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Abstract — This paper presents a convergence analysis for the exponentially fit-
ted finite volume method in two dimensions applied to a linear singularly perturbed
convection-diffusion equation with exponential boundary layers. The method is for-
mulated as a nonconforming Petrov-Galerkin finite element method with an expo-
nentially fitted trial space and a piecewise constant test space. The corresponding
bilinear form is proved to be coercive with respect to a discrete energy norm. It is also
shown that the approximation error in the discrete energy norm is bounded above by
C

(
h1/2 + h

√
|ln ε/ ln h|

)
with C independent of the mesh parameter h, the diffusion

coefficient ε, and the exact solution of the problem. Numerical results are presented to
verify the theoretical rates of convergence.
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1. Introduction

The exponentially fitted finite volume method, known as the Scharfetter-Gummel box inte-
gration method, is the most popular method for solving the partial differential equations in
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494 S. Wang and L. Angermann

the drift-diffusion model of semiconductor devices, to which the solutions display sharp lay-
ers [7,9,10,14]. This method is based on the idea proposed by Scharfetter and Gummel [19]
to approximate a flux in a small interval by a constant, leading to a local exponential ap-
proximation to the potential function. This is in contrast to a conventional finite element
method in which the potential function is approximated locally by, say, a linear function,
yielding a constant approximation to the gradient of the potential. The same idea was also
proposed in [1] for solving a fluid flow problem. An intuitive reason that the Scharfetter-
Gummel technique works well is that, in practice, a flux behaves better than the gradient of
the corresponding potential function. The one-dimensional Scharfetter-Gummel’s method
has been extended to higher dimensions by many researchers (cf., for example, [3,9,23]) and
some of these extensions have been used for solving singularly perturbed and incompressible
Navier-Stokes equations (cf., for example, [2,12,13,22]). Although the method has been used
successfully for solving a number of problems, very little theoretical work on the stability
and convergence analysis of the method on unstructured meshes can be found in the open
literature. The first analysis of this method was given in [15]. More refined mathematical
analysis for problems with boundary and interior layers can be found in [12] and [14]. But
the upper error bounds established in these works depend strongly and unfavorably on the
singular perturbation parameters. A uniform convergence analysis for the case of uniform
rectangular meshes is given in [11]. On the other hand, there are many notable advances on
the uniform convergence analysis of other methods such as the streamline diffusion method
and the standard piecewise bilinear finite element method (cf., for example, [20, 21, 25]),
although most of these works are based on structured piecewise uniform rectangular meshes.
Therefore, unlike other methods, the mathematical understanding of the exponentially fitted
finite volume method is very limited.

In the present paper, we study in detail the stability and convergence properties of the
method on an unstructured 2D mesh with an anisotropic refinement when the method is
applied to a linear singularly perturbed convection-diffusion problem with a singular per-
turbation parameter ε. We show that the method is numerically stable in the sense that
the corresponding bilinear form is coercive with respect to a discrete energy norm which is
virtually independent of ε. We also show that the error in the discrete norm is bounded
above by O(h1/2). This error bound is almost independent of ε and provides a uniform
convergence of order h1/2 for the range of all practical values of ε. The rest of the paper is
organized as follows.

The continuous problem and some a priori estimates on the exact solution and its deriva-
tives are discussed in the next section. In Section 3, we formulate the finite volume method
as a Petrov-Galerkin finite element method and transform the Petrov-Galerkin method into
a Bubnov-Galerkin one. We will show in Section 4 that the method is numerically stable
by demonstrating that the bilinear form is coercive with respect to a discrete energy norm.
We will also present an error analysis for the finite element solution and show that the
global error of the approximation in the discrete energy norm is bounded above by O(h1/2)
almost uniformly in ε. In Section 5 we will present some numerical results to verify the
theoretical rates of convergence. The numerical results also demonstrate the superconver-
gence phenomenon of the method when a piecewise uniform mesh is used, though it is not
theoretically proved in this paper.

Although the analysis is performed in two dimensions, the idea is applicable to the three-
dimensional case, too.
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On convergence of the exponentially fitted FVM 495

2. Preliminaries

The problem we consider in this paper is the following stationary, linear, convection-diffusion
problem:

−∇ · f + Gu = F in Ω := (0, 1)2, (2.1)

f = ε∇u− au, (2.2)

u|∂Ω = 0, (2.3)

where ∂Ω denotes the boundary of Ω, ε > 0 is a positive parameter, a = (a1, a2) is a known
vector-valued function, and F and G are given function.

