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We propose a practical parametrization for the line shapes of near-threshold states compatible with all
requirements of unitarity and analyticity. The coupled-channel system underlying the proposed para-
metrization includes bare poles and an arbitrary number of elastic and inelastic channels treated fully
nonperturbatively. The resulting formulas are general enough to be used for a simultaneous analysis of the
data in all available production and decay channels of the (system of) state(s) under consideration for a
quite wide class of reactions. As an example, we fit the experimental data currently available for several
decay channels for the charged Zð0Þ

b states in the spectrum of bottomonia and find a good overall description
of the data. We find the present data to be consistent with the Zbð10610Þ as a virtual state and with the
Zbð10650Þ as a resonance, both residing very close to the BB̄� and B�B̄� threshold, respectively.
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I. INTRODUCTION

In the last decades an enormous bulk of data on the
charmonia(like) and bottomonia(like) states lying above the
open-flavor thresholds have been collected by many experi-
ments, such as BABAR, Belle, BESIII, CDF, DØ, and
LHCb. Future high luminosity experiments, in particular,
the forthcoming experiment Belle-II at KEK and PANDA
at FAIR, are expected to provide new high precision and
high statistics data for already known states, as well as for
new, yet unobserved ones in various final states [1–6].
Traditionally data in different channels were analyzed
individually by use of Breit-Wigner distributions, or sums
thereof, combined with some background function.
However, this procedure provides only limited information
on the state studied: first of all, Breit-Wigner parameters are
reaction dependent; second, summing Breit-Wigners in
general violates unitarity, and last but not least, by studying
individual channels only, one does not exploit the full
information content provided by the measurements. In
particular, the theoretical description of the states above
the open-flavor thresholds calls for using adequate para-
metrizations for the line shapes which should be capable of
describing such phenomena as finite widths of the con-
stituents, multiple thresholds in the vicinity of the reso-
nances, an interplay of the quark and hadron degrees of

freedom in near-threshold states, and so on. In the mean-
time, such parametrizations need to be easy to handle in
order to be useful for the analysis of experimental data.
Consider first an unstable particle coupled to the had-

ronic channel, open at E ¼ 0, with the coupling constant
gf. In the effective range approximation the scattering
amplitude can be written in the form [7]

MðEÞ ¼ gf=2

E − E0 þ iðgf=2Þk
; ð1Þ

where the momentum k is

kðEÞ ¼
ffiffiffiffiffiffiffiffiffi
2μE

p
ΘðEÞ þ i

ffiffiffiffiffiffiffiffiffiffiffiffi
−2μE

p
Θð−EÞ;

and μ is the reduced mass in the hadronic channel.
Equation (1) can be viewed as the Breit-Wigner amplitude
with the momentum dependence of the elastic width taken
into account explicitly and it is valid, if the nearest
additional threshold, located at E ¼ Δ, is far away from
the considered threshold at E ¼ 0, that is jΔj ≫ jE0j. Also,
the direct interaction in the hadronic channel should not
generate additional near-threshold poles in the S-matrix. As
soon as one of these conditions fails Eq. (1) has to be
generalized. In particular, in Ref. [8] such a generalization
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is given for the case when the direct interaction in the
hadronic channel does generate near-threshold poles in the
S-matrix and a nontrivial interplay between quark and
meson degrees of freedom takes place. The resulting line
shapes may have quite a peculiar form, drastically different
from the ones given by the simple Flatté formula of Eq. (1).
Straightforward generalizations of Eq. (1) to the multi-

channel case are discussed in Refs. [9–14], where all effects
of the direct interaction between mesonic channels are
absorbed into the effective coupling constants. More
sophisticated approaches to the direct interactions in the
mesonic channels are employed in Refs. [15,16]. Effects of
the finite width of the constituents are discussed in
Refs. [10,12,17]. Related discussions can also be found
in Ref. [18].
In this paper we further extend the basis of states

involved and consider a coupled-channel problem for
near-threshold phenomena in a physical system which
contains not only near-threshold poles and allows for
additional elastic (in the example below, nearby open-
flavor) mesonic channels, but also incorporates inelastic (in
the example below, more distant hidden-flavor) channels
fully nonperturbatively as required by unitarity. The result-
ing system of equations is expected to be rich enough to
provide a realistic description of the line shapes for a quite
wide class of reactions.
The formalism used is set up in a very general way. In

particular, we allow for the inclusion of a set of “bare” poles
in addition to various nonperturbative rescatterings.
Effectively this provides an additional momentum- and
energy-dependent interaction and therefore gives an addi-
tional flexibility for the fitting of experimental data, but
does not a priori impose any assumption on the nature/
wave function decomposition of a given state. In particular,
with the pole terms included it becomes easily possible to
also analyze systems with resonances above the thresholds.
The main ideas as well as the key results have already been
presented in Ref. [19]—here much more detailed deriva-
tions and discussions are presented and the updated
experimental data are analyzed. In addition, we briefly
discuss the possible role of the one-pion exchange.
For illustration of the formalism below we study decays

of a system that contains a Q̄Q pair, with Q denoting a
heavy quark. We refer to the open-flavor channels
ðq̄QÞðQ̄qÞ (here q denotes a light quark) by greek letters
α, β, … and to the hidden-flavor channels ðQ̄QÞðq̄qÞ by
latin letters i; j;…. The explicit poles are included as
additional channels labeled by latin letters from the
beginning of the alphabet, that is a; b;….
Paradigmatic examples of such physical systems are,

e.g., the Xð3872Þ decaying into the open-charm channels
DD̄� [20] and the hidden-charm channels πþπ−J=ψ [21]
and πþπ−π0J=ψ [22], or Zbð10610Þ and Zbð10650Þ
decaying into the Bð�ÞB̄� open-bottom [23] and
πϒðnSÞ=πhbðmPÞ (n ¼ 1, 2, 3, m ¼ 1, 2) hidden-bottom

[24] channels. While additional effects such as finite widths
of the constituents and additional interactions between
outgoing particles may also play a role and thus may have
to be included on top of the interactions considered in this
work (for a recent discussion of such effects see Ref. [25]),
nevertheless the gross features of the coupled-channel
problem are captured by the presented formalism and
the parametrization based on it is expected to be realistic.

II. SOLUTION OF THE LIPPMANN-SCHWINGER
EQUATION

A. Simplification of the Lippmann-Schwinger
equation in a two-channel toy model

For the case of the structures near the open-flavor
thresholds, as we will show, the coupled-channel
Lippmann-Schwinger equation (LSE) can be simplified
by absorbing some channels into the definition of an
effective potential. To see how this works, it is instructive
to study a simple two-channel toy model. In this sub-
section, we write the LSE in the operator form for
simplicity. It will be written more explicitly in the form
of integral equations in the next subsection.
Let us start with the LSE for the t matrix

t ¼ v − vSt; ð2Þ

where S is the matrix for the free Green’s functions in the
channel space. The potential is parametrized as

v ¼
�
v11 v12
v21 v22

�
: ð3Þ

Note that time reversal invariance demands that v12 ¼ v21
while for t to be unitary, all vij’s must be real. Explicitly, we
have a system of four coupled-channel equations

tij ¼ vij −
X
k¼1;2

vikSktkj; i; j ¼ 1; 2; ð4Þ

which, however, effectively reduce to single-channel equa-
tions if any of the potentials vij vanishes. The two channels
decouple from each other trivially if the off-diagonal
components are set to zero, v12 ¼ v21 ¼ 0. Let us now
focus on the case of a vanishing diagonal matrix element of
v. For definiteness, we set v22 ¼ 0. Then the t matrix
components t12, t21, and t22 can be expressed through the
component t11 straightforwardly,

t12 ¼ v12 − t11S1v12;

t21 ¼ v21 − v21S1t11;

t22 ¼ −v21S1v12 þ v21S1t11S1v12; ð5Þ

while t11 comes as a solution of a single-channel LSE
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t11 ¼ V11 − t11S1V11 ¼ V11 − V11S1t11; ð6Þ

with the effective potential

V11 ¼ v11 − v12S2v21; ð7Þ

which admits a transparent physical interpretation: elastic
scattering in channel 1 proceeds either through the direct
interaction potential v11 or due to the transition through
channel 2.
One sees therefore that channel 2 only enters additively

in the effective potential, generalization to additional
channels being trivial. This simplification can be applied
to the case studied here because the interaction between a
light hadron and a heavy quarkonium is Okubo-Zweig-
Iizuka (OZI) forbidden and therefore it is very weak. We
discuss a realistic case in the following sections.

B. Solution of the multichannel
Lippmann-Schwinger equation

In this subsection we formulate a multichannel model
and solve the corresponding Lippmann-Schwinger equa-
tions using the simplifying trick described in the previous
subsection.
The key ingredients of the model are (i) the direct

interaction in the open-flavor channels described by the
potential vαβðp; p0Þ as well as that in the hidden-flavor
channels vijðk; k0Þ, (ii) the transition form factor between
the open-flavor and hidden-flavor channels1

vαiðp; kÞ; α ¼ 1; Ne; i ¼ 1; Nin; ð8Þ

and, finally, (iii) the transition form factors between the
bare pole terms and the open-flavor and hidden-flavor
channels,

vaαðpÞ and vaiðkÞ; a ¼ 1; Np; ð9Þ

respectively. The open-flavor and hidden-flavor channels
will alternatively be called elastic and inelastic channels,
respectively. Note that unitarity in combination with the
T-invariance calls for a real and symmetric scattering
potential, as long as all relevant channels are included
explicitly in the model. Actually, one can reverse this
statement: if a high-quality fit for the data demands that
some of the parameters be complex, the model should be
regarded as incomplete. Thus, the formalism outlined here
implicitly provides a diagnostic tool to investigate, whether
or not for certain states all relevant channels are already
discovered/included.

