
KoralQuery – a General Corpus Query Protocol

Joachim Bingel, Nils Diewald
Institut für Deutsche Sprache

Mannheim, Germany
bingel,diewald@ids-mannheim.de

Abstract
The task-oriented and format-driven de-
velopment of corpus query systems has led
to the creation of numerous corpus query
languages (QLs) that vary strongly in ex-
pressiveness and syntax. This is a severe
impediment for the interoperability of cor-
pus analysis systems, which lack a com-
mon protocol. In this paper, we present
KoralQuery, a JSON-LD based general
corpus query protocol, aiming to be inde-
pendent of particular QLs, tasks and cor-
pus formats. In addition to describing the
system of types and operations that Koral-
Query is built on, we exemplify the rep-
resentation of corpus queries in the serial-
ized format and illustrate use cases in the
KorAP project.

1 Introduction

In the past, several corpus query systems have
been developed with the purpose of exploring and
providing access to text corpora, often under the
assumption of specific linguistic questions that the
annotated corpora have been expected to help an-
swer. This task-oriented and format-driven devel-
opment has led to the creation of several distinct
corpus query languages (QLs), including those
mentioned in Section 3. Such QLs vary strongly
in expressiveness and usability (Frick et al., 2012).

This brings several unpleasant consequences
both for researchers and developers. For instance,
the researcher who uses a particular system must
formulate her queries in no other QL than the one
used for this system, which might require addi-
tional training prior to the actual research. It might
even be the case that certain research questions
cannot be answered due to limitations of the QL,
while the actual query system and the underlying
corpus data could in fact provide results. For de-
velopers, the lack of a common protocol prevents

interoperability between different query systems,
for instance to forward user requests from one sys-
tem to another, which may have access to addi-
tional resources.

In this paper, we present KoralQuery, a gen-
eral protocol for the representation of requests to
corpus query systems independent of a particular
query language. KoralQuery provides an extensi-
ble system of different linguistic and metalinguis-
tic types and operations, which can be combined
to represent queries of great complexity. Several
query languages can thus be mapped to a common
representation, which lets users of query systems
formulate queries in any of the QLs for which such
a mapping is implemented (cf. Section 4). Further
benefits of KoralQuery include the dynamic defi-
nition of virtual corpora and the possibility to si-
multaneously access several, concurrent layers of
annotation on the same primary textual data.

2 Related Work

In former publications, KoralQuery was intro-
duced as a unified serialization format for CQLF1

(Bański et al., 2014), a companion effort focussing
on the identification and theoretical description of
corpus query concepts and features.

Another approach to a common query lan-
guage that is independent of tasks and formats
is CQL (Contextual Query Language) (OASIS
Standard, 2013), with its XML serialization for-
mat XCQL.2 KoralQuery differs from CQL in fo-
cussing on queries of linguistic structures, and
separating document and span query concepts (see
Section 3).

1CQLF is short for Corpus Query Lingua Franca, which
is part of the ISO TC37 SC4 Working Group 6 (ISO/WD
24623-1).

2Like KoralQuery, XCQL is not meant to be human read-
able, but to represent query expressions as machine readable
tree structures. For various compilers from CQL to XCQL,
see http://zing.z3950.org/cql/; last accessed 27 April
2015.

1

Published in: Proceedings of the Workshop on Innovative Corpus Query and Visualization Tools at NODALIDA 2015,
May 11-13, 2015, Vilnius, Lithuania: Linköping University Electronic Press, Linköpings universitet 2015, pp. 1-5.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publikationsserver des Instituts für Deutsche Sprache

https://core.ac.uk/display/79463899?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

3 Query Representation

KoralQuery is serialized to JSON-LD (Sporny et
al., 2014), a JSON (Crockford, 2006) based for-
mat for Linked Data, which makes it possible for
corpus query systems to interoperate by exchang-
ing the common protocol.3 JSON-LD relies on
the definition of object types via the @type key-
word, thus informing processing software of the
attributes and values that a particular object may
hold. As can be seen in the example serializations
in this section (see Fig. 1-3), KoralQuery makes
use of the @type keyword to declare query object
types. Those types fall into different categories
that we introduce in the remainder of this section.4

While KoralQuery aims to express as many dif-
ferent linguistic and metalinguistic query struc-
tures as possible, it currently guarantees to rep-
resent types and operations defined in Poliqarp
QL (Przepiórkowski et al., 2004), COSMAS II QL
(Bodmer, 1996) and ANNIS QL (Rosenfeld, 2010).
In addition, the protocol comprises a subset of the
elements of CQL (OASIS Standard, 2013).

