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ABSTRACT
The purpose of this article is two-fold : (1) to select a set of biome-
chanical features to characterize arthroplasty candidates and, (2)
design a surgical and non-surgical candidate classifier via decision
trees. The biomechanical features are generated from 3D knee ki-
nematic patterns, namely, flexion-extension, abduction-adduction,
and tibial internal-external rotation measurements taken during gait
recordings. The selection of features is done by incremental selec-
tion of biomechanical parametes in a classification tree of cross-
sectional data. These features are then used to generate decision
rules for classification. The effectiveness of the classifier is eva-
luated by receiver operating characteristic curve analysis, namely,
the area under the curve (AUC), sensitivity, and specificity. The
classification accuracy is 85% for AUC, 80% for sensitivity, and
90% for specificity. These results demonstrate the effectiveness of
the selected biomechanical features and decision tree classifier to
perform automatic and objective classification of surgical and non-
surgical candidates for arthroplasty.

1. INTRODUCTION

Osteoarthritis (OA) of the knee, one of the most common causes
of disability, continues to increase in prevalence as the older adult
and obese populations grow [1]. When nonoperative treatment fails,
surgical options are available to relieve pain and restore range of
motion by replacing the joint articular surface with implants. The
annual report of Canadian joint replacement registry indicates that
in 2012-2013, there were 47,137 acute care hospitalizations for all
knee replacements in Canada, representing a five-year increase of
21.5%. The economic burden of arthritis in Canada is very high
and this is also true around the world. This can be attributed to se-
veral factors : the long time between the onset of symptoms and
the diagnosis (estimated at about 7 years in Canada), the inade-
quate patient management by general practitioners with inappro-
priate use of costly imaging such as MRIs, unsuitable referrals to
orthopedic surgeons for which patients are frequently returned to
their family doctor since they are not surgical candidates (about
50%), and the increasing number of joint surgery. Thus, there is
a strong need for effective management of knee OA orthopedic
patients pre- and post-operatively. To determine whether an os-
teoarthritic patient is a candidate for joint replacement surgery,
orthopedic surgeons conducts a physical examination to evaluate

clinical aspects (age, signs and symptoms, range of motion, func-
tional limitations, appropriateness for surgery, etc.). Although the
radiographic severity of osteoarthritis is not always correlated with
symptoms, clinicians use, generally, X-ray examination to support
their decision [2]. These traditional assessments are subjective and
have limited standardization which, usually, imply significant va-
riation in surgery recommendations for patients with knee osteoar-
thritis (OA).
Kinematic assessment during gait, which currently can be easily
acquired in clinical settings [3], provides objective and quantifiable
information about knee function and offer opportunities to develop
automatic objective methods of computer aided diagnosis and sur-
gical treatement systems. Although pre-operative knee conditions,
prosthesis design, and surgical techniques are generally believed
to influence knee kinematics following an arthroplasty, kinematic
studies have primarily focused on post-operative knee kinematics
[4]. A few studies have investigated the kinematics of osteoarthritic
knee pre-operatively [5, 6, 7] but none have adressed classification
of surgical vs non-surgical candidates for arthroplasty using 3D ki-
nematic data. This may be due to kinematic data complexity [8].
In particular, biomechanical data are given in the form of a vec-
tor of measurements of high dimension for each subject, causing
its analysis to suffer from the curse of dimensionality. Moreover,
there is a significant variability in the data. Both the variability and
the high dimensionality are illustrated in Fig.1, which shows the
graph of a sample of eighty-four participants curves.
The present study investigates a novel method for discriminating
surgical from non surgical candidates for knee arthroplasty. The
aim is to develop an automatic objective classification method to
distinguish between surgical (S) and non-surgical (Non-S) candi-
dates for arthroplasty using 3D knee kinematic signals recorded
during treadmill walking episode.