The interaction potential can be summarized in the form

V̂¼

b¼ 1;Np β¼ 1;Ne i¼ 1;Nin0
B@

vab vaβðp0Þ vaiðkÞ
vαbðpÞ vαβðp;p0Þ vαiðp;kÞ
vjbðk0Þ vjβðk0;p0Þ vjiðk0;kÞ

1
CA

a¼ 1;Np

α¼ 1;Ne

j¼ 1;Nin

ð10Þ

To simplify the notation we use the same symbol for
incoming and outgoing vertex functions—however, the
context will always make it clear which one is meant in a
given equation. The number of the elastic channels Ne and
the number of the inelastic channelsNin remain unspecified
and can be chosen as large as suggested by the particular
reaction being analyzed. For generality, we do not specify
the number of bare poles either. The coupled channel
problem with interaction potential (10) can be solved
analytically, if a separable form of the transition form
factors vαiðp; kÞ is assumed. However such a general
solution appears to be bulky and practically useless for
the data analysis, since it requires multiple inversions of
large matrices of the dimension ðNe þ Nin þ NpÞ×
ðNe þ Nin þ NpÞ. Besides, inclusion of an additional
inelastic channel requires the entire procedure to be started
from scratch. Meanwhile, there are good reasons to neglect
the direct interactions in the inelastic channels. For exam-
ple, for the systems we focus on here such interactions are
expected to be very weak—since there are no light quarks
in heavy quarkonia, the interaction of pions with them is
OZI suppressed and it thus vanishes at leading order in a
low-energy expansion for the pion-quarkonium interaction.
This conjecture is confirmed by the small values of the
π-Q̄Q scattering lengths, which are estimated to be
≲0.02 fm [28] and found to be consistent with 0 in lattice
QCD studies [29,30]. Therefore, in the following we set
vijðk; k0Þ≡ 0. As a result, the interaction potential of
Eq. (10) reads

V̂¼
B¼1;NeþNp i¼1;Nin�
vABðp;p0Þ vAiðp;kÞ
vjBðk0;p0Þ 0

� A¼1;NeþNp

j¼1;Nin

ð11Þ

where, for convenience, we formally treat the pole terms as
additional elastic channels and use capital greek letters for
the corresponding indices, which now take values from 1
to Ne þ Np.
The toy model from the previous subsection tells us that

omission of rescatterings within the inelastic channels
introduces a great simplification since they enter only
additively in the effective potential. Besides that we can
completely disentangle elastic channels (including the pole
terms) and inelastic channels. Consequently, solving the
coupled-channel Lippmann-Schwinger equation amounts
to the inversion of matrices as small as ðNe þ NpÞ × ðNe þ
NpÞ independent of the number of inelastic channels—see

1A microscopic model for this interaction can be found, for
example, in Refs. [26,27].
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Eq. (17). Furthermore, the formulas to be derived below
allow one to disentangle the elastic channels from the bare
poles too—see Eqs. (39), (41), (42)—so that eventually the
problem reduces to inverting matrices as small as only
Ne × Ne and Np × Np independently. For Ne and Np

smaller or equal to two, as in the case below, this can
be done straightforwardly in the explicit form. Therefore
the suggested approach guarantees a crucial simplification
of the calculations. In particular, it speeds up the codes
drastically, making combined analyses of experimental data
in various channels significantly easier. Especially, adding
an extra inelastic channel (explicitly or implicitly, through
an additional constant inelasticity) changes the final
expressions only marginally.
In order to formulate and solve the Lippmann-Schwinger

equation for the scattering t matrix let us introduce the
effective interaction potential in the elastic channels
[cf. Eq. (7)]

VABðp;p0Þ ¼ vABðp;p0Þ−
X
i

Z
vAiðp;qÞSiðqÞviBðq;p0Þd3q;

ð12Þ

where the quantity SiðqÞ denotes the propagator of the ith
ðQ̄QÞðq̄qÞ pair. The physical interpretation of this potential
is straightforward: a transition from elastic channel A to
elastic channel B proceeds either through the direct
interaction potential vABðp; p0Þ (including the pole terms)
or through the inelastic channels, where the sum in i runs
over all inelastic “bubbles.” Notice that Eq. (12) as well as
similar formulas below which contain capital Greek
subscripts should be treated as schematic since, depending
on a particular component of the corresponding potential or
of the t matrix, the number of the arguments can be
different—see Eq. (10). When written in components,
potential (12) takes the form

(13)

(14)

(15)

(16)

where the single thin (double) lines indicate the coupling to
the open-flavor channels (pole terms) while the dashed and
thick solid lines indicate the propagation of the light q̄q and
heavy Q̄Q state, respectively.
The Lippmann-Schwinger equation for the elastic t

matrix tAB then reads (see Fig. 1)

tABðp; p0Þ ¼ VABðp; p0Þ

−
X
Γ

Z
VAΓðp; qÞSΓðqÞtΓBðq; p0Þd3q; ð17Þ

where SαðpÞ is the propagator of the α-th ðq̄QÞðQ̄qÞ pair,
and

S0;aa ≡
Z

SaðqÞd3q ¼ 1

M0;a −M − i0
ð18Þ

denotes the nonvanishing matrix elements of the diagonal
matrix of the bare pole propagators with M0;a being the
bare mass. Below the results for the elastic and inelastic
loop integrals will be parametrized conveniently such that
the explicit form of the propagators SiðqÞ and SαðqÞ is of no
relevance.
Once a solution of theLippmann-Schwinger equation (17)

for the elastic t matrix tAB is found, all other components of

FIG. 1. Graphical representation of the Lippmann-Schwinger
equation for the elastic scattering t matrix tAB—see Eq. (17).

FIG. 3. Graphical representation of the expression for the t
matrix component tij given in Eq. (21). For the lines’ identi-
fication see the caption of Fig. 2.

FIG. 2. Graphical representation of the expression for the t
matrix component tiA given in Eq. (21). Representation for the
component tAi takes a similar form and it is not shown. The solid
lines are for the heavy-light ðq̄QÞ and ðQ̄qÞ mesons with open
flavor, the fat solid line is for the hidden-flavor heavy meson
(Q̄Q), and the dashed line is for the light meson (q̄q).
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the t matrix can be found algebraically, without having to
solve further equations (see Figs. 2 and 3):

tAiðp;kÞ¼ vAiðp;kÞ−
X
B

Z
tABðp;qÞSBðqÞ×vBiðq;kÞd3q;

ð19Þ

tiAðk; pÞ ¼ viAðk; pÞ −
X
B

Z
viBðk; qÞSBðqÞtBAðq; pÞd3q;

ð20Þ

tijðk; k0Þ ¼ −
X
A

Z
viAðk; qÞSAðqÞvAjðq; k0Þd3q

þ
X
A;B

Z
viAðk; qÞSAðqÞtABðq; q0ÞSBðq0Þ

× vBjðq0; k0Þd3qd3q0: ð21Þ

Equation (17) can be written explicitly for the t matrix
components tαβ, tαa, taα, and tab, and it splits into two
decoupled systems of equations. By simple algebraic
transformations it is straightforward to exclude the com-
ponents tab and taα to arrive at the following decoupled
Lippmann-Schwinger equations for the elastic t matrix tαβ,

tαβðp;p0Þ ¼Veff
αβ ðp;p0Þ−

X
γ

Z
Veff
αγ ðp;qÞSγðqÞtγβðq;p0Þd3q;

ð22Þ

and for the component tαaðpÞ,

tαaðpÞ ¼ Veff
αaðpÞ −

X
β

Z
Veff
αβ ðp; qÞSβðqÞtβaðqÞd3q: ð23Þ

The matrix for the pole propagators dressed by the inelastic
channels reads

G0 ¼ ðS−10 − Gin
0 Þ−1; ð24Þ

where the inelastic loop matrix Gin
0 is defined in Eq. (13).

In the single-pole case (a ¼ 0) G0 is simply

G0 ¼
1

M0 −M þ V00 − i0
: ð25Þ

The real part of Gin
0 ¼ −V00 can be absorbed into the

renormalization of the bare pole position M0, while its
imaginary part shifts the pole to the complex plane, away
from the real axis. Note that the explicit form of Gin

0 links the
imaginary part of the pole location to the corresponding
transitions to the inelastic channels as demanded by unitarity.
For multiple bare poles the real parts of the diagonal

elements Gin
0;aa can also be absorbed by the bare masses

M0;a—see Eq. (18)—while the off-diagonal elements Gin
0;ab

(a ≠ b) describe the transition potentials between the bare
states, and in general their real parts,

κinab ≡ ReðGin
0;abÞ; for a ≠ b; ð26Þ

need to be retained as additional parameters of the model.
For example, in the case of two bare poles there is one such
additional parameter κin12 ¼ κin21.
The effective potential Veff

αβ ðp; p0Þ is depicted schemati-
cally in Fig. 4 and reads

Veff
αβ ðp; p0Þ ¼ vαβðp; p0Þ −

X
a;b

VαaðpÞG0;abVbβðp0Þ

−
X
i

Z
vαiðp; qÞSiðqÞviβðq; p0Þd3q; ð27Þ

while the effective potential Veff
αa is

Veff
αaðpÞ ¼ ðM0;a −MÞ

X
b

VαbðpÞG0;ba: ð28Þ

III. ANALYTIC SOLUTION FOR
SEPARABLE INTERACTIONS

To proceed towards an analytic solution we assume the
vertex in Eq. (8) to possess a separable form,

vαiðp; kÞ ¼ χiαðpÞφiαðkÞ; ð29Þ

which is necessary to express all the t matrix elements in
terms of those for the direct interaction, given by Eq. (36)
below. It is obvious that the definition of Eq. (29) is
invariant under the transformation