As JSON-LD objects can reference further
namespaces (via the @context attribute), Koral-
Query is arbitrarily extensible.

3.1 Document Queries

KoralQuery allows to specify metadata constraints
that act as filters for virtual collections using the
collection attribute. Those metadata constraints,
so-called collection types, serve a dual purpose:
Besides the obvious benefit of allowing users to
restrict their search via dynamic sampling to docu-
ments that meet specific requirements on metadata
such as publication date, authorship or genre, they
can be used to control access to texts that the user
has no permission to read (cf. Sec. 3.3).

A single metadata constraint is called a basic
collection type, and defines a metadata field, a
value and a match modifier, for example to negate
the constraint. Basic collection types can be com-
bined using boolean operators (AND and OR) to
recursively form complex collection types. The
result of a collection type is a collection of doc-
uments which satisfy the encoded constraint (or

3JSON-LD was chosen to be compatible with LAPPS rec-
ommendations from ISO TC37 SC4 WG1-EP, as suggested
by Piotr Bański.

4The type categories are set in boldface. A detailed def-
inition of types and attributes is provided by the KoralQuery
specification (Diewald and Bingel, 2015), which may serve
as a reference for implementers of KoralQuery processors.

1 {
2 "@context" : "http://korap.ids-mannheim.de/ns/

koral/0.3/context.jsonld",
3 "collection" : {
4 "@type" : "koral:doc",
5 "key" : "pubDate",
6 "value" : "2005-05-25",
7 "type" : "type:date",
8 "match" : "match:geq"
9 },
10 "query" : {}
11 }

Figure 1: KoralQuery serialization for a virtual
collection that is restricted to documents with a
pubDate of greater or equal than 2005-05-25.

combination of constraints), for instance all doc-
uments that were published after a certain date or
that contain a certain string of characters in their
title. Figure 1 illustrates the serialization of a sim-
ple virtual collection definition.

3.2 Span Queries
To find occurrences of particular linguistic struc-
tures in corpus data (possibly restricted through
the aforementioned document queries), Koral-
Query uses the attribute query, under which it
registers objects of specific, well-defined types.
Those objects, along with their hierarchical orga-
nization, represent the linguistic query issued by
the user.5

The intended generic usability of KoralQuery
demands a high degree of flexibility in order to
cover as many linguistic phenomena and theories
as possible. It must therefore be maximally inde-
pendent of, and neutral with regard to,

(i) the type and structure of linguistic annotation
on the text data,

(ii) the choice of specific tag sets, e.g. for part-
of-speech annotations or dependency labels.

KoralQuery achieves this neutrality by instanti-
ating distinct linguistic types as abstract structures
which can flexibly address different sources and
layers of linguistic annotation at the same time.
Linguistic patterns of greater complexity can be
defined by using a modular system of nestable
types and operations, drawing on various famil-
iar search technologies and formalisms, includ-

5As the response format is not part of the KoralQuery
specification, the result handling is subject to the query en-
gine. It may, for instance, return surrounding text spans or
the total number of occurrences.

2

ing concepts from regular expressions, XML tree
traversal, boolean search and relational database
queries.

The nesting principle of KoralQuery states that
objects describing linguistic structures in the cor-
pus data, so-called span types, may be embedded
in parental objects to recursively describe complex
linguistic structures, thus forming a single-rooted
tree.

Span types may be further sub-classified into
basic and complex types. Basic span types denote
linguistic entities such as words, phrases and sen-
tences that are annotated in the corpus data. The
result of such a span type is a text span, which in
turn is defined through a start and an end offset
with respect to the primary text data. Complex
span types define linguistic or result-modifying
operations on a set of embedded span types, which
thus act as arguments (or operands) of the relation
and pass their resulting text spans on to the parent
operation.6 Such operations may express syntactic
relations or positional constraints between spans.

