komponenten in Ökosystemen. Um eine universellere Validität 
der Ergebnisse zu erzielen wurde eine Hochskalierung in Bezug auf die Standorte durchgeführt von 
regionaler zu nationaler zu kontinentaler Skala. 

Das Ziel der regionalen Kampagne war es NNP und kolloidal gebundenen P von deutlich 
unterschiedlich ausgeprägten hydromorphologischen Bereichen des Wüstebachs zu charakterisieren. 
Der NNP und kolloidale P konnte in 2 Fraktionen getrennt werden (2-20 nm und <20-300 nm), welche 
bis zu 100% der Gesamtkonzentration von P im Bach ausgemacht haben in Abhängigkeit der 
Hydromorphologie. Für die kleinere Fraktion folgten P Variationen dem Verlauf des Al, zusätzlich 
bedingte aber auch eine hohe Fe Konzentration hohe P Gehalte. Des Weiteren wurde es angenähert, 
dass organischer C zusammen mit Fe und Al vorkommt, welches die Vermutung zulässt, dass Fe und 
Al potentielle Träger von P sind und mit organischem C assoziiert sind. Verschiedene Einflüsse vom 
umgebenden Boden und der Vegetation wurden festgestellt indem der Ursprung der NNP- und 
Kolloidfraktionen nachverfolgt wurde. Diese Daten ermöglichen zum ersten Mal, dass die Einflüsse 
und Quellregionen von NNP und Kolloidfraktionen einen bewaldeten Quellgebietes nachverfolgt und 
konzeptionell definiert werden können. 

Für die nationale Probennahme wurde getestet, ob der Großteil des P in Waldbächen an NNP 
gebunden ist, aber dass ihre Größe und Zusammensetzung für verschiedenen bewaldetet 
Quellgebiete variiert. Fünf bewaldete Oberläufe, die sich in ihrem P Gehalt unterscheiden, wurden 
während Basisabflusskonditionen für Bachwasser beprobt und auf NNP- und Kolloidfraktionen 
analysiert. Durch die weiterentwickelte AF4 Methode in Kombination mit explorativer Datenanalyse 
zeigten die Ergebnisse, dass die NNP und Kolloide aller Standorte in drei Fraktionen unterschieden 
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werden konnten (ca. 1 nm-20 nm, <20 nm-60 nm, <60 nm-300 nm), jedoch waren die 
Elementgehalte in den Fraktionen nicht homogen verteilt. Explorative Datenanalyse hat gezeigt, dass 
jede Fraktion einzigartige Elementsignaturen aufweist mit unterschiedlichen präferentiellen P 
Bindungspartnern. In der kleinsten Fraktion wurde P präferentiell an Fe assoziiert mit zunehmendem 
Beitrag von organischen C, wenn der hydrodynamischen Durchmesser der Fraktionen zugenommen 
hat. aluminosilikate Mineralien haben die größte Fraktion dominiert. Es kann angenommen werden, 
dass der relative Beitrag der NNP- und Kolloidfraktionen zur Ökosystemernährung zunimmt, wenn 
Gesamt-P Konzentrationen abnehmen. Zusätzlich hat das Verhältnis von C zu P gezeigt, dass NNP und 
Kolloide möglicherweise den Nährstoffstatus eines Ökosystems vorhersagen können. Der‚ first flush 
effect‘ als potentieller bedeutender Verlustfaktor für an NNP und Kolloide gebundene Nährstoffe 
zeigte keinen signifikanten Effekt für die identifizierten Fraktionen. In einem ersten Ansatz wurden 
zudem die Faktoren untersucht, die den Eintrag von NNP und Kolloiden in das Gewässer 
beeinflussen. 

Auf kontinentaler Skala gab es eine systematische Variation der Größen und Zusammensetzungen 
von NNP und Kolloiden in Europa. 96 Bachwasserproben von 26 bewaldeten Oberläufen entlang zwei 
Transekten in Europa wurden zeitgleich während Basisabflusskonditionen beprobt. Drei Fraktionen 
(ca. 1 nm-20 nm, <20 nm-60 nm, <60 nm-300 nm) von NNP und Kolloiden wurden identifiziert. NNP 
und Kolloide haben zu bis zu 100% der Gesamtelementgehalte beigetragen, welches einen variablen 
aber potentiell signifikanten Beitrag der Partikel für den Elementtransport in verschiedenen 
geographischen Regionen andeutet. Zwei unterschiedliche Verteilungsmuster wurden festgestellt: 
organischer C, Fe und Al haben einer lineare Abhängigkeit der NNP- und Kolloidkonzentrationen von 
der Gesamtkonzentration gezeigt, während Si, Mn, P und Ca unabhängig hiervon waren. Standorte 
konnten anhand ihres pH Wertes unterschiedlichen NNP- und Kolloidzusammensetzungen 
zugeordnet werden. Diese Analysen schlagen eine geographische Aufteilung in Europa bei 45° und 
57°N vor mit Hinblick auf den NNP und kolloidalen Elementtransport. Dies korrespondierte mit der 
Kategorisierung nach Bachwasser pH. NNP und Kolloide sind daher relevante Komponenten der 
Nährstoffzyklen in Europa, wobei auch Standort-spezifische Faktoren relevante Einflüsse auf die 
Zusammensetzung der Fraktionen gezeigt haben, insbesondere die vorherrschende Baumart 
(Konifere) und die mittlere Jahrestemperatur. 

NNP und Kolloide spielen eine zentrale Rolle für P Transport und daher auch für die P Rezyklierung in 
bewaldeten Quellgebieten bei bis zu 100% Bindung des Gesamt-P. Drei Fraktionen von NNP und 
Kolloiden sind in europäischen Bachwässern vorhanden, jede mit einer einzigartigen 
Zusammensetzung und variabler P Bindung. Die Fraktionen folgen vorhersagbaren und Element-
spezifischen Mustern und Zusammensetzungen auf allen Skalen, welches auch eine erste 
Abschätzung ihrer ökologischen Relevanz erlaubt. Diese Arbeit verstärkt das Verständnis von NNP 
und Kolloiden für P Transport und erleichtert ihre Einbeziehung in terrestrische Nährstoffkreisläufe. 
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I 
Introduction 

1.1 Phosphorus in terrestrial forested ecosystems1 

Phosphorus (P) is an essential nutrient for all living organisms because its inorganic form 

orthophosphate (PO4
3-) is a major component of biological molecules and processes. P is a key factor 

of cellular energy generation, storage and transport (ATP, ADP), of cell regulatory processes 

(phosphorylation), for the storage of genetic information (nucleotides in DNA and RNA) and as 

structural component of cell membranes (phospholipids). In turn, P most frequently limits biological 

productivity in terrestrial and aquatic ecosystems (Fent 2007a; Schindler 1977; Turner et al. 2005; 

Wild 1988). This impact of P is not an effect of limited presence but substantially an effect of the 

availability of P to plants and microorganisms. During ecosystem progression, easily available PO4
3- is 

depleted and in turn P is increasingly incorporated in sorbed or occluded forms. 

Next to their critical role with respect to the earth’s heat balance, the energy input from the sun and 

the state of the global climate, forested ecosystems critically link the earth’s water and nutrient 

cycles, making them vital components of the global ecosystem (Perry et al. 2008). Studying pristine 

forested ecosystems gives insight into the naturally occurring cycling of elements and compounds 

within a complex biogeochemical system, which is especially crucial to understand for limiting 

nutrients like P (Bol et al. under review). So far, little is yet known on the rates at which P depletion 

of forested ecosystems may occur, because hardly anything is known on the P fluxes that result in P 

losses from a forested ecosystem. 

1 Contains excerpts from:  
Bol R, Julich D, Brödlin D, Siemens J, Dippold MA, Spielvogel S, Zilla T, Mewes D, von Blanckenburg F, Puhlmann 
H, Holzmann S, Kaiser K, Weiler M, Amelung W, Lang F, Kuzyakov Y, Feger KH, Gottselig N, Klumpp E, Missong 
A, Winkelmann C, Uhlig D, Sohrt J, von Wilpert K, Wu B, Hagedorn F. Transport of Dissolved and Colloidal 
Phosphorus in Temperate Forests – An Almost Blind Spot in Ecosystem Research. Journal of Plant Nutrition and 
Soil Science, under review. 
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Figure 1.1: Phosphorus pools in soil and stream water and the processes determining the P addition to and 
release from the respective pools (adapted according to Dietz and Strock 2016; Wasserwirtschaftsamt Ansbach 
2015). 

Forests growing on juvenile substrates rely on P supply from primary minerals, such as apatite 

released from the parent material (Figure 1.1, Vitousek et al. 2010; Walker and Syers 1976). With 

progressing ecosystem and soil development, rocks and primary minerals become increasingly 

depleted as a direct source of P for the biota but at the same time mineral nutrients become 

increasingly incorporated into biomass. The P within the biomass reenters the cycling process at the 

end point of senescence, forming a litter layer on top of the soil above the organic layer. Through the 

organic matter accumulation during soil formation, an increasing portion of nutrients in a terrestrial 

ecosystem, including P, is organically bound (Darch et al. 2014; Egli et al. 2012; Walker and Syers 

1976). In a progressed ecosystem, organophosphorus compounds (PO4
3- bound to organic C through 
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ester bond) make up a considerable portion of total P in the ecosystem and thus P supply for 

organisms is largely based on these compounds. Despite this, the ecological role of the different 

organophosphorus compounds as well as their potential impact on resource partitioning remains 

largely unknown (Turner 2008). Next to organic P (Figure 1.1), further P species (Spivakov et al. 2009) 

develop during soil aging (Williams and Walker 1969) and undergo loss factors, limiting the biological 

productivity of the ecosystem. P can form reactive secondary minerals such as Ca-, Fe- or Al-

phosphates (Anderson 1988; Egli et al. 2007) or also be sorbed to aluminosilicate minerals or Al- or 

Fe-(hydr)oxides (Figure 1.1, Walker and Syers 1976). Soil P pools interact with the soil solution, 

achieve increased mobility and can therefore also be found in steam waters of the forested 

catchment.  

The network of streams and rivers flowing into the oceans drives the exchange between terrestrial 

ecosystems and the export of substances from the continents to the oceans (Dynesius and Nilsson 

1994). Environmental water samples include many different chemical species (Figure 1.1, Stumm and 

Morgan 1981), whereas the partitioning between these species controls elemental cycling, transport 

and loss processes (Stolpe et al. 2010). The composition of headwater stream samples reflects the 

mobility and availability of nutrients in terrestrial ecosystems. The distribution of the elements 

between the different binding forms is an important prerequisite for understanding the mechanisms 

of aquatic and terrestrial ecosystem nutrition (Benedetti et al. 1996; Hasselloev et al. 1999; Tipping 

and Hurley 1992; Wells and Goldberg 1991), especially for limiting nutrients like phosphorus (Jarvie 

et al. 2012). 

1.2 Natural nanoparticles and colloids 

Acquisition and cycling processes in stream waters and terrestrial ecosystems are understood to be 

driven by the operationally defined ‘dissolved fraction’ (<0.45 µm) of its constituents (Fent 2007a; 

Fent 2007b; Lampert and Sommer 1999a; Marschner and Kalbitz 2003 and references therein), yet 

environmental samples contain a wide variety of chemical species including hydrated ions, 

molecules, colloidal particles and coarse grains (Stumm and Morgan 1981). It has been widely 

recognized that colloids (1 nm-1 µm) are ubiquitous components of the ‘dissolved fraction’ 

(<0.45 µm) in natural aqueous phases and can comprise up to 100% of the elemental concentrations 

of metals and for nutrients such as P (Gottselig et al. 2014; Hart et al. 1993; Hill and Aplin 2001; Jarvie 

et al. 2012; Martin et al. 1995). Aquatic colloids are suspended particles in the aqueous solution 

which influence the partitioning of chemical species between dissolved and particulate phases. 
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Settling of the particles does not occur until exceeding the colloidal size range through aggregation 

processes (Figure 1.1).  

The majority of this colloidal material is derived from the weathering of igneous rocks or from plants 

and animals, which generate organic material and cellular debris (Beckett and Hart 1986). Colloids of 

stream water samples have the potential to act as predominant carriers of elements in ecosystems 

(Binkley et al. 2004; Filella et al. 2006; Gottselig et al. 2014; Liu et al. 2011; Qafoku 2010; Stolpe et al. 

2010; Wilkinson et al. 1997). As a subset of colloids, natural nanoparticles (NNP) are uniquely 

specified in the size range of 1 nm to 100 nm  due to their larger specific surface area and thus 

increased reactivity (Hartland et al. 2013; Qafoku 2010) in comparison to larger sized colloids 

(>100 nm-1000 nm). As demonstrated by Wigginton et al. (2007), the smaller the particle diameter 

the higher the steps of increasing reactivity become. This effect is especially profound for 

nanoparticles, where the change in reactivity further accelerates below 10 nm to 1 nm diameter, 

indicated by the turning point of the nanoparticulate curve (Figure 1.2). 

         

Figure 1.2: Generalized trend for size-dependent reactivity change of a material as the particle transitions from 
macroscopic (bulk-like) to atomic. Reactivity can increase or decrease depending on the material and the 
chemical reaction involved (from Wigginton et al. 2007). 

1.3 Phosphorus bound to natural nanoparticles and colloids 

Several studies have already shown that P in stream water is not only present as dissolved P 

compounds, but also bound in or on colloids in significant amounts (Hill and Aplin 2001; Jarvie et al. 

2012; Martin et al. 1995; Mayer and Jarrell 1995; Stolpe et al. 2010). Such fine P-carrying particles 

may occur both in soil solution (Jiang et al. 2015; Owens and Shipitalo 2006; Regelink et al. 2013) and 

in surface waters (Gottselig et al. 2014; Hasselloev et al. 1999; Stolpe et al. 2010) where they contain 

significant concentrations of transferred nutrients and are therefore also important for the 

availability of P in aqueous phases (Heathwaite and Dils 2000; Montalvo et al. 2015). 
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In a recent study it was found that P in forest stream waters is predominantly (up to 100%) occurring 

in NNP and colloidal forms (Gottselig et al. 2014), however with variations in size, composition and 

relative abundance of the particles. Due to the acidic conditions in forest soils, especially below 

coniferous forests, and thus stream water, a high adsorption of ions and molecules to particle 

surfaces is given (Crini and Badot 2010; Franco et al. 2009). Under acidic conditions, surfaces of metal 

(hydr)oxides are positively charged and thus acting as strong binding partners for negatively charged 

nutrients like P (Hasselloev and von der Kammer 2008; Richardson 1985)  and organic matter (Lyven 

et al. 2003) and therefore are also relevant for NNP and colloid formation. Aquatic NNP and colloids 

can be rich in minerals to which P associates or organic matter which contains significant amounts of 

organically bound P (Darch et al. 2014). All colloidal constituents are present either as these single 

components (minerals or organic) which can associate P species, or can form organo-mineral 

complexes (Figure 1.3, Celi et al. 2005; Klitzke and Lang 2007 and references therein; Ognalaga et al. 

1994). Additionally, organic matter stabilizes colloids (Ranville and Macalady 1997) so that they are 

less prone to aggregate to larger size ranges. First studies on the size resolved analysis of NNP and 

colloids (Andersson et al. 2006; Dahlqvist et al. 2004; Gottselig et al. 2014; Hasselloev et al. 1999; 

Lyven et al. 2003; Neubauer et al. 2013; Regelink et al. 2014; Regelink et al. 2011; Stolpe et al. 2010; 

Stolpe et al. 2005) show the importance of colloidal components such as minerals, metal oxides or 

organic molecules, which can form building block elements or structures (core structures) of these 

NNP and colloids. These components vary depending on the particle size. It is still disputed whether 

Fe and Al, both in ionic and oxide forms, are relevant especially for small NNP in the context of 

associated P transport (Francko and Heath 1982; Hasselloev and von der Kammer 2008; Jiang et al. 

2015; Leppard et al. 1988; Richardson 1985; Stolpe et al. 2005) or if organic matter transports P in 

the smallest size fraction (Lyven et al. 2003; Regelink et al. 2013; Regelink et al. 2011; Shafer et al. 

1997). Depending on the pH of the stream water, also Ca can be present in the colloids and 

associated to P in the form of Ca phosphates. In this case, Ca is enriched in the colloidal phase in 

comparison to larger suspended matter (Ran et al. 2000) and especially when surface waters drain 

carbonate-rich soils (Hill and Aplin 2001). 

To understand the influence of NNP and colloids on the transport, adsorption and availability of 

different elements, especially nutrients such as P, differentiating between building block elements or 

compounds that make up the core of the NNP and colloids versus elements or compounds that are 

associated with or sorbed to NNP or colloids can be useful (Andersson et al. 2006; Dahlqvist et al. 

2004; Hartland et al. 2013; Lyven et al. 2003). Building block elements/compounds can be metal 

oxides and/or hydroxides of Fe/Al/Mn, aluminosilicates or organic carbon (Hartland et al. 2013; 

Lyven et al. 2003; Regelink et al. 2011). Also Ca has been assigned as building block element 
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(Dahlqvist et al. 2004). Transported elements have been reported to be rare earth elements 

(Andersson et al. 2006), trace elements (Regelink et al. 2014) and nutrients such as P (Gottselig et al. 

2014; Regelink et al. 2014; Regelink et al. 2011; Stolpe et al. 2010). Nevertheless, also org C or metals 

can be associated to and transported by NNP and colloids in contrast to their function as building 

block elements/compounds. 

 

Figure 1.3: Adsorption of myo-inositol hexakisphosphate on a goethite surface at pH 4.5 (from Ognalaga et al. 
1994). 

Despite their important role in element binding, NNP and colloids are often not included in the 

analysis of terrestrial nutrient cycling processes (Fernández-Martínez et al. 2014; Vitousek 1982). The 

availability of nutrients associated to NNP and colloids may substantially vary in comparison to the 

availability of hydrated ions or organically bound P. Therefore, examining the significance of NNP and 

colloids as well as their composition as function of forest stream water pH on a large scale can 

provide insight into their ecological relevance. Further, developing an approach for estimating the 

proportion of total elemental concentrations in waters that are associated with NNP and colloids 

based on widely available data can facilitate the inclusion of NNP and colloids into assessments of 

nutrients. For essential nutrients like P, knowledge regarding primary adsorption or binding partners 

in the NNP and colloidal fraction help to estimate their physicochemical form in solution. 

1.4 The advantageous technique of Field Flow Fractionation (FFF) for 

particle analysis 

New technical developments aid to better understand the processes determining the availability of 

the constituents of the ‘dissolved fraction’ (<0.45 µm) by giving insights into the chemical 

configuration of nutrients in this fraction. Field Flow Fractionation (FFF; Giddings et al. 1976) is a 

frequently used method when aiming at the separation and characterization of colloids in aquatic 

systems (e.g von der Kammer et al. 2011). It is a flexible technique for nearly nondestructive 
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fractionation of environmental colloids and especially NNP samples (Gimbert et al. 2003) without the 

need of sample pretreatment, i.e. it is best suited to characterize the size distribution of NNP and 

colloids in the aqueous environment. FFF combines a large separation range (approx. 1 nm-1 µm) 

with the possibility of coupling various detection devices online (Giddings et al. 1976). In contrast to 

FFF, classical techniques to isolate NNP and colloids, such as filtration and centrifugation, include the 

risk of eliminating particles not specific to the given size due to unknown morphological 

heterogeneity of the natural particles. Membrane clogging occurs when filtering close to target size 

ranges of the analytes, which can result in a severe risk of underestimating NNP and colloidal 

concentrations (Zirkler et al. 2012). In addition, especially the application of flow-based FFF 

techniques allows a distinction between NNP and colloids and the elements and molecules below 

1 nm hydrodynamic diameter (see Chapter 2.1). 

Online coupled FFF of environmental aqueous colloids, including soil extracts, with emphasis on NNP 

and colloidal P are important in understanding the role of different size fractions for nutrient 

adsorption. Distinct analyses of environmental nanoparticles and colloids via FFF and online coupled 

detectors have been done for grassland soils (e.g. Henderson et al. 2012), agricultural sites (e.g. 

Regelink et al. 2014; Regelink et al. 2011), for soils such as podzol (Regelink et al. 2011) or peat (Jirsa 

et al. 2013) and for wetland runoff (Neubauer et al. 2013). Studies focusing primarily on waterways 

rather than on soil extracts and soil solution are much less prominent in literature due to the lower 

concentrations of elements within NNP and colloidal sizes. Streams partially influenced by human 

activities (Stolpe et al. 2010) as well as important studies on the application of FFF-ICP-MS on urban 

stream water NNP and colloids (Hasselloev et al. 1999; Lyven et al. 2003; Stolpe et al. 2005) and on 

forested stream water NNP and colloids (Andersson et al. 2006; Dahlqvist et al. 2004) are published. 

A common denominator of the stream water studies is a filtration at 0.45 µm prior to FFF 

fractionation potentially influencing the results (Zirkler et al. 2012). Further, P determination in the 

fractions alongside relevant carrier elements could previously only be achieved through high 

resolution ICP-MS. The latter studies show relevant methodological approaches and elemental data, 

yet the role of P binding to natural nanoparticles and colloids in forest stream waters analyzed 

through nondestructive FFF fractionation is still rarely investigated.  
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1.5 Aim and scope of the thesis 

The aim of this study was to elucidate the role of natural nanoparticles (NNP) and colloids for 

phosphorus binding and transport in stream waters as representative medium for mobile 

components in ecosystems. Despite technical developments which give insights into the chemical 

composition of the operationally defined ‘dissolved’ fraction (<0.45 µm), NNP and colloids, 

overlapping with the ‘dissolved’ fraction, are still largely neglected as ubiquitous components of this 

fraction. To allow a correct analysis of the availability of different P forms present in an ecosystem, 

which is especially relevant for limiting nutrients like P, the chemical composition and structure of 

the particles included in the operationally defined ‘dissolved’ fraction first have to be investigated. 

Further, it is necessary to identify if NNP and colloids are relevant nutrient carriers and if their 

composition is a variable of ecosystem specific parameters, which then in turn also influence the 

availability of NNP and colloid bound nutrients. Forested headwater catchments as complex 

biogeochemical systems nearly lacking anthropogenic influence were analyzed to reflect the 

naturally occurring nutrient binding of NNP and colloids. To assess a more universally valid role of 

NNP and colloids an upscaling approach with respect to the sampling site locations was chosen. At 

first a detailed analysis of a regional catchment was performed, followed by five catchments on a 

national scale and then by 26 catchments on the continental scale. Prior to catchment based analysis, 

method development of Asymmetric Flow Field Flow Fractionation (AF4), a specific type of FFF, 

coupled online to inductively coupled plasma mass spectrometry (ICP-MS) and to a high sensitive 

organic carbon detector (OCD) for elemental detection was performed. 

Method development (Chapter 4.1): Fractionation of NNP and colloids is dependent on the 

environmental origin of the sample and needs to be adapted accordingly. A suitable fractionation 

technique with AF4 coupled online to a quadrupole ICP-MS with collision cell technology was 

developed and refined for forested stream water samples. The NNP and colloid size range and 

composition was intentionally not disturbed through filtration close to target size ranges. The 

described method is applicable to routine analysis and detects low P concentrations through the use 

of the collision cell technology for ICP-MS. Further developments were pursued to also include 

precise organic carbon detection online to AF4. 

Regional scale study (Chapter 4.2): This study aimed at identifying NNP and colloidal bound P of 

distinct hydromorphological areas in a natural stream of the Wüstebach catchment. Particularly the 

stream points in the headwaters region are considered a source region of NNP and colloids. It was 

intended to trace the source regions of the NNP and colloidal fractions recorded at the outlet of the 

catchment and how their intensities are influenced by tributary into main stream flow. Additionally it 
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was aimed at evaluating the significance of NNP and colloids for elemental binding with respect to 

total sample concentrations. The allocation of particles and adhered P was investigated through 

application of AF4 online with UV for organic matter estimation and with ICP-MS for quantification of 

Al, Fe, and P concentrations of NNP and colloidal fractions. After identifying the stream water NNP 

and colloid fractions, a first approach was tested to trace the origin of these fractions through 

measurements of Fe isotopic signatures. 