Before making assumptions on the given functions, we first introduce some notation of
function spaces. In what follows Lp(S) denotes the space of p-integrable functions on an open
and measurable set S with the norm ‖ · ‖0,p,S and Wm,p(Ω) the usual Sobolev space with
the norm ‖ · ‖m,p,S and the kth order seminorm | · |k,p,S for any 1 6 p 6 ∞, the nonnegative
integers m and k satisfying 0 6 k 6 m. Obviously, W 0,p(S) = Lp(S). When S = Ω,
we omit the subscript in the above notation. Furthermore, we let Hm(Ω) := Wm,2(Ω),
|| · ||m := || · ||m,2,Ω and | · |k := | · |k,2,Ω. The inner product on L2(Ω) or on L2(Ω) := (L2(Ω))2

is denoted by (·, ·). We put H1
0 (Ω) := {v ∈ H1(Ω) : v|∂Ω = 0} and the set of functions which

together with their up to and including m order derivatives are continuous on Ω (or Ω̄) is
denoted by Cm(Ω) (or Cm(Ω̄)). We use | · | to denote an absolute value, Euclidean length,
or area depending on the context.

For the coefficient functions we assume that a ∈ (C1(Ω))2, G ∈ C0(Ω) ∩ H1(Ω) and
F ∈ L2(Ω). We also assume that a and G satisfy

1

2
∇ · a + G > 0 in Ω. (2.4)

Furthermore, we assume that the components of a are bounded below by two positive con-
stants α1 and α2, respectively, i.e.,

a1 > α1 > 0, a2 > α2 > 0 in Ω. (2.5)

We also assume that ε ¿ |a| so that, in this case, the solution to (2.1) – (2.3) has two
exponential boundary layers of width O(ε) at x = 1 and y = 1. The variational problem
corresponding to (2.1), (2.2) and (2.3) is

Problem 2.1. Find u ∈ H1
0 (Ω) such that for all v ∈ H1

0 (Ω)

A(u, v) = (F, v),

where A(·, ·) is a bilinear form on (H1
0 (Ω))2 defined by

A(u, v) := (ε∇u− au,∇v) + (Gu, v).

Let || · ||ε be a functional on H1
0 (Ω) defined by ||v||ε := (A(v, v))1/2. Then, it is easy to show

that (cf., for example, [12])

||v||2ε = (ε∇v,∇v) +

((
1

2
∇ · a + G

)
v, v

)
.
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Figure 1. Subdomains Ω1 and Ω2 = Ω(1)
2 ∪ Ω(2)

2 ∪ Ω(3)
2 , Γ = Γ1 ∪ Γ2

Thus, || · ||ε is a norm on H1
0 (Ω) because of the fact that 1

2
∇ · a + G > 0 by (2.4) and that

(∇u,∇v) is a norm on H1
0 (Ω) by the well-known Poincaré-Friedrichs inequality. Now, from

the definition of the norm we have

A(u, u) = ||u||2ε, ∀u ∈ H1
0 (Ω).

This implies that A(·, ·) is coercive on H1
0 (Ω) and thus, by the well-known Lax-Milgram

Lemma, Problem 2.1 has a unique solution in H1
0 (Ω).

Because of (2.5), the solution to Problem 2.1 has two boundary layers of width O(ε) at
x = 1 and y = 1, respectively. Thus, we divide the solution region Ω into two parts Ω1 and
Ω2 given respectively by

Ω1 = (0, 1− δ1)× (0, 1− δ2) and Ω2 = (1− δ1, 1)× (0, 1) ∪ (0, 1− δ1)× (1− δ2, 1),

with δ1, δ2 ∈ (0, 1) (cf. Fig. 1). Obviously Ω̄1 ∪ Ω̄2 = Ω̄. The region Ω2 consists of three

subregions Ω
(1)
2 , Ω

(2)
2 , and Ω

(3)
2 defined respectively by

Ω
(1)
2 = (1− δ1, 1)× (0, 1− δ2),

Ω
(2)
2 = (0, 1− δ1)× (1− δ2, 1),

Ω
(3)
2 = (1− δ1, 1)× (1− δ2, 1).

The choice of the transition parameters δ1 and δ2 is rather arbitrary, but it is required that
Ω2 should cover the boundary layers and δ1, δ2 = O(ε). One choice is

δ1 =
β

α1

ε ln
1

ε
and δ2 =

β

α2

ε ln
1

ε
, (2.6)

where β > 1 is a positive parameter (cf., for example, [18]). We let Γ = Ω̄1 ∩ Ω̄2 which
contains two segments Γ1 and Γ2.