Figure 2, for example, represents a span query
of two koral:token objects (basic span types)
each wrapping a single koral:term object, whose
resulting text spans are required to be in a se-
quence (i.e. follow each other immediately in
the order they appear in the list), as formulated
by the operation:sequence in the embedding
koral:group object (a complex span type).

Leaf objects of the span query tree structure
may either be basic span types or parametric
types, containing specific information that is re-
quested for certain span types. They are intended
to normalize the usage and representation of simi-
lar or equal parameters used across different types.
The koral:term objects in Figure 2, which ex-
press constraints on their parent koral:token ob-
jects, are examples of such parametric types and
are used to uniformly access annotation labels
from different sources and on different layers.
Next to such basic parametric types, KoralQuery
provides complex parametric types that encode,
for instance, logical operations on other paramet-
ric types (see the koral:termGroup in Figure 2).

Note that all of those types are themselves com-
plex structures in that they are composed of a spe-

6In addition, the koral:reference type may refer to ob-
jects elsewhere in the tree, which provides a mechanism sim-
ilar to ID/IDREF in XML. This strategy is necessary to sup-
port graph-based query structures found in certain query lan-
guages.

1 {
2 "@context" : "http://korap.ids-mannheim.de/ns/

koral/0.3/context.jsonld",
3 "collection" : {},
4 "query" : {
5 "@type":"koral:group",
6 "operation" : "operation:sequence",
7 "operands" : [{
8 "@type" : "koral:token",
9 "wrap" : {
10 "@type" : "koral:termGroup",
11 "relation" : "relation:and",
12 "operands" : [{
13 "@type" : "koral:term",
14 "foundry" : "tt",
15 "key" : "ADJA",
16 "layer" : "pos",
17 "match" : "match:eq"
18 }, {
19 "@type" : "koral:term",
20 "foundry" : "cnx",
21 "key" : "@PREMOD",
22 "layer" : "syn",
23 "match" : "match:eq"
24 }]
25 }, {
26 "@type" : "koral:token",
27 "wrap" : {
28 "@type" : "koral:term",
29 "key" : "octopus",
30 "layer" : "lemma",
31 "match" : "match:eq"
32 }
33 }]
34 }
35 }

Figure 2: KoralQuery serialization for a pre-
modifying adjective followed by the lemma oc-
topus. The dual constraint on the first token
(adjective and premodifying) is reflected by the
koral:termGroup, which expresses a conjunction
of the two koral:term objects. The different val-
ues for foundry indicate that different annotation
sources are addressed.

cific set of obligatory and optional attributes that
carry corresponding values. Those values, in turn,
are also constrained to be of specific data types.
They can either be primitives (like string, integer
or boolean), parametric KoralQuery types, or con-
trolled values.

3.3 Query Rewrites

Query processors may perform a wide range of
different tasks aside of searching. Examples in-
clude the modification of queries to restrict access
to certain documents, to improve recall (e.g. by in-
troducing synonyms or suggesting query reformu-
lations), or to inject missing query elements (like

3

1 {
2 "@context" : "http://korap.ids-mannheim.de/ns/

koral/0.3/context.jsonld",
3 "collection" : {
4 "@type" : "koral:docGroup",
5 "operation" : "operation:and",
6 "operands" : [{
7 "@type" : "koral:doc",
8 "key" : "pubDate",
9 "value" : "2005-05-25",

10 "type" : "type:date",
11 "match" : "match:geq"
12 }, {
13 "@type" : "koral:doc",
14 "key" : "corpusID",
15 "value" : "Wikipedia",
16 "rewrites" : [{
17 "@type" : "koral:rewrite",
18 "src" : "Kustvakt",
19 "operation" : "operation:injection"
20 }]
21 }]
22 },
23 "query" : {}
24 }

Figure 3: Rewritten KoralQuery instance (see Fig-
ure 1), with an injected access restriction.

preferred annotation tools) based on user settings
(Bański et al., 2014). Queries may also be ana-
lyzed for the most commonly queried structures,
for instance to perform query and index optimiza-
tion or to shed light on which texts and annota-
tions are most popular with the users. In a post-
processing step, queries can also be transformed
for visualization purposes, for example to illus-
trate sequences or alternatives in complex query
structures.