National scale study (Chapter 4.3): Evaluating the influence of NNP and colloids for P transport in 

forested headwater catchments was evaluated across five catchments to assess the validity of NNP 

and colloids as dominant P binding and transport medium.  This project also aimed at going beyond 

mere raw data to provide new insights on the preferential binding of P, dependent on NNP and 

colloidal size and elemental composition of the fractions. It was hypothesized that significant 

amounts of P in stream waters occur in NNP and colloidal forms, however with variations in size, 

chemistry and proportions in the fractions.  Further, a first assessment of the ecological relevance of 

NNP and colloids was conducted. Base flow events of stream waters and tributaries in five forest 

catchments of Germany (4 sites) and Norway (1 site) were sampled. The sites differed in total P load 

and therefore potentially also in the distribution of P among NNP and colloidal size fractions. The 

samples were analyzed using AF4 coupled to ICP-MS for Al, Si, P, Mn, Fe and to an online high-

sensitive OCD for organic C measurements. Innovative measurements using AF4 coupled to an OCD 

were performed for the first time to overcome the uncertainties of UV detection for organic C with 

special emphasis on the organic carbon content of multiple fractions. This provided detailed online 

information on the precise potential organic matter contribution within NNP and colloids. With the 

combined data of ICP-MS and OCD, it was hypothesized that different elements or compounds are 

responsible for P binding in the varying particle fractions. Hence, it is investigated whether the 

relevance of NNP and colloids for P fluxes through stream water increases with decreasing easily 

available P content in headwaters across a gradient of forest ecosystems with different P status. The 

P flux can potentially be significantly influenced through washout processes of NNP and colloids from 

the catchment during high precipitation events. In this context, first results on the inferences for 

stream water NNP and colloids released from surrounding soils, as well as on further input flows to 

the stream are of interest. 

Continental scale study (Chapter 4.4): Following the upscaling approach of this study, a sampling of 

26 sites on European scale was conducted to further extrapolate the importance of NNP and colloids 

as elemental transport medium in the stream waters of forested ecosystems. Fractionation of NNP 

and colloids as well as their proportion of total elemental sample concentration were assessed 

throughout Europe. The samples were analyzed using AF4 coupled to ICP-MS for Al, Si, P, Ca, Mn, Fe 
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and to an online high-sensitive OCD for organic C measurements. For this study, it is hypothesized 

that NNP and colloids are ubiquitous carriers for P and other nutrients in European river systems, but 

that their composition and size distribution changes systematically along continental gradients in 

Europe. To facilitate the inclusion of NNP and colloids into forest ecosystem nutrient cycling 

processes, this project aimed at the predictability of the elemental concentrations in the particle 

fractions through total sample concentrations. The data on pH dependency and the predictability 

considerations showed a geographical divide in Europe between Southern, Middle and Northern 

European headwater catchments. By taking these distinctly different geographical regions into 

account, this work also aimed at identifying the preferential P binding per particle fraction in 

dependence of the stream water NNP and colloidal characteristics per geographical region.  

Further, climatic and overlaying environmental factors like mean annual temperature and 

precipitation, the site altitude or bedrock composition has profound effects on the site specific soil 

type, the vegetation and biological processes driving nutrient cycling. The environmental factors and 

site specific characteristics then influence the stream water chemistry. Thus, most probably also the 

constituents of the NNP and colloidal fractions are driven by these governing factors and that the 

elemental concentrations in the fractions varies, especially for P, accordingly in a specific pattern 

governed by the climatic and environmental determinants. The identification of these patterns can 

give a first insight to understand which long term effects a significant change in climatic conditions 

can have on the binding and transport of P through NNP and colloid and how this can potentially 

affect the availability of this limiting nutrient in forested ecosystems in the future.  
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II 
Theoretical background:  

Field Flow Fractionation (FFF) 

Field Flow Fractionation (FFF) is a family of fractionation techniques distinguishable through the type 

of field applied for particle separation. The theory of flow based FFF was developed by Giddings et al. 

(1976). The separation field can be a thermal gradient between the top and bottom plate of the 

separation channel (Thermal FFF) for a separation based on molar mass and composition. Further, 

centrifugal force can also be utilized (Centri FFF) to achieve a separation based on particle density 

and hydrodynamic size. Whereas Thermal FFF is mostly for polymer applications and particle density 

always influences separation with Centri FFF, hydrodynamic particle diameter determines separation 

in Multi Flow FFF. This makes it a universal tool for nanoparticle and colloidal applications. Further 

less developed FFF techniques exists as well with e.g. electrical or magnetic separation fields 

(Schimpf et al. 2000). The most common Multi Flow FFF device and also the selected technique for 

this study is the Asymmetric Flow Field Flow Fractionation (AF4) where the separation field is a 

directed outflow of eluent from the channel through a porous frit in the bottom plate of the channel.  

2.1 Principle of Asymmetric Flow Field Flow Fractionation (AF4) 

During an AF4 fractionation process, the sample containing an unsorted mixture of NNP and colloids 

in matrix solution is loaded into a thin separation channel consisting of an impermeable top cover 

divided by a spacer from a permeable membrane above a ceramic frit at the bottom. All flow 

processes in AF4 are driven by eluent flow which is directed through HPLC (high performance liquid 

chromatography) precision pumps. The channel is equipped with two inflow ports, the injection flow 

at the beginning of the channel and the focus flow at the center of the channel, as well as two 

outflow ports, the cross flow through the membrane and frit in the channel bottom and the detector 
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flow at the channel end (Figure 2.1). Additionally, a purge flow is installed just above the detector 

outflow to regulate channel pressure when problems arise. Fractionations are generally conducted at 

high pressure with up to 15 bar inner channel pressure.  

 

Figure 2.1: Flow ports and positions on AF4 channel. The height and length of the separation channel are not 
shown in correct proportions. 

In an AF4, particle fractionation is achieved by application of a separation force perpendicular to the 

channel flow generated by partial withdrawal of eluent and sample matrix through the membrane 

(referred to as cross flow). Despite the constant Brownian motion of particles in all directions, the 

cross flow shifts their position closer to the accumulation wall, which is the channel bottom covered 

by the membrane (Baalousha et al. 2011). After sample injection (orange, Figure 4.1.1a) into the 

sample loop of the autosampler, the focusing of the particles (red, Figure 4.1.1a) is the first step of 

the fractionation process and occurs at the same time the sample is still introduced into the channel 

and also exceeding the time needed for loading the sample into the channel. Through focusing, 

particles are sorted in an equilibrium cloud near the channel inlet due to the opposing forces of cross 

flow and particle diffusion rate as well as the strength of the focus flow. In this cloud, smaller 

particles with larger diffusion coefficients relative to bigger particles are higher relative to the 

accumulation wall and thus closer to the center of the channel in contrast to larger particles which 

accumulate closer to the membrane. The absolute thickness of this cloud (l) is defined as the ratio of 

the particle diffusion coefficient (D) and the induced velocity (UV). For polydisperse samples, this can 

only be individually calculated for each population of particles (Baalousha et al. 2011). Flow velocities 

of cross flow (νc), detector flow (νd) and injection flow (νi) are specifically set to optimize particle 

fractionation, the focus flow (νf) results out of the latter to compensate channel inflow: 

𝜈𝜈𝑓𝑓 = (𝜈𝜈𝑐𝑐 + 𝜈𝜈𝑑𝑑) − 𝜈𝜈𝑖𝑖 

Typically νc varies between 1.0 and 3.0 mL/min, νd between 0.5 and 1.0 mL/min and νi between 0.1 

and 0.5 mL/min (Dahlqvist et al. 2004; Gottselig et al. 2014; Gottselig et al. submitted; Neubauer et 

al. 2011; Nischwitz and Goenaga-Infante 2012). Therefore, νf is generally between 1.4 and 

4.5 mL/min. During focusing, the sample is additionally subdivided into particulates and matrix 

injection flow focus flow detector flow 

purge flow 

cross flow 
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components with a molecular weight below membrane pore width, exiting the channel through the 

cross flow. These components below the nanometer range can potentially be assigned to the ‘truly 

dissolved’ phase (e.g. Martin et al. 1995). 

Following equilibrium cloud relaxation during transition time (light blue, Figure 4.1.1a), focus flow is 

turned off and channel flow begins to elute the particles with increasing size regime. To compensate 

for the reduction in the volumetric flow along the channel and to keep the velocity of the 

longitudinal flow constant, the AF4 channel has the shape of a trapezoid, decreasing in width from 

the channel inlet to the outlet (Baalousha et al. 2011) with the widest point close to channel inlet 

where focusing occurs. The longitudinal flow profile shows parabolic laminar flow with fastest flow 

lines at intermediate height of the channel (Figure 2.2). Due to the higher diffusion coefficient of 

smaller particles relative to the larger ones, smaller particles reach higher and thus faster flow rates, 

allowing them to elute first (functioning of normal fractionation mode). Therefore, particles eluting 

from the channel are in increasing size regime. During constant cross flow, the hydrodynamic particle 

diameter (dH) can be calculated on account of retention time: 

𝑑𝑑𝐻𝐻 =
𝑡𝑡𝑟𝑟(2𝑘𝑘𝑘𝑘𝑉𝑉𝑑𝑑)
𝜋𝜋𝜋𝜋𝑤𝑤2𝑉𝑉𝑐𝑐

 

where tr=retention time, k=Boltzmann’s constant, T=absolute temperature, Vd=volumetric detector 

flow rate, η=dynamic viscosity of carrier liquid, w=channel thickness, Vc=volumetric cross flow rate 

(adapted according to Gimbert et al. 2003). 

 

Figure 2.2: Lateral cross section through the AF4 channel showing the parameters responsible for natural 
nanoparticle and colloid elution in increasing size regime (from Postnova Analytics 2015). 
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The strength of the separation field is decreased either linearly (dark blue, Figure 4.1.1a) or as a 

power function after focusing to achieve an elution of the complete size spectrum of particles in the 

sample. Thus, particle retention increases with decreasing diffusion coefficient and retention ratio (R) 

can be calculated according to the general AF4 retention equation: 

𝑅𝑅 =
𝑉𝑉0

𝑉𝑉𝑟𝑟
= 6𝜆𝜆𝑟𝑟(𝑐𝑐𝑐𝑐𝑡𝑡ℎ

1
2𝜆𝜆𝑟𝑟

− 2𝜆𝜆𝑟𝑟) 

where V0=void volume, Vr=retention volume, λr=retention parameter (λ=l/w) (Baalousha et al. 2011). 

Further, the diffusion coefficient (D) can be calculated through the retention parameter (λr), the cross 

flow velocity (νc), channel thickness (w) and void volume (V0): 

𝐷𝐷 =
𝜆𝜆𝑟𝑟𝜈𝜈𝑐𝑐𝑤𝑤2

𝑉𝑉0
 

To ultimately ensure the elution of all particles after the cross flow has decreased to 0 mL/min, an 

elution or rinse time at νc=0 mL/min and set νi=νd is generally performed (green, Figure 4.1.1a). 

The fractionation process can be optimized through the adjustment of variable AF4 parameters. Next 

to the flow rates, these include the molecular weight membrane cut-off, membrane material, spacer 

thickness and eluent composition.  

2.2 AF4 hyphenation 

The fractionation with AF4 does not yield information about the particles by itself but through the 

online coupling to detectors (Figure 2.3). Multiple non-destructive detectors can be coupled online 

and in series to AF4, whereas information from destructive detectors has to be gained through 

separate AF4 fractionation runs (Figure 2.3). Most commonly the UV adsorption at single or multiple 

wavelengths is recorded directly after the separation channel. Briefly, in UV spectroscopy 

electromagnetic waves are emitted onto a sample, the valence electrons adsorb the energy and are 

excited to higher molecular orbitals. The loss of electromagnetic wavelength intensity is recorded 

after the sample passage and termed as UV absorption. Detectors for size determination can be 

static or dynamic, e.g. in Dynamic Light Scattering (DLS) in which the diffusive movement of particles 

under Brownian motion is transferred to the particle size using the Stokes-Einstein relationship: 

𝐷𝐷 =
𝑘𝑘𝑘𝑘

6𝜋𝜋𝜋𝜋𝜋𝜋
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where D=diffusion constant, k=Boltzmann’s constant, T=absolute temperature, η=dynamic viscosity, 

r=radius. The latter detectors are all equipped with flow-through cells, facilitating an online coupling 

through the connection of PEEK (polyether ether ketone) tubing between the AF4 separation channel 

and the series of detectors. 

 

Figure 2.3: Online hyphenation of AF4 to non-destructive (UV, DLS) and destructive detectors (ICP-MS, OCD). 
(ICP-MS from European Virtual Institute for Speciation Analysis 2015; OCD from Huber 2015a; AF4 from 
Postnova Analytics 2015). 

 

2.2.1 ICP-MS for sensitive elemental detection in the fractions 

For precise determination of elemental concentrations of the separated particle fractions, inductively 

coupled plasma mass spectrometry (ICP-MS) has been established as a powerful analytical technique 

which can be hyphenated to AF4 (for technical settings see Chapter 3.3). Liquid sample introduction 

to ICP-MS is performed via a nebulizer and spray chamber for desolvation of the sample solution. The 

sample aerosol generated by the nebulizer is homogenized in droplet size through the spray chamber 

and is transported by argon (Ar) as carrier gas to the inductively coupled plasma (ICP) where the 

analyte is ionized. The ionization potential of Ar (15.75 eV) is typically higher than of the element(s) 

in question. Initial ionization is created through a high voltage spark which produces free electrons 

that are accelerated by the applied radio frequency field causing collisions and ionization of the Ar 

gas. This collision-induced ionization of Ar continues in a chain reaction eventually forming the ICP 

UV DLS 

ICP-MS 

OCD 

CO2 

AF4 
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discharge. The desolved analyte is further vaporized, atomized and finally ionized through the ICP 

discharge. The degree of ionization or ionization efficiency (α, Vanhaecke 2012) varies depending on 

the element in question: 

𝛼𝛼 =
𝑛𝑛𝑖𝑖

𝑛𝑛𝑖𝑖 + 𝑛𝑛𝑎𝑎
=

𝑛𝑛𝑖𝑖𝑛𝑛𝑒𝑒
𝑛𝑛𝑎𝑎

𝑛𝑛𝑒𝑒 + 𝑛𝑛𝑖𝑖𝑛𝑛𝑒𝑒
𝑛𝑛𝑎𝑎

=
𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖

𝑛𝑛𝑒𝑒 + 𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖
 

where ni/ne/na=density (number of particles per unit volume) of ions/electrons/atoms, Kion=ionization 

equilibrium constant. The ionization equilibrium constant depends majorly on the ionization 

potential of the respective element (Saha equation, Vanhaecke 2012): 

𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖 =
𝑛𝑛𝑖𝑖𝑛𝑛𝑒𝑒
𝑛𝑛𝑎𝑎

= �
2𝜋𝜋𝑚𝑚𝑒𝑒𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖

ℎ2
�
3
2

 
2𝑍𝑍𝑖𝑖
𝑍𝑍𝑎𝑎

 𝑒𝑒−
𝐼𝐼𝐼𝐼

𝑘𝑘𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖  

where me= electron mass, k=Boltzmann’s constant, Tion=ionization temperature in the ICP, h=Planck’s 

constant, Zi/Za= partition functions for ionic/atomic state, IE=ionization potential. The typical 

ionization temperature of the ICP is 7500 K at an electron density of 10-15cm-3 (Montaser et al. 1998). 

Near complete ionization (α≥0.9) is assured in the ICP up to an ionization energy of 8 eV (Becker 

2007). For metalloids α is approx. between 0.3 and 0.8, for nonmetals <0.01 to 0.3 (Vanhaecke 2012). 

After ionization, the plasma enters an interface to separate the ion beam from the free electrons. 

This separation is facilitated through a sampler and a skimmer cone confining stepped vacuum 

chambers. An average of 0.1% of the sample within the plasma reaches the ion optics in the high 

vacuum after the skimmer cone. These ion optics guide the ions to the mass analyzer through beam 

deflection and reject the nonionic species such as neutral species and photons. To further reduce 

double charged ions, oxides and most importantly polyatomic interferences, a collision or reaction 

cell allows highly efficient removal through introduction of the collision gas He or the reaction gas H2. 

Thereafter, the targeted ions are separated according to their mass to charge ratio (m/z) by e.g. a 

quadrupole mass filter. A direct current (DC) field is applied on one pair of rods and a radio frequency 

(RF) field on the opposite pair, therefore ions of a selected m/z are allowed to pass through the rods 

in stable paths to the detector, while the others are ejected from the quadrupole. The potential of 

each pair of rods (P) can be calculated according to  

𝑃𝑃 = 𝑈𝑈 + 𝑉𝑉𝑐𝑐𝑐𝑐𝑉𝑉(2𝜋𝜋𝜋𝜋𝑡𝑡) 

where U=DC potential, V=maximum amplitude, f=radio frequency current. The frequency f is fixed, 

and U and V can be chosen so that only ions having a specific m/z have stable paths through the 
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quadrupole. When U and V change along time while U/V is constant, P changes so that the targeted 

mass spectrum is scanned. The selected ions ultimately reach the measurement amplifier (electron 

multiplier) to divert the amplified signal to the detector. 

2.2.2 Organic carbon detector (OCD) for precise organic C detection 

To complete the setup of precise elemental concentration measurements, the organic carbon 

detector (OCD) allows sensitive online monitoring of the organic carbon concentration for liquid flow 

based separation systems (for technical settings see Chapter 3.3). In general, due to the large volume 

of the OCD, an offset in the elution time of AF4 peaks and a peak broadening can be observed 

compared to e.g. ICP-MS detection.  

The OCD setup is based on the Gräntzel thin-film reactor consisting of a cylindrical glass with an inner 

rotating glass cylinder equipped with short Teflon poles which evenly distribute the liquid sample on 

the inner wall of the outer cylinder (Figure 2.4). A low-pressure mercury lamp inside the inner 

cylindrical reactor radiates the UV light of which 82% is at a wavelength of 254 nm and 18% is at a 

wavelength of 185 nm. The longer wavelength attacks UV active areas in the molecule whereas the 

shorter wavelength UV irradiation produces OH radicals which react unspecific with organic 

molecules (Huber and Frimmel 1991). The reactor was continuously modified since its first prototype 

and is now suitable for the determination of organic carbon in the low µg/L range (Huber and 

Frimmel 1991). An inflow of acidification solution (2.5 g K2S2O8 + 20 mL Suprapur® 85% H3PO4 acid in 

5 L double distilled water, pH 1.5) constantly ensures a liquid flow in the reactor, acidifies the sample 

and supports organic carbon oxidation.  

In a first step, inorganic carbon is removed from the sample through constant purging with counter 

current N2 gas flow in a UV-light shielded section at the top of the reactor. The residence time of the 

solution in this area is approx. 20 s (Huber and Frimmel 1991). The stripped sample solution then 

enters the UV area and is exposed to UV radiation promoting an oxidation of organic molecules to 

CO2. In this reactor, the principle of wet oxidation is applied. It utilizes the oxygen from the water 

itself for the oxidation of organic carbon. Through the radiolysis of water at 185 nm, oxygen radicals 

are formed, which are stronger oxidants than in common wet oxidation systems. The residence time 

of the solution in the UV exposed area is approx. 60 s (Huber and Frimmel 1991). Two thirds of the N2 

gas entering the reactor is used for stripping inorganic carbon, the remaining one third flows 

downwards and picks up the CO2 released from organic carbon. Both gas flows then exit the main 

reactor and enter customized Vigreux condensers for moisture removal before separate CO2 

quantification. The condensers are mounted inside an insulated block which is cooled by Peltier 

elements to 8±0.1°C to ensure a steady emission spectrum and energy distribution. 
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Figure 2.4: Cross section of the UV exposed area of the OCD (from Huber 2015b). The UV lamp is installed in N2 
atmosphere and surrounded by the rotating inner cylinder. Upper and lower Teflon pins, installed in UV 
absorbing glass inlets to protect the Teflon from the UV light, are aligned on the inner cylinder which creates an 
aqueous film on the inner wall of the fixed outer cylinder. 

 

The gaseous carbon dioxide is quantified by high sensitivity non-dispersive infrared photometry. The 

detector measures the attenuation of the component specific wavelengths to determine the gas 

concentration. Intense infrared absorption of CO2 occurs at λ=2.7 µm, λ=4.3 µm (Langley 1883) and 

at λ=14.7 µm (Rubens and Aschkinass 1898) (Figure 2.5), but the detector measures absorption only 

in the λ=2.5-8 µm wavelength range. This is due to the overlapping absorption wavelengths of water 

vapor and CO2, which are most specific for CO2 at 4.3 µm (Figure 2.5).  

       

Figure 2.5: Absorption bands of water vapor and CO2 in the UV light (0.01-0.4 µm, shown: 0.2-0.4 µm), the 
visible light (0.4-0.7 µm) and the infrared light (0.7-1000 µm, shown: 0.7-70 µm). Grey areas indicate absorption 
peaks; y-axis scale in %, maximum y-axis value = 100% (based on data from Gordley et al. 1994; adapted from 
Rohde 2007). 
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III 

Materials and methods 

3.1 Forested headwater catchments for stream water sampling 

The sampling sites were chosen to reflect the upscaling approach of the thesis from the regional 

(Wüstebach) to national (Germany) to continental (Europe) scale. Furthermore, the Wüstebach 

catchment was selected as a common denominator of all studies. 

3.1.1 Regional scale and common denominator site: Wüstebach2 

The Wüstebach (W) is a forested headwater catchment at the southernmost outreach of the Rur 

catchment (Bogena et al. 2014). It is located within the National Park Eifel and is part of the TERENO 

(Terrestrial Environmental Observatories) Eifel/Lower Rhine Valley Observatory (Figure 3.1, Bogena 

et al. 2012; Zacharias et al. 2011). TERENO is a large-scale project aiming at monitoring the long-term 

impacts of environmental change at a regional scale. The site is a small sub-catchment of the River 

Rur basin and covers an area of ~38.5 ha (Stockinger et al. 2014). The lowest altitude of 595m in the 

northern part of the catchment increases to 628m in the south with a mean slope of 3.6 % and a 

maximum slope of 10.4 % (Bogena et al. 2010). The soil texture of the catchment is mainly silty clay 

2 More detailed information on the studies conducted at the experimental test site Wüstebach in the 
framework of the TERENO project can be found in:  
Bogena HR, Bol R, Borchard N, Brüggemann N, Diekkrüger B, Drüe C, Groh J, Gottselig N, Huisman JA, Lücke A, 
Missong A, Neuwirth B, Pütz T, Schmidt M, Stockinger M, Tappe W, Weihermüller L, Wiekenkamp I, Vereecken 
H (2014) A Terrestrial Observatory Approach to the Integrated Investigation of the Effects of Deforestation on 
Water, Energy, and Matter Fluxes. Science China Earth Science 58:61-75. 
 

Liu S, Herbst M, Bol R, Gottselig N, Pütz T, Weymann D, Wiekenkamp I, Vereecken H, Brüggemann N (2016) The 
Contribution of Hydroxylamine Content to Spatial Variability of N2O Formation in Soil of a Norway Spruce 
Forest. Geochimica et cosmochimica acta 178:76-86. 
 

Gottselig N and Wiekenkamp I (mutual first authorship), Amelung W, Bogena HR, Bol R, Brüggemann N, 
Huisman JA, Klumpp E, Pütz T, Vereecken H. Soil Biogeochemistry in a Forested Headwater Catchment – A 
Three Dimensional View. Journal of Environmental Quality, in preparation. 