χiαðpÞ → CχiαðpÞ; φiαðkÞ → φiαðkÞ=C; ð30Þ

with an arbitrary, real constant C, so that without loss of
generality one can set

χiαðp ¼ 0Þ ¼ 1: ð31Þ

A considerable simplification of Eqs. (22) and (23) can
be achieved if the form factor χiαðpÞ entering vertex
function (29) is assumed independent of the inelastic
channel, that is

FIG. 4. The full effective interaction potential in the elastic
channels—see Eq. (27). The double solid line is for the pole term
propagator G0 [see Eq. (24)] while for the other lines’ identi-
fication see the caption of Fig. 2. Potentials Vαa and Vbβ are
defined in Eqs. (14) and (15).
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vαiðp; kÞ ¼ χαðpÞφiαðkÞ: ð32Þ

In fact, it is quite natural to assume that χiα is independent
of i, since the transition of the open-flavor channels to the
hidden-flavor channels demands the exchange of a heavy
meson and therefore it is of a short-range nature for all
inelastic channels as long as these channels are far from the
thresholds of the elastic channels (so that the exchanged
heavy meson is far off shell). By virtue of Eq. (32) the
effective potential defined in Eq. (27) reads

Veff
αβ ðp; p0Þ ¼ vαβðp; p0Þ − χαðpÞGαβχβðp0Þ

−
X
a;b

VαaðpÞG0;abVbβðp0Þ; ð33Þ

where the inelastic bubble operator Gαβ is

Gαβ ≡
X
i

Gi
αβ ¼

X
i

Z
φαiðqÞSiðqÞφiβðqÞd3q: ð34Þ

In order to solve Eqs. (22) and (23) we proceed stepwise.
The strategy basically represents a successive application of
the two-potential formalism [31] (see also Ref. [32] for an
application to a physical system more closely related to the
one of relevance here):
(1) In the first step only the direct interaction vαβðp; p0Þ

[the first term in potential (33)] is retained and a
convenient parametrization is given for the corre-
sponding direct interaction t matrix hereinafter
denoted as tv;

(2) then the coupling to the inelastic channels is
switched on [the second term in potential (33)]
and a scattering equation for the potential

wαβðp; p0Þ ¼ vαβðp; p0Þ − χαðpÞGαβχβðp0Þ ð35Þ

is solved, with the solution denoted as tw (notice that
here the repeated indices do not imply a resumma-
tion which is always written explicitly in this paper);

(3) finally, the coupling to the pole terms [the last term
in potential (33)] is included, in addition. The result
provides the solution to the full problem defined in
Eqs. (22) and (23).

We therefore start assuming that a solution tv of the
Lippmann-Schwinger equation

tvαβðp; p0Þ ¼ vαβðp; p0Þ

−
X
γ

Z
vαγðp; qÞSγðqÞtvγβðq; p0Þd3q ð36Þ

for the bare direct interaction vαβðp; p0Þ is known. For
instance, it can be simply parametrized in a convenient
form—see Refs. [8,16] and the discussion in Sec. VI B
below. This finalizes step 1 above.

As the coupling to the inelastic channels is switched on
(step 2), the bare form factors χαðpÞ get dressed by the
elastic interactions. It is therefore convenient to define new
incoming and outgoing form factors ψαβðpÞ and ψ̄αβðpÞ,
respectively, dressed with the direct interaction poten-
tial vαβðp; p0Þ,2

(37)

(38)

It is straightforward now to find the solution of the
Lippmann-Schwinger equation for the potential given in
Eq. (35) in the form

twαβðp; p0Þ ¼ tvαβðp; p0Þ
þ
X
γ;δ

ψαγðpÞð½G − G−1�−1Þγδψ̄δβðp0Þ; ð39Þ

where the matrixG is given in Eq. (34) while the matrix G is
defined as

(40)

This finalizes step 2.
To accomplish the work program and to build solutions

of Eqs. (22) and (23) we apply again the two-potential
formalism to include the bare pole terms and to express the
full t matrix elements in terms of tw. This is a multipole
generalization of the formulas derived in Ref. [16]. We
find that

tαβðp; p0Þ ¼ twαβðp; p0Þ þ
X
a;b

ϕαaðpÞðGe
0 −G−1

0 Þ−1ab ϕ̄bβðp0Þ;

ð41Þ

2Notice that once the bare form factor χαðpÞ does not depend
on the inelastic channel, the dressed form factors ψαβðpÞ and
ψ̄αβðpÞ do not depend on it either.
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¼ twαβðp; p0Þ þ
X
a;b

ϕαaðpÞðGe
0 þ Gin

0 − S−10 Þ−1ab ϕ̄bβðp0Þ;

tαaðpÞ ¼ −
X
b

ϕαbðpÞ½S0ðGe
0 −G−1

0 Þ�−1ba

¼
X
b

ϕαbðpÞ½1 − S0ðGe
0 þ Gin

0 Þ�−1ba ; ð42Þ

where Eq. (24) was used to find G−1
0 , and

(43)

(44)

(45)

This finalizes step 3 and the entire work program.
Finally, the tmatrix component tαi can be found from the

first equation in system (21),

tαiðp; kÞ ¼ vαiðp; kÞ −
X
a

tαaðpÞS0;aavaiðkÞ

−
X
β

Z
tαβðp; qÞSβðqÞvβiðq; kÞd3q; ð46Þ

so that tαi is fully determined through the t matrices tαβ and
tαa explicitly found above.
The remaining components of the full t matrix, namely

tab, taα, tiα, and tij, will not be used in what follows and
therefore are not quoted here explicitly.

IV. PRODUCTION AMPLITUDES AND RATES

There is no experimental possibility to study the elastic
scattering of flavored mesons off each other, and our
knowledge of the properties of near-threshold states comes
from production experiments. For the production ampli-
tudes one needs to add Ne sources for the elastic channels,
Nin sources for the inelastic channels andNp sources for the
pole terms. It is sufficient to treat all sources as pointlike.
On the other hand, when focusing on near-threshold

phenomena it is natural to assume that the production
proceeds predominantly through the elastic channels, so
that it is sufficient to assume that only Ne elastic sources
exist, with the strengths F α. Therefore the production
problem is set up as follows: (i) an elastic channel is
produced from a pointlike source, accompanied by a
spectator; (ii) for simplicity, the interaction in the final
state between the spectator and the other particles is
neglected (this assumption allows one to proceed with
analytical calculations, but it can be relaxed in numerical
computations); (iii) due to rescatterings, any elastic or
inelastic channel x can be produced in the final state.
In Fig. 5 the contributions to the production amplitude in

the channel x (elastic or inelastic) are presented in a
graphical form, and the corresponding expression reads

Me
αðpÞ ¼ F αðpÞ −

X
β

Z
F βðqÞSβðqÞtβαðq; pÞd3q; ð47Þ

for the elastic channel x ¼ α, or

Min
i ðkÞ ¼ −

X
α

Z
F αðqÞSαðqÞtαiðq; kÞd3q; ð48Þ

for the inelastic channel x ¼ i.
To proceed with the calculations of the differential

production rates we start from the standard expression
for the differential decay width [33]

dΓx

dm2
12dm

2
23

¼ 1

ð2πÞ3
1

32M3
tot
jMxj2; ð49Þ

where Mtot is the total energy of the system. Since we
neglect the final state interaction between the spectator
(particle 3) and the rest of the system (particles 1 and 2) the
integration in the invariant mass m2

23 is trivial and yields

Z ðm2
23
Þmax

ðm2
23
Þmin

dm2
23 ¼

1

m2
12

λ1=2ðm2
12; m

2
1; m

2
2Þ

× λ1=2ðM2
tot; m2

12; m
2
3Þ ¼

4Mtot

m12

k3ð12Þk12;

ð50Þ

FIG. 5. Graphical representation of the contributions to the
production amplitude for the channel x from a pointlike source:
Born term (first diagram) and rescattering term (second diagram).
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where λðx2; y2; z2Þ is the standard triangle function while
k3ð12Þ ≡ p3 and k12 ≡ kx are the 3-momentum of particle 3
in the center-of-mass frame of particles 1 and 2, and the
3-momentum of particles 1 and 2 in the rest frame of the
decaying particle, respectively. Then for the differential rate
dBrx ≡ dΓx=Γtot we get

dBrx
ds

¼ jMxj2p3kx
64π3M2

totΓtot
ffiffiffi
s

p ; ð51Þ

where s≡M2 ¼ m2
12 and, consequently,

dBrx
dM

¼ jMxj2p3kx
32π3M2

totΓtot
: ð52Þ

Finally, the total rate comes as an integral,

Brx ¼
Z

Mmax

Mmin

�
dBrx
dM

�
dM; ð53Þ

where Mmin ¼ m1 þm2 and Mmax ¼ Mtot −m3.