Using a well-defined and widely adopted seri-
alization format such as JSON makes it easy to
perform such tasks, and KoralQuery supports this
kind of pre- and post-processors even further by
introducing mechanisms to trace query rewrites by
using so-called report types that are passed to fur-
ther processors in the processing pipeline. In this
way, query modifications (like the aforementioned
rewrites for access restriction and recall improve-
ments) can be made visible and transparent to the
user. In this respect, KoralQuery differs from com-
mon database query systems, where rewrites are
internal and hidden from the user (Huey, 2014).

In Figure 3, the virtual collection of Figure 1 is
rewritten by the processor Kustvakt in a way that
a further constraint is injected, limiting the vir-
tual collection to all documents with a corpusID

of Wikipedia (i.e. excluding all documents from

other corpora). This rewrite is documented by
the koral:rewrite object (a report type). Doc-
umenting rewrites is optional (e.g. the injected
operation:and in the example Figure is implicit
and was not reported using koral:rewrite).

In addition, KoralQuery allows to report on var-
ious processing issues (independent of rewrites,
e.g. regarding incompatibilities) by using the
errors, warnings, and messages attributes.

Report types (in opposition to collection types,
span types, and parametric types) do not alter the
expected query result.

4 Implementations

KoralQuery is the core protocol used in KorAP7

(Bański et al., 2013), a corpus analysis platform
developed at the Institute for the German Lan-
guage (IDS). KorAP is designed to handle very
large corpora and to be sustainable with regard to
future developments in corpus linguistic research.
This is ensured through a modular architecture of
interoperating software units that are easy to main-
tain, extend and replace. The interoperability of
components in KorAP is certified through the use
of KoralQuery for all internal communications.

Koral8 translates queries from various corpus
query languages (as mentioned in Section 3) to
corresponding KoralQuery documents. This con-
version is a two-stage process, which first parses
the input query string using a context-free gram-
mar and the ANTLR framework (Parr and Quong,
1995) before it translates the resulting parse tree to
KoralQuery.

Krill9 is a corpus search engine that expects Ko-
ralQuery instances as a request format. To index
and retrieve primary data, textual annotations and
metadata of documents as formulated by Koral-
Query, Krill utilizes Apache Lucene.10

Kustvakt is a user and corpus policy manage-
ment service that accepts KoralQuery requests and
rewrites the query as a preprocessor (see Sec. 3.3)
before it is passed to the search engine (e.g. Krill).
Rewrites of the document query may restrict the
requested collection to documents the user is al-
lowed to access, while the span query may be
modified by injecting user defined properties.

7http://korap.ids-mannheim.de/
8http://github.com/KorAP/Koral; Koral is free soft-

ware, licensed under BSD-2.
9http://github.com/KorAP/Krill; Krill is free soft-

ware, licensed under BSD-2.
10http://lucene.apache.org/core/

4

5 Summary and Further Work

We have presented KoralQuery, a general proto-
col for queries to linguistic corpora, which is se-
rialized as JSON-LD. KoralQuery allows for a
flexible representation and modification of corpus
queries that is independent of pre-defined tag sets
or annotation schemes. Those queries pertain to
both selection of documents by metadata or con-
tent, and text span retrieval by the specification
of linguistic patterns. To this end, the protocol
defines a set of types and operations which can
be nested to express complex linguistic structures.
By employing an automatic conversion from sev-
eral QLs to KoralQuery, corpus engines may al-
low their users to choose the QL that they are most
comfortable with or that are best equipped to an-
swer their research questions.