19 
 

                                                           



loam with up to very high amounts of coarse materials (Decker 2010). The climate of the test site is 

humid temperate. The mean annual precipitation derived between 1961 and 1990 is 1107 mm and 

the mean annual temperature 7°C (Zacharias et al. 2011). The predominant vegetation consists of 

two types of coniferous trees: Norway spruce (Picea abis) and Sitka spruce (Picea sitchensis) (Etmann 

2009). The bedrock are Devonian shales with partial sandstone inclusions which is covered by a 1-3 m 

thick periglacial solifluction layer in which on the hill slopes mainly Cambisols and 

Planosols/Cambisols and in the riparian zone Gleysols and Halfbogs have developed (Figure 3.1, 

Rosenbaum et al. 2012). According to the relation between ‘dissolved’ organic carbon (DOC) and 

nitrate content derived through the weekly sampling, the tributaries of the Wüstebach stream can be 

differentiated between groundwater based and overland flow based systems. The Wüstebach is a 

slightly acidic stream (pH 6.3±0.3, average±SD for 2015) and has a bed lined with mostly small gravels 

or stones. Tributaries showing high DOC content and in comparison low nitrate concentrations are 

influenced through significant overland flow input, tributaries showing low DOC content and in 

comparison high nitrate concentrations reflect a higher groundwater than overland flow input to the 

tributary.

 

Figure 3.1: Map showing major soil types and the instrumentation of the Wüstebach experimental catchment 
and the reference catchment as well as the deforestation area (from Bogena et al. 2014). The depicted stations 
and sites are all part of the frequent TERENO monitoring and data collection program.  
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Currently, the Eifel National Park (authority responsible for managing the Eifel region) aims at a 

natural regeneration of beech trees from spruce monoculture forest that was originally established 

for timber production. Within this context, spruce trees were selectively clear felled to investigate 

the effects of such a disturbance on the functioning of the forest ecosystem in the Wüstebach 

catchment (Figure 3.1). A connected region of approximately 9ha with spruce vegetation was 

removed in the Wüstebach site in late August of 2013. This region encompasses the full riparian zone 

plus an adjacent area of brown earth.  

3.1.2 Additional sites on national scale: Conventwald, Mitterfels, Vessertal, Leirelva 

Conventwald (CON), Mitterfels (MIT) and Vessertal (VES) are ‘Level II’ sites (defines specific methods 

applied to long-term forest observation sites, http://www.forstliche-umweltkontrolle-bb.de) of the 

Intensive Long Term Monitoring Network of Forest Ecosystems across Europe that are investigated in 

the framework of the DFG priority program 1685. The forested sites dominated by European beech 

(Fagus sylvatica) are situated in Thuringia (VES), Bavaria (MIT) and Baden-Wuerttemberg (CON), 

Germany (Figure 3.2). The soil type of all three sites is Cambisol which show acidic soils and thus 

stream water pH values. Mean annual temperatures are 5.5°C (VES), 4.5°C (MIT) and 6.8°C (CON). 

The total annual precipitation is 1200 L/m² in VES (1995-2003), 1299 L/m² in MIT (1991-2009) and 

1749 L/m² in CON (1997-2005). Bedrock types are paragneis (MIT, CON) and Trachyandesite (VES). 

The site Leirelva (LEI) in Sør-Trøndelag is a forested site in Norway (Figure 3.2) dominated by 

coniferous tree species, which is monitored by the Institutt for vann- og miljøteknikk, NTNU, 

Trondheim, Norway. In contrast to Germany, Norwegian streams originate mainly from surface water 

because solid bedrock starts quickly below the thin soil layers. Further, in Scandinavia increased 

precipitation will lead to high surface runoff and erosion (Kronvang et al. 2007) and thus increased 

carbon input (Liski et al. 2002). Mean annual temperature is 5.0°C, total annual precipitation 

averages at 857 L/m² and bedrock type is gneiss. 

3.1.3 European sites 

The twenty-six sites of the continental scale study were chosen along two transects in Europe 

between Northern Finland and Portugal and between Scotland and Greece (Figure 3.2). The sites 

were as follows: Pallas (P) and Lettosuo (L), Finland; Krycklan (K), Norunda (N), Gårdsjön (G) and 

Aneboda (A), Sweden; Soroe (S), Denmark; Allt a'Mharcaidh (AM) and Cotley Wood (CW), United 

Kingdom; Wüstebach (W) and Bode (B), Germany; Lägeren (LÄ), Vogelbach (V), Lümpenenbach (LÜ) 

and Erlenbach (E), Switzerland; Franchesiello (F), Costiglione (C) and Piano Rabelli (PR), Italy; Agia 

(AG), Greece; Strengbach (SB) and La Peyne (LP), France; Ribera Salada (RS), Muntanyes de Prades 
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(MP) and Baranco de Porta Coeli (BPC), Spain; Sierra de Cima (SC) and Lourizela (LZ), Portugal. Each 

site is a forested headwater catchment with low forestry management practices and high tree 

coverage. Mean annual temperatures range between -1.4°C (Pallas, Finland) and 15.9°C 

(Franchesiello, Costiglione and Piano Rabelli, Italy) and total annual precipitation between 307.9 L/m² 

(La Peyne, France) and 2159.0 L/m² (Vogelbach, Switzerland) (Table 3.1). Information on the 

dominant tree type was available for 22 of the 26 sites. The site BPC has 50% coniferous and 50% 

deciduous tree species. For RS and MP no information on soil type was available; for AG, CW, MP, RS, 

S and SB no information on bedrock type was available.  

 

Figure 3.2: Location of all sampling sites. Color coding according to the three projects conducted in the 
framework of the upscaling approach: yellow = regional, green = national, red = continental scale sampling. Site 
names to the abbreviations can be found in Chapter 3.1.1, 3.1.2 and 3.1.3. The continental scale study sites are 
aligned along two transects in Europe. 
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Table 3.1: Specific characteristics of each European site. Abbr. = site abbreviation, MAT = mean annual 
temperature, MAP = mean annual precipitation. Climate data, bedrock and soil type and vegetation cover 
provided by site operators. For site locations see Figure 3.2. 

site abbr. MAT MAP soil type vegetation cover bedrock type 
Aneboda A 5.8 750 Podzol coniferous granite 

Agia AG 15.8 690 Cambisol   
Allt a' Mharcaidh AM 5.8 1110 Podzol coniferous granite 

Bode B 7.1 1600 Cambisol coniferous shale&greywacke 
Barranco de Porta Coeli BPC 14.5 450 Fluvisol both sandstone 

Costiglione C 15.9 1183 Cambisol deciduous carbonatic 
Cotley Wood CW 10.1 1044 Cambisol deciduous  

Erlenbach E 6.0 2294 Gleysol coniferous flysch 
Franceschiello F 15.9 1183 Cambisol deciduous carbonatic 

Gårdsjön G 6.7 1000 Podzol coniferous granite 
Krycklan K 1.8 614 Podzol coniferous graywacke 
Lettosuo L 4.6 627 Histosol coniferous gneiss 
Lägeren LÄ 8.4 930 Cambisol deciduous limestone 

Muntanyes de Prades MP      
La Peyne LP 12.0 308 Leptosols deciduous schist 

Lümpenenbach LÜ 6.0 2426 Gleysol  flysch 
Lourizela LZ 13.8 1300 Cambisol coniferous schist 
Norunda N 5.5 730 Regosol coniferous granite 

Pallas P -1.4 484 Podzol coniferous granite 
Piano Rabelli PR 15.9 1183 Cambisol deciduous carbonatic 
Ribera Salada RS 15.6 800  deciduous  

Soroe S 8.5 564 Mollisol deciduous  
Strengbach SB 6.0 1400 Podzol coniferous  

Sierra de Cima SC 13.8 1300 Cambisol deciduous schist 
Vogelbach V 6.0 2159 Gleysol  flysch 
Wüstebach W 7.0 1220 Cambisol coniferous shales 

3.2 Sampling and preparation 

First investigations on the stability of NNP and colloids were conducted prior to the sampling 

campaigns to elucidate which sampling, storage and transport conditions are favorable to reflect 

natural conditions at the time of measurement. This resulted in a sampling of non-filtered stream 

water with Teflon or polypropylene containers; only samples for organic carbon analysis were taken 

with pre-cleaned and -equilibrated glass vials. For transport and storage the samples were kept at a 

cool (not frozen) and steady temperature not exceeding the stream water temperature at sampling. 

Sample analysis was conducted as soon as possible after sampling, especially for organic carbon 

analysis. For a more detailed discussion on circumstances affecting colloidal stability see Buffle and 

Leppard (1995). 
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The sampling was always conducted upstream from catchment outlet to source region with triplicate 

preconditioning of the containers before taking the actual sample from the center of the flowing 

stream water without disturbing the sediment. Larger sized parts (e.g. visible fractions of leaves) 

were not included in the water sample. At each sampling point, stream water pH, temperature and 

electrical conductivity was recorded in the flowing stream.  

For the sampling on regional (Chapter 4.2) and national (Chapter 4.3) scale, pre-cleaned Teflon 

bottles (manufactured at Forschungszentrum Jülich) were used. For the continental study (Chapter 

4.4), pre-cleaned polypropylene and glass container were shipped to the project partners for 

sampling. All samples were transported or mailed in a steady and cooled environment and stored at 

4°C after reaching the laboratory. Directly prior to analysis, samples were homogenized through 

agitation and filtered through pre-rinsed 5µm cellulose nitrate filters (GE Healthcare, Munich, 

Germany) to avoid clogging of the micrometer-sized AF4 tubing. 

Regional scale sampling (Chapter 4.2): Samples were obtained in triplicates from points along the 

course of the Wüstebach stream (Figure 3.3) in beginning of August 2013. The majority of sampling 

points was selected according to the standard sampling procedure described in Bogena et al. (2014). 

The weekly standard sampling procedure in the framework of the TERENO project covers several 

stream points of which three were analyzed in this study: SP1 from the headwaters, the tributary T2, 

and SP3 at the outflow of the test site. SP2 is originally a tributary sampling point but was sampled as 

a stream flow point in this study to serve as an intermediate stream flow point. Additional points 

were added to specifically analyze sources of NNP and colloids from different hydromorphological 

stream areas. These were in the headwaters region and from regions along the stream with constant 

inflow through tributaries. The points are from a tributary in close vicinity to SP1 (T1) and two 

overland flow driven regions in the headwaters (OF1) and in the midst of the stream (OF2). The 

 

Figure 3.3: Excerpt from the TERENO experimental test site Wüstebach with soil types, stream area, sampling 
locations and approximate deforested area. SP = stream point, OF = overland flow, T = tributary. 
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tributary shows similar hydromorphology as the main stream bed but with a strong iron-coloring of 

the water; the overland flow driven regions show high turbidity and are not confined to a specific 

bed. On sampling day, water chemical parameters were 274.5±1.3 µS/cm electrical conductivity, pH 

6.1±0.0, 4.6±1.7 V redox potential, 12.9±0.4 °C water temperature and a turbidity of 2.6±0.4 NTU. 

For measurements of Fe isotopic signatures, soil and vegetation samples were additionally collected 

from the catchment, details see ‘Annex: Methods of sample digestion, Fe isotope extraction and 

measurements’. 

National scale sampling (Chapter 4.3): Base flow stream water samples were collected during one 

week in mid-August 2014 from VES, MIT, CON, W and LEI to reflect peak summer conditions. In VES 

five samples, in MIT eight samples, in CON five samples, in W seven samples and in LEI four samples 

were collected. The 29 sampling locations were chosen according to findings in Gottselig et al. (2014) 

to reflect tributary and main stream flow from all sampled streams. At sampling, electrical 

conductivity at catchment outlet points was 39.9 µS/cm in VES, 21.2 µS/cm in MIT, 36.5 µS/cm in 

CON, 159.0 µS/cm in W and 119.2 µS/cm in LEI. Stream water pH values ranged between 5.8 (W) and 

6.8 (LEI) and stream water temperature between 12.3°C (CON) and 14.9°C (LEI) (Table 3.2). 

Table 3.2: Stream water parameters at catchment outlet points of the national sampling. Abbr. = site 
abbreviation, T = stream water temperature [°C], cond. = electrical conductivity [µS/cm]. Site names see Chapter 
3.1.2. 

abbr. pH T cond. 
CON 6.5 12.3 36.5 
LEI 6.8 14.9 119.2 
MIT 6.6 12.4 21.2 
VES 6.4 12.6 39.9 
W 5.8 13.6 159.0 

For the analysis of the first flush effect, steam water samples from W, MIT and CON were sampled in 

high frequency intervals during storm events. At CON, additional rainfall, interception water, 

groundwater and throughflow water samples through three soil depths were collected to analyze 

further aqueous inputs that reach a stream. 

Continental scale sampling (Chapter 4.4): A total of 96 samples with up to six samples per site were 

taken in the beginning of May 2015 to catch a view across streams in Europe. The majority of sites 

belong to long term monitoring projects, allowing a high degree of background information on the 

climatic and environmental factors. These factors include catchment size, average elevation, 

maximum and minimum elevation, average slope, forest cover, forest management status and mean 

annual runoff (Annex Table S3). Intense communication was conducted with the site operators 

before the sampling to specify sampling locations to best reflect main stream flow and tributary flow 

of each catchment as in Gottselig et al. (2014). During sampling water chemical parameters were 
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between 12.5 µS/cm (SB, France) and 1775.0 µS/cm (BPC, Spain), between pH 4.2 (G, Sweden) and 

pH 9.5 (RS, Spain) and between 1.0°C (P, Finland) and 19.9°C (RS, Spain) water temperature (Table 

3.3). 

Table 3.3: Stream water parameters at each point of the continental sampling. Abbr. = site abbreviation, T = 
stream water temperature [°C], cond. = electrical conductivity [µS/cm]. Site names see Chapter 3.1.3. 

abbr. pH T cond.  abbr. pH T cond. 
A1 4.7 7.8 47.2  LP1 7.2 14.0 618.0 
A2 4.2 7.3 66.3  LP2 7.6 16.5 765.0 
A3 4.4 8.2 56.1  LP3 6.7 14.1 369.0 
A4 4.7 7.9 49.8  LÜ1 7.5 23.0 130.0 

AG1 7.7 13.1 270.0  LÜ2 7.5 23.0 74.0 
AG2 8.3 15.3 334.0  LÜ3 7.5 23.0 135.0 
AM1 6.3 4.5 17.8  LZ1 6.2 14.0 24.1 
AM2 6.3 4.5 17.4  LZ2 5.9 13.2 37.3 
AM3 6.4 4.9 19.5  LZ3 6.3 13.7 36.0 
AM4 6.4 5.5 28.9  LZ4 6.1 13.8 36.8 
AM5 6.4 5.3 21.6  N1 6.7 7.2 94.0 
B1 7.8 12.4 190.4  N2 6.5 8.4 86.0 
B2 7.3 9.3 80.4  N3 6.8 8.6 87.0 
B3 7.9 11.0 94.0  N4 6.9 9.4 89.0 
B4 7.9 11.1 162.2  N5 6.8 9.5 148.0 
B5 8.0 10.0 126.3  N6 7.1 10.7 85.0 

BPC1 8.0 15.9 1712.0  P1 6.6 1.0  BPC2 8.0 16.4 1775.0  P2 6.5 2.0  C1 8.7 14.0 213.0  P3 6.6 3.0  C2 8.2 14.0 338.0  PR1 8.2 14.5 393.0 
CW1 7.0 9.7 129.4  RS1 9.5 17.0 411.0 
CW2 7.1 9.8 117.1  RS2 8.4 19.9 418.0 
CW3 7.0 9.9 125.8  RS3 8.2 15.4 537.0 
CW4 6.4 10.4 180.9  RS4 8.2 15.9 404.0 

E1 7.5 23.0 141.0  RS5 8.1 16.0 571.0 
E2 7.5 23.0 75.0  RS6 8.2 16.1 441.0 
E3 7.5 23.0 127.0  S1 7.9 10.4 591.0 
F1 7.8 15.4 438.0  S2 7.5 9.7 739.0 
F2 8.3 16.9 489.0  S3 7.5 10.9 675.0 
F3 8.3 15.4 460.0  S4 7.2 11.3 600.0 
G1 4.2 4.1 79.5  SB1 6.4 9.7 24.1 
G2 4.3 4.1 84.2  SB2 7.0 13.0 24.7 
K1 4.7  24.5  SB3 6.7 15.1 12.5 
K2 4.3  21.2  SB4 7.3 12.1 28.4 
K3 4.6  17.9  SB5 6.3 7.2 35.4 
K4 4.5  23.8  SC1 6.4 13.2 27.2 
K5 5.2  18.9  SC2 6.4 13.2 26.7 
K6 6.1  21.7  SC3 6.6 13.7 29.3 
L1 5.9 6.0 40.0  SC4 5.4 13.6 33.2 
L2 4.8 5.0 30.0  V1 7.5 23.0 55.0 
L3 4.9 6.0 30.0  V2 7.5 23.0 75.0 
L4 5.0 5.0 40.0  V3 7.5 23.0 180.0 
L5 4.8 5.0 30.0  V4 7.5 23.0 124.0 

LÄ1 7.8 10.3 410.0  W1 5.0 12.7 292.0 
LÄ2 8.2 10.6 404.0  W2 7.0 12.3 137.0 
LÄ3 7.3 8.7 408.0  W3 6.7 11.9 189.0 
LÄ4 7.6 8.8 408.0  W4 5.9 10.9 298.0 
MP1 8.2 15.1 118.9  W5 7.1 11.7 190.0 
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3.3 Analytical approach for the analysis of natural nanoparticles and 

colloids in forest stream waters 

Fractionation of natural nanoparticles and colloids in stream waters was performed with Asymmetric 

Flow Field Flow Fractionation (AF4) using a metal-free AF2000 system (Postnova Analytics, Landsberg, 

Germany) including autosampler and channel oven. AF4 was coupled online to an inductively coupled 

plasma mass spectrometer (ICP-MS) and also to an organic carbon detector (OCD). Table 3.4 shows 

an overview of the AF4 parameters which were used for the different projects as well as the technical 

parameters and settings for ICP-MS and OCD. Fractionation conditions were developed prior to the 

catchment studies and refined as this study progressed. For AF4 method developments see Chapter 

4.1. 

ICP-MS calibration was performed through a multi-point linear calibration injected at 0.5 mL/min AF4 

channel flow. Mixed element calibration standards were prepared from commercial single-element 

stock solutions (NIST certified ICP-MS standards). AF4 autosampler calibration standards (0 µg/L, 

5 µg/L, 10 µg/L and 25 µg/L) were dissolved in the AF4 eluent and injected via the complete 

hyphenated system. For a post-column calibration (Nischwitz and Goenaga-Infante 2012) the 

standard solutions (0 µg/L, 25 µg/L, 100 µg/L, 250 µg/L and 500 µg/L) and the internal standards Rh 

and Y are dissolved in 0.5 mol/L HCl and injected via a T-piece between the AF4 and the ICP-MS. The 

variation of the ICP-MS peak area for triplicate measurements of a representative sample was 

calculated to be 5.9% for P, 7.6% for Al, 14.0% for Si, 5.3% for Mn and 15.6% for Fe. The limit of 

detection was 0.1 µg/L for P, 0.01 µg/L for Al, 3.3 µg/L for Si, 0.01 µg/L for Mn and 0.02 µg/L for Fe. 

Quantitative atomization of the particles in the plasma was assumed based on Schmitt et al. (2002).  

While P measurements of stream water NNP and colloids were achieved earlier using high resolution 

ICP-MS techniques (e.g. Regelink et al. 2013; Stolpe et al. 2005), this study acquired measurements 

with a quadrupole instrument. The utilized method is applicable to routine analysis and detects low P 

concentrations through the use of the collision cell technology (Gottselig et al. 2014). It should be 

noted that through AF4-ICP-MS coupling, no information on the speciation of P is gained apart from 

the particle size. Through this analytical approach phosphorus is measured as elemental P, but can be 

present as any binding form (species) of phosphorus (see also Spivakov et al. 2009).  

The OCD system was calibrated using dilutions of Certipur® liquid TOC standard (EN 1484-H3/DIN 

38409-H3, Potassium hydrogen phthalate in water, stabilized, 1000 mg/L; Merck Millipore 109017) in 

double-distilled water at concentrations of 0.05 mg/L, 0.1 mg/L, 0.5 mg/L, 1.0 mg/L, 3.0 mg/L and 

5.0 mg/L. The relative standard deviation of the organic carbon concentration for triplicate 
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measurements of a representative sample was calculated to be 2.2%. The limit of detection for 

organic C was 0.01 mg/L. 

Table 3.4: Overview of AF4, ICP-MS and OCD settings and parameters for the analysis of natural nanoparticles 
and colloids in forest stream waters. KED= Kinetic energy discrimination (bias voltage of the quadrupole mass 
filter), DLS = dynamic light scattering, RC = regenerated cellulose, PES = polyether sulfone. 

AF4 regional project national & continental project 
eluent 10 mM NaCl 25 µM NaCl 
membrane 10 kDa RC 1 kDa PES 
spacer 500 µm 500 µm 
injection volume ICP-MS: 5 mL ICP-MS: 5 mL, OCD: 1 mL 
injection flow 0.2 mL/min 0.3 mL/min 
cross flow 3 mL/min 3 mL/min 
channel flow 0.5 mL/min 0.5 mL/min 
focus time ICP-MS: 30 min ICP-MS: 30 min, OCD: 10 min 
UV wavelength 254 nm 254 nm 

DLS device Zetasizer Nano ZS (Malvern Inst., 
Malvern, UK) 

Zetasizer Nano ZS (Malvern Inst., 
Malvern, UK) 

  
  Agilent 7500 settings all projects 

nebulizer MicroMist 
min. nebulizer flow 0.4 mL/min 
spray chamber type double pass spray chamber 
gas mode He collision gas, 4 mL/min 
carrier gas flow 0.86 mL/min 
cone material nickel 
cooling temperature 4°C 
elements & integration times Al, Ca, Mn Fe: 0.2 s, Si: 0.4 s, P: 0.8 s 
RF power 1500 W 
KED 2 V 

  
  OCD 
 

national & continental project 
carrier gas 

 
Nitrogen 5.0; 12 L/h 

acidification solution 

 

2.5 g K2S2O8 + 20 mL 
orthophosphoric acid 85% in 5 L 

double distilled water 

CO2 analyzer 

 

Infrared Photometer AO2020 
Uras26 (ABB, Zurich, Switzerland) 

measurement range 
 

1-5000 ppb 
detection limit 

 
< 5-50 ppb (compound specific) 

UV lamp 
 

low pressure mercury lamp 
cooling temperature 

 
8°C 

rotor speed 
 

350 rpm 
liquid volume 

 
2-3 mL 

sample residence time 
 

1-3 min 
exposed area UV 

 
600 cm3 

exposed area stripping 
 

250 cm3 
thickness of aqueous film 

 
0.1-0.2 mm 

wavelengths 
 

254 nm (82%), 185 nm (18%) 
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3.4 Analysis of fraction specific elemental data 

ICP-MS raw data were collected in counts per second (cps) using MassHunter Workstation Software 

(Agilent Technologies, Japan) and OCD raw data were recorded in volts detector signal (V) with the 

AF4 analytical software (Postnova Analytics, Landsberg, Germany). Raw data were exported to Excel® 

(Microsoft Corporation, Redmond, USA) for baseline correction, peak integration and conversion of 

peak areas to concentrations through multipoint linear calibration. The ‘total concentration’ reflects 

the elemental concentrations of a stream water sample post filtration but prior to fractionation with 

AF4. The ‘(total) particulate concentration’ is defined as the sum of the concentrations in all particle 

fractions per element. Further, the elemental distribution in the NNP and colloids respective to the 

total elemental concentration, as well as the potential predictability of NNP and colloidal 

composition was analyzed. The difference between the ‘total concentration’ and the ‘(total) 

particulate concentration’ can potentially be assigned to the ‘dissolved’ concentration. All 

determined elemental concentrations of the particle fractions were transformed to the unit mol/L 

prior to data processing and exploratory data analysis to serve for comparison on the basis of 

potential binding and substance amounts. The results are discussed regarding the relevance of NNP 

and colloids for P transport and thus cycling in ecosystems at various sampling sites. Predictability of 

elemental concentrations through total and other particulate concentrations was assessed through 

log10 transformation of the data. A useful prediction was determined at an R2≥0.50 which reflects a 

prediction certainty ≥50%.  