Let us now consider the properties of the solution to Problem 2.1. Obviously, it is smooth
in Ω1 and has large derivatives along the x axis, y axis or both respectively in Ω

(1)
2 , Ω

(2)
2 ,

and Ω
(3)
2 . More precisely, the solution can be decomposed into four parts Ui (i = 1, 2, 3, 4)

as given in the following assumption:
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Assumption 2.1. The solution u to Problem 2.1 has the representation

u = U1 + U2 + U3 + U4,

where U1 satisfies
||U1||k,∞,Ω 6 C for k = 0, 1, 2, (2.7)

and U2, U3, and U4 satisfy

∣∣∣∣
∂i+jU2

∂xi∂yj

∣∣∣∣ 6 Cε−i exp

(
−α1(1− x)

ε

)
, (2.8)

∣∣∣∣
∂i+jU3

∂xi∂yj

∣∣∣∣ 6 Cε−j exp

(
−α2(1− y)

ε

)
, (2.9)

∣∣∣∣
∂i+jU4

∂xi∂yj

∣∣∣∣ 6 Cε−(i+j) exp

(
−α1(1− x)

ε

)
exp

(
−α2(1− y)

ε

)
, (2.10)

for 0 6 i + j 6 2 and some positive constant C.

The part U1 is globally smooth and uniformly bounded, while U2, U3, and U4 contain layers in
Ω

(1)
2 , Ω

(2)
2 , and Ω

(3)
2 respectively. Sufficient conditions for the existence of this decomposition

have been discussed in various papers and books such as [8,16], but necessary and sufficient
conditions are unknown. The following theorem shows that u and all its first and second
partial derivatives are uniformly bounded in Ω1.

Theorem 2.1. If β > 2, then

||u||i,∞,Ω1 6 C i = 0, 1, 2.

Proof. The proof of this theorem follows directly from (2.6) and (2.7) – (2.10).

3. The finite element formulation of the box method

For the formulation of the exponentially fitted finite box method as a finite volume method,
we refer to [9, 13]. In this section we reformulate it as a Petrov-Galerkin finite element
method, and then as an equivalent Bubnov-Galerkin method. This allows us to investigate
the stability and error bounds of the box method using the framework of a finite element
method.

To formulate the finite volume method as a finite element one, we first define a mesh for
the solution region Ω which is a combination of triangles in Ω1 and rectangles in Ω2. Let T

(1)
h

denote a triangular mesh on Ω1 with each triangle t having the diameter ht less than or equal
to h. We denote the sets of vertices and edges in T

(1)
h by X

(1)
h and E

(1)
h , respectively. For all

0 < h < dim(Ω1), {T (1)
h } forms a family of triangular meshes on Ω1. For each T

(1)
h in the

family we assume that T
(1)
h is quasiuniform, i.e., there exists a constant γ > 0 independent

of h such that
min

e∈E
(1)
h
|e|

h
> γ.

We use N1 to denote the number of vertices of T
(1)
h not on ∂Ω.

 - 10.2478/cmam-2003-0032
Downloaded from PubFactory at 09/07/2016 04:07:37PM

via Universitaetsbibliothek Clausthal



498 S. Wang and L. Angermann

Figure 2. A typical hybrid mesh for Ω

The subregion Ω2 contains two thin overlapped stripes Ω
(1)
2 ∪ Ω

(3)
2 and Ω

(2)
2 ∪ Ω

(3)
2 with

the widths δ1 and δ2, respectively. Thus, we divide these two strips into rectangles so that
the resulting mesh is uniform along the x axis with M1 subintervals in the former subregion
and along the y axis with M2 subintervals in the latter (cf., Fig 2). We also require that the

mesh points on Γ should match those from T
(1)
h . This mesh is denoted by T

(2)
h . Without loss

of generality, we assume that the vertices in T
(2)
h not on ∂Ω are numbered from N1 + 1 to

N1 + N2. The set of edges of T
(2)
h not on ∂Ω is denoted by E

(2)
h . Obviously all rectangles in

Ω
(1)
2 and Ω

(2)
2 have lengths O(h) and widths either δ1/M1 or δ2/M2, and rectangles in Ω

(3)
2

have the length δ1/M1 and width δ2/M2. The meshes T
(1)
h and T

(2)
h form a conforming mesh

on Ω and we denote it by Th. A typical case is depicted in Fig. 2. We let the total number
of nodes of Th not on ∂Ω be N ′ which equals N1 + N2 minus the number of nodes on Γ.

We comment that this mesh is not a Shishkin type of mesh, because the transition width
along each direction is O(ε ln(1/ε)) rather than O(ε ln N̄), where N̄ denotes the number of
mesh points in the direction. Since in this paper we are interested in error analysis of the
finite volume method on unstructured meshes, it is not possible to define N̄ exactly. As can
be seen later, the main error upper error bound obtained in this paper still depends (very
weakly) on ε.

Now, we let Xh and Eh denote respectively the sets of vertices and edges of Th and let
X ′

h and E ′
h denote respectively the sets of vertices and edges of Th not on ∂Ω.