The KoralQuery specification (Diewald and
Bingel, 2015) does not claim to be complete or to
cover all possible linguistic types and structures.
Amendments to the protocol may follow in fu-
ture versions or may be implemented by individ-
ual projects, which is easily done by supplying an
additional JSON-LD @context file that links new
concepts to unique identifiers. Extensions that we
consider for upcoming versions of KoralQuery in-
clude text string queries that are not constrained by
token boundaries and more powerful stratification
techniques for virtual collections.

Acknowledgements

KoralQuery, as well as the described implemen-
tation components, are developed as part of the
KorAP project at the Institute for the German
Language (IDS)11 in Mannheim, member of the
Leibniz-Gemeinschaft, and supported by the Ko-
bRA12 project, funded by the Federal Ministry of
Education and Research (BMBF), Germany. The
authors would like to thank their colleagues for
their valuable input.

References
Piotr Bański, Joachim Bingel, Nils Diewald, Elena

Frick, Michael Hanl, Marc Kupietz, Piotr Pezik,
Carsten Schnober, and Andreas Witt. 2013. KorAP:
the new corpus analysis platform at IDS Mannheim.
In Zygmunt Vetulani and Hans Uszkoreit, editors,
Human Language Technologies as a Challenge for
Computer Science and Linguistics. Proceedings of

11http://ids-mannheim.de/
12http://www.kobra.tu-dortmund.de/

the 6th Language and Technology Conference, Poz-
nań. Fundacja Uniwersytetu im. A. Mickiewicza.

Piotr Bański, Nils Diewald, Michael Hanl, Marc Kupi-
etz, and Andreas Witt. 2014. Access Control by
Query Rewriting: the Case of KorAP. In Pro-
ceedings of the Ninth International Conference on
Language Resources and Evaluation (LREC 2014),
Reykjavik, Iceland, may. European Language Re-
sources Association (ELRA).

Franck Bodmer. 1996. Aspekte der Abfragekompo-
nente von COSMAS II. LDV-INFO, 8:142–155.

Douglas Crockford. 2006. The application/json Media
Type for JavaScript Object Notation (JSON). Tech-
nical report, IETF, July. http://www.ietf.org/
rfc/rfc4627.txt.

Nils Diewald and Joachim Bingel. 2015. Koral-
Query 0.3. Technical report, IDS, Mannheim,
Germany. Working draft, in preparation, http:
//KorAP.github.io/Koral, last accessed 27 April
2015.

Elena Frick, Carsten Schnober, and Piotr Bański. 2012.
Evaluating query languages for a corpus processing
system. In Proceedings of the Eighth International
Conference on Language Resources and Evaluation
(LREC 2012), pages 2286–2294.

Patricia Huey, 2014. Oracle Database, Security Guide,
11g Release 1 (11.1), chapter 7. Using Oracle
Virtual Private Database to Control Data Access,
pages 233–272. Oracle. http://docs.oracle.
com/cd/B28359_01/network.111/b28531.pdf, last
accessed 27 April 2015.

OASIS Standard. 2013. searchRetrieve: Part
5. CQL: The Contextual Query Language
Version 1.0. http://docs.oasis-open.org/
search-ws/searchRetrieve/v1.0/os/part5-cql/
searchRetrieve-v1.0-os-part5-cql.html.

Terence J. Parr and Russell W. Quong. 1995. ANTLR:
A predicated-LL (k) parser generator. Software:
Practice and Experience, 25(7):789–810.

Adam Przepiórkowski, Zygmunt Krynicki, Lukasz De-
bowski, Marcin Wolinski, Daniel Janus, and Piotr
Bański. 2004. A search tool for corpora with posi-
tional tagsets and ambiguities. In Proceedings of the
Fourth International Conference on Language Re-
sources and Evaluation (LREC 2004), pages 1235–
1238. European Language Resources Association
(ELRA).

Viktor Rosenfeld. 2010. An implementation of the An-
nis 2 query language. Technical report, Humboldt-
Universität zu Berlin.

Manu Sporny, Dave Longley, Gregg Kellogg, Markus
Lanthaler, and Niklas Lindström. 2014. JSON-
LD 1.0 – A JSON-based Serialization for Linked
Data. Technical report, W3C. W3C Recommen-
dation, http://www.w3.org/TR/json-ld/.

5