The disagreement over the preferential binding partners of P in the different size fractions as found 

in the literature is due to the fact that the statements about P speciation are made on account of the 

maximum likelihood of P binding in the fractions, yet they need further validation through the 

application of exploratory data analysis techniques (Chapter 4.3 and 4.4). For exploratory data 

analysis, cluster analysis is applied to the quantitative element distribution obtained for the 

separated particle size fractions in order to identify fraction specific preferential binding of 

phosphorus to NNP and colloidal building block elements. Agglomerative cluster analysis with 

distance measure based on the Pearson correlation coefficient was performed with STATISTICA for 

Windows, Version 12.0 (StatSoft Inc., Tulsa, USA). In contrast to statistical significance testing, the 

cluster analysis uses algorithms which are grouping the parameters with highest similarity based on 

the available samples at the start of analysis. Onwards, the threshold regarding the decision when to 

declare two or more objects to be members of the same cluster is lowered. This results in clusters as 

commonly known in genetic analysis phylogenetic trees, where the distance measures between 

clusters reveals the genealogy of sequenced species.  
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Further, discriminant function analysis with canonical correlation as measure of effect size (JMP 

12.2.0, SAS Institute Inc., USA) was used to determine the effect of the categorical dependent 

variable pH classification on the NNP and colloidal composition. Discriminant analysis is a method of 

predicting a level of a one-way classification based on known values of the responses, therefore the 

technique is based on how close a set of measurement variables are to the multivariate means of the 

levels being predicted. This type of analysis is used when specific data groups are set beforehand like 

in this case the stream water pH classification according to the Soil Survey Division of the Natural 

Resources Conservation Service, U. S. Department of Agriculture (1993). According to this 

classification, acidic is defined as pH<6.6, neutral pH between 6.6 and 7.3 and alkaline pH values 

>7.3. The canonical correlation is similar to the eigenvalue, yet is the square root of the ratio of 

SSbetween and SStotal (SS=sum of squares). In contrast to the discriminant function analysis, cluster 

analysis aids to determine the categorical variables. 

To relate the elemental concentration per particle fraction of the continental scale project to the 

environmental parameters potentially driving the presence of the elements in the fractions, initially 

an assessment of the single effects of the environmental parameters was performed. Spearman rank 

order correlation was performed with Statistica (Version 13.0, Dell Inc., USA). Correlations were 

validated through randomization tests in R (Version 3.2.3, R Foundation for Statistical Computing, 

Vienne, Austria) with 10000 repeats; the random probability of valid correlations was set at below 

5% of the maximum coefficient probability. Further, path analysis, a subtype of structural equation 

modelling (c.f. Grace 2006; Grace and Pugesek 1998; Suhr 2008),  was performed with the lavaan 

package in R (Version 3.2.3, R Foundation for Statistical Computing, Vienne, Austria) to identify the 

relationships between the explanatory environmental parameters and the elemental concentrations 

per fraction which eventually influence P binding to NNP and colloids. In path analysis, the 

dependencies between a set of variables is modelled to describe their predicted influences on each 

other. The pathways between two variables represent linear relationships after data transformation 

to Gaussian distributions. No transformation was necessary for MAT (1st and 2nd fraction) and water 

pH (3rd), square root transformation was performed for MAP (1st and 2nd) and P (1st, 2nd, 3rd) and 

water temperature (3rd), log10 transformation was performed for org C (1st and 2nd) and Fe (1st, 2nd, 

3rd) and catchment size (1st). In a first step, an assumption on the potential influential pathways is 

conducted. This assumption is tested, whereas a highly neglected assumption yields a highly 

probable value of the model. An evaluation of the model then reveals which pathways are significant 

and which are non-significant. Despite the presence of non-significant pathways, a resulting model 

can only be valid with these pathways.  
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IV 

Results and discussion 

4.1 Method development for precise fractionation of natural nanoparticles 

and colloids and elemental detection in the fractions3 

4.1.1 Parameter optimization for Asymmetric Flow Field Flow Fractionation 

The variability and particle-size range of natural nanoparticles and colloids in environmental stream 

water samples is high, and thus the AF4 channel and elution parameters have to be chosen to allow 

monitoring of a large spectrum of nanoparticles and colloids regarding size, morphology and 

composition. This chapter aims at briefly presenting the decision process for choosing specific 

fractionation conditions and the reasoning behind the ultimately applied AF4 parameters for 

environmental samples. The precise settings and parameters for AF4 and online detection can be 

found in Table 3.4. In depth details regarding the selection of specific parameters and their influence 

on peak retention times and particle recovery can be found in the Field Flow Fractionation Handbook 

(Schimpf et al. 2000) and in Chapter 2.1. Detailed information for optimizing elemental detection can 

be found in Chapter 2.2. 

Basic AF4 parameters include the selection of carrier solution, the membrane and the channel height. 

For carrier solutions, recent AF4-ICP-MS studies on aquatic colloids used a phosphate solution (Plathe 

et al. 2013) or hydrogen carbonate (Regelink et al. 2013) buffer solutions. However, when focusing 

on the online detection of P and also organic C, a carrier with low blank concentrations of these 

elements is required. Besides maintaining the size and elemental composition of the NNP and 

3 Excerpts published in a peer-reviewed journal:  
Gottselig N, Bol R, Nischwitz V, Vereecken H, Amelung W, Klumpp E (2014) Distribution of Phosphorus-
Containing Fine Colloids and Nanoparticles in Stream Water of a Forest Catchment. Vadose Zone Journal 13:1-
11. Permission granted by Soil Science Society of America. 
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colloids of interest, the interaction with the membrane needs to be minimized for high recovery 

rates, and compatibility with online detection by ICP-MS and OCD needs to be ensured. Sodium 

chloride, commonly used for AF4 bovine serum albumin analysis (e.g. Sohmen et al. 2012), was 

chosen as the best compromise. Membrane type and molecular weight cut-off (MWCO) influence the 

lower size cut-off of the nanoparticles and the interaction of the sample with the membrane. A 

10 kDa regenerated cellulose (RC) membrane showed best sample recovery in previous studies with 

AF4 (e.g. Hagendorfer et al. 2011). Baseline stability and avoiding pressure induced baseline drifts are 

facilitated through the use of a higher MWCO, yet, compared with lower MWCOs (1 kDa or 300 Da), 

the smallest nanoparticle fraction (<2 nm hydrodynamic diameter, Erickson 2009, equation 2.2) can 

be lost during the fractionation process. Through optimization of the AF4 channel pressure during 

fractionation, baseline stability, clear peaks and good detection limits were achieved also through the 

application of the 1kDa polyether-sulfone (PES) membrane without losing a part of the smallest 

fraction (Regelink et al. 2013; Stolpe et al. 2010). Beside the carrier solution, the quality of the 

particle separation will be determined by the space given for diffusion which is adjusted through the 

height of the channel (= spacer thickness). Higher channels have to be utilized to allow ideal 

retention and separation of particles of a broad size range present in environmental samples, 

especially when wanting to include the low nanometer range. Along with the increased thickness of 

the equilibrium cloud when fractionating a broad particle size range, the necessity of high cross flows 

(3 mL/min) for the fractionation of NNP in the low nm range require a high spacer of 500 µm 

(Loeschner et al. 2013; Schimpf et al. 2000).  

The flow regime programmed for the AF4 is the heart of the NNP and colloid fractionation (Figure 

4.1.1a). First approaches for FFF based fractionation of aquatic colloids (Andersson et al. 2006; 

Dahlqvist et al. 2004; Jarvie et al. 2012; Stolpe et al. 2010) provide a basis for the development of a 

suitable fractionation regime. Due to the low concentration of particles in the stream water samples, 

a large sample volume has to be injected into the AF4 channel. At injection flows of 0.2 to 

0.3 mL/min, the focus time has to be adjusted to transport the complete sample volume into the 

channel, to separate the matrix from the particles and allow sufficient time for equilibrium cloud 

formation and relaxation. In addition, the cross flow selected during focusing has to ensure a 

separation of particles with a few nanometers diameter from the (ideally marginal) void peak (Figure 

4.1.1b). The void peak typically includes non-fractionizable residuals of the samples which can largely 

be avoided through appropriate adaption of the focus time. After focusing, NNP and colloid 

separation is achieved through application of a decreasing cross flow gradient over time. A linear 

decrease in cross flow over a variable time period is the most universally applicable separation 

pattern (e.g. Regelink et al. 2014) leading to a non-linear increase in size regime of NNP and colloids. 
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To ensure complete sample elution, especially for aluminosilicate mineral particles of flat 

morphology with low degrees of freedom, subsequently a detector flow rate of 0.5 mL/min (νi=νd, no 

cross flow) is necessary at the end of a fractionation. The exact same fractionation parameters have 

to be utilized for all samples to ensure comparability, yet this poses a difficulty for environmental 

samples due to their variable nature. A detector flow rate of 0.5 mL/min has been found to be 

reasonable (Stolpe et al. 2010) to ensure sufficient transit time for the UV-vis detector, DLS and to 

ensure easy coupling to ICP-MS and OCD. 

           

Figure 4.1.1: a) Flow regime of the developed AF
4
 run meeting all requirements for the separation of natural 

nanoparticles and colloids. Color coding according to different steps defined in the run, for details of the steps 
see Chapter 2.1. Injection flow (vi), focus flow (vf) and detector flow (vd) are depicted during focus time, linear 
gradient elution and finalized elution. → = constant, ↑ = increasing flow, X = no flow. During linear gradient 
elution injection flow compensates decreasing cross flow. b) Exemplary UV (primary y-axis) and DLS signal 
(secondary y-axis) showing the three fractions, the peak elution times of standard reference material (green 
lines, HS = Suwanee River Humic Acid II, FS =  Suwanee River Fulvic Acid II, 21 nm/57 nm/60 nm = Latex standard 
in the respective sizes) and the separation of the void peak (VP) and. DLS signal was used to determine the size 
of the 3rd fraction. 
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Reference materials (Suwanee River NOM, Humic Acid Standard II and Fulvic Acid Standard II, 

International Humic Substances Society, Denver, USA; Sulfate Latex Standards 8% w/v 21 nm-

630 nm; Postnova Analytics, Landsberg, Germany) were used with the same AF4 conditions used for 

the samples for calibration of the particle diameters included in each size fraction (Figure 4.1.1b). No 

reference material exists which covers the divers particle morphologies and elemental 

concentrations of environmental samples. Therefore, the specified hydrodynamic diameters of the 

particles are equivalent sizes to the elution time of the reference materials. The lower size range of 

the first fraction was estimated according to the MWCO of the membrane. The technique of dynamic 

light scattering was applied for online size measurements of especially the largest size fraction 

(Figure 4.1.1b). Blank runs inserted between sample runs in the measurement sequence showed no 

significant peaks.  

4.1.2 Facilitating online elemental detection of environmental samples 

For size resolved detection of NNP and colloidal Al, Si, P, Ca, Mn and Fe a quadrupole ICP-MS with 

collision cell technology (Agilent 7500, Agilent Technologies, Japan) was coupled online to the AF4. 

The ICP-MS became attuned to the specialized low concentration measurements through the usage 

of a MicroMist nebulizer, He as collision gas and uniquely adjusted integration times per element 

(Table 3.4). For sensitive P detection, essential settings are a sufficiently high RF power due to the 

relatively high ionization energy (10.48 eV) of P and an elongated integration time of 0.8 s due to the 

low concentrations in aqueous samples. To some extent, Si and Ca are also challenging elements 

especially when operating online with AF4 due to the high background levels in environmental 

samples. Sample storage and AF4 preparation were key variables to ensure especially low background 

levels of Si. 

Two types of calibration approaches, each with unique advantages can be utilized. Calibration 

standards dissolved in the AF4 eluent and injected via the AF4 autosampler through the complete 

hyphenated system reflect element specific interactions occurring in the AF4 fractionation channel. 

For a post-column calibration (Nischwitz and Goenaga-Infante 2012) on the other hand, the standard 

solutions and internal standards are injected via a T-piece between the AF4 and the ICP-MS. This 

calibration technique is more complex in its application, yet allows more precise correction of 

instrumental drift and calibration to higher concentrations without potentially contaminating the 

following sample because the standards do not pass through the AF4 system.  

An approximation of the concentration of ‘dissolved’ organic material (DOM) in the NNP  and 

colloidal fractions can be determined through the respective UV-vis signal at 254 nm (Figure 4.2.2, 

Neubauer et al. 2011). Due to carbon being the major constituent in DOM (Cabaniss et al. 2005), the 
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technique of Neubauer et al. (2011) can be applied as a proxy for the organic C content of the sample 

fractions. Neubauer et al. (2011) precisely analyzed the signal of various detectors coupled online to 

AF4 and showed that the UV-vis signal at 250 nm or 254 nm (more commonly used) represents 

organic material in the fractions. The technique of the organic carbon detector (DOC Labor, 

Karlsruhe, Germany) coupled online to the AF4 is a more promising tool for the precise measurement 

of organic C which also helped to overcome the compound dependent response for carbon in UV 

detection, for example failing to detect organic acids (Reszat and Hendry 2005). Further, the common 

offline TOC detector cannot cope with the low volumes and low concentrations of the particle 

fractions, thus severely multiplying the effort when several fraction collection steps per samples 

become a necessity. The OCD system has usually been applied to operationally defined ‘dissolved’ 

organic carbon. Huber et al. (2011) confirmed an oxidation rate of almost 100% for sample 

constituents below 0.45 µm. Due to the high sensitivity of the OCD, for AF4-OCD coupling 

approximately one fifth of the sample volume needed for ICP-MS detection is necessary (Table 3.4). 

Therefore, the AF4 focus time can be shortened to compile with the lower injected sample volume 

(Table 3.4). The calibration standards (see Chapter 3.3) were also used for the determination of total 

organic carbon in the stream water samples. For this, the AF4 channel was bypassed by connecting 

the tip inflow tubing to the detector outlet tubing of the channel. The runtime of the AF4 method for 

this data acquisition took 20 min at 0.5 mL/min tip flow.  

4.1.3 Methodological considerations of organic carbon detection and for assessing the 

bioavailability of natural nanoparticles and colloids 

4.1.3.1 Oxidation efficiency of the organic carbon detector4 

While the OCD method is established for ‘dissolved’ organic matter (<0.45 µm), especially as detector 

of a size-exclusion chromatography (Huber et al. 2011), it remains unclear if the same is true for 

organic nanoparticles having a size smaller than 450 nm. Potentially a size dependent oxidation of 

organic matter occurs when aiming at a precise detection of the organic C content of the particle 

fractions. A recent study utilizing a modified total organic carbon (TOC) analyzer as an online organic 

C detector for a FFF showed highly reproducible results through the OC detector and the UV (Reszat 

and Hendry 2005). To similarly test the application of the OCD, the recovery of online carbon 

detection in polymers and organic nanoparticles was evaluated in a first trial. For this purpose 

selected standard reference materials were injected into AF4-UV-OCD without performing 

fractionation. These standard materials were polystyrene sulfonic acid (PSS) with molecular weights 

4 Contains data from:  
Meyn T, Gottselig N, Missong A, Klumpp E. Oxidation Efficiency of Online Carbon Detection for Polymers and 
Nanoparticles, in preparation. 
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of 3 kDa, 33 kDa, 305 kDa and 976 kDa (Postnova Analytics, Landsberg, Germany), pullulan (PUL) at 

molecular weights of 6 kDa, 21 kDa, 200 kDa and 708 kDa (Postnova Analytics, Landsberg, Germany), 

Suwanee River Humic Acid II and Suwanee River Fulvic Acid II (International Humic Substances 

Society, Denver, USA), sodium alginate (Sigma Aldrich, St. Louis, USA), polymethyl methacrylate 

(average size 100 nm, Postnova Analytics, Landsberg, Germany) and polystyrene latex beads with 

average diameters at 21 nm and 100 nm (Postnova Analytics, Landsberg, Germany). A further 

environmental sample, a soil extract from an organic soil horizon, was also included in the analysis to 

reflect the oxidation efficiency of the OCD also for naturally occurring particles.  All samples were 

diluted with double distilled water to achieve a concentration of 1 mg/L organic C in 100 mL. Aliquots 

of these solutions were then analyzed in a commonly used TOC, via online injection on the OCD and 

via online injection in a UV detector (254 nm). OCD and UV were calibrated with the Certipur® liquid 

TOC standard (EN 1484-H3/DIN 38409-H3, Potassium hydrogen phthalate in water, stabilized, 1000 

mg/L; Merck Millipore 109017) diluted with double-distilled water at concentrations of 0.05 mg/L, 

0.1 mg/L, 0.5 mg/L, 1.0 mg/L, 3.0 mg/L and 5.0 mg/L. Both calibrations yielded R² values of 0.99. The 

TOC value was used as the basis of the organic carbon concentration and the recovery of OCD and 

UV was calculated on account of the TOC value.  

       

Figure 4.1.2: OCD recovery from TOC measurements. Displayed is mean recovery ± standard deviation of 
triplicate measurements of all standards. Red dashed line indicates minimum average recovery of all standards 
except Latex21 and Latex100. PSS = polystyrene sulfonic acid, PUL = pullulan. PSS1 = 3 kDa, PSS2 = 33 kDa, PSS3 
= 305 kDa, PSS4 = 976 kDa, PUL1 = 6 kDa, PUL2 = 21 kDa, PUL3 = 200 kDa, PUL4 = 708 kDa, SR-HA = Suwanee 
River Humic Acid II, SR-FA = Suwanee River Fulvic Acid II, PMMA = polymethyl methacrylate, soil = soil extract. 
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The results showed that with the exception of the polystyrene latex beads, the OCD recovery with 

respect to the TOC data is 94±0.08% at a minimum recovery of 85% (Figure 4.1.2). Especially the 

environmental sample yielded excellent recovery of the TOC measurements at 96±0.0%. The data did 

not reflect a consistent decrease in OCD recovery as PSS or pullulan sizes increased. For the latex 

21 nm and 100 nm samples, 27% and 20% OCD recovery, respectively, was found. In contrast to the 

OCD recovery, the UV recovery of the TOC values for all samples was 0.40±0.68%. For common 

chromophore compounds such as Suwanee River Humic Acid II and Fulvic Acid II, the UV recovery is 

62% and 247%, respectively. Yet, to make precise statements on the UV recovery from TOC data, a 

further evaluation should be performed.  

The trials on the recovery of OCD respective to the TOC data were positive and yielded a good 

recovery of the OCD around 94% without reflecting a size dependent oxidation of organic C in the 

OCD. The OCD recovery of the latex particles is not in line with the other standards, yet they do not 

reflect a relevant environmental component. Therefore, the latex results are not meaningful for the 

interpretation of stream water or soil extract measurements. 

4.1.3.2 Organic carbon detection through ICP-MS5 

Gaining elemental data from ICP-MS and OCD after particle fractionation is a laborious procedure 

involving two fractionations of the same sample, one for OCD data and one for ICP-MS data. In 

theory, the ICP-MS has the potential to monitor carbon in addition to metals and phosphorus and in 

spite of carbon being one of the key elements in living organisms and environmental processes 

including climate the potential of ICP-MS for carbon determination has hardly been investigated 

utilized. Therefore, investigations on the potential of ICP-MS for carbon measurements were 

conducted, avoiding the effort for isotope dilution, to establish a routine AF4-ICP-MS method for 

simultaneous monitoring and quantification of all relevant elements of environmental particles. 

The use of ICP-MS for carbon monitoring has been reported by Vogl and Heumann (1998) for 

chromatographic fractions of humic substances using isotope dilution technique for quantification. 

This initial study demonstrated species-independent ionization of carbon for three compounds with a 

molecular weight range from 198 Da to 20000 Da. Luong and Houk (2003) applied a modified dual 

detector ICP-MS for carbon isotope ratio measurements in aqueous solutions of amino acids, 

proteins and oligosaccharides. Application of ICP-MS for carbon isotope ratio measurement was 

reviewed by Santamaria-Fernandez (2010). Smith et al. (2004) investigated the feasibility of using 

5 Contains excerpts from:  
Nischwitz V, Gottselig N, Missong A, Meyn T, Klumpp E. Field Flow Fractionation Online with ICP-MS as Novel 
Approach for the Quantification of Particle-Bound Carbon in Stream Water Samples and Soil Extracts. Journal of 
Analytical Atomic Spectrometry Special Issue on Speciation Analysis, under review. 
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liquid chromatography online with ICP-MS for detection of low molecular weight organic compounds 

via the carbon signal. The results indicated that the carbon signal from ICP-MS is proportional to the 

carbon content of the investigated compounds and thus quantification is possible via external 

calibration. In spite of the promising results from these initial studies, organic carbon monitoring by 

ICP-MS has been rarely applied. Recently, ICP-tandem mass spectrometry was employed for carbon 

determination in plant digests, amino acids and peptides monitoring 12C+ and 12C16O+ achieving limits 

of detection of 0.42 mg/L and 0.17 mg/L, respectively (Amaral et al. 2015). Stolpe at al. (2005) 

monitored carbon during AF4-ICP-MS runs of natural water samples but results are given only as 

intensities without quantification. Despite these efforts, quantitative determination of particulate 

carbon in natural or engineered nanoparticles and colloids by AF4-ICP-MS has up to date not been 

reported. Clear challenges arise when aiming at carbon quantification by ICP-MS: i) Carbon has quite 

a high ionization potential of 11.26 eV and thus low ionization efficiency leading to rather high limits 

of detection (LOD) in ICP-MS compared to metals (Luong and Houk 2003). ii) Carbon background 

levels are high which increase LODs. iii) Substantial amounts of organic compounds (for example 

using organic solvents in HPLC-ICP-MS) are known to affect plasma characteristics and stability and 

thus carbon quantification may suffer from matrix effects (Grindlay et al. 2013; Lopez Molinero et al. 

1997). iv) Finally, ICP-MS is predominantly applied by inorganic researchers focusing on the metallic 

elements and using organic mass spectrometry for complementary structural information, therefore 

only few publications exist. In this study, the performance of quadrupole ICP-MS was first compared 

for total organic carbon quantification in standard solutions and stream water samples using classical 

TOC and OCD as reference. Second, AF4-ICP-MS was applied for particle bound carbon quantification 

using two independent calibration strategies and results were compared to those obtained by AF4-

OCD for the same samples. 

The comparison of four techniques for total organic carbon determination demonstrated the 

feasibility of using ICP-MS for (organic) carbon monitoring in standard solutions and fresh water 

samples containing dissolved and particulate organic carbon species (Figure 4.1.3). The results 

obtained in this study indicate that external calibration provides sufficiently accurate and precise 

total organic carbon quantification without the need for isotope dilution techniques. Limits of 

detection for particulate carbon are about 10-fold higher using ICP-MS compared to OCD, thus 

sufficient for monitoring of organic carbon in real environmental samples above total concentrations 

of 1 mg/L. The LOD increases to 1.4 mg/L for AF4-ICP-MS coupling, whereas for AF4-OCD the LOD can 

be as low as 0.08 mg/L. Yet, to achieve the low LOD for organic C ICP-MS determination, inorganic 

carbon in the samples has to be removed by purging with Ar. Purging and maintaining a maximum 
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removal of inorganic C is a laborious procedure and therefore organic C measurements with ICP-MS 

are interesting but far from realizable for routine environmental analysis. 

 

Figure 4.1.3: Determination of total organic carbon in citric acid and humic acid model solutions (top) and five 
fresh water samples (W, bottom) by quadrupole ICP-MS (Q-ICP-MS), sector field ICP-MS (SF-ICP-MS), total 
organic carbon analyzer (TOC) and organic carbon detector (OCD). Displayed are mean values ± standard 
deviation (from Nischwitz et al. under review). 
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4.1.3.3 Potential bioavailability of natural nanoparticle and colloid bound P 

Phosphorus has a central role in ecosystem nutrient supply because the many vital compounds have 

P as a structural component. In ecosystems, many inorganic and organic molecules are known which 

include P, yet, currently a further structure is being analyzed which is capable of transporting P 

throughout the hydrological pathways and thus in the aqueous phase of ecosystems. NNP and 

colloids of soils, soil extracts, drainage waters and in stream water of diverse ecosystems have shown 

to carry P compounds in different quantities depending on particle composition (e.g. Andersson et al. 