2. METHODS

2.1. Database

The data was obtained from the Division of Orthopaedic Sur-
gery in Halifax QEII Health Sciences Centre (Nova Scotia, Ca-
nada). Eighty-four participants with a primary diagnosis of mo-
derate to severe knee OA and scheduled for arthroplasty consult,
were enrolled after being seen by an orthopedic surgeon and assi-
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gned to surgical (S) or non-surgical (Non-S) groups. Table 1 sum-
marizes the participants demographic characteristics.

Groupe S Groupe Non-S
N =44 N = 40

Age (year) 63± 8 64± 9.2
Height(m) 1.6± 0.4 1.6± 0.8

Weight (kg) 93.2± 25.9 89.7± 19.9
BMI (kg / m2) 33.2± 7.5 31.2± 6, 2

Proportion of men / group 27% 44%

Table 1. Demographic characteristics and walking speed of S and
Non-S groups (BMI design the mean body mass). ∗ Student t-test
revealed no significant differences between the groups (p < 0.05)

All participants underwent physiotherapy assessment and health
surveys. Three-dimensional (3D) knee kinematics data, namely
flexion-extension, abduction-adduction, and tibial internal-external
rotation measurements, in the sagittal, frontal and transverse planes,
respectively, were recorded while each participant walked on a
treadmill at their self-selected, comfortable speed. A knee mar-
ker attachment system, the KneeKG system (EMOVI, Quebec, Ca-
nada) [3], was installed on the participant’s knee to record the 3D
kinematics during gait trials of 45 sec. This motion capture tool is
composed of a harness and plate fixed quasi-rigidly onto the femo-
ral condyles and tibial crest, and provides accurate, repeatable, and
reliable measurements [3]. A number of representative gait cycles,
generally 15, were averaged to obtain a mean pattern per subject.
This was followed by interpolation and resampling from 1% to
100% of the gait cycle, therefore giving a 100 measurement points
for each participant (Fig. 1).

2.2. Biomechanical feature extraction

A set of 70 biomechanical parameters was then extracted from
the 3D kinematic signals. The chosen parameters were based on
variables routinely assessed in clinical biomechanical studies of
knee osteoarthritis populations, such as maximums, minimums,
varus and valgus thrust, angles at initial contact, mean values and
range of motion (ROM) throughout gait cycles or gait sub-cycles
(i.e., loading, stance, swing) [9, 10]. This was followed by a feature
selection step which aims at selecting a subset of the biomechani-
cal parameters that would better discriminate between surgical and
non-surgical candidates for arthroplasty.

2.3. Biomechanical feature selection and classification

Biomechanical feature selection is quite important because the
number of biomechanical parameters of interest is large while the
number of features that are really characteristic of surgical can-
didates is much smaller. We performed biomechanical feature se-
lection using a decision tree method. More precisely, we used the
classification and regression tree algorithm (CART), a scheme ba-
sed on the Gini diversity index as a tree branching criterion.

Let D be a training dataset, divided into c classes ci, i =
{1, 2, ..., c}. Each subject is characterized by a vector of feature
values which, in our case, correspond to the biomechanical para-
meters. The feature selection technique is based on the Gini gain,
which is an impurity-based criterion, to select, at each internal
node of the decision tree, the feature that provides the largest re-
duction in impurity as explained bellow.
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Fig. 1. Kinematic gait signals (of the database) during a gait cycle :
(a) Abduction-adduction, (b) Flexion-extension, and (c) Internal-
external rotation. The signals were interpolated and resampled
from 1% to 100% (100 points) of the gait cycle. Each red curves
represent a surgical participant and each blue one represent a Non-
Surgical participant (d) The gait cycle phases.