V. TOWARDS A CONVENIENT
PARAMETRIZATION OF THE LINE SHAPES

The expressions for the t matrix components and for the
rates derived above can be used to build a sufficiently
general parametrization applicable for the description of a
wide class of near-threshold phenomena.
In the near-threshold region and for S-wave coupling of

the elastic channels, the vertex form factors χαðpÞ can be
approximated by constants χαð0Þ which, by virtue of the
normalization condition (31), are simply equal to unity.
Thus, the integrals entering Eqs. (37), (38), and (40) can be
evaluated as

Z
χ2αðqÞSαðqÞd3q ≈ χ2αð0ÞJα ¼ Jα;Z
χαðqÞSαðqÞd3q ≈ χαð0ÞJα ¼ Jα; ð54Þ

where the nonrelativistic loop integral is

Jα ¼
Z

SαðpÞd3p ¼ ð2πÞ2μαðκα þ ikαÞ≡ Rα þ iIα; ð55Þ

with μα and kα being the reduced mass and the momentum
in the α’s elastic channel, respectively.
Then one arrives at the expressions

ψαβ ¼ δαβ − tvαβJβ;

ψ̄αβ ¼ δαβ − Jαtvαβ;

Gαβ ¼ δαβJα − JαtvαβJβ ð56Þ

for the dressed form factors (38) and for matrix (40),
respectively.
According to Eqs. (13), (26) and (34) the contribution of

the inelastic channels is given by

Gin
0;ab ¼ −vab þ

X
i

Z
vaiðqÞSiðqÞvibðqÞd3q

→ κinab þ
ið2πÞ2ffiffiffi

s
p

X
i

mthini
μini λaiλbiðkini Þ2liþ1; ð57Þ

where κinab has only off-diagonal elements (see the explan-
ation below), and by

Gαβ ¼
X
i

Z
φiαðqÞSiðqÞφiβðqÞd3q

→
ið2πÞ2ffiffiffi

s
p

X
i

mthini
μini giαgiβðkini Þ2liþ1; ð58Þ

where the transition form factors were written in the form

vaiðkÞ ¼ viaðkÞ ¼ λaijkjli ; φiαðkÞ ¼ giαjkjli ; ð59Þ

while li, μini , and kini are the angular momentum, the
reduced mass, and the momentum in the ith inelastic
channel, respectively, and mthini

is the corresponding
threshold.
In Eq. (57) the constant real parts κinab include both the

mixing among bare poles vab and the real parts of the
inelastic loops—see Eqs. (26) and (13). The diagonal
elements κinaa should be set to zero since they only renorm-
alize the bare pole positions M0;a—see the discussion
above Eq. (26).
Similarly, in Eq. (58) the constant part of Gαβ was

omitted since it renormalizes parameters of the direct
interaction potential vαβ—see Eq. (33). Equations (57)
and (58) provide a natural generalization of the K-matrix
approach. Notice however that in a typical situation
inelastic thresholds reside sufficiently far below the elastic
ones, so that near the elastic thresholds, neither analyticity
nor unitarity are violated by using the truncated expressions
for Gin

0 and Gαβ. As was already mentioned above, in the
presented model the inelastic channels enter additively, so
that an extension of the model to include an extra inelastic
channel is straightforward [see Eqs. (57) and (58)] and does
not enlarge the matrices that need to be inverted to solve the
scattering problem. In the case of only remote inelastic
channels the dependence of the momenta kini on the energy
can be neglected. Therefore, if the open inelastic thresholds
reside far away from the energy region of interest (in
particular, far from the elastic thresholds), their contribu-
tion can be mimicked by simply giving the bare pole
positions M0;a as well as the direct interaction potentials
vab and vαβ a constant imaginary part.
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It is straightforward now to build the tmatrix tw given by
Eq. (39) as

twðMÞ ¼ tvðMÞ þ ψ ½G −G−1�−1ψ̄ : ð60Þ

If the bare pole terms are present in the system then,
similarly to Eq. (54), one can write

Z
vaαðqÞSαðqÞvαbðqÞd3q ≈ vaαvbαJα;Z

vaαðqÞSαðqÞd3q ≈ vaαJα; ð61Þ

where vaα ¼ vaαð0Þ ¼ vαað0Þ, and

Vαa ¼Vaα ¼ vaα−
ið2πÞ2ffiffiffi

s
p

X
i

mthini
μini giαλaiðkini Þ2liþ1; ð62Þ

where, as before, the energy-independent parts of the sums
were absorbed into the renormalization of the con-
stants vaα.
Then quantities ϕαa, ϕ̄aα and Ge

0;ab defined in Eqs. (43),
(44), and (45) can be built as

ϕαa ¼ Vαa −
X
β

twαβJβVβa;

ϕ̄aα ¼ Vaα −
X
β

VaβJβtwβα;

Ge
0;ab ¼

X
α

VaαJαVαb −
X
α;β

VaαJαtwαβJβVβb; ð63Þ

respectively, which when substituted into Eqs. (41), (42)
and (46) allow one to find the expressions for tαβ, tαa and tαi
in their ultimate form.
Then for the αth elastic channel in the final state and for

constant sources F α production amplitude (47) is

Me
α ¼ F α −

X
β

Z
F βSβðqÞtβαd3q

¼ F α −
X
β

F βJβtβα: ð64Þ

If the t matrix has near-threshold poles, then the Born term
can be neglected, provided that we focus on the near-
threshold region (a detailed discussion can be found in
Ref. [8]). Strictly speaking, neglecting the Born term
violates unitarity; however this violation is negligibly small
and it is controlled by the proximity of the t matrix poles to
the threshold(s).3

Similarly, for the ith inelastic channel in the final state we
have [see Eq. (48)]

Min
i ¼ −

X
α

F αJαtαi: ð65Þ

Accordingly the expressions for the differential produc-
tion rates are

dBrα
dM

¼
����
X
β

F βtβα

����
2

p3kα ð66Þ

and

dBri
dM

¼
����
X
α

F αtαi

����
2

p3kini ; ð67Þ

where the source terms F α were redefined to absorb the
slowly varying function of energy Jα ¼ Rα þ iIα ≈ Rα as
well as all constant factors from Eq. (52).
To simplify notations and to make the physical meaning

of the parameters more transparent we define

N ¼ F 2
1; ξα ¼ F α=F 1: ð68Þ

In addition, since for all elastic channels the range of forces
is described by the same physics, it is natural to set κα ¼ κ
in all Rα’s [see Eq. (55)].
Therefore, the line shapes for the production inNe elastic

and Nin inelastic channels are described by the following
set of parameters:

N ; ξα; vaα; λai; giα; M0;a; κ; κinabða ≠ bÞ; tv; ð69Þ

that is by Nv þ NinðNe þ NpÞ þ ðNp þ 1ÞðNe þ 1Þ þ
NpðNp − 1Þ=2þ 1 real parameters (Nv is the number of
parameters for the direct interaction tmatrix tv). Notice that
the constants vab are not independent parameters since they
were included into the definition of Gin

0;ab and thus they are
absorbed by κinab—see Eqs. (13) and (57). The number of
parameters can be reduced if the analyzed system possesses
a symmetry which constrains some of the parameters
from Eq. (69).
Then for the elastic and inelastic differential rates one

finally finds

dBreα
dM

¼ N

����
X
β

ξβtβα

����
2

p3kα; ð70Þ

dBrini
dM

¼ N

����
X
α

ξαtαi

����
2

p3kini : ð71Þ

In order to arrive at the final expressions various momen-
tum dependencies that are suppressed kinematically in the
near-threshold regime were dropped. We confirmed
the applicability of those approximations by comparing

3In certain cases, however, the Born term can play a crucial
role as discussed, e.g., in Ref. [34].

INTERPLAY OF QUARK AND MESON DEGREES OF … PHYSICAL REVIEW D 93, 074031 (2016)

074031-9



the analytic solution presented above with a solution of the
full equations found numerically.

VI. DIRECT INTERACTION IN THE
ðq̄QÞðQ̄qÞ SYSTEM

A paradigmatic example of a near-threshold state
described by the general formulas derived in the previous
section (in fact by their simplified version given by the two-
channel Flatté distribution) is the glorious Xð3872Þ char-
monium(like) state discovered by the Belle Collaboration
in 2003 [21] which resides within less than 1 MeV from the
neutralDD̄� threshold [33]. There exists a vast literature on
the description of the X line shapes in its open-charm
and hidden-charm decay channels—see, for example,
Refs. [9–13,15,35] to mention just a few. We therefore
do not dwell on the Xð3872Þ any more and consider
another intriguing example of near-threshold phenomena

provided by the Zð0Þ
b resonances discovered by the Belle

Collaboration in 2011 in the spectrum of bottomoniumlike
states [24] and which appear as intermediate states in the
ϒð5SÞ decays [36,37]. Proximity of the observed
Zbð10610Þ and Zbð10650Þ to the BB̄� and B�B̄� thresholds,
respectively, hints towards a prominent molecular compo-
nent of both states [36] and calls for a simultaneous
description of the available experimental data for their
open- and hidden-bottom decay channels.4

A. Contact elastic interaction potential

The four negative-parity heavy-light B mesons have the
wave functions

B ¼ 0−
b̄q
; B̄ ¼ 0−q̄b; B� ¼ 1−

b̄q
; B̄� ¼ −1−q̄b;

ð72Þ
where, for example, the symbol 0−

b̄q
denotes the quantum

numbers JP ¼ 0− in the system of antiquark b̄ and the light
quark q. The charge conjugation operation for a meson M
is defined as

ĈM ¼ M̄: ð73Þ

The direct interaction potential in the elastic channels can
be extracted from the effective Lagrangian which describes
the Bð�ÞB̄ð�Þ interactions consistent with the heavy-quark
spin symmetry (HQSS) [38,39]. Alternatively, if the source
of the interaction in the Bð�ÞB̄ð�Þ channels is identified
with u-channel quark exchanges then the problem reduces
to performing a Fierz transformation from the open-
bottom states ðJ−q̄b ⊗ J−

b̄q
ÞS to the hidden-bottom states

ðJ−
b̄b

⊗ J−q̄qÞS [36,37],

ð0−q̄b ⊗ 0−
b̄q
ÞS¼0 ¼

1

2
ð0−

b̄b
⊗ 0−qq̄ÞS¼0 −

ffiffiffi
3

p

2
ð1−

b̄b
⊗ 1−q̄qÞS¼0;

ð74Þ

ð1−q̄b ⊗ 1−
b̄q
ÞS¼0 ¼−

ffiffiffi
3

p

2
ð0−

b̄b
⊗ 0−q̄qÞS¼0−

1

2
ð1−

b̄b
⊗ 1−q̄qÞS¼0;