2006; Dahlqvist et al. 2004; Gottselig et al. 2014; Gottselig et al. submitted; Regelink et al. 2013; 

Regelink et al. 2014; Stolpe et al. 2010). Therefore it is questioned if these particles represent a sink 

for the essential nutrient P in ecosystems or if the P of the compounds forming a NNP or colloid can 

be enzymatically released as a PO4
3- in its most readily available form and thus remains easily 

bioavailable for organisms.  

A first study has shown that colloidal P is in fact not chemically inert but contributes to the plant 

available P (Montalvo et al. 2015). Mechanistically the usage of released orthophosphate from P 

carrying organic or organometallic NNP and colloids is not known, yet it is hypothesized that 

esterases are not only capable of hydrolyzing the ester bond of organic compounds, but also when 

these compounds are included in the NNP and colloid fractions. A setup utilizing an equilibrium 

dialysis machine with 4 mL cells and a 1 kDa MWCO RC membrane was introduced to investigate the 

activity of esterase enzymes in the presence of NNP and colloids and to identify the percentage of 

enzymatically released orthophosphate from P carrying NNP and colloids.  

         

Figure 4.1.4: Intensity of the ICP-MS P signal in counts per second (cps) as function of the AF4 fractionation time 
in minute (min). The original Wüstebach stream water sample (blue) was spiked through the addition of KH2PO4 
at concentrations of 50 µg/L (green), 100 µg/L (violet) and 250 µg/L (red). 
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Trial experiments with acid phosphatase (wheat germ; Sigma Aldrich, St Louis, USA) and phytase 

(Ronozyme; Feed enzymes Europe, Ørbæk, Denmark) as well as corresponding model substances 

glucose-6-phosphate and IHP (inositol hexakisphosphate), respectively, showed that the system was 

applicable for examining the research question. Maximum activity of acid phosphatase was 

determined at 44%, of phytase at up to 90%. The developed setup for determining the bioavailability 

of NNP and colloidal P through enzymatic activity is still pending detailed results with environmental 

samples. For the examination of natural samples, investigations have to be conducted to be able to 

estimate the adsorption potential of enzymatically released orthophosphate to positively charged 

ions additionally incorporated into the structure of NNP and colloids. First data on the spiking of a 

Wüstebach stream water sample with KH2PO4 has revealed an adsorption capacity of 

orthophosphate to NNP and colloids. This adsorption proved to withstand AF4 fractionation (Figure 

4.1.3). 

4.2 Characterization of P-carrying natural nanoparticles and colloids in 

tributaries and main stream flow within one forest catchment6 

4.2.1 Natural nanoparticulate and colloidal P, Fe and Al along the stream flow 

Coupling of AF4 to ICP-MS enabled monitoring of the elemental composition of two size-separated 

particle fractions (Figure 4.2.1). The mean diameter of this first fraction was estimated at about 8 

nm, with a range between about 2 and 20 nm and the mean diameter of the second fraction was 

determined to be about 150 nm, covering a range of about 21 to 300 nm. Fe and Al were detected at 

high intensity (apart from Sample T2), while P was close to the detection limit in several samples, in 

particular in the first fraction. It was possible to observe differences in the elemental composition in 

the nanoparticulate and colloidal distribution of the Wüstebach stream and its contributing flows. An 

overview of AF4-ICP-MS fractograms for all sampling points along the stream flow is shown in Figure 

4.2.1. There was an increase in particle bound elemental contents from SP1 to SP2, followed by a 

decrease to SP3. Fractograms recorded for OF1/OF2 and T1/T2 facilitate our understanding of these 

changes along the stream flow (Figure 4.2.2). The additional first and elevated second fraction 

recorded at SP2 were due to an additional particle source supplied by T1 (high concentration of the 

first fraction), a hydromorphological region similar to the main stream, and OF1 (elevated second 

fraction), a very turbid overland flow supplied point.  

6 Excerpts published in a peer-reviewed journal:  
Gottselig N, Bol R, Nischwitz V, Vereecken H, Amelung W, Klumpp E (2014) Distribution of Phosphorus-
Containing Fine Colloids and Nanoparticles in Stream Water of a Forest Catchment. Vadose Zone Journal 13:1-
11. Permission granted by Soil Science Society of America. 
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Figure 4.2.1: ICP-MS data of P, Fe and Al for an AF4 fractionated water sample of the Wüstebach stream. AF4 
runtime is shown on the x-axis; the y-axes are distinguished according to graphs. 1 = position of first fraction, 
mean diameter ~8 nm; 2 = position of second fraction, mean diameter ~150 nm. 

The particle-bound elemental concentrations of the fractions shown in Figure 4.2.3 indicate that the 

headwaters stream point of the Wüstebach (SP1) and the outlet stream point (SP3) have similarly 

low concentrations of P, Al, and Fe. This can be explained by a dilution effect due to the groundwater 

inflow tributary T2, occurring between SP2 and SP3. A comparison of the fractograms of SP2 and OF2 

reveals a strong influence of overland flow up to this stream area due to the very similar peak forms 

of the two points, despite different hydromorphological characteristics. Within the course of the 

stream, the profile of the particle-bound concentrations for P correlated, in particular in the first 

fraction, with Al rather than with Fe. On the one hand, this result is consistent with the findings from 

Richardson (1985), who suggested that following washout from adjacent soils, it is mainly Al rather 

than Fe that controls the P adsorption in freshwater systems. On the other hand it may be possible 

that the aqueous Al species are mainly attached to (colloidal) organic P. Noteworthy, for both the 

first and also the second fraction, it was observed that if a highly increased Fe content was present, 

more P was detected in the nanoparticulate and colloidal fraction. In light of the much lower Al 

content compared with Fe content (Figure 4.2.3), we suggest that particles in the two peaks did not 

contain many aluminosilicate minerals but were dominated by oxides or, in fraction 1, by organic 

compounds binding Al, Fe, and P. However, when looking at the dynamics of the second fraction, no 

strong correlations of the P contents with the course of Al or Fe concentrations were seen, indicating 

that the P binding cannot be explained by an interplay of Fe and Al alone. Possibly also other factors 

like DOM play a role. 
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4.2.2 Proportion of particle-bound relative to total elemental contents 

Mean contents of 34.9 ± 11.6% for Fe and 54.1 ± 26.3% for P were bound in the particulate fraction 

relative to the total elemental concentrations (Figure 4.2.4; Table 4.2.1). Peak percentages for P in 

colloidal form were recorded at SP2. For Fe, samples from SP2, OF2, and SP3 showed very similar 

peak values despite differences in the hydromorphology of the sampling sites. The overland flow 

driven regions are not confined to a specific bed and showed higher turbidity of the containing water 

than the stream points with the confined bed and baseline turbidity. The Al measured as NNP and 

colloids was generally low (1.3 ± 0.4%) compared with total sample concentrations. The percentage 
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 Figure 4.2.3: Concentrations of P, Fe and Al in the two natural nanoparticulate and colloidal fractions along the 
Wüstebach stream flow. The small diagrams indicate the respective fractions. 
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of elements in the NNP and colloidal form compared with the total concentrations confirms that 

elemental transport through them is relevant, especially when comparing with data obtained at the 

sampling location T2 (a groundwater inflow tributary). The percentages were up to 20 times lower 

for T2 than for all other sampling points (Figure 4.2.4). Total Al concentration at T2 was similar to the 

values observed at the other sampling locations, whereas the concentrations of P and Fe at the other 

locations were three and 10 times lower, respectively. The P concentration at T2 was at a value 

where, at other sampling points with the same total concentration, a much higher percentage of the 

total P was present in the NNP and colloidal form. If, therefore, a distinct amount of Al and especially 

Fe is not present with free binding sites for P, in consequence a lower percentage of P is bound in the 

NNP and colloidal form. Thus, an essential element such as P needs a carrier such as Fe and Al to be 

transported in the NNP and colloidal form in aquatic systems.  

     

Figure 4.2.4: Percent elemental concentration in the natural nanoparticle and colloid fraction in comparison to 
total elemental concentrations of the samples from the sampling points along the Wüstebach stream. 

The work of Liu et al. (2011) shows colloidal P variations across a large scale of a stream (~50 km 

length) with different geological locations. In contrast, the present study for the first time allows 

tracing and understanding the inputs and types of the two NNP and colloidal fractions within a small-

scale stream flow. Similar studies have varied in the size definition of colloids but well represent the 

variation in colloidal P due to differences in environmental conditions. In an American river basin, 

Mayer and Jarrell (1995) detect concentrations of colloidal P (0.05–1 µm) that ranged between 

detection limit and 0.061 mg/L and which comprised up to 48% of the total P concentrations. For a 

coastal plain area in Australia (Zhang and Oldham 2001), the observed colloidal P (1 kDa–0.5 mm) 
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was between 0.009 and 0.207 mg/L. In Swiss lakes (Filella et al. 2006), colloidal molybdate-reactive P 

(3 kDa–1.2 mm) was as low as 1.2 mg/L. In contrast, this study showed nanoparticulate and colloidal 

P concentration variations in much lower ranges than Mayer and Jarrell (1995) and Zhang and 

Oldham (2001). The concentration ranges are similar to those of Filella et al. (2006) but represent 

distinct nanoparticulate and colloidal size fractions and not all reactive P species. Thus, the 

measurements of low P concentrations using the proposed AF4 fractions are a novel achievement. 

The studies combine surface runoff (Mayer and Jarrell 1995), highly comprised of macromolecular C, 

with colloidal P by showing a facilitated formation of colloidal P (Zhang and Oldham 2001) through 

higher surface runoff rates. Moreover, background geology affects the mineral components of 

colloids and in turn their stability (Filella et al. 2006). These studies underline the complexity and 

dynamics of nanoparticulate and colloidal P as shown in this study. The description of nanoparticles 

and colloids in freshwater through AF4 can now increase our understanding of different fractions 

within the targeted size range. 

Table 4.2.1: Total elemental sample concentrations from the stream point (SP), overland flow (OF), and 
tributary (T) sampling points along the Wüstebach stream in contrast to total particulate elemental 
concentrations ± standard deviations (SD). 

    Al Al SD P P SD Fe Fe SD 

To
ta

l [
µg

/L
] 

SP1 571.9 9.5 6.5 1.6 1092.9 88.1 

OF1 413.7 92.8 14.2 4.4 1317.9 676.1 

T1 146.5 10.0 14.1 1.7 1893.7 235.6 

SP2 141.1 5.7 9.7 2.0 817.8 54.9 

OF2 123.2 9.3 13.5 1.2 627.7 103.4 

T2 123.4 1.5 2.0 0.1 18.7 1.0 

SP3 98.7 3.8 6.5 1.4 370.3 11.2 

Pa
rt

ic
ul

at
e 

[µ
g/

L]
 SP1 0.7 0.2 2.9 2.2 122.8 50.2 

OF1 1.6 0.1 5.9 4.6 266.7 21.9 
T1 3.1 0.9 10.6 3.4 827.7 321.2 

SP2 3.3 0.8 9.8 2.9 442.0 104.9 
OF2 2.5 0.6 10.4 4.9 349.4 50.5 
T2 0.1 0.0 0.2  1.4 0.4 

SP3 1.8 0.4 2.6  195.9 43.8 
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4.2.3 Potential role of organic matter for P-binding 

‘Dissolved’ organic matter (DOM, organic matter <0.45µm) can be present in various forms in natural 

stream water including humic and fulvic acids and organic coatings attached to inorganic colloids, 

which are potential binding sites for P. The DOM proxy values of the second fractions of T1, SP2, OF2, 

as derived from the UV signal, are elevated in comparison with the other sampling points, with the 

exception of OF1 (Figure 4.2.2). This may indicate the presence of organic compounds in these 

particles that are potentially involved in the binding of P. Alternative approaches for improved online 

C detection for AF4-separated samples are currently being explored for the AF4 system used in this 

study but are not yet in a state to offer precise results for the C content. Nonetheless, in connection 

with the TERENO database (Annex Figure S1), a more precise relationship between ‘dissolved’ 

organic C or DOM and NNP and colloidal matter can be drawn for Points SP1, SP3, and T2.  

The stream water composition of the Wüstebach main stream results from a mixture of the 

tributaries and the surface runoff. Through high DOM containing regions with constant inflow into 

the stream, the influence of the DOM content on the potential NNP and colloidal source regions can 

be evaluated. Sampling Points T1, SP2, and OF2 show higher DOM contributions of both particle 

fractions than the other sampling points with the exception of OF1 (second fraction). This correlates 

with the elevated elemental concentrations (Figure 4.2.3) and the percentage of particles (Figure 

4.2.4) detected for these points. The elution time of the first fraction, which corresponds to small-

sized particles, matches humic acid standards, and therefore this fraction is likely to contain a 

significant percentage of organic compounds. This finding is supported by the similar DOM proxy 

concentrations for T1 and the subsequent sampling points SP2 and OF2.  

For the first fraction, the coefficient of determination of the linear regression between the elements 

P, Fe, Al, and the particulate DOM varies between 0.68 and 0.90 (Table 4.2.2). For the second 

fraction, a variation between 0.67 and 0.82 was calculated (Table 4.2.2). The determination 

coefficients of the linear regressions show higher results for the smaller (first) size fraction, indicating 

a stronger carrier effect. Organic matter can stabilize NNP and colloids in microaggregates by building 

bridging complexes or being matrix material for potential adhered components (Six et al. 1999). In 

both fractions, macromolecular C compounds were detected in the presence of P, Fe, and Al. Further 

investigations are required to determine the exact binding mechanism of P in these NNP and 

colloidal fractions. This may involve complexes of phosphate with organic matter or complexes of 

phosphate with Fe and/or Al oxides. Further, an adsorption of organic P compounds to NNP and 

colloids is possible. The DOM is apparently able to account for a significant portion of the variation in 

certain metal concentrations (Shafer et al. 1997), which in turn influence P adsorption. The relation 
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of the variation in P and Al concentrations, as shown above, can also be affected by the DOM 

components present. Al ions efficiently bind to macromolecular organic compounds (Libecki and 

Dziejowski 2008) and can, through this connection, also be tightly associated with P through bridging 

effects. 

Table 4.2.2: Correlation R2 values between particulate-bound elements and between particulate-bound 
elements and organic matter (DOM) from the Wüstebach stream samples. 

Correlations 1st fraction 

 DOM Fe P 

Al 0.90 0.70 0.88 
P 0.84 0.70  
Fe 0.68   
    

Correlations 2nd fraction 

 DOM Fe P 

Al 0.67 0.72 0.75 
P 0.80 0.72  
Fe 0.82   

 

4.2.4 Preliminary effect of deforestation 

Post-deforestation samples were taken 3 months after the clear-cut in the beginning of December 

2013. An alteration in catchment land cover has effects on the overall chemical and physical 

characteristics of the catchment (Khresat et al. 2008). In the Wüstebach catchment, the alteration in 

land cover had an effect on the NNP and colloidal load in the stream (data not shown). A concise 

trend stating the direction of the change in characteristics cannot be seen from the literature 

(Khresat et al. 2008; and references therein; Lindo and Visser 2003; Neill et al. 2001; Turrion et al. 

2000). Possibly, minor differences in climate, vegetation, or soil type make direct comparisons among 

studies difficult. In the context of NNP and colloidal P in stream waters with additional information 

on pre- and post-deforestation effects, the literature offers no comparable studies. For the 

Wüstebach stream, an up to 10-fold decrease in the total elemental concentration of Fe and an up to 

threefold decrease in P were detected post-deforestation compared with before clear-felling. The Al 

total elemental concentrations remained similar. For the elemental composition of the NNP and 

colloidal fraction, a preferential loss of Fe was seen throughout the whole stream. The Al 

concentration within the colloidal fraction was similar to before deforestation. For P, the decrease 

caused concentrations to drop to or below the detection limit. A comparison of the stream water 

level, discharge rate, and turbidity from the TERENO database reveals a ~1 month precipitation event 
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with high turbidity values at SP3 between deforestation and sampling in December (Annex Figure 

S2). Possibly, the vast majority of NNP and colloids was washed out during this time. According to 

Lindo and Visser  (2003), the nutrient load of a coniferous forest stand shows highly significant 

effects from clear-cutting (decrease of the nutrient load of ~20%) in comparison to a deciduous 

forest. The post-deforestation data outlined here may represent the first immediate effect on the 

NNP and colloidal bound elements; however, they may additionally or simply reflect seasonal 

variability. In any case, these data show that the composition of colloidal export within the base flow 

of the river may be very sensitive to changes in environmental conditions. The sensitivity and 

methodology of the coupled AF4 and ICP-MS system will have to be adapted to the decreased 

concentrations to allow a better assessment of the status of NNP and colloids following 

deforestation. 

4.2.5 Iron isotope signals in different reservoirs of a forested catchment7 

Iron itself is an important nutrient for organisms, but Fe oxides also have the capacity to adsorb 

nutrients like P. However, the application of stable Fe isotope ratios as a tool to identify processes 

and mechanisms in the terrestrial environment is still rare. Through observations of the fractionation 

of Fe isotopes, in-depth information on the cycling and turnover rates in a forested ecosystem can be 

gained. This is especially of interest to trace the origin of NNP and colloid fractions.  NNP and colloids 

have already been recognized as ubiquitous components of the operationally defined ‘dissolved’ 

phase (Hill and Aplin 2001; Jarvie et al. 2012), largely responsible for nutrient acquisition and cycling, 

and have been shown to contribute to the plant available P fraction (Montalvo et al. 2015). Further, 

the cluster analysis (Chapter 4.3.2) has shown that Fe is an important building block element 

included in all three separated fractions of NNP and colloids, even on European scale (Chapter 4.4.6). 

Thus, Fe potentially controls the transfer of P-carrying NNP and colloids in forested headwater 

catchments and can be utilized to trace this nutrient within the ecosystem. 

For this analysis, the AF4 was used for preparative purposes to collect the fractions of NNP and 

colloids and therefore to allow an offline analysis on the Fe isotopic signature of sufficiently 

concentrated NNP and colloids from the Wüstebach stream water samples. Samples of further 

ecosystem compartments of the Wüstebach, from soil horizons and the vegetation, were also 

collected. For sample digestion, Fe isotope extraction and isotope measurement details see ‘Annex: 

Methods of sample digestion, Fe isotope extraction and measurements’. 

7 Contains excerpts from:  
Berns AE, Gottselig N, Ockert C, Hezel D, Wombacher F, Bol R, Münker C, Vereecken H, Amelung W, Wu B. Iron 
isotopes in different reservoirs of a forested catchment, in preparation. 

49 
 

                                                           



50 
 

The data already showed clear differences in the Fe isotopic signatures of different ecosystem 

compartments such as soil horizons, vegetation samples and aqueous samples (Figure 4.2.5). Most 

interestingly, the Fe isotopic signature of the NNP and colloid fractions (indicated by I and II) is very 

different of one sampling location (T1 or OF2). For both samples it was seen that the second fraction 

d56Fe is increasingly negative to the first fraction, whereas the first fractions display a greater 

difference in isotopic signature than the second fractions. The first fraction of T1 can potentially be 

highly influenced by iron from the Cambisol top soil layers, whereas the second fraction, showing 

close similarities in d56Fe value to the top soil Gleysol layers, experienced more input from this 

differing Fe source. The isotopic signature of spruce needles also fits well to the second fraction Fe of 

the samples T1 and OF2, most probably due to the significantly higher coverage of spruce than beech 

tree within the Wüstebach catchment. On the origin and influences of data points such as OF2 II can 

only be speculated from analysis of the raw data.  

      

Figure 4.2.5: d
56

Fe values in ‰ relative to the d
56

Fe value of the standard IRMM-14. The height of the sampling 
location is given with reference to the ground level at the Wüstebach site (0 m). Shown are d

56
Fe of the NNP and 

colloid fractions (dark blue with data point labelling), of total stream water samples prior to fractionation (light 
blue), of soil horizons from a Cambisol soil (orange), of soil horizons from a Gleysol soil (grey) and of vegetation 
samples (green). Data point labelling indicates the two fractions (I and II) of two Wüstebach stream water 
samples which were preparatively collected with AF

4 
(adapted according to C. Ockert). 
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4.3 Identification of P binding patterns to natural nanoparticles and 

colloids of forested headwater catchments across Germany8 

4.3.1 Natural nanoparticle and colloid fractions identified with AF4 

The data collection from AF4-OCD matched well with the respective AF4-ICP-MS fractograms. Both 

the coupling of the AF4-UV to ICP-MS and to the OCD revealed three fractions of NNP and/or colloids 

in the samples at the same elution times (Figure 4.3.1a, b). Through calibration with reference 

materials the first fraction was estimated to include NNP between 1 kDa and 20 nm and the second 

fraction to include NNP >20 nm to 60 nm. Furthermore, the DLS revealed that the third fraction 

includes NNP >60 nm to colloids up to approximately 300 nm (Chapter 4.1.1b). Broader peaks were 

obtained using the organic carbon detector compared to ICP-MS due to the large volume of the OCD 

reactor and thus longer sample passage time. Peak integration times for the three fractions as 

indicated in Figure 4.3.1a were therefore corrected through prolongation of the integration time by 

5 min to comply with this effect. 

The first fraction showed narrow high peaks of the detected elements Fe, organic C and P (Figure 

4.3.1a) as well as Al and of the UV signal (Figure 4.3.1b). The second fraction peak was not as narrow 

as the first and differed in elemental peak intensity compared to the first fraction. Here, Fe (Figure 

4.3.1a) and Al (Figure 4.3.1b) show clear peaks but also org C and P (Figure 4.3.1a) and a UV signal 

(Figure 4.3.1b) were present. The third size fraction contained P and all measured elements but in 

different ratios, with elevated amounts of Al and Si (Figure 4.3.1b) than in the previous fractions. A 

UV signal was also recorded (Figure 4.3.1b). This trend could be seen across all sampling sites though 

with variations in fraction yields (Table 4.3.1, Annex Table S1). 

On account of multiple elemental peaks within one fraction, first conclusions can be inferred on the 

chemical speciation of the compounds from reviewing the raw data fractograms (Figure 4.3.1a, b). 

Besides P, the first NNP fraction was clearly dominated by organic C, Fe and Al, whereas Si was 

almost lacking. Hence, this fraction did not contain aluminosilicate minerals but rather P associated 

to Fe-/Al-(hydr)oxides and organic matter, either with P in association to iron/aluminum or to organic 

C (organophosphorus compounds) and then over the direct binding partner to the other compound. 

The detected iron is likely to indicate iron (hydr)oxides, known to be carriers for P (Mayer and Jarrell 

1995; Stolpe et al. 2010). The presence of Si and Al within the third fraction was indicative of 

8 Contains excerpts from:  
Gottselig N, Nischwitz V, Meyn T, Amelung W, Bol R, Halle C, Vereecken H, Siemens J, Klumpp E. Phosphorus 
Binding to Nanoparticles and Colloids in Forest Stream Waters. Biogeochemistry, submitted. 
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aluminosilicate minerals. Overall, P carrying nanoparticles and colloids of different hydrodynamic size 

fractions had a differing elemental composition. 