The Gini index for the data set D is defined as :

Gini(D) = 1−
c∑

i=1

p2i , (1)

where pi is the proportion of examples in D that belong to class
ci. Thus,

Gini(D) = 1−
n∑

i=1

(
|ci|
|D| )

2, (2)

where | | denotes the cardinal number.
Let F be a feature with m distinct values. The database D is par-
titioned into m subsets {D1, D2, ..., Dm}. The Gini index of D
with respect to the feature F is defined as

GiniF (D) =

m∑
i=1

|Di|
|D| .Gini(Di) (3)



The tree branching process uses the feature F that provides the
largest reduction in impurity ∆Gini(F ) :

∆Gini(F ) = Gini(D)−GiniF (D) (4)

Once the biomechanical feature selection is performed, a de-
cision tree is built using the selected feature and used for classifi-
cation.

2.4. Performance evaluation

We used the ROC (Receiver Operating Characteristics) curve
to select biomechanical parameters. The ROC curve is a graphic
representation of the relationship between sensitivity and specifi-
city which is used to select the fetaure that better discriminates
between surgical and non-surgical candidates.

The classifier performance was evaluated using sensitivity (Se),
specificity (Sp) and accuracy rate (τ ) :

Se =
TP

TP + FN

Sp =
TN

TN + FP

τ =
TP + TN

TP + TN + FP + FN
,

where TP is the number of true positives, i.e., the number of surgi-
cal participants correctly classified as surgical candidates and TN
is the number of true negatives. FP is the number of false posi-
tives, i.e., the number of non-surgical participants correctly clas-
sified as non surgical candidates, and FN is the number of false
negatives.

The classifications results were evaluated by leave-one-out cross
validation, which is a common procedure in classification evalua-
tion. It consist on extracting one sample for validation, the rest of
the samples of the data set being used for learning. This procedure
is repeatedN times, withN , the number of samples in the dataset.
The performance is computed over all examples in the sample.

2.5. Statistical analysis

We performed a t−test statistical analysis to examine the ge-
neral participant characteristic differences between the two groups.
The statistical analysis was conducted using SPSS 20.0 (Statistical
Package for Social Sciences). A P-value of 0.05 was set as the le-
vel of statistical significance.

3. RESULTS

Among the 70 biomechanical parameters of interest extracted,
a set of 3 parameters was selected to characterize surgical and non-
surgical candidates : The minimum of the flexion/extension angle
curve, the rotation angle at the push off phase (54%) and the ro-
tation angle at mid stance phase (35%) of the gait cycle. Figure 2
shows the resulting decision tree with the corresponding the thre-
shold values.

An ROC curve of Fig. 3 shows the relationship between sen-
sitivity and specificity. The AUC reaches 0,8477
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Fig. 2. The obtained decision tree.

Fig. 3. The ROC curve.

The confusion matrix in Table 2 summarizes the performance
of the decision tree classifier (Figure 2). Each column of the ma-
trix represents the instances in a predicted class, while each row
represents the instances in the actual class, i.e., as assigned by
the arthroplasty surgeon diagnosis. The classifier performance was
84.7% for the classification accuracy, 79.5% for sensitivity, 90%
for specificity.

The statistical analysis of the participants demographic cha-
racteristics (Table 1), confirms that there is no statistically signi-
ficant difference between the general participant characteristic of
the two groups. Therefore, the distinction is due to the participants
knee kinematic data, not to subject characteristics.



Predicted class
S Non-S

Real class S 35 9
non-S 4 36

Table 2. Confusion matrix

4. CONCLUSION

In this study, we developed a biomechanical data classifier to
distinguish between surgical and non-surgical candidates for ar-
throplasty. The results show strong correlations between expert
clinical assessment and kinematic objective evaluation, to distin-
guish between S from Non-S candidates. In future studies, we will
add objective data sets (Oxford Knee Score, BMI) as inputs in the
decision tree to improve classification performance.

The development of a clinically validated, objective assess-
ment method to discriminate surgical and non-surgical candidates
for arthroplasty will allow better triage of knee OA patients and
streamline use of hospital resources, and provide better rationali-
zation of services to significantly improve patient care.
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