ð75Þ

ð1−q̄b ⊗ 0−
b̄q
ÞS¼1 ¼

1

2
ð1−

b̄b
⊗ 0−q̄qÞS¼1 þ

1

2
ð0−

b̄b
⊗ 1−q̄qÞS¼1

−
1ffiffiffi
2

p ð1−
b̄b

⊗ 1−q̄qÞS¼1; ð76Þ

ð0−q̄b ⊗ 1−
b̄q
ÞS¼1 ¼

1

2
ð1−

b̄b
⊗ 0−q̄qÞS¼1 þ

1

2
ð0−

b̄b
⊗ 1−q̄qÞS¼1

þ 1ffiffiffi
2

p ð1−
b̄b

⊗ 1−q̄qÞS¼1; ð77Þ

ð1−q̄b⊗1−
b̄q
ÞS¼1¼−

1ffiffiffi
2

p ð1−
b̄b
⊗0−q̄qÞS¼1þ

1ffiffiffi
2

p ð0−
b̄b
⊗1−q̄qÞS¼1;

ð78Þ

ð1−q̄b ⊗ 1−
b̄q
ÞS¼2 ¼ ð1−

b̄b
⊗ 1−q̄qÞS¼2: ð79Þ

Since, in the heavy-quark limit, the transition potential in
the elastic channels depends only on the light degrees of
freedom, then only two parameters (potentials) are needed:

V½0−q̄q�≡ V0; V½1−q̄q�≡ V1: ð80Þ

With the help of Eqs. (74)–(79) it is straightforward to find
for the transition potentials in various channels:

vð0þþÞ ¼ 1

4

�
V0 þ 3V1

ffiffiffi
3

p ðV0 − V1Þffiffiffi
3

p ðV0 − V1Þ 3V0 þ V1

�
; ð81Þ

vð1þ−Þ ¼ 1

2

�
V0 þ V1 V1 − V0

V1 − V0 V0 þ V1

�
; ð82Þ

vð1þþÞ ¼
1þþhBB̄�jV̂ð1þþÞjBB̄�i1þþ ¼ V1; ð83Þ

vð2þþÞ ¼
2þþhB�B̄�jV̂ð2þþÞjB�B̄�i2þþ ¼ V1; ð84Þ

where in Eq. (82) it was used that, according to Eq. (73), the
C-odd combinations of the Bð�Þ and B� mesons are [36,37]

jBB̄�i1þ− ¼ 1ffiffiffi
2

p ðjBB̄�i− jB̄B�iÞ

¼− 1ffiffiffi
2

p ½ð1−
b̄b
⊗ 0−q̄qÞS¼1þð0−

b̄b
⊗ 1−q̄qÞS¼1�; ð85Þ4It was shown recently that the Zb states even play a crucial

role in understanding the transitions ϒð3SÞ → ϒð1SÞππ [25].
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jB�B̄�i1þ− ¼ 1ffiffiffi
2

p ½ð1−
b̄b

⊗ 0−q̄qÞS¼1 − ð0−
b̄b

⊗ 1−q̄qÞS¼1�: ð86Þ

The transition potentials of Eqs. (81)–(84) are equivalent
to those obtained in Ref. [39] [Eqs. (18)–(21)]. To recover
the latter one is to redefine the contact potentials

C0a ¼
1

4
V0 þ

3

4
V1; C0b ¼ −

1

4
V0 þ

1

4
V1 ð87Þ

and to stick to a different definition of the C-parity used in
Ref. [39] that eventually only entails a change of the signs
of the off-diagonal terms in the potential vð0þþÞ.

B. Direct interaction t matrix

For a given momentum-independent direct interaction
potential vαβ the t matrix tv can be found from Eq. (36),

tvαβ ¼ vαβ −
X
γ

vαγJγtvγβ; ð88Þ

where the loop integrals Jα are defined in Eq. (55) above.
The solution of Eq. (88) then reads

ðtvÞ−1 ¼ v−1 þ ðRþ iIÞ ¼ v−1ren þ iI; ð89Þ

where the real part of the loop operator R is absorbed into
the renormalization of the contact potential v as

vren ¼ Z−1v; Z ¼ 1þ vR: ð90Þ

Since the direct interaction potential is an input for the
model, it is sufficient to stick to its renormalized value from
the beginning and therefore the subscript “ren” can be
dropped. In addition, this justifies omitting in Eq. (88) all
real parts of the loops defined in Eq. (55).
For the channels 1þþ and 2þþ Eq. (88) reduces to a

single equation tv ¼ v − vItv with the solution

tv ¼ 1

ð2πÞ2μ ðγV þ ikÞ−1; γ−1V ¼ ð2πÞ2μv; ð91Þ

where, as was explained above, the real part of the loop
integral J ¼ R

SðqÞd3q ¼ Rþ iI is absorbed into the poten-
tial v while its imaginary part ð2πÞ2μk is retained explicitly.
Here μ and k are the reduced mass and the momentum in the
corresponding B�B̄ð�Þ system, respectively.
For the channels 0þþ and 1þ− Eq. (88) turns into a

system of two coupled equations with the solution

tv ¼ 1

Δ

�
v11 þ ΔvJ2 v12

v21 v22 þ ΔvJ1

�
; ð92Þ

where

Δv ¼ v11v22 − v12v21; ð93Þ

Δ ¼ 1þ v11J1 þ v22J2 þ ΔvJ1J2: ð94Þ

As before, the real parts of the loop integrals Jα can be
absorbed into a redefinition of the potential vαβ.
The quantities μα and kα are the reduced mass and the
momentum in the Bð�ÞB̄ð�Þ channel α, respectively. In the
nonrelativistic limit

kαðEÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μαðE − ΔαÞ

p
ΘðE − ΔαÞ

þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μαðΔα − EÞ

p
ΘðΔα − EÞ; ð95Þ

where Δα is the position of the corresponding elastic
threshold and the energy is conveniently counted from
the lowest of them, E ¼ M −mth.
For the quantum numbers 1þ−, relevant for the Zð0Þ

b ’s case
[see Eq. (82)],

v11 ¼ v22 ¼
1

2
ðV0 þ V1Þ;

v12 ¼ v21 ¼
1

2
ðV1 − V0Þ: ð96Þ

It is convenient then to introduce parameters γs and γt
such that

γ−1s ¼ ð2πÞ2μðv11 þ v12Þ ¼ ð2πÞ2μV1;

γ−1t ¼ ð2πÞ2μðv11 − v12Þ ¼ ð2πÞ2μV0; ð97Þ

where, for simplicity, the difference between the reduced
masses in the channels BB̄� and B�B̄� is neglected, so
that μ1 ¼ μ2 ¼ μ.
When expressed in terms of the new parameters γs and

γt, the direct interaction tmatrix given by Eq. (92) takes the
form

tv ¼ 1

ð2πÞ2μ
1

Det

� 1
2
ðγs þ γtÞ þ ik2

1
2
ðγt − γsÞ

1
2
ðγt − γsÞ 1

2
ðγs þ γtÞ þ ik1

�
;

ð98Þ

with

Det ¼ γsγt − k1k2 þ
i
2
ðγs þ γtÞðk1 þ k2Þ: ð99Þ

VII. LINE SHAPES OF THE Zb AND Z0
b

To exemplify the potential of the parametrization derived
in this paper we use the latter to describe the line shapes of
the Zbð10610Þ and Zbð10650Þ bottomoniumlike states. For
other discussions on the line shapes of the Zb’s, we refer to
Refs. [40–42]. We consider the simplest possible version of
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the formulas, thus refraining from inclusion of the bare
poles that corresponds to setting vaαðpÞ ¼ vaiðkÞ ¼ 0 and
M0;a → ∞ in all formulas above. It should be noticed that
inclusion of one or two explicit poles would result in a fit of
comparable quality. However, since the data can already be
very well described without bare poles, such a fit would not
be better and the couplings for the bare states would get
little constrained. Thus, at the present stage and given the
quality of the data currently available, the bare pole terms
are not needed.
The existing experimental data for the Zb’s are exhausted

by 7 decay chains:

ϒð5SÞ → πZð0Þ
b → πBð�ÞB̄�;

ϒð5SÞ → πZð0Þ
b → ππϒðnSÞ; n ¼ 1; 2; 3;

ϒð5SÞ → πZð0Þ
b → ππhbðmPÞ; m ¼ 1; 2: ð100Þ

Therefore, in the formulas derived above the spectator
particle is the pion (particle 3 in Fig. 5) and, with the help of
Eqs. (70) and (71), we find for the production rates in two
elastic (BB̄� and B�B̄�) and five inelastic [πϒðnSÞ and
πhbðmPÞ] channels
dBre1
dM