 

     

Figure 4.3.1: Exemplary AF4 fractograms indicating the three peaks detected for all samples. a) Phosphorus, 
iron and organic carbon signals. The iron signal was downscaled by a factor of 200 to better visualize the 
phosphorus signal. b) Aluminum, silicon, manganese and UV signals. The size of the first fraction lies between 
approx. 1 nm and 20 nm, the second size fraction between >20 nm and 60 nm and the third fraction above 
60 nm. Elution time offset for OCD was corrected, peak broadening not. The depicted UV signal was recorded at 
254 nm wavelength from the AF4-ICP-MS run. Fraction borders apply to the ICP-MS signal, for the OCD 
evaluation these borders were modified. 
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Table 4.3.1: Phosphorus fractionation in stream water samples: The binding percentage of P per natural 
nanoparticulate and colloid fraction referring to total P concentration as well as their sum over all sampling 
points per site. Total P = total sample P concentration, particulate P = sum of P concentration over all three 
fractions. 1st fraction: approx. 1 nm to 20nm, 2nd fraction: >20nm to 60nm, 3rd fraction: above 60nm. Particle 
fractionation via AF4 coupled online to ICP-MS and OCD. n = 29. 

 samples 
P-binding per fraction [%] Total 

P [µg/L] 
Particulate 

P [µg/L] 
 1st 2nd 3rd ∑ 

Co
nv

en
tw

al
d 1 1.3 1.5 33.9 36.7 40.0 14.7 

2 2.6 2.9 8.0 13.6 28.0 3.8 
3 1.9 1.8 1.3 5.1 14.0 0.7 
4 3.3 3.9 10.1 17.3 13.6 2.3 
5 2.3 9.9 20.2 32.3 10.1 3.3 

M
itt

er
fe

ls 

6 7.0 11.1 10.4 28.6 23.0 6.6 
7 5.5 8.0 9.4 22.9 27.0 6.2 
8 7.8 10.9 10.1 28.8 57.0 16.4 
9 9.0 17.2 17.3 43.5 15.0 6.5 

10 9.0 16.9 14.6 40.6 20.6 8.4 
11 12.1 21.1 15.9 49.1 14.0 6.9 
12 10.4 17.3 16.6 44.3 13.0 5.8 
13 5.1 9.6 12.9 27.7 19.0 5.3 

Ve
ss

er
ta

l 

14 4.2 4.6 13.0 21.8 10.4 2.3 
15 2.2 2.3 3.9 8.4 21.0 1.8 
16 1.4 1.4 2.2 5.0 37.0 1.8 
17 4.4 5.1 10.9 20.5 16.0 3.3 
18 6.7 7.1 11.9 25.8 11.0 2.8 

W
üs

te
ba

ch
 

19 5.1 22.4 44.1 71.7 10.3 7.4 
20 5.4 38.5 37.6 81.4 23.0 18.7 
21 14.8 30.3 36.1 81.2 9.0 7.3 
22 10.0 31.6 45.7 87.3 9.0 7.9 
23 26.4 33.1 33.4 92.9 19.0 17.6 
24 2.8 5.6 16.7 25.1 14.1 3.5 
25 8.1 27.5 48.9 84.5 6.9 5.8 

Le
ire

lv
a 

26 18.7 29.2 42.6 90.5 1.5 1.4 
27 20.2 28.4 40.3 88.9 1.3 1.2 
28 19.1 30.2 39.3 88.5 1.2 1.1 
29 15.4 33.5 38.4 87.3 0.9 0.8 
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4.3.2 Association of P with natural nanoparticles and colloids across 5 forest streams 

In order to better understand the associations of P within the NNP and colloidal fractions, 

agglomerative hierarchical tree cluster analysis with complete linkage and the distance measure ‘1-

Pearson r’ was utilized to disentangle the potential associations of organic C, Fe, Al, Mn and Si to P 

for each size fraction (Figure 4.3.2). According to the results of this analysis, phosphorus clustered 

with Fe in the fraction 1 kDa to 20 nm with a ‘1-Pearsons r’ distance of 0.16. This clustering supports 

the relevance of iron (hydr)oxides, possibly in nanocrystalline form (Michel et al. 2007), for P binding 

in this smallest size fraction (Francko and Heath 1982; Hasselloev and von der Kammer 2008; Jiang et 

al. 2015; Leppard et al. 1988), but reduces the probability that Al was the major binding partner of P 

(Richardson 1985) in these nanoparticles. P and organic C did not fall in the same cluster of this very 

fine NNP fraction. Organic C was clustered more closely to Al and Mn than to Fe, suggesting that 

organic matter was mainly associated with these elements but questioning that organophosphorus 

compounds were the main component bound to the Fe oxides (Lyven et al. 2003; Regelink et al. 

2013; Regelink et al. 2011; Shafer et al. 1997).  

The analysis of the 2nd fraction showed a different clustering. A close relation between P and organic 

C in the intermediate size fraction, covering particles >20nm to 60nm, was indicated. The further 

clustering of P and organic C with Fe indicates an association of Fe to one or both of these elements, 

which would support the assumption that this fraction consisted of organic matter bound to Fe and 

over Fe to P through ligand exchange (Gerke 1992; Gerke and Hermann 1992) or of 

organophosphorus compounds associated to iron (hydr)oxides (Gerke 1992; Gerke 2015). The latter 

is more likely if following the cluster analysis results. 

According to the results from cluster analysis, phosphorus is in the 3rd fraction of the analyzed 

samples strongly associated to Al, Si and Mn rather than to Fe and/or organic C. The distance 

measure of Si to Al is very small (‘1-Pearsons r’ = 0.02) reflecting a common compound, such as 

phyllosilicates, which dominates in this fraction. These phyllosilicates may contain variable amounts 

of other elements (Grim and Kodama 2014). The clustering of Mn to Si and Al specifically points to 

the potential presence of 2:1 aluminosilicate minerals. In expansive 2:1 aluminosilicates, which can 

take up nutrients and water, Al can be replaced by Fe or Mn. Apparently, in this fraction P was 

sorbed to the edges of aluminosilicate minerals by ligand exchange (Yaghi and Hartikainen 2013). In 

any case, the analyses clearly show that natural nanoparticles and colloids of forest stream waters 

did not only differ in hydrodynamic diameter but also in their composition, thus rendering them 

complex and important carriers for colloidal P and other elements of different binding form and 

possibly origin. 
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A comparison to other studies reveals that the differentiation of multiple size classes within the NNP 

and colloids is rarely reported in combination with monitoring of P. Different numbers of particle size 

fractions separated by the FFF technique seem to be present in different environmental samples 

(Plathe et al. 2013; Regelink et al. 2013; Regelink et al. 2011; Stolpe et al. 2010). In the latter studies 

the smaller size range was assigned to organic matter associated to metal oxides and the larger 

fraction (up to 100 nm) to aluminosilicate or colloidal silica. The present study confirms the 

associated transport of P and aluminosilicate minerals in the largest size fraction when particles 

exceed a hydrodynamic diameter of 60 nm. 

4.3.3 Potential ecological relevance of natural nanoparticles and colloids for P in forest 

stream waters 

A high relevance of NNP and colloids for nutrient cycling in ecosystems is indicated by the high 

percentages of essential element binding (especially P, organic C, Mn and Fe) to the NNP and 

colloidal fractions (Table 4.3.1, Annex Table S1), yet no previous study was found addressing the 

relation between total and particulate concentration. Up to 100% could be bound to NNP and 

colloids indicating a high recovery (e.g. Fe, P, org C) in particulate form which lead to the assumption 

Figure 4.3.2: Hierarchical tree cluster analysis results with ‘1-Pearson r’ as distance measure and complete 
linkage rule per fraction across all sampling sites. 
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that no significant amount of particles was lost upon fractionation. For elements which did not reach 

100% particulate concentrations, the difference between total sample concentration and particulate 

concentration could potentially be assigned to the ‘dissolved’ state (Hill and Aplin 2001; Martin et al. 

1995) as hydrated compounds <1 kDa. In case the total concentration as well as the concentration of 

‘dissolved’ elements decreases with simultaneously increasing NNP and colloidal bound proportion 

of the elements, it can be presumed that nanoparticulate and colloidal bound elements, specifically 

nutrients, have a high ecological relevance in forest stream waters. It is noted that the 

interdependency of the NNP and colloidal fractions with the ‘dissolved’ phase is less known, yet very 

complex.  

The data has shown that the importance of NNP and colloids for P cycling increases with decreasing 

total P. Through calculation of the correlation coefficient between the total concentration of P per 

site and the percentage of P binding in the three fractions, the negative relation between the two 

parameters for P can be seen (Table 4.3.2). A negative coefficient indicates higher NNP and colloidal 

binding as total concentrations decline. The same trend was observed for the difference between 

total sample concentration and particulate concentration, potentially representing ‘dissolved’ P. This 

is of particular interest because the basic assumption of biological availability depends on the 

presence of hydrated ions for nutrient uptake. For certain, the higher the total P concentrations, the 

lower were the portions of P bound to NNP and colloids, or, the other way around, at conditions of 

low overall P concentrations in the forest stream water systems, higher P binding to NNP and colloids 

was observed. Therefore the P containing particles will constitute a high relevance for nutrient 

cycling or similarly represent a major loss factor, which is of high expense to the ecosystem.  

Table 4.3.2: Correlation coefficients of total elemental concentrations to binding percentage of respective 
element per NNP and colloidal fraction and to sum of all fractions. Coefficients were calculated according to 
Spearman r correlation. Asterisks (*) denote significant correlations (p<0.05). 

Fraction P C Al Si Mn Fe 
Correlation of total elemental concentration to percentage particle bound 

concentration 
1st -0.52* 0.58* 0.22 -0.25 -0.66* -0.05 
2nd -0.54* 0.73* 0.39* -0.27 -0.52* 0.37* 
3rd -0.66* -0.36 0.06 -0.31 -0.60* -0.12 
all -0.56* 0.58* 0.29 -0.25 -0.56* 0.08 

Interestingly, there is not only a high relevance of NNP and colloids for phosphorus binding and 

transport, but also for organic C, Mn and Fe (Annex Table S1). Al and Si were detected in high 

amounts in the total sample; yet, the percentage of Al bound to NNP and colloids was generally 

below 5%, for Si even below 2%. Therefore, these low percentages allow a distinct clustering of 

aluminosilicate minerals to P in the largest size fraction. The percentage of organic C and Mn 
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associated with NNP and colloids varied between sites from 7% to 50% and 15% to 80%, respectively. 

These elements did not vary in a comparative way, indicating different factors which influence 

organic C and Mn concentrations in stream waters and respectively bound in NNP and colloidal 

structures. Large organic matter inputs can be expected for thick and highly developed organic soil 

horizons, whereas Mn, as important redox element for multiple biological processes, can indicate 

microbial activity and turnover (Keiluweit et al. 2015). The percentages of Fe associated to NNP and 

colloids, which ranged from 26% to 57%, were intermediate and less variable with respect to the 

observed elements. In contrast, total Fe concentrations varied highly. Hence, Fe binding to NNP and 

colloids seems to be a favorable and stable process which only declines when Fe is present in very 

low concentrations.  

It was interesting to investigate if such changes are reflected by environmental parameters such as 

the C to P, Fe to P or other predictive ecosystem response ratios. The relationship between the 

dissolved P proportion and the NNP and colloid bound P below 450nm is of interest to better 

understand nutrient cycling and availability. To contextualize phosphorus in freshwater ecosystems, 

stoichiometry has been used for a long time (e.g. Elser et al. 2000; Hecky et al. 1993; Redfield 1934). 

For the C:P ratio of freshwaters, Hecky et al. (1993) confirmed a severe phosphorus deficiency of 

seston above a C:P value of approx. 250 (Hecky et al. 1993). This basic food chain analysis indicates a 

possible validity of the P deficiency value of 250 for all soluble nutrients of an ecosystem. The 

boundary value of 250 was recently confirmed for phytoplankton in food webs as well (Elser et al. 

2000). Here, the truly dissolved phosphate concentration and the C:P ratio is utilized to represent the 

proportion of easily available P, in the form of dissolved mineral P from bedrock, in stream water 

which is increasingly depleted as soil pedogenesis progresses.  In order to obtain an estimation of the 

availability of the P to plants and microorganisms, the C:P ratio was calculated for each stream. In 

freshwater systems, a value above approximately 250 is usually considered to represent P limitation 

(Elser et al. 2000; Hecky et al. 1993). This value was exceeded in three of the sites (Figure 4.3.3). 

When the study sites were sorted according to C:P ratio in the stream water, they can be considered 

as catchments along a gradient of increasing P depletion:  Conventwald ≤ Vessertal << Wüstebach ≤ 

Mitterfels << Leirelva. Along this trend of increasing C:P ratio values, the concentration of dissolved P 

declined significantly and intriguingly the percentage of P bound to NNP and colloids increased, 

significantly for the first fraction (Figure 4.3.3, c.f. Table 4.3.1). Likely, the changes in NNP and colloid 

bound P reflect the state of weathering. With increasing weathering, P is increasingly stored in 

organic matrices and occluded in Fe- and Al-(hydr)oxides (Turner et al. 2007; Walker and Syers 1976). 

Hence, these P forms contribute increasingly to the NNP and colloids as dissolved P is increasingly 

limited. Finally, almost 90% of total P export occurred with NNP and colloids (Table 4.3.1, Figure 
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4.3.3). The variations (given as standard deviations) of the mean C:P values in Figure 4.3.3 are mainly 

due to differences between the individual sampling locations from the same site with contributions 

from sampling and sample analysis. The C:P values show three distinct groups of sites: low mean 

values for Conventwald and Vessertal, intermediate values for Wüstebach and Mitterfels and the 

highest value for Leirelva. Further, the percentage of P binding to the NNP and colloid fractions 

confirms this trend with the exception of Wüstebach. Thus, despite of elevated standard deviations 

in a few cases, the observed trends were confirmed and results are consistent with the site 

characteristics already shown previously through cluster analysis. 

 

Figure 4.3.3: Contrasting the availability of mineral phosphorus against the binding percentage of phosphorus 
in the three natural nanoparticulate and colloidal fractions. The availability of mineral P is also expressed as the 
C:P ratio of total stream water sample concentrations, the average C:P values ± standard deviation are given 
below the sites, for binding percentages see Table 4.3.1. A C:P ratio greater than ~250 (Elser et al. 2000; Hecky 
et al. 1993) indicates P limitation in an ecosystem. 

  

Decreasing supply of easily available mineral phosphorus 

Increasing NNP&colloid binding percentage of phosphorus per fraction 

1st: Conventwald        Vessertal        Mitterfels        Wüstebach Leirelva 

2nd: Conventwald        Vessertal        Mitterfels        Wüstebach Leirelva 

3rd: Vessertal        Mitterfels  Conventwald       Wüstebach Leirelva 

  C:P = 250  P limitation 

Conventwald  Vessertal      Wüstebach  Mitterfels   Leirelva 

        53±12    64±37          803±378                   816±611                  4801±0 

58 
 



4.3.4 The first flush effect of stream water natural nanoparticles and colloids 

NNP and colloids occur both in soil solution (Missong et al. 2016; Regelink et al. 2013) and surface 

waters (Andersson et al. 2006; Dahlqvist et al. 2004; Gottselig et al. 2014; Stolpe et al. 2010), 

whereas P binds and is transported by mineral (iron or aluminosilicates) or organomineral (organic 

and metal) particles (Gottselig et al. submitted). The aqueous phases of a catchment constantly 

interact; especially during strong precipitation events a high input from soil solution to stream waters 

is expected. This high input is termed “first flush effect” and incorporates not only the soil surface 

runoff water entering the streams but this water also transports mobile soil constituents.  

The first flush effect has previously been observed for sediment and dissolved P (<0.45µm) in an 

agriculturally influenced headwater catchment (Stutter et al. 2008), yet this result could not be 

significantly seen for mixed land use catchments (Hudak and Banks 2006). Interestingly, the results 

for first flush effect studies are in general very biased. Many studies in the urban context have 

evaluated the first flush effect (e.g. Deletic 1998; Hathaway et al. 2012; Soller et al. 2005; Taebi and 

Droste 2004) for a multitude of parameters. For the majority of studies, solely the total suspended 

solids (TSS) have shown to exhibit a more or less distinct first flush effect. In highly managed and 

especially fertilizer influenced catchments, nitrogen or phosphorus can show a first flush effect (Flint 

and Davis 2007; Lee et al. 2002) as well. Field studies to determine the first flush effect in natural 

catchments have so far not been conducted. 

The first flush effect for nanoparticles and fine colloids is defined as a successive increase in the 

particulate bound elemental concentrations parallel to the first discharge wave during a high 

precipitation event (Figure 4.3.4) (de Jonge et al. 2004; El-Farhan et al. 2000; Schelde et al. 2006). In 

contrast to the expectation that distinct drying and wetting cycles promote the release of colloids 

from soil (El-Farhan et al. 2000), Kjaergaard et al. (2004a; 2004b) only observed an increased release 

of colloids from moderately wet soil columns and assumed an accelerated particle bonding and 

cementation in dried soils. Forested headwater catchments are especially of interest in this context 

due to the overall low phosphorus concentrations in forest soils in comparison to agricultural or 

grassland sites (Stutter et al. 2012). The first flush effect has a high loss potential for nutrients from 

the catchment and can therefore have a significant impact on the mobile and available P pool. Still, a 

first column study on the first flush effect induced loss of colloidal phosphorus could not confirm this 

effect (Siemens et al. 2008). Now, through the AF4 technique coupled online to a multitude of 

detectors, a more precise and size dependent analysis of the first flush effect of NNP and colloids can 

be performed. 
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Figure 4.3.4: Conceptual figure defining the first flush effect of natural nanoparticles and colloids over time. 
Conceptually it is assumed that the NNP and colloid concentration (grey) at the same time the discharge wave 
(black) peaks. 

To assess the potential first flush effect of NNP and colloids in forested headwater catchments it was 

hypothesized that an increased amount of NNP and colloids are washed out of a headwater 

catchment through the first downstream wave following a high precipitation event. To assess this 

topic, steam water samples from W, MIT and CON were sampled in high frequency intervals during 

storm events. The first analysis of this data revealed a profound effect for the organic C increase (up 

to 13-fold) in the first fraction throughout all three sites. Intriguingly, the NNP and colloidal organic C 

did not transport other elements, such as phosphorus. Thus also no coupled first flush effect as 

described for the preferential binding of P to NNP and colloids (Gottselig et al. submitted) could so 

far be observed. Despite recent findings on the source of dissolved organic matter (DOM, <0.45µm) 

in a lowland catchment under agricultural impact during storm conditions showing that soil DOM 

flushing and macropore erosion majorly increase during storm events (Jeanneau et al. 2015), it is 

unlikely that the flushed organic matter does not co-transport further elements (e.g. Fe) or nutrients 

(e.g. P). 

4.3.5 Inferences for stream water natural nanoparticle and colloid release from 

surrounding soils 

The data from this chapter was compiled with data on NNP and colloids from soil extracts from 

overlapping sites. These sites were VES, MIT and CON of the national scale project. It was 

hypothesized that on account of a comparison of elemental concentrations and elemental ratios, it 

can be elucidated to which extent NNP and colloids from soils are released into the stream waters. 

Preliminary data analysis already revealed distinct differences in elemental concentrations between 

soil and stream water, with soils showing significantly higher concentrations of all elements, yet 

Time

NNP&colloid
concentration
Discharge
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elemental ratios, between e.g. C and P reflect similar tendencies for the prediction of the nutritional 

status of a site. Stream water analysis (Figure 4.3.3) revealed a P limitation for MIT, whereas CON 

and VES did not exhibit this P limitation according to the C:P ratio. These tendencies could be 

confirmed for the soil extract C:P ratios (data not shown). 

4.3.6 A first approach on the natural nanoparticle and colloid composition of aquatic 

ecosystem samples 

The effect of groundwater inflow has previously been found to have a dilution effect on NNP and 

colloids (Gottselig et al. 2014), yet through rainfall and soil water, further aqueous input reaches a 

stream. Therefore, in the context of the national scale sampling, monthly stream water samples of 

the stream source and catchment outlet point, rainfall, interception water, groundwater and 

throughflow water through three soil depths were collected at the site CON. NNP and colloidal 

compositions of all aqueous samples were recorded on a monthly basis to define the sample specific 

signature and their influence on the overall stream sample signature. A first analysis of the data has 

revealed a sample specific signature which marginally varies over the course of one year, yet is 

constant in its basis with respect to intensities of the elemental signatures in the predominant 

fractions present of each sample. For example, as already shown in Chapter  4.2, groundwater from 

CON exhibits low to no NNP and colloid fractions, whereas the fraction intensities significantly 

increase from rainfall to interception water, indicating a wash-off of vegetation which could 

potentially be an interesting input to stream waters. 

4.4 Distribution and composition of P carrying nanoparticles and colloids 

across European stream waters9 

4.4.1 Fractionation of natural nanoparticles and colloids on European scale 

The application of the AF4 revealed three distinct fractions of NNP and colloids in European stream 

waters (Figure 4.4.1a, b). NNP were the exclusive constituent of the first two fractions and accounted 

for approx. 20% of the third fraction. The first and smallest NNP fraction included particles with 

9 Contains excerpts from:  
Gottselig N, Amelung W, Kirchner J, Avila Castells A, Båth A, Batalla R, Bol R, Blomkvist P, Estany D, Eugster W, 
Falgin C, Granger S, Hernandez Crespo C, Herrmann F, Jackson-Blake L, Keizer JJ, Knöller K, Laudon H, Laurila T, 
Lehner I, Lindroth A, Löfgren S, Ottosson Löfvenius M, Lohila A, MacLeod K, Martín Monerris M, Mölder M, 
Müller C, Nasta P, Nischwitz V, Paul-Limoges E, Pierret MC, Pilegaard K, Romano N, Stähli M, Sebatià MT, 
Taberman I, Voltz M, Wendland F, Vereecken H, Siemens J, Klumpp E. Natural Nanoparticles and Colloids in 
European Forest Stream Waters and their Role for Phosphorus Transport. Global Biogeochemical Cycles, ready 
for submission. 
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standard equivalent hydrodynamic diameters between 1 kDa (corresponds to 0.66 nm, equation 2.2, 

Erickson 2009) and 20 nm, the intermediate NNP fraction above 20 nm to 60 nm and the largest size 

fraction included NNP above 60 nm up to colloids of approx. 300 nm diameter. Due to the maximum 

size range, all detected NNP and colloids fall into the operationally defined ‘dissolved phase’. 

Elemental signals were recorded in all three size fractions with varying intensities, with the main 

focus on the variable P concentrations in the peaks and across Europe (Figure 4.4.1c). These fractions 

correspond to the fractions detected for multiple stream waters in Germany (Gottselig et al. 

submitted) and also Stolpe et al. (2010) found three to four fractions of colloids in the Mississippi. 

 

Figure 4.4.1: AF4-ICP-MS and AF4-OCD raw data fractograms. a) Fractogram of Al, Ca, Fe and org C of one 
sampling point at Krycklan, Sweden (K5); b) Fractogram of P, Si and Mn of one sampling point at Krycklan, 
Sweden (K5); c) Fractogram of P of three sampling points at different sites, AM = Allt a’Mharcaidh, Scotland, SB 
= Strengbach, France, F = Franchesiello, Italy, P = Pallas, Finland, B = Bode, Germany, RS = Ribera Salada, Spain. 
X-axes represent the method time in minutes, focus time was partially cut off, only actual peaks are shown. Y-
axes for Al, Si, P, Ca, Mn and Fe represent mass flow in µg/min, for org C it is detector signal in V. Fraction 
borders apply to the ICP-MS signal, for the OCD evaluation these borders were modified. 
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4.4.2 Colloidal significance for element partitioning in water samples 

When relating the summed element concentrations in the fractions to the total element 

concentrations, the minimum proportion of elements that was particle bound were obtained. The 

proportion is intentionally termed minimal due to the fact that particle loss through AF4 fractionation 

is unknown. In any case, the proportions of the different elements under study associated to NNP 

and colloids ranged from 0.0 (not detected) to 99.5% of total elemental concentration. Thus, the role 

of NNP and colloids for element transport may be very variable, ringing from insignificant to the 

complete control of aqueous element cycles. 