Definition 3.1. Th is a Delaunay mesh if, for every element t ∈ Th, the circumcircle of
t contains no other vertices in Xh (cf., [5]).

We assume henceforth that each Th contains a Delaunay mesh. This allows us to construct
two meshes dual to Th as given below.

Associated with Th, we define two meshes dual to it. The first dual mesh, denoted by Dh,
is the Dirichlet tessellation (cf., [6]) associated with the mesh nodes in Th, i.e. the element
di ∈ Dh associated with the node xi of Th is given by

di = {x ∈ Ω : |x− xi| 6 |x− xj|, i 6= j}
for any other node xj of the mesh Th. The assumption that Th is a Delaunay mesh guarantees
that the Dirichlet tessellation Dh dual to Th exists.
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Figure 3. Elements and edges associated with the node xi

For each edge in E ′
h, we construct a quadrilateral element by connecting the two end-

points of the edge and the circumcenters of the two elements sharing the edge. All these
quadrilaterals form the second dual mesh denoted by Bh. An example of these nested meshes
is depicted in Fig. 3.

Using the meshes defined above, we now construct finite element trial and test spaces,
Uh, Vh ⊂ L2(Ω), each of dimension N ′, the number of nodes in Th not on ∂Ω.

The test space is chosen to be Vh = span{ξi}N ′
1 where ξi is piecewise constant given by

ξi =

{
1 on di,

0 otherwise.

To construct the trial space Uh, we follow the discussion in [12] based on the idea of
exponential fitting proposed independently in [1] and [19]. For each ei,j ∈ Eh connecting the
two neighboring nodes xi and xj, we define an exponential function φi,j on ei,j by

d

dei,j

(ε
dφi,j

dei,j

− āi,jφi,j) = 0, (3.1)

φi,j(xi) = 1, φi,j(xj) = 0,

where ei,j denotes the unit vector from xi to xj and āi,j is a constant approximation to a ·ei,j

on ei,j such that the mapping a · ei,j 7→āi,j from C(ei,j) 7→ P0(ei,j) preserves constants (e.g.,
āi,j = (a(xi) + a(xj)) · ei,j/2), where C(ei,j) and P0(ei,j) denote respectively the spaces of
all continuous functions and all 0th order polynomials on ei,j. The above linear, constant
coefficient two-point boundary-value problem can be solved exactly, yielding the local 1D
basis function φi,j on the edge ei,j. We then extend φi,j to bi,j by defining it to be constant
along perpendiculars to ei,j. Using this exponential function, we define a global basis function
for Uh on Ω as follows:

φi =

{
φi,j on bi,j if j ∈ Ii,

0 otherwise,
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500 S. Wang and L. Angermann

where bi,j denotes the element of Bh containing ei,j and

Ii = {j : ei,j ∈ E ′
h}

denotes the index set of all neighboring nodes of xi. The support of φi is star-shaped. We put
Uh = span{φi}N ′

1 . Obviously, we have Uh ⊂ L2(Ω) and thus the trial space is nonconforming.
This finite element space has the property that for any sufficiently smooth function u, the
projection of the flux of the Uh-interpolant uI of u on ei,j satisfies

fi,j := ε
duI

dei,j

− āi,juI =
ε

|ei,j|
(

B(
āi,j|ei,j|

ε
)uj −B(− āi,j|ei,j|

ε
)ui

)
(3.2)

on the edge ei,j, where B denotes the Bernoulli function defined by

B(x) =





x

ex − 1
, x 6= 0,

1, x = 0.
(3.3)

To define the discrete problem using Uh and Vh, it is convenient to introduce some notation.
Let li,j = ∂di∩∂dj denote the intersection of the boundaries of di and dj (cf., Fig. 3). Clearly,

|li,j| = 2|bi,j |
|ei,j | if j ∈ Ii and |li,j| = 0 otherwise. Corresponding to each li,j we introduce a unit

vector li,j, which is directed so that arg(li,j) = arg(ei,j) + π/2. For convenience we let â be
the approximation of a defined on Ω̄ such that, for all bi,j ∈ Bh

â|bi,j
= āi,jei,j + ā⊥i,jli,j, (3.4)

where āi,j is the constant used in (3.1) and ā⊥i,j is a constant approximation to a · li,j.
Obviously, â is a piecewise constant approximation to a on Ω. Note that the component
ā⊥i,j will make no contribution to the rest of the paper, but it allows us to use the convenient
notation â in some discussion. Before defining the finite element problem, we first introduce
the mass lumping operator P : C(Ω̄) 7→ Vh such that

P (w)(x) =
N ′∑
i=1

w(xi)ξi(x), x ∈ Ω̄, (3.5)

for all w ∈ C(