¼ N jt11 þ ξt21j2pπk1;

dBre2
dM

¼ N jt12 þ ξt22j2pπk2;

dBrini
dM

¼ NR2jgi1ðt11 þ ξt21Þ þ gi2ðt12 þ ξt22Þj2

× pπðkini Þ2liþ1; ð101Þ

respectively, where li is the angular momentum in the final
state. Analysis of the angular distributions favors the JP ¼
1þ assignment for both Zb states [43]. Since the structures
of interest are very close to the BB̄� and B�B̄� thresholds, in
the analysis we only take into account the lowest possible
orbital angular momenta for the coupled channels, which
are the Swave for the BB̄�, B�B̄�, and πϒðnSÞ channels and
the P wave for the πhbðmPÞ channels. Therefore, in
Eq. (101) above, li ¼ 0 for the πϒðnSÞ channels and li ¼
1 for the πhbðmPÞ ones while t11, t12, t21, t22 are the
components of the 2 × 2 elastic t matrix tαβ. As was
explained above [see Eq. (68)], instead of the original
quantities F 1 and F 2 we introduced the overall normali-
zation parameter N and the ratio ξ and, for simplicity, set
μ1 ¼ μ2 ≡ μ so that the quantity κ is defined as
R1 ¼ R2 ≡ R ¼ ð2πÞ2μκ.
Two comments are in order here. First, as was explained

before, we neglect the ππ interaction in the final state
although it would be needed to ensure exact three-body
unitarity. However, since the aim of the suggested approach
is to fit the structures in the πϒðnSÞ and πhbðmPÞ invariant
mass distributions, the cross-channel ππ interaction can

only provide a smooth background. In particular, we do not
expect the ππ interaction to produce narrow structures in
the studied channels. Therefore, while being important
when it comes to fitting the two-pion invariant mass
distributions in the ππϒðnSÞ channels, the ππ final state
interaction is not expected to have any significant impact on
the observables discussed in this paper.
The other comment is that, in addition to the three-body

pointlike source termsϒð5SÞ → Bð�ÞB̄�π which correspond
to the black dot in Fig. 5, the pion emission may proceed
from the B-meson lines. Such processes were studied in
detail in Ref. [41] and it can be concluded from the results
reported there that, at the tree level, the amplitude with such
a sequential pion emission is strongly suppressed compared
to the three-body pointlike source term. We therefore
disregard them here and treat the production mechanism
depicted in Fig. 5 as the dominating mechanism.
According to Eq. (98) the direct interaction elastic t

matrix tv is parametrized with 2 parameters γs and γt and
therefore we arrive at the following set of 15 parameters
describing the line shapes in 7 elastic and inelastic channels
for the Zb’s [see Eq. (100)]

γs; γt; κ; ξ;N ; giα; ð102Þ

where i ¼ πϒðnSÞ, πhbðmPÞ with n ¼ 1, 2, 3, m ¼ 1, 2
and α ¼ BB̄�, B�B̄�.
We perform a simultaneous fit for the background-

subtracted and efficiency-corrected distributions in M for
the Bð�ÞB̄� [23,44] and πhbðmPÞ channels [24]. We cannot
fit line shapes in the πϒðnSÞ channels since they have a
significant nonresonant contribution that depends on
MðππÞ; thus the amplitude analysis has to be multidimen-

sional. Instead, we can predict the Zð0Þ
b line shapes in these

channels, as discussed below. Normalizations in different
channels are floated independently and we use the mea-
sured production cross sections of all seven channels
[23,24,44–47] as additional constraints to ensure the
correct relative probabilities for the analyzed distributions.
The finite experimental resolution is accounted for via a
convolution of the resulting distributions with a Gaussian
with σ ¼ 6 MeV. Since κ is practically unconstrained by
the fit we fix it to 1 GeV.
As was explained above, the number of parameters can

be reduced if some symmetry constraints are applied. In
particular, for the system at hand HQSS constraints
following from Eqs. (85) and (86) read

g½πϒðnSÞ�½B�B̄��
g½πϒðnSÞ�½BB̄��

¼ −1;
g½πhbðmPÞ�½B�B̄��
g½πhbðmPÞ�½BB̄��

¼ 1; ð103Þ

where n ¼ 1, 2, 3 and m ¼ 1, 2. In addition, as the elastic
channels BB̄� and B�B̄� are produced in the decays of the
ϒð5SÞ bottomonium [see Eq. (100)], then the ratio of the
sources ξ is subject to the sameheavy-quark constraint, that is
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ξ ¼ g½πϒð5SÞ�½B�B̄��
g½πϒð5SÞ�½BB̄��

¼ −1: ð104Þ

We consider three different fits:
Fit A. Combined fit for the data in the Zð0Þ

b → πhbðmPÞ
(m ¼ 1, 2) channels [24] and for the old data in the

Zð0Þ
b → Bð�ÞB̄� channels [23] with HQSS con-

straints (103) and (104) applied.
Fit B. Same as fit A for the new data for the Zð0Þ

b →
Bð�ÞB̄� channels [44].

Fit C. Same as fit B but with all parameters totally
unconstrained.

The parameters of fits A, B, and C are quoted in Table I,
from which one can deduce several conclusions. First, the
suggested parametrization is obviously able to capture all
gross features of the experimental signal and therefore
provides a good overall description of the data in all
analyzed channels. Second, one is led to conclude that
the new data for the Zð0Þ

b → Bð�ÞB̄� channels are much more
compatible with the HQSS constraints. Indeed, on one
hand, the quality of fit B is noticeably better than the quality
of fit A. Also, from fits B and C one can see that relaxing
the HQSS constraints does not lead to a considerable
increase in the quality of the fit. This is to be confronted
with the dramatic decrease of the quality of the fit for the

old data in the Zð0Þ
b → Bð�ÞB̄� channels—from 76% for the

totally unconstrained fit from Ref. [19] to 32% for fit A
from Table I. Finally, fully unconstrained fit C demon-
strates a better agreement with the HQSS constraints (103)
and (104) than the similar unconstrained fit to the old data
found in Ref. [19].
The line shapes of the Zbð10610Þ and Zbð10650Þ states

in the Bð�ÞB̄� and πhbðmPÞ (m ¼ 1; 2) channels are shown
in Fig. 6 for all three fits from Table I. In addition, as
an example, we show, in Fig. 7, the line shapes in the
πϒð2SÞ channel which come as a prediction of our
approach and demonstrate a clear similarity to the exper-
imental data (the last plot in Fig. 7).
Two comments on the fits given in Table I are in

order here:
(1) While fits A and B have the HQSS constraints built

in, fit C features some HQSS breaking since ξ
takes a value different from −1 [see Eq. (104)]
and, particularly, since the ratios g½πhbðnPÞ�½B�B̄��=
g½πhbðnPÞ�½BB̄��ðn ¼ 1; 2Þ deviate from their respective

HQSS values (103). This might be because of the
complexity of theϒð10860Þ state, assigned as the 5S
bottomonium here, so that the HQSS breaking
effects may stem from a mixture of the D-wave
bottomonium [48] or non-b̄b components [49] in the
ϒð10860Þ wave function. It is worthwhile noticing
that, even in the two-body open-bottom decays of
the ϒð5SÞ, the measured branching fractions [33]
show a sizable HQSS breaking as well. This was
summarized, for example, in Ref. [4]. It is also
concluded in Ref. [41] that explicit HQSS breaking
operators are needed to describe the Zb’s line shapes
in the ϒð5SÞ → πBð�ÞB̄� decays. On the other hand,
this deviation may be diminished in the fit to updated
experimental data in the future. If, however, the
HQSS breaking still persists, one will need to
investigate the origin carefully since HQSS is
normally very well respected in the bottomonium
mass region. In addition to the possible non-S-wave
b̄b component for the ϒð10860Þ, the internal
dynamics of the Zb states might be another reason.
However, this breaking seems to be rather unlikely
to occur due to the reason discussed in Ref. [40]
where a large HQSS breaking effect in the ratio
gZbBB̄�=gZbB�B̄� is explained by the proximity of the
poles to the corresponding thresholds. Such an effect
manifests itself in the pole positions of the amplitude
and therefore it was already included in the fits.
Furthermore, it was pointed out in Ref. [50] that the
S-D mixing effects for the bottom meson pair in the
final state of the decay ϒð5SÞ → πBð�ÞB̄� probably
only play a minor role for the internal structure of the
Zb states (see also Ref. [51] for a calculation based
on the one-meson exchange model).

(2) In fit B which has HQSS built in, the values of γs and
γt are almost the same. It means that the off-diagonal
matrix elements of the potential matrix for the
interaction between elastic channels almost vanish.
Indeed, from Eqs. (96) and (97) and for the param-
eters of fit B, we have

v12 ¼
1

8π2μ
ðγ−1s − γ−1t Þ ≪ v11 ¼ v22: ð105Þ

Since γ−1s ∝ V1 and γ−1t ∝ V0 describe the
interaction for the total light-quark spin 1 and 0,

TABLE I. Parameters of the model determined from the combined fit to the data for the πhbðmPÞ final state contained in Ref. [24] and
for the Bð�ÞB̄� final state contained in Ref. [23] (denoted as old data) and in Ref. [44] (denoted as new data).

Fit Data γs, MeV γt, MeV ξ g½πhbð1PÞ�½B�B̄��=g½πhbð1PÞ�½BB̄�� g½πhbð2PÞ�½B�B̄��=g½πhbð2PÞ�½BB̄�� C.L.

A Old −39� 11 −137� 29 −1 1 1 32%
B New −70þ32

−36 −83þ35
−38 −1 1 1 48%

C New 43þ37
−58 −211þ68

−58 −0.80� 0.10 1.8þ0.9
−0.5 1.8þ0.9

−0.5 53%
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respectively [see Eq. (80)], this is in fact consistent
with the observation made recently [52] that the
nonobservation of the Zbð10650Þ in the BB̄� invari-
ant mass distribution implies that the interaction
between the bottom and antibottom mesons is
insensitive to the light quark spin, and thus seems
to imply an accidental “light-quark spin symmetry.”
Indeed, there is little signal of the Zbð10650Þ in the
plot (a) in the second row of Fig. 6. However,

although not prominent, the Zbð10650Þ shows up as
a bump in the plot (a) in the third row of Fig. 6,
which corresponds to fit C with HQSS constraints
released. In this fit, γs and γt do not take similar
values any more. This means that the current data
require us to understand either the accidental light-
quark spin symmetry or a sizable HQSS breaking.

For completeness, we quote all parameters of fit B in
Table II.
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FIG. 6. Fitted line shapes of the Zbð10610Þ and Zbð10650Þ in the Bð�ÞB̄� channels [plots (a) and (b)] and in the πhbðmPÞ (m ¼ 1, 2)
channels [plots (c) and (d)]. Parameters of fits A, B, and C are used for the plots in the upper, middle, and lower rows, respectively.