With respect to the average percentage of elements bound to NNP and colloids (colloidal elemental 

concentration as percentage of total sample elemental concentration) in the three fractions, the AF4 

results underlined the high relevance of NNP and colloids for the distribution of elements in water 

samples. Up to 99% of Fe, 96% of P, 96% of Mn, 95% of Al, 92% of org C, 46% of Si and 27% of Ca 

were associated with NNP and colloids. The average percentage (mean ± standard deviation, n=96) 

for Fe was 53±21%, for P 50±26%, for Mn 26±29%, for Al 41±24%, for org C 20±20%, for Si 2±5% and 

for Ca 4±6%. The respective median values were 55% (Fe), 51% (P), 10% (Mn), 37% (Al), 11% (org C), 

0.2% (Si) and 1% (Ca). The percentages reflected a significant contribution of the nanoparticulate and 

colloidal fractions for the operationally defined ‘dissolved’ elements Fe, P, Al, org C, Mn, Ca and Si (in 

descending order) which can be up to almost 100% of the total elemental concentration of the 

sample. Former research on the significance of colloid-bound elements within the operationally 

defined ‘dissolved’ fraction indicates a maximum Fe binding in colloidal form between 80 to 100% 

with averages between 50 and 90% (Hill and Aplin 2001; Jarvie et al. 2012; Martin et al. 1995), for org 

C between 40 and 80% with averages between 20 and 60% (Jarvie et al. 2012; Martin et al. 1995; 

Wen et al. 1999) and for Al around 40 to 50% with averages around 45 to 55% (Hill and Aplin 2001; 

Jarvie et al. 2012). Hill and Aplin (2001) determined up to 50% binding of Mn in colloidal form 

(average 23%), up to 30% for Ca (average 20%) and low percentages up to a maximum of 10% for Si 

(average 0%). Dahlqvist et al. (2004) found an average of 16% colloidal Ca in an Arctic and an Amazon 

river (also assessed with FFF). Jarvie et al. (2012) further found a fraction of up to 90% (averaging at 

66%) of organophosphorus compounds associated to colloids. In summary, the data confirmed that 

particle bound transport is a major pathway of element losses from a given sampling point within the 

flowing river, yet at variable contributions to overall element fluxes at the sites. 
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4.4.3 Elemental composition patterns of natural nanoparticles and colloids on the 

European scale 

As indicated, the proportion of elements that was recovered in NNP and colloids was significant, yet 

with variations across the European sites. Hence, the distribution patterns of the elemental 

compositions of NNP and colloidal fractions were investigated as a function of the total elemental 

concentration. The goal was to establish empirical functions for estimating the concentrations and 

the composition of NNP and colloids in water samples based on the total elemental concentration. 

Two types of relationships between NNP and colloid concentrations of elements and total 

concentrations could be observed independent of the fraction in question: rather constant 

concentrations of elements in the NNP and colloid fraction independent of the total concentration of 

the respective elements (Si, P, Ca, Mn) and positive linear trends between the concentration of 

elements in the NNP and colloid fraction and total concentrations (Fe, Al, org C) (Figure 4.4.2). The 

linear functions with log scaled axes are defined for x≥log10(1)=0 (Figure 4.4.2). The respective 

elements exhibited steady percentages of particulates respective to the total amounts, independent 

of a change in total elemental concentration. Both distribution patterns are consistent on trends for 

all three fractions but differ in intensity between the fractions (Table in Figure 4.4.2). 

 

 Si P Ca Mn Fe Al org C 

 median m b m b m b 
1st 0.84 1.33 26.7 0.05 1.00 -0.83 0.76 -0.55 1.71 -1.72 
2nd 0.43 3.82 52.9 0.16 0.85 -0.47 0.65 -0.57 0.88 -1.55 
3rd 2.3 2.41 9.52 0.13 0.72 -0.26 0.5 -0.07 0.56 -1.23 

 

Figure 4.4.2: Exemplary distribution patterns. Top left: Grouped diagram for 3rd fraction Ca exemplary for Si, P, 
Ca  and Mn across all fractions, black cross indicates cloud center and black dashed line represents extent; top 
right: Linear distribution with log-scaled axes for 1st fraction Fe exemplary for Fe,  Al and org C across all 
fractions, black dashed line represents mean regression line defined above log10(1)=0; data color coding 
represents geographical classification as well as predominant pH of the region as in Figure 4.4.4; bottom Table: 
Classification of distributions per element fraction, Si/P/Ca/Mn: medians represent highest density of data 
points, Fe/Al/org C: linear regression slope (m) and intercepts (b) of log transformed data. n=96; unit: µmol/L, 
org C: mmol/L. 
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The variable slopes reflect the pH dependent concentrations of Fe, Al and org C which, due to the 

overlap with the operationally defined ‘dissolved’ phase, shed new light on the availability of 

elements below 0.45 µm. Most interestingly the slope of 1st size fraction Fe is 1.0 at an offset to the 

1:1 line (=100% of total in NNP and colloids). This implies that a constant proportion of total Fe is 

present in this very fine nanoparticulate fraction (<20 nm) as average over all European sites 

independent of pH. This proportion was estimated at 85%. 

   

Figure 4.4.3: Location of the 26 European sites along two transects. Dotted lines indicate geographical 
separation between northern (north of 57°N), middle (between 45°N and 57°N) and southern (south of 45°N) 
sites. One site (AM) touches the 57°N border because it partially exhibits tendencies towards the bordering 
region. 

Furthermore, a geographical effect could be observed for the distribution patterns (Figure 4.4.2) 

showing variable elemental concentrations across Europe (Figure 4.4.3). The elements exhibiting 

linear distribution patterns show data point stratification according to geographical region with 

Southern European sites at the lower end and Northern European sites at the higher end of the data 

application. This infers that the role of Fe, Al and org C for the binding to if not even formation 

and/or stabilization of NNP and colloid fractions varies across different geographic regions. Ca, Si, Mn 
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and P show grouped concentrations in similar particulate ranges at total concentrations which vary 

between the regions (Figure 4.4.2). In contrast, Ca, Si and Mn, as building block elements, have equal 

influence on the NNP and colloidal composition across all European sites and P, as transported 

element, showed steady concentrations within the particulate phase. The presented data clearly 

showed that it appears possible to predict the proportion of elements bound to particles, as it is 

either constant (Fe, Al, org C) or independent from total concentration but thus in narrower overall 

particle bound concentration range. This facilitates the inclusion of NNP and colloidal bound 

elements into nutrient cycling approaches and in turn refines their statements. 

4.4.4 Approach for the pH dependent prediction of particulate elemental concentrations 

On account of the pH driven separation between Fe, org C and Ca particles and their demonstrated 

interdependencies, these elements could potentially be used to estimate the presence of the 

remaining elements in the NNP and colloidal fraction. The comparison showed that Fe and org C can 

be utilized to predict the majority of elemental concentrations in the same fraction ≥50% certainty 

(Table 4.4.1). Al could also predict the same number of elements as Fe, especially interesting was the 

prediction of 3rd fraction Si at 61% certainty (Table 4.4.1) which underlines the fact that 

aluminosilicate minerals potentially are the main component of this fraction. The predictability 

through known Ca concentrations as well as the prediction of Si, Ca and Mn through any of the three 

dominant elements is not possible with a certainty ≥50% due to the weak linear trend these 

elements show as a function of total sample concentration. 

An accurate estimation of the P concentrations in the fractions across all sites could not be found, 

but is essential if the straightforward measurement is not implementable. Particulate phosphorus 

exhibited stable concentrations regardless of pH change (Annex Figure S3) indicating that it can 

respond flexibly to different stream water pH values by either associating to Fe, org C or Ca. 

Therefore it was reasonable to differentiate P predictability by pH value. This resulted in a higher 

degree of certainty for the prediction of P than previously observed when including P data across all 

stream water pH values. In the acidic pH range P concentrations can be best estimated through Fe 

(certainty 40%, P=0.03*Fe-0.86) and org C (37%, P=0.35*orgC-0.53). In the basic pH range P can best 

be estimated through Ca (72%, P=1.11*Ca-1.05). The prediction of NNP and colloidal P in the neutral 

stream water pH range is primarily determined by the particulate Fe concentration (14%, P=0.20*Fe-

0.68).  

The shown predictabilities of particulate elemental concentrations give a first good insight into the 

reciprocal influences between elements in the fractions but they will have to be proven more in 

detail and potentially on an even larger scale. 
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Table 4.4.1: Linear regression equations (m=slope, b=y-intercept) and goodness of fit (R2) between the log10 
transformed elemental concentrations per fraction and all particulate concentrations. Only data with a good 
predictor (R²≥0.50) are shown. Elemental concentrations for Al, Si, Ca and Fe are given in µmol/L, for org C in 
mmol/L. 

   org C Al Ca Fe 

1s
t f

ra
ct

io
n 

or
g 

C 

m  0.93 1.06 0.74 
b  -0.61 -1.07 -0.68 
R²  0.74 0.51 0.79 

Al
 

m 0.8   0.77 
b 0.36   -0.11 
R² 0.74   0.91 

Ca
 

m 0.48    
b 0.52    
R² 0.51    

Fe
 

m 1.07 1.19   
b 0.61 0.05   
R² 0.79 0.91   

2n
d 

fr
ac

tio
n Al

 

m    0.77 
b    -0.37 
R²    0.80 

Fe
 

m  1.03   
b  0.22   
R²  0.80   

3r
d 

fr
ac

tio
n 

or
g 

C 

m    0.43 
b    -1.47 
R²    0.50 

Al
 

m   0.67 0.69 
b   -0.20 -0.21 
R²   0.61 0.75 

Si
 

m  0.91   
b  -0.12   
R²  0.61   

Fe
 

m 1.17 1.09   
b 1.33 0.02   
R² 0.50 0.75   

al
l p

ar
tic

ul
at

e 

or
g 

C m  0.94  0.79 
b  -1.00  -1.01 
R²  0.62  0.68 

Al
 

m 0.66   0.71 
b 0.58   -0.03 
R² 0.62   0.85 

Fe
 

m 0.87 1.19   
b 0.80 -0.01   
R² 0.68 0.85   
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4.4.5 Forest stream water pH as determining variable for the elemental composition of 

natural nanoparticles and colloids 

The pH value might be a master variable controlling the size and elemental composition of NNP and 

colloids. Therefore, the concentration and proportion of particle bound elemental contents were 

correlated with soil pH (Annex Figure S3). First individual relationships were evident, yet colloidal P 

lacked a relationship to sample pH (slope = 0.01). Hence, it was assumed that relationships are more 

complex and needed exploratory data analysis techniques. 

This analysis yielded an effect of pH on the dominant composition of building block 

elements/compounds of NNP and colloid fractions, which were only indicative through the individual 

correlations (see above). The pH changes were now found to be a dividing factor between the sites, 

dividing them into Ca dominated and org C or Fe dominated NNP and colloidal sites for 1st fraction 

NNP (Figure 4.4.4). This was indicated by the opposing positions, directions of rays and longer ray 

length of these elements. P rays of the discriminant analysis did not reflect fundamental composition 

of the NNP and colloids, yet reflects the potential adsorption partners of P. The biplot of the 1st 

fraction (Figure 4.4.4a) on the one hand showed the clear distinction between the three pH classes, 

but also the relation of elements to each other in this fraction. Ca was clearly opposed to org C and 

Fe, whereas Ca tended towards the neutral to alkaline sites and org C and Fe to acidic sites. Through 

this, P was assigned a greater adsorption tendency towards Ca, potentially also Si, but opposing to 

org C. While the role of Si is unclear here, the analysis indicated that organophosphorus was not a 

main component of these fractions, likely because organophosphorus associates dominate in the 

larger fractions (Jiang et al. 2015). The tendency of Ca towards alkaline sites was even more 

prominent in the 2nd fraction (Figure 4.4.4b). Here, org C, Mn and Al were prevalent in the 2nd 

fraction and Fe could clearly be assigned to neutral sites and showed positive association to P. This 

possibly indicates changes in Fe-P association with pH. The separation of sites for the 3rd fraction, in 

contrast, was mainly driven by Al and Si, both common in aluminosilicate minerals. It therefore 

seemed likely that aluminosilicate minerals were a part of the building units of the larger sized NNP 

to colloidal fractions, and the opposing sign of the rays would be consistent with changes in variable 

charges across the given pH range. In the 3rd fraction (Figure 4.4.4c) preferential association of to the 

aluminosilicate mineral component Si with further association to Mn and Fe was seen. Mn and Fe 

potentially acted as bridging agents between expansive aluminosilicate minerals and P. 
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Figure 4.4.4: Discriminant function analysis biplots for the categorical dependent variable pH classification 
(green=acidic, <6.6; blue=neutral, 6.6-7.3; red=alkaline, >7.3) to determine the elemental distribution per 
fraction (mol/L) (a) 1st, b) 2nd, c) 3rd fraction, according to the pH classification. The axes show the measure of 
effect size as canonical correlation values. Ray length is proportional to measure of effect size, where longer 
rays indicate a strong effect size and opposing rays indicate contrary tendencies. Small crosses mark the center 
of the three classes of the categorical dependent variable pH. Circles represent 95% confidence interval of mean 
pH score. n=96. 

c) 

b) 

a) 
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In summary, it can be supported that the stream water pH gradient allowed a separation of three 

geographical regions in Europe (Figure 4.4.3) because it predetermines the surface charge and thus 

dominant aggregation behavior of NNP and colloids. According to the stream water pH values at 

sampling, the borders between the regions could be determined along the latitudes of 45°N between 

South and Middle and 57°N between Middle and North. The pH differentiation had been identified 

before for the operationally defined ‘dissolved phase’ of org C and other elements in water (Brady 

and Weil 1996; Lampert and Sommer 1999a; Lampert and Sommer 1999b; Lampert and Sommer 

1999c) and could now also be confirmed for NNP and colloids (Figure 4.4.4a-c).  

The concentration of P bound to NNP and colloids was rather constant across the complete pH range 

in contrast to the other elements in question (Annex Figure S3), indicating that all above mentioned 

NNP and colloid types, with particular focus on contrasting Fe and Ca dominating conditions, could 

act as P-carriers and binding partners, whereas flexible association of P dependent on prominent 

building block elements of NNP and colloids exists. 

4.4.6 Preferential P binding of the different geographic regions in Europe 

To identify clear preferential binding of P to another constituent of the distinct size fractions across 

all European sites and samples, complete linkage cluster analysis with ‘1-Pearson r’ as distance 

measure was applied. Clear preferential binding partners for P across differing climate parameters 

could be defined as demonstrated in Chapter 4.3.2, yet at lower Pearson r values. The strongest 

clustering of P in the 1st fraction is to Fe (Pearson r = 0.30), in the 2nd fraction to organic C (0.07) and 

in the 3rd aluminosilicate mineral dominated fraction (strong Si and Al cluster, Pearson r = 0.98, 

Annex Table S2) to Fe (0.48). The results of the cluster analysis contradicted the potential P 

association to building block elements/compounds identified by the discriminant function analysis. 

With cluster analysis an actual association of P to building block elements/compounds is identified 

whereas the discriminant function analysis only reflects major elemental presence on account of the 

pH classification which determines the canonical variables. In line with the three fractions of NNP 

and colloids (section 4.4.1), the preferential binding of P to the particles in these fractions across all 

European sites is also in accordance to the results previously obtained on a national scale (Germany) 

(Gottselig et al. submitted). 

To better understand the element patters within the fractograms, cluster analysis was performed for 

the elements within the three fractions. It revealed that the 1st fraction was dominated by a close 

clustering of org C, Al, Ca and Fe, similar to the 2nd fraction, with a slightly higher number of good 

clustering results for Fe than of the rest, and for the 3rd fraction Si and Al clearly dominate the 

fraction constituents (Annex Table S2) with further prominent clustering of Fe. The distribution of P 
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was not a prominent parameter that characterized the composition of the different fractions across 

all regions, however, in line with the discriminant analysis, clustering of P was closest with Fe for the 

acidic, Northern Europe, sites, and best with Ca for the alkaline, Southern Europe, streams (Table 

4.4.2). Up to date, this is potentially the first time that there is analytical evidence for the relevance 

of climatic and environmental parameters such as vegetation and soils for the binding of P to the 

varying NNP and colloids in European stream waters. 

Table 4.4.2: Pearson r values for clustering of phosphorus within all three size fractions per geographic region 
(c.f. Figure 4.4.3). n=96. 

 North Middle South 
  1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 

org C 0.55 0.47 0.2 0.49 0.33 0.48 0.31 0.67 0.17 
Al 0.41 0.62 0.33 0.29 0.49 0.20 -0.32 -0.13 -0.04 
Si 0.45 0.40 -0.07 -0.22 0.05 0.16 0.27 0.06 0.16 
Ca 0.18 0.48 0.71 -0.19 -0.18 -0.04 0.80 0.74 0.86 
Mn 0.67 0.74 0.77 -0.22 -0.24 -0.03 -0.39 -0.19 -0.32 
Fe 0.81 0.75 0.61 0.40 0.16 0.36 -0.34 -0.14 -0.06 

 

4.4.7 The influence of site specific parameters on element concentrations of natural 

nanoparticles and colloids 

When analyzing stream waters, the surrounding soil and underlying bedrock are the environmental 

compartments in closest vicinity to the stream and most influential input factors. If no chemical 

analysis of these compartments is available, like in the present study, these parameters are classified 

and thus are non-numeric factors. A possibility to estimate the influence of non-numeric data is by 

grouping the numeric values by the non-numeric classes. In this study, soil, bedrock and dominant 

tree type were divided into subgroups and cluster analysis was performed with the respective data 

sets. A resulting difference between the subgroups is regarded as a varying influence and the 

Pearson r value informs about the intensity of this influence. The grouping of climatic and 

environmental site specific parameters was applicable for dominant tree species (coniferous vs. 

deciduous vs. both) and for soil type (dystrophic, eutrophic and semi-terrestrial), whereas a 

classification of bedrock types was less straightforward and did not serve as comparable basis for 

classification analysis. Dystrophic soils were Podzol, Cambisol (coniferous), Leptosol and Regosol, 

eutrophic soils were Cambisol (deciduous) and Mollisol, semi-terrestrial soils were Fluvisol and 

Gleysol. This comparison yields the effects of soil class and dominant tree type on the elemental 

composition of the particulate phase. A significant effect (Student’s t-test, p<0.05) of soil class was 

found for all particulate Si, P, and Mn (Table 4.4.3). Semi terrestrial soils showed significantly higher 
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Si inputs to colloids, for Mn this was found to be valid for the eutrophic soils, for P the effect 

between higher inputs from semi terrestrial to eutrophic soils was found with intermediate 

dystrophic influence. For the analysis of the effect of dominant tree type the overlapping class ‘both’ 

contained equal parts of coniferous and deciduous influences and thus predetermined only two 

significantly different counterparts. The coniferous class was significantly different of the deciduous 

class for all particulate org C, Al, Ca and Fe, interestingly not for P (Table 4.4.3). For all elements the 

washout from coniferous tree stands was significantly higher than the influence from the deciduous 

stands, in line with the tendency of especially coniferous stands to have acidic soil pH values. This 

favors the NNP and colloidal formation due to the stronger adsorption partners, especially metals, 

for negatively charged compounds such as phosphate or organic matter. 

Table 4.4.3: Mean values of molar elemental concentrations per class of site specific parameter and significance 
level. Significantly different classes per element are marked by a and b, Student’s t-test, p<0.05. 

  org C Al Si P Ca Mn Fe 

soil class 
dystrophic 0.41 a 1.91 a 0.41 a 0.31 a,b 5.88 a 0.03 a 3.33 a 
eutrophic 0.34 a 2.02 a 1.56 a 0.22 a 4.07 a 0.05 b 5.33 a 

semi terrestrial 0.07 a 3.43 a 4.85 b 0.44 b 4.05 a 0.01 a 1.17 a 

dominant tree type 
coniferous 0.54 a 2.64 a 1.03 a 0.33 a 6.98 a 0.03 a 5.68 a 

both 0.07 a,b 0.07 a,b 0.04 a 0.85 b 3.30 a,b 0.00 a 0.05 a,b 
deciduous 0.03 b 1.05 b 1.30 a 0.21 a 1.79 b 0.03 a 0.57 b 

 

Different subcategories showed strong clustering of P to another element. Eutrophic soils showed a 

distinct clustering of P and Fe in the 1st fraction as well as of P and Si in the 3rd fraction. Further, 

dominant tree type can have explanatory power for P to Ca in the 1st fraction and P to Si in the 3rd 

fraction again. The 2nd fraction experiences mixing effects of dominant tree type and soil class. For 

the non-numeric factors in total it was seen that the 1st and 3rd fraction composition is highly 

influenced by soil, bedrock and dominant tree type. 

4.4.8 Central environmental factors driving natural nanoparticle and colloid fraction 

concentrations 

In 48% of the cases, when assuming that each of the seven elements can have a different driving 

factor per fraction (7 elements per 3 fractions = 21 cases in total), MAT shows highest Spearman rank 

order correlation coefficients (Table 4.4.4). Besides average slope (19%), average site elevation, 

annual runoff and water pH only majorly contribute to one (5 times = 5% per case) or two (resource 

manipulation; 10%) elemental presences in the fractions. MAP, stream water temperature, soil sand 
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content, catchment size and forest cover do not seem to primarily influence any element in the 

fractions. 

The parameters MAT and MAP are the most decisive parameters for climate descriptions (Peel et al. 

2007) and thus potentially also for the elemental presence in the NNP and colloid fractions. In 

general if a significant effect was observed, an increase in MAT or MAP alone leads to a decrease in 

elemental concentrations with the exception of MAP on Al and Si in the 3rd fraction (Table 4.4.4). The 

data has shown that especially MAT significantly (p<0.05) influences specific elemental presences in 

the fractions also as the dominating influence factor (Table 4.4.4). The percentage of MAT as highest 

parameter influence is 71% for the 1st fraction (5 of 7, cf. Table 4.4.4), 57% for the 2nd fraction and 

14% for the 3rd fraction. This result indicates that nanoparticles up to 60 nm (1st and 2nd fraction), 

which are most probably either organic particles or P associated to metal (hydr)oxides (Gottselig et 

al. submitted), increasingly occur as MAT decreases. For the organic constituents, this fact seems to 

be contradictory to the general understanding of stream water organic matter dynamics (e.g. Bol et 

al. 2015) at first glance, yet these dynamics seems to be equivocal (Kirschbaum 2006) because on the 

global and local scale the correlation observed for the present study shows validity (Kirschbaum 

1995; Post et al. 1982). For NNP a potential increased mobility of 1st fraction organic particles is 

assumed which are mobilized through the colder MAT (Kalbitz et al. 2000) by more frequent freezing 

of organic soil horizons, acting as organic NNP sources, thus releasing organic particles from the 

surrounding soil matrix. With regard to iron (hydr)oxides the negative relationship of Fe and MAT is 

reasonable when incorporating the temperature dependence into the solubility equation of colloidal 

versus truly dissolved Fe at a given pH (Lofts et al. 2008). Further, the aluminosilicate mineral 

dominated fraction >60 nm is increasingly present as MAP values rise, indicating that precipitation 

plays a key role in soil wash out processes resulting in excess presence of this fraction in the stream 

waters. Rainfall controls the dissolution of elements into soil solution, thus processes governing 

aluminosilicate mineral formation are more pronounced under conditions of abundant rainfall (Velde 

and Meunier 2008). Aluminosilicate minerals can adsorb organophosphorus compounds (Ognalaga et 

al. 1994) or, in expansive 2:1 confirmation with Fe or Al oxide coatings, sorb P (Yaghi and Hartikainen 

2013). Due to the large quantities of large NNP or colloidal aluminosilicate minerals in soil, the 

relation of MAP to 3rd fraction Al was positive even though the MAP effect is in general negative. The 

negative effect on org C and Ca presence in the 1st and 2nd fractions and Ca in the 3rd fraction can be 

related to high precipitations which can exceed a maximum soil capacity. Above this the soil is 

leached resulting in a decreased presence due to non-sufficient replenishment of the soil (van Ranst 

et al. 2004). An effect of MAT or MAP on P could only be detected in the 1st and 3rd fractions. This is 

potentially due to the nature of P binding to NNP and colloid. P is not a primary building block 
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structure of NNP and colloid but adheres to organic and/or metallic particles, thus it depends on the 

presence of these building block structures for P to be present in/on NNP and colloids. 

4.4.9 Indirect effects of environmental factors on natural nanoparticle and colloid 

fraction concentrations 

Environmental factors do not only influence the elemental presence in the NNP and colloid fractions 

directly but also indirectly act through their influence on other factors which then directly affect the 

particles. The assumption was tested if an indirect effect of MAT and MAP, as central environmental 

factors determining the climatic classification of a site, through site specific variables, which form 

under the influence of the central environmental factors, such as vegetation cover, annual runoff, 

stream water pH and stream water temperature can be detected. These site specific variables then in 

turn influence the building block structure and composition of NNP and colloids which further 

influences the P concentrations on the particle fractions via the previously identified preferential 

association partners of P. For parameter data of the European sites, see Annex Table S3. The results 

neglected this long chain of indirect effects on the P binding to NNP and colloid fractions. Instead, 

the data revealed a more direct effect on building block elements and structures which influenced P 

binding. Additionally, site specific parameters such as water pH did show to influence P binding, but 

through a more indirect pathway than by transmitting the MAT and/or MAP influence (Figure 4.4.5). 