TABLE II. Parameters of fits B and C. The couplings g½πhbðmPÞ�½BB̄�� and g½πϒðnSÞ�½BB̄�� are given in the units of GeV−3 and GeV−2,
respectively. For both fits, g½πϒðnSÞ�½B�B̄��=g½πϒðnSÞ�½BB̄�� ¼ −1, as required by the HQSS constraints from Eq. (103), while the values of the
ratios g½πhbðmPÞ�½B�B̄��=g½πhbðmPÞ�½BB̄�� can be found in Table I.

Fit g½πhbð1PÞ�½BB̄�� · 103 g½πhbð2PÞ�½BB̄�� · 103 g½πϒð1SÞ�½BB̄�� · 104 g½πϒð2SÞ�½BB̄�� · 104 g½πϒð3SÞ�½BB̄�� · 104

B 2.0þ0.3
−0.2 7.5þ1.0

−0.9 1.3� 0.3 5.0þ0.8
−0.9 7.0þ1.3

−1.5
C 1.2þ0.5

−0.4 4.6þ1.7
−1.4 1.4� 0.3 5.5� 1.0 7.9þ1.6

−1.8
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VIII. NATURE OF THE Zbð10610Þ
AND Zbð10650Þ FROM DATA

Important information on the nature of the near-threshold
states like the Zbð10610Þ and Zbð10650Þ is encoded in the
singularity structure of the amplitudes extracted from the
fit,5 in particular the pole positions and pole residues
[53–56]. Therefore we have a closer look at the pole
locations of the Zb states in this section.
The full tmatrix considered here has in total seven coupled

channels. One might think that the task of searching for the
poles of the t matrix is formidable, because the number of
Riemann sheets is 27 ¼ 128. However, in practice the
problem is as simple as a two-channel one. This is because
the thresholds of all the inelastic channels are far away from
those of the BB̄� and B�B̄� channels and the interactions
among the inelastic channels are veryweak and can be safely
neglected as it is anyhow done in this paper. Thus any pole
which has the potential to produce ameasurable effect should
reside well above all the inelastic thresholds. Therefore, the
relevant Riemann-sheet structure is practically the same as
that for the two-channel case.
In order to search for the poles in these relevant Riemann

sheets, one needs to put all the inelastic channels in their
corresponding unphysical sheets. This is achieved by an
analytic continuation with a practical trick of changing the
sign of the imaginary part of the inelastic channel Green’s
functions given in Eqs. (57), (58) and (62).
To study the poles in the two-channel case with the

quantum numbers 1þ−, it is convenient to make a con-
formal mapping from the four-Riemann-sheet complex
energy plane to the single complex ω plane [57]. For a
given energy E, we can write

E ¼ k21
2μ

¼ k22
2μ

þ δ; ð106Þ

where δ ¼ mB� −mB denotes the energy gap between the
two elastic thresholds. Instead of two complex momenta k1
and k2 constrained by the two conditions from Eq. (106),
we switch to the complex variable ω, defined via

k1 ¼
ffiffiffiffiffi
μδ

2

r �
ωþ 1

ω

�
; k2 ¼

ffiffiffiffiffi
μδ

2

r �
ω −

1

ω

�
: ð107Þ

This allows us to rewrite the energy as

E ¼ δ

4

�
ω2 þ 1

ω2
þ 2

�
: ð108Þ

By construction, the complex ω plane is free of uni-
tary cuts.
In the first plot in Fig. 8 we show the mapping of the four

Riemann sheets of the complex energy plane, labeled as

RS-I∶ Imk1 > 0; Imk2 > 0;

RS-II∶ Imk1 < 0; Imk2 > 0;

RS-III∶ Imk1 > 0; Imk2 < 0;

RS-IV∶ Imk1 < 0; Imk2 < 0; ð109Þ

onto the ω complex plane. The thick solid line corresponds
to real values of the energy E on the first sheet, and the part
of the imaginary ω axis with Imω > 1 corresponds to
negative values of E, thus representing energies below the
BB̄� threshold.
It is easy to see from Eq. (107) that the BB̄� threshold

(k1 ¼ 0) appears at ω ¼ �i and the B�B̄� (k2 ¼ 0) thresh-
old appears at ω ¼ �1. Thus the near-threshold regions
correspond to the vicinities of jωj ¼ 1. To be able to
distinguish between the poles according to their relevance
for producing structures in the amplitude in the physical
region, it is worthwhile to discuss the structure of the
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FIG. 7. Plots (a), (b), and (c) are for the predicted line shapes of the Zbð10610Þ and Zbð10650Þ in the πϒð2SÞ channel for fits A, B, and
C, respectively. To guide the eye, as plot (d), we also show the corresponding experimental figure adapted from Ref. [46]. Notice that the
behavior of the line shape below the left shoulder of the lower peak is influenced by the effects which lie beyond the scope of the present
paper and will be addressed in future publications. Notice also that the presence of the nonresonant background in the experimental
figure does not allow its direct comparison with the predicted line shapes.

5It has to be noticed that the obtained values of the parameters
cannot be compared directly with those from, e.g., Ref. [39]
since, in the latter paper, a Gaussian vertex form factor was used
to regularize the Lippmann-Schwinger equation and the contact
terms are scale dependent.
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Riemann sheets in some more detail. In particular, between
the thresholds, RS-I is glued with RS-II and RS-III is glued
with RS-IV along the real energy axis, since crossing this
axis changes the sign of Im k1. Above the higher threshold,
crossing the real energy axis changes the signs of both
Im k1 and Im k2 so that, in this region, RS-I is attached to
RS-IV and RS-II is attached to RS-III.
We find that the 1þ− t matrix possesses four poles in the

complex ω plane, shown in Fig. 8. The pole near the
imaginary axis in the lower half ω plane corresponds to a
pole below the BB̄� threshold lying on RS-IV of the
complex energy plane. It therefore appears far away from
the physical region and has little impact on the physical
amplitude. It will not be discussed below.
The pole in the upper half ω plane (if we switch off the

inelastic channels, it is located exactly on the imaginary
axis) lies nearly on the real axis on RS-II of the complex
energy plane, so it describes a virtual state. It is close to the
BB̄� threshold and corresponds to the Zbð10610Þ. The
nonzero real part of the pole location in the ω-plane (which
translates into a finite imaginary part in the energy plane)
reflects the fact that the Zbð10610Þ can decay into the
inelastic channels. Notice that, for the parameters from fit
C, v11 ∝ γ−1s þ γ−1t > 0 and therefore, in the single-channel
case (neglecting the B�B̄� channel), the t matrix

t ∝
1

v−111 þ ið2πÞ2μk1
ð110Þ

would have a bound-state pole. However, in the two-
channel case, the pole in the vicinity of the BB̄� threshold
is a virtual state. This means the B�B̄� channel effectively
reduces the attraction in the BB̄� system and turns the
bound state into a virtual state. For the parameters from fit
B the Zbð10610Þ pole corresponds to a virtual state both in
the single-channel and two-channel case.

The other two poles, with ω≃�1, are a pair of
conjugated poles below the B�B̄� threshold. We focus on
the right one, for it is this pole that is closest to the physical
region. This pole lies on RS-IV (RS-III) for fit B (C) and
corresponds to the Zbð10650Þ. The nonzero imaginary part
of the pole reflects the fact that Zbð10650Þ can decay into
the lower BB̄� channel as well as into the inelastic channels.
This pole is very close to the B�B̄� threshold and as such it
is able to produce a pronounced peak in the line shape. For
fit C, the path from the pole in RS-III to the physical RS-I is
to go up to the B�B̄� threshold, to enter RS-II and then to
approach RS-I from below the B�B̄� threshold—see the
sketch in Fig. 9 (or to go to RS-IV from below the B�B̄�
threshold and then approach RS-I from above that thresh-
old). For fit B the pole appears on RS-IV and therefore it
has a simpler path to the physical region by crossing the cut
above the B�B̄� threshold since RS-I and RS-IVare directly
glued there.
The Zb and Zb

0 energies relative to the respective
thresholds,

εBðZbÞ≡MðBB̄�Þ −MðZbÞ;
εBðZb

0Þ≡MðB�B̄�Þ −MðZb
0Þ; ð111Þ

are

εBðZbÞ ¼ ð1.10þ0.79
−0.54 � i0.06þ0.02

−0.02Þ MeV;

εBðZb
0Þ ¼ ð1.10þ0.79

−0.53 � i0.08þ0.03
−0.05Þ MeV; ð112Þ

FIG. 8. First plot: Four Riemann sheets mapped into the ω plane. The thick solid line corresponds to the real axis in the first Riemann
sheet of the complex energy plane. Second plot: The poles of the full t matrix which correspond to the quantum numbers 1þ− and to the
set of parameters from fit B—see Table I. The red crosses mark the central values and the green dots show the upper and the lower
bounds due to the uncertainties in the fitted parameters. Third plot: The same as in the second plot but for the set of parameters from fit C.