A strongly valid model for the 1st fraction (p-value = 0.932, Chi square test) shows the negative 

influence of MAP on organic C, the strong link between organic C and Fe and eventually the 

significantly positive path from Fe to P (Figure 4.4.5, left), in line with results from Chapter 4.3.2. 

Further, catchment size has a slight negative influence on stream water NNP Fe. MAT and MAP also 

have significant inputs in the pathways of the 2nd fraction (p-value = 0.123, Chi square test), yet with 

the only significant influencing factor to P being MAP. Due to the fact that all other assessed 

environmental parameters did not yield a valid influence on P, a factor such as microbial activity can 

potentially link MAP and P. In contrast, in the 3rd fraction (p-value = 0.387, Chi square test) the 

recorded environmental parameters do not significantly affect P binding to the aluminosilicate 

minerals of the 3rd fraction but solely the presence of aluminosilicate minerals determines P 

adsorption in this fraction. The model of the 1st fraction was close to the highest p-value (1) and 

therefore reflected excellent validity. The 2nd and 3rd fraction results should be validated through 

larger dataset to see if changing pathways between the parameters arise. Interestingly, the linkage of 

aluminosilicate minerals to P over a metal component (Gottselig et al. submitted) was confirmed 

through the path analysis at specifically high agreements (R²=0.98) between Al and Fe. 
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V 

Summary, conclusions and outlook 

Through this study, the complexity and dynamics of natural nanoparticulate (NNP) and colloidal P 

fractions in the stream water of forested headwater catchments was shown, enabling novel 

conceptual definitions of NNP and colloid fractions within the aqueous phases of an ecosystem. The 

acquired data extends the fundamental knowledge on natural nanoparticles and colloids as nutrient 

carriers and enhances the need for reviewing nutrient transport, cycling and acquisition processes in 

ecosystems, particularly for P. 

Method development: A method for the fractionation of stream water NNP and colloids was 

developed with Asymmetric Flow Field Flow Fractionation (AF4). The advantages of the individual 

adaptions to the AF4 parameters are described and their applicability to environmental samples is 

shown. For the online analysis of the fractions, a UV detector, a dynamic light scattering device (DLS), 

a quadrupole inductively coupled plasma mass spectrometer (ICP-MS) with collision cell technology 

and an organic carbon detector (OCD) were successfully used.  ICP-MS was especially adapted to P 

concentrations down to 0.1 µg/L. To further asses the applied methodologies, the oxidation 

efficiency of the OCD was investigated and showed a minimum recovery of 85% of the TOC 

measurements, the possibilities of organic C analysis with ICP-MS were investigated and proved to be 

feasible at organic C concentrations markedly above 1 mg/L and a methodological approach to in 

future assess the bioavailability of NNP and colloid bound P of environmental samples were 

performed. 

Regional scale study: Next to sampling points in the main stream flow, additional sites with 

differences in hydromorphology were essential to trace main stream flow variations through 

tributary inflows. The AF4 method with an online coupled ICP-MS allowed successful measurements 

of P, Fe, and Al, showing that up to 100% of P in the stream water is bound in the NNP and colloidal 
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fraction. This fundamental fact alone underlines the significance for NNP and colloids in aqueous 

samples and creates a necessity to further investigate NNP and colloids. The fractionation of the 

stream water samples achieved two distinct fractions. A small-size fraction, eluting first, contained 

NNP with a mean diameter of 8 nm. For this fraction, variations in P concentrations seemingly 

followed the course of Al variations. The NNP and colloids of the second fraction, had a mean 

diameter of 150 nm. In both fractions, high P concentrations were present at high Fe concentrations. 

Coelution of P, Fe, Al, and organic C compounds was observed for both particle fractions in most 

samples. For the first fraction, it is supposed that org C is the carrier of metals and nutrients. In the 

second fraction, org C acted as a matrix material, stabilizing microaggregates with metal (hydr)oxides 

and organically bound nutrients. The particle-bound P contents changed from before to after 

deforestation, possibly due to a high wash-out effect of NNP and colloids leading to a level where 

bound P was below the detection limit of the AF4-ICP-MS system. In a further analysis, the collected 

fractions of the stream water samples were analyzed for their d56Fe value due to the fact that Fe is a 

major component of all NNP and colloid fractions. This showed different NNP and colloidal d56Fe 

values than from vegetation and soil samples, allowing a first distinction of potential source regions 

of NNP and colloids. In future, through the application of data analysis techniques such as e.g. end-

member mixing analysis (EMMA, e.g. Hagedorn et al. 2000), these problems can be overcome and 

the numeric linkage of these pools can be conducted. 

National scale study: This study showed that P binding to the NNP and colloidal fractions of stream 

waters is not restricted to a single particle type, but rather that there is a size-dependent binding of P 

to different chemical or mineral constituents or both. The successful coupling of AF4 to OCD and ICP-

MS revealed three main fractions of these NNP and colloids due to AF4 method advancement. The 

OCD proved to overcome the compound dependent response of the UV signal and allowed a precise 

measurement of the organic C in the NNP and colloid fractions. The first and smallest NNP fraction 

was between approx. 1 nm and 20 nm, the second and NNP fraction included sizes above 20 nm 

hydrodynamic diameter to 60 nm and the third fraction covered larger NNP above 60 nm to small 

colloids of approx. 300 nm. Through exploratory data analysis techniques, cluster analysis with 

distance measure ‘1 – Pearson r’ was utilized to disentangle the potential associations of organic C, 

Fe, Al, Mn and Si to P for each size fraction. This revealed the potential primary associations of P 

were to small nano-sized Fe oxides, while in the nanoparticulate medium sized fraction, P binding 

was increasingly affected also by the presence of organic matter. Finally, aluminosilicate minerals 

dominated P association in larger NNP to colloids. A high relevance of NNP and colloids for P binding 

and transport, but also for organic C, Mn and Fe was seen. Moreover, an increasing percentage of 

transported P is associated with NNP and colloids, especially as the total P concentration declines. To 
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contextualize P in freshwater ecosystems, the C:P ratio of NNP and colloid bound concentrations 

reflected three distinct groups of sites: low C:P values for Conventwald and Vessertal, intermediate 

values for Wüstebach and Mitterfels and the highest value for Leirelva, whereas a C:P above 250 is 

regarded as limiting according to literature. The percentage of P binding to the NNP and colloid 

fractions generally confirmed this trend.  Thus, the results demonstrate that NNP and colloids play a 

relevant role for nutrient transport in and export from forest ecosystems and can be a potential 

predictor of the nutritional status of an ecosystem. It was assumed that the P flux in ecosystems can 

be significantly influenced through washout processes of NNP and colloids from the catchment 

during high precipitation events, yet no first flush effect of the identified NNP and colloid fractions 

could be observed. In this context, inferences for stream water NNP and colloids released from 

surrounding soils showed comparable elemental ratios at highly different concentration levels 

between soils and stream waters. Stream waters are also influenced by other input flows such as rain 

and interception water. The first characterization of these inputs showed distinctly different NNP and 

colloid patterns with low monthly variabilities. Further data analysis still has to be conducted to fully 

infer the numerical release factors for stream water colloids from surrounding soils. 

Continental scale study: Stream water sampling across Europe allows a large scale analysis of NNP 

and colloids, which could be distinguished into three fractions, comparable to the fractions identified 

for the national scale project. The significant contribution of NNP and colloids could be shown on a 

continental scale for Fe, P, Al, Mn and org C binding, because up to 95-100% of these elements 

occurred in NNP and colloidal form. A geographical divide became apparent in Europe on account of 

the stream water pH and the elemental composition of NNP and colloids. While concentrations of Si, 

Mn, P and Ca are rather constant across Europe irrespective of stream water pH and geography, 

concentrations of org C, Fe and Al associated with NNP and colloids increase with increasing total 

concentration of these elements from the South to the North of Europe with decreasing pH. The sites 

can be divided into sites that are characterized by the presence of Ca-containing NNP and colloids 

and sites with an increasing predominance of NNP and colloids that are composed of Fe and/or org C 

as major NNP and colloid constituent. Integrated over all sites and irregardless of the geographical 

regions, P preferentially binds to the same elements and compounds per fraction as identified for the 

national scale project, yet at lower intensities. This revealed a preferential P binding which is specific 

to geographical region with Ca influence dominating in South Europe, Al and org C in Middle Europe 

and Fe in North Europe.  Site specific parameters such as vegetation and soil type are interlinked with 

the pH value and thus also predetermine the elemental concentrations present in the NNP and 

colloid fractions. This analysis has specifically revealed that washout from coniferous tree stands was 

significantly higher than the influence from the deciduous stands on the NNP and colloids. The 

79 
 



current method does not yield the element specific concentration as function of particle frequency, 

thus for future research this data should be gained across the continental gradient. The identified 

geographical divide in Europe is in line with a climatic shift between the sites. The climate variable 

which reflected the highest direct influence on NNP and colloid composition was mean annual 

temperature, underlining that a latitudinal shift or changing elevation has profound impacts on NNP 

and colloids. This was also confirmed for the path analysis of the indirect impact of climatic factors 

on the NNP and colloids with exception of the third fraction which is apparently determined through 

the sole presence of aluminosilicates. 

Overall, this work has succeeded in underlining the significant relevance of NNP and colloids for 

elemental binding and transport with up to 100% elemental presence in the NNP and colloid 

fractions. Depending on the fractionation method, up to three different fractions with unique 

characteristics could be determined in aqueous samples of forested headwater catchments. The 

fractions reflected different preferential binding of the essential nutrient P but also showed 

ecosystem specific composition patterns. In line with the work on iron isotope signals and in 

combination with the data from this thesis, it seems reasonable to in future aim at tracing the origin 

of NNP and colloids in forested headwater catchments and their physicochemical abilities to 

transport nutrients such as P. This work will be conducted in the context of the Nutrient Spiraling 

Concept (c.f. Marti and Sabater 1996; Peterson et al. 2001; Simon et al. 2005). It is envisaged to work 

on this topic in the framework of a post-doctoral project. 
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Annex 

Methods of sample digestion, Fe isotope extraction and measurements10 

Soil samples were obtained from the Wüstebach catchment through drilling of soil cores up to 1.5 m 

depth in a Cambisol and a Gleysol soil of the catchment in August 2013. Of the soil cores, each 

identified soil horizon was separately sampled. Beech leaves and spruce needles were collected 

directly from living trees in the source area in November 2013. Stream water samples were dried 

down and the dry residues were digested in 2 mL of aqua regia (1:3 (v:v), 3 M HNO3 / 6 M HCl (supra 

pure quality, Merck Millipore, Darmstadt, Germany) at 110 °C overnight in closed Savillex beakers to 

remove remaining organic matter and subsequently dried down in open beakers. Soil samples were 

dried at room temperature and sieved to 2 mm. Of each sample an aliquot of 50-100 mg was 

suspended in 2 mL 3 M HNO3 (supra pure, Merck Millipore, Darmstadt, Germany) and subsequently 

dried down at 110°C in open beakers. The residues were then resuspended in 4 mL of a mixture of 

conc. HNO3 and conc. HF (1:1, vol/vol) and heated to 180°C in high-pressure Parr bombs for 24 h. The 

cooled mixtures were dried down at 120°C in open beakers. The residues were resuspended in 3 mL 

of 3 M HNO3 and dried down. If necessary this step was repeated a second time to remove remaining 

fluorides or organic matter. Vegetation samples were dried at 50°C and either ground manually in an 

agate mortar or milled in a centrifugal mill (0.5 mm sieve, Retsch, Germany). Digestion of the plant 

samples was done similarly to the soil samples. After treatment in 3 M HNO3, the dried residues were 

digested in aqua regia at room temperature overnight and subsequently dried down. The samples 

were then bombed in a HNO3:HF mixture as described above to dissolve the samples completely and 

dried down. For all samples certified reference materials, if possible of matching matrix, were treated 

in parallel. For soil samples TILL-1 (geochemical soil and till reference material, CCRMP, Canada) and 

NIST SRM 2709a (San Joaqium soil, NIST, USA) were used. For vegetation samples NIST SRM 1515 

(apple leaves, NIST, USA) and NIST SRM 1575a (pine needles, NIST, USA) were used.  

The separation of Fe ions from further cations present in the matrix was done by ion 

chromatography. Poly-Prep® chromatography columns (Bio-Rad Laboratories GmbH, Germany), with 

2 mL bed volume and 10 mL reservoir, were filled with 1 mL of analytical grade anion exchange resin 

AG® 1-X4 (200-400 dry mesh size, chloride form, Bio-Rad Laboratories GmbH, Germany). Before 

separation the columns were cleaned by passing subsequently 1 reservoir of double distilled water, 1 

reservoir of 6 M HCl and 1 reservoir of 0.05 M HCl through them. The columns were then conditioned 

with 1 reservoir of 6 M HCl. The dried samples (see above) were dissolved in 0.5 mL (water samples) 

10 Contains excerpts from: Berns AE, Gottselig N, Ockert C, Hezel D, Wombacher F, Bol R, Münker C, Vereecken 
H, Amelung W, Wu B. Iron isotopes in different reservoirs of a forested catchment, in preparation. 
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or 1.5 mL (soil and vegetation samples) of 6 M HCl and aliquots of 500 µL (water samples) or 200 µL 

(soil and vegetation samples) were loaded onto the conditioned columns. For each set of ion 

chromatography samples 1 column was loaded with 0.5 mL of 6 M HCl as blank. First matrix ions 

were washed out with several washings (2 x 0.5 mL, 1 x 1 mL, 2 x 2 mL) of 6 M HCl (= 6 mL matrix 

cut). The Fe ions were then eluted with several washings (2 x 0.5 mL, 1 x 1 mL, 1 x 2 mL) of 0.05 M 

HCl (= 4 mL iron cut). The columns were subsequently cleaned by passing 1 reservoir of 6 M HCl, 1 

reservoir of 0.05 M HCl and 1 reservoir of Milli-Q water through them and were then stored in 6 M 

HCl until further use. The matrix and iron cuts were collected in cleaned Savillex beakers and dried 

down (90°C overnight). The residues were picked up in 1 mL of 0.5 M HNO3 and transferred to 

Eppendorf tubes for storage. 

Element analysis of the matrix and iron cuts was done on an ICP-OES (Spectro Arcos, SPECTRO 

Analytical Instruments, Germany). Before measurement samples were diluted to match the 

calibration range, blanks were diluted only to allow for a large enough sample volume. Calibration 

was done with a set of five multi-element ICP standard solutions (NIST certified ICP-MS standards) 

plus a blank solution giving a range of 0, 10, 50, 100, 500 and 1000 ppb for matrix elements and 0, 

40, 200, 400, 2000 and 4000 ppb for iron. The iron separation was considered successful when no 

iron was detected in the matrix cut and none of the matrix elements in the iron cut.  

Iron isotope ratios were determined on a MultiCollector-ICP-MS (Neptune, Thermo Fisher Scientific, 

USA) (MC-ICP-MS). According to the concentrations determined in the ICP-OES, samples were 

prepared to contain 1 ppm of iron. The samples were spiked with a Cu-solution (NIST-976) with a 

final concentration of 1 ppm of copper. Measurement was done in medium resolution mode and 

mass bias was corrected via the internal Cu-standard. Each sample was bracketed by standard 

analysis of a 1 ppb solution of NIST IRMM-014. 

The values are given in δ56Fe notation: 

𝛿𝛿 𝐹𝐹𝑒𝑒56 =  

⎝

⎜⎜
⎛

    

�
𝐹𝐹𝑒𝑒56

𝐹𝐹𝑒𝑒54 �
𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒

�
𝐹𝐹𝑒𝑒56

𝐹𝐹𝑒𝑒54 �
𝑠𝑠𝑠𝑠𝑎𝑎𝑖𝑖𝑑𝑑𝑎𝑎𝑟𝑟𝑑𝑑

− 1

⎠

⎟⎟
⎞
∗ 103 
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Tables 

Table S1: Organic C, Al, Si, Mn, Fe results of the national scale study: Total sample concentrations and 
percentage of elemental binding in the nanoparticulate and fine colloidal fractions over all sampling points per 
site. n = 29. 

  Organic C Al Si Mn Fe 

 samples 
Total  

[%] 
Total  

[%] 
Total  

[%] 
Total  

[%] 
Total  

[%] 
[mg/L] [µg/L] [µg/L] [µg/L] [µg/L] 

Co
nv

en
tw

al
d 1 1.3 22.7 240 6.7 5500 6.4 4.9 100.0 146 71.8 

2 1.5 18.1 7 3.3 4900 0.1 0.1 69.9 3 55.3 
3 0.9 11.1 6 1.0 5100 0.0 1.4 1.5 1 42.5 
4 0.8 14.3 6 1.6 5200 0.1 0.1 52.2 1 58.5 
5 0.6 17.5 4 7.7 5500 0.1 0.2 71.4 1 100.4 

M
itt

er
fe

ls 

6 35.5 17.0 140 4.0 5000 0.2 0.9 49.7 113 53.6 
7 11.5 42.8 106 5.0 5000 0.2 0.9 44.0 102 53.8 
8 12.7 95.9 330 4.5 4900 0.8 2.2 90.3 380 67.6 
9 14.6 27.0 200 3.7 5400 1.0 1.3 48.7 143 47.4 

10 11.2 48.0 240 4.2 5600 0.9 1.9 44.0 200 46.7 
11 25.3 16.7 270 3.8 5900 0.4 4.2 27.4 210 44.9 
12 11.6 35.3 210 4.2 5200 0.7 1.9 23.1 140 51.1 
13 2.2 100.0 139 4.6 5500 0.4 1.3 63.8 85 75.9 

Ve
ss

er
ta

l 

14 0.7 9.8 8 0.3 5900 0.0 0.3 2.1 1 12.6 
15 0.7 7.6 5 0.3 6700 0.0 0.1 7.1 1 4.0 
16 0.7 6.0 6 0.8 6800 0.0 0.4 3.6 1 25.3 
17 1.4 4.6 12 0.9 6500 0.0 0.1 45.6 3 22.7 
18 1.2 5.4 10 1.6 5900 0.0 0.1 72.0 3 68.7 

W
üs

te
ba

ch
 

19 13.2 18.4 460 0.4 1380 0.4 350.0 0.1 960 17.7 
20 22.9 30.5 590 1.1 830 1.8 240.0 0.2 2100 28.6 
21 5.7 47.0 68 4.1 2200 0.5 49.0 1.0 490 52.8 
22 9.6 21.9 200 2.1 2200 0.5 190.0 0.5 480 43.7 
23 14.0 45.2 117 6.9 1700 1.4 2.8 100.0 630 62.8 
24 1.5 7.8 200 0.1 2800 0.0 92.0 0.0 21 7.8 
25 5.6 25.3 200 1.7 2600 0.8 120.0 0.7 250 39.3 

Le
ire

lv
a 

26 6.0 19.0 21 0.4 700 0.1 0.2 100.0 13 36.7 
27 8.3 20.0 24 0.4 1640 0.3 0.4 57.8 61 16.3 
28 5.8 18.3 21 0.4 900 0.0 0.1 99.2 15 42.3 
29 5.3 17.6 16 0.4 1010 0.1 0.1 100.0 10 59.2 
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Table S2: Pearson r values for clustering of all analyzed elements with each other per size fraction across all 
geographic regions (Figure 4.4.3) of the continental scale study. Red values are Pearson r≥0.5, bold red values 
mark upper 5% of Pearson r values. n=96. 

1st fraction       
 org C Al Si P Ca Mn Fe 

org C  0.84 0.32 0.23 0.86 0.42 0.84 
Al 0.84  0.37 0.20 0.59 0.25 0.67 
Si 0.32 0.37  0.01 0.32 0.02 0.30 
P 0.23 0.20 0.01  0.11 -0.05 0.30 

Ca 0.86 0.59 0.32 0.11  0.36 0.62 
Mn 0.42 0.25 0.02 -0.05 0.36  0.44 
Fe 0.84 0.67 0.30 0.30 0.62 0.44  

        
2nd fraction       
 org C Al Si P Ca Mn Fe 

org C  0.69 0.47 0.07 0.52 0.21 0.76 
Al 0.69  0.42 0.00 0.79 0.29 0.71 
Si 0.47 0.42  0.03 0.45 0.35 0.54 
P 0.07 0.00 0.03  0.00 -0.19 0.03 

Ca 0.52 0.79 0.45 0.00  0.28 0.69 
Mn 0.21 0.29 0.35 -0.19 0.28  0.46 
Fe 0.76 0.71 0.54 0.03 0.69 0.46  

        
3rd fraction       
 org C Al Si P Ca Mn Fe 

org C  0.19 0.15 0.42 0.36 0.06 0.54 
Al 0.19  0.98 0.23 0.09 0.14 0.59 
Si 0.15 0.98  0.19 0.09 0.10 0.50 
P 0.42 0.23 0.19  0.36 -0.08 0.48 

Ca 0.36 0.09 0.09 0.36  -0.13 0.42 
Mn 0.06 0.14 0.10 -0.08 -0.13  0.29 
Fe 0.54 0.59 0.50 0.48 0.42 0.29  
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Table S3: Background data and information on the European sites. Abbr. = abbreviation, site abbreviations see 
Chapter 3.1.3. The degree of forest management was determined according to Duncker et al. (2012). 

abbr
. 

catchment 
size [km2] 

average 
elevation 

[m] 

maximum 
elevation [m] 

minimum 
elevation 

[m] 

average 
slope 

forest 
cover 

forest 
management 

degree 

mean annual 
runoff [mm] 

A 0.19 225 240 210 0.13 0.73 0.25 280 
AG 0.75 916 1489 272 0.28  0.75  
AM 9.79 716 1111 320  0.02 0.00  
B 1.27 515 569 461 0.07 1.00 0.00  

BPC 3.2 523 754 292 0.21 0.5   
C 10.95 563 750 427 0.32 1.00 0.50 225 

CW 0.5 146 191 102 0.08 1.00 0.25  
E 0.73 1330 1510 1150 0.24 0.39 0.25 1778 
F 10.95 563 750 427 0.32 1.00 0.50 225 
G 0.07 127 140 114 0.22 0.65 0.25 520 
K 679 260 405 114  0.87 0.25 311 
L 1.25 111   0.01 1.00 1.00 413 

LÄ  680 866 440 0.35 1.00 0.00  
MP         
LP 110 305 420 190 0.25 1.00 0.00  
LÜ 0.88 1260 1360 1160 0.15 0.19 0.25 2001 
LZ 0.65 365 455 200 0.37 1.00 0.00 775 
N 6084 45 78 30  1.00 0.00 250 
P 5.15 308 347 269 0.08 0.6 0.25 220 

PR 10.95 563 750 427 0.32 1.00 0.50 225 
RS  1483 2385 580  1.00   
S  37 38 36 0.07 1.00 0.50  

SB 0.8 1015 1146 883 0.15 1.00 0.50 814 
SC 0.52 432 485 275 0.16 1.00 0.00 775 
V 1.58 1285 1450 1120 0.23 0.63 0.25 1601 
W 3.85 612 628 595 0.04 1.00 0.00  
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Figures 

 

 
Figure S1: Variation of the DOC content in the year 2013 measured in context of the TERENO monitoring. 
Missing data relates to the time of deforestation, where no sampling could take place. Not all sampling sites of 
this study are covered within the TERENO Project. Site SP1 = WU_01, T2 = WU_12, SP3 = WU_14. 
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Figure S2: Hydrological characteristics of sampling point SP3 of the Wüstebach stream in the year 2013 for the 
respective sampling period. Water level (blue line), runoff (red line) and turbidity (brown bars) are shown. 
Sampling prior to deforestation was done at the beginning of August, post deforestation at the beginning of 
December. 
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Figure S3: All particulate concentration as function of forest stream water pH at sampling of the continental 
scale study. n=96. 
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