FIG. 9. The path of the RS-III pole to RS-I. The complex
conjugated pole is also shown but not its path.
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for the parameters from fit B, and

εBðZbÞ ¼ ð0.60þ1.40
−0.49 � i0.02þ0.02

−0.01Þ MeV;

εBðZb
0Þ ¼ ð0.97þ1.42

−0.68 � i0.84þ0.22
−0.34Þ MeV; ð113Þ

for the parameters from fit C. In order to determine the
uncertainties of the pole positions we varied the parameters
γs and γt within their ranges allowed by the respective fit.
We notice that the real parts of the poles are always below
the corresponding thresholds. In addition, the close sim-
ilarity of the two pole positions for fit B is again a
consequence of nearly vanishing v12—see the discussion
around Eq. (105).
As one can see, the current data are consistent with both

Zbð10610Þ and Zbð10650Þ as virtual states. This may have
severe implications for the interpretation of their nature,
since only states with a dominant two-hadron component
can be virtual states.6 Thus our findings give a strong
support to the conjecture that the two Zb states qualify as
hadronic molecules. Meanwhile, improved data are neces-
sary to confirm this conclusion.
In the remainder of this section we demonstrate how well

the pole locations are determined by the data currently
available. To proceed in this direction we stick to the
Zbð10610Þ pole and consider fits B and C. We observe that
the parameters of the fits do not change appreciably, if only
the direct interaction t matrix tv is retained in the elastic t
matrix. We also notice that, in the current data set, the
influence of the inelastic channels on the line shapes is not
very strong either, their role being mainly to provide a finite
imaginary part to the poles. We therefore now study the
poles of just the direct interaction t matrix, tv, which
depends only on γs and γt. In the ðγs; γtÞ-plane we identify
various regions, which correspond to different Riemann
sheets—see Fig. 10. The actual values of the parameters γs
and γt taken from fits B and C are shown by the black dots
with the error bars. The red curve

γt ¼ ðγ−1s −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðμδÞ

p
Þ−1 ð114Þ

separates the parameter space for the Zbð10610Þ as a virtual
state from that for the Zbð10610Þ as a bound state. Then
each blue (green) curve corresponds to a bound (virtual)
state with the pole energy, relative to the BB̄� threshold,
quoted explicitly, in MeV, near every curve.
From Fig. 10 one can see that, while the data are rather

uncertain and the parameters γs and γt found from different
fits differ substantially, the corresponding dots in the
ðγs; γtÞ-plane nevertheless reside in the “green” domain
(virtual state) sufficiently far away from the red boundary
curve. Therefore, the conclusion that the Zbð10610Þ is a

virtual state can be treated as a robust prediction from the
data. A similar conclusion holds concerning the nature of
the Zbð10650Þ as a resonance; however, even in the absence
of the inelastic channels, the Zbð10650Þ pole has an
imaginary part and therefore its fate cannot be demon-
strated in a plot as simple as that for the Zbð10610Þ given
in Fig. 10.

IX. REMARKS ON THE POSSIBLE ROLE
OF PION EXCHANGES

The role of one-pion exchange (OPE) on the formation
of exotic resonances and, in particular, of hadronic mol-
ecules is discussed heavily in the literature. While
Refs. [39,58,59] argue that this contribution to the potential
is perturbative, Refs. [60,61] claim it to be a crucial
contribution to the binding of the two-hadron system.
It was stressed in Ref. [62] that from the point of view of

field theoretical consistency the significance of the OPE for
the binding energy of the charmonium state Xð3872Þ
cannot be defined unambiguously. Given an apparent
similarity of the pion exchanges between Dð�Þ mesons
and Bð�Þ mesons, the same conclusion holds for the Zb’s.
Meanwhile, the long-range tail of the OPE potential might
distort the Zb’s line shapes significantly [63]. In addition, it
might also induce a significant mixing between the BB̄�

and B�B̄� channels as observed in Ref. [52]. We therefore
briefly comment on the possible role of the OPE here—a
detailed calculation including pion exchanges will be
presented in a subsequent publication [64].

FIG. 10. The space of parameters (γt versus γs) for the poles of
tv in the channel 1þ− close to the BB̄� threshold [Zbð10610Þ
state]. The blue and green curves correspond to different
Riemann sheets (RS-I versus RS-II, respectively) and the red
line gives the boundary between the two regions. The energy of
the state relative to the threshold is quoted, in MeV, at every
curve. The black dots with the error bars show the actual values of
the parameters γs and γt for fits B and C taken from Table I.

6By solving the Schrödinger equation for a four-quark system,
tetraquark states correspond to the bound states of four quarks
and thus cannot be virtual states.
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Clearly, the leading effects that determine the line shapes
are the pole positions of the two Zb resonances. In the
analysis of the existing data presented above the pole
locations emerged from a subtle interplay of the channel
couplings. We expect this pattern to persist also when pion
exchanges are included, since still free parameters can be
adjusted to locate the poles to where data request them to
be. Effectively this means that, compared to this analysis,
the pion exchange can at most slightly vary the Zb line
shapes. In particular, we do not expect this effect to be as
large as announced in Ref. [63] for two reasons: first of all,
the analysis of this work did not consider the effect
of the interplay of the two poles (determined by their
location in the complex plane) on the experimental signals
and, secondly, the effect of the OPE was maximized in
Ref. [63] by using an effective pion mass μπ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π − δ2
p

,
with δ ¼ mB� −mB, in the expression for the static OPE.
However, this kind of OPE is correct only for the on-shell
potential in the BB̄� channel and takes a different structure
in the B�B̄� channel as well as for the transition potential. In
addition, the (half-)off-shell potential, relevant here, is
energy dependent and when spanning an energy range
that covers both Zb states and keeping effects of the order of
δ, also the energy dependence of the OPE potential needs to
be kept, which is of the same order. This changes the
effective pion mass in a nontrivial way over the relevant
energy range. It is also important to keep in mind that as
soon as the energy dependence of the pion exchange
contribution is to be kept, the recoil terms of the B mesons
need to be kept as well, for they contribute to the same
order, as stressed in Ref. [65] in a different context. Similar
arguments as the ones just presented also allow one to
question the claim of Ref. [52] that the contribution of the
OPE spoils the light quark spin symmetry. More details will
be given elsewhere [64].
Therefore, to summarize the arguments just presented,

we expect that even if OPE were included in the analysis of
the data for the Zb states the line shapes would change only
slightly. It should be stressed that regardless of this claim a
systematic study of the pion exchange contribution to
exotic states is still very valuable. For example, the quark
mass dependence of exotic states can only be studied in a
controlled way with this contribution included [66–68].
This is of relevance for chiral extrapolations of lattice data
that at present exist only at unphysically high quark masses
[69]. Another example of the relevance of the OPE for
studies of exotic states is given in Ref. [70], where it is
pointed out that it leads to a very specific pattern of exotic
states with respect to their quantum numbers.

X. SUMMARY

In this paper we formulate and analytically solve a
coupled-channel problem for the scattering tmatrix involv-
ing elementary states and a set of elastic and inelastic

channels coupled to each other. The solution found can be
viewed as a further generalization of the approach pre-
sented before in Refs. [8,16]. It should be stressed that since
the approach is based on the Lippmann-Schwinger equa-
tions for the coupled-channel problem, all unitarity and
analyticity constraints for the t matrix are fulfilled auto-
matically. In particular, in contrast to earlier works, the
inelastic channels are taken into account nonperturbatively;
that is they are iterated to all orders. Then unitarity
guarantees that all imaginary parts are included in a self-
consistent way. On the other hand, since to leading order in
a low-energy expansion there is no direct interaction within
the inelastic channels, at least for the type of the systems
discussed here, the inelastic channels enter the expressions
only additively. As a result it is very easy to include
additional inelastic channels.
We present a parametrization of the solution of the

equations which appears to be relatively simple but should
be powerful enough to describe line shapes of near-threshold
states in a wide class of reactions. As a byproduct of the
explicit unitarity of the approach, the suggested parametri-
zation allows one to test the existing experimental data for
completeness. Indeed, if there exist not yet measured
inelastic channels coupled to the elastic ones, the former
will contribute to the inelasticities (57) and (58). The
corresponding contributions would induce additional imagi-
nary parts of the effective potentials, not linked to the decays
known experimentally. If the best fit to all existing data gives
negligibly small values of these additional inelasticities, the
model can be regarded as complete up to the precision of
the experimental data. On the contrary, large values of the
additional imaginary parts would indicate a large violation of
unitarity which can only be recovered by enlarging the basis
of the channels explicitly included in the model. This would
also mean that additional experimental efforts are necessary
to identify and to measure the missing inelastic channels.
Finally, we exemplify the suggested approach by the line

shapes for the bottomoniumlike states Zb and Zb
0. Without

introducing any elementary state, the experimental data for
the Zb and Zb

0 can be described well, and poles corre-
sponding to these two states with JPC ¼ 1þ− and I ¼ 1 are
found in the t matrix. We conclude that the Zbð10610Þ is a
virtual state located on the second Riemann sheet near
the BB̄� threshold while the Zbð10650Þ is a resonance on
the third or fourth Riemann sheet (however very close to the
first Riemann sheet) lying near the B�B̄� threshold.
With the parameters extracted from the combined fit for

the data, pole positions can be predicted in the comple-
mentary channels, with the quantum numbers 0þþ, 1þþ,
and 2þþ, in addition to those which have the quantum
numbers 1þ− and correspond to the Zbð10610Þ and
Zbð10650Þ states. The presence of such additional isovector
poles complies very well with the expectations of the
existence of more isovector hidden-bottom hadronic mol-
ecules, called Wb—see Refs. [37,71]. However we refrain
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from further dwelling on the Wb’s here because their study
requires some caution and, in particular, might call for the
inclusion of the pion exchanges. We therefore leave this for
future publications.
Unfortunately, with the present quality of the data, the

parameters extracted from the fits are very uncertain
(notice, for example, the opposite signs of the parameter
γs in fits B and C as well as a factor 3 difference in γt, while
both fits provide a similar good overall description of the
data) and so are the predictions for the pole positions found
with the help of these parameters. It is expected however
that future high statistics and high resolution experiments
should provide more accurate and more complete data sets.
Finally, we argue that the contribution of the nonsepar-

able one-pion exchange potential is small, once the
parameters are refitted with pion exchanges included. As
a result, it should be safe to apply the parametrization

scheme presented here also to further experimental analy-
ses. In particular, the use of sums of Breit-Wigner functions
should be abandoned for the analysis of near-threshold
states.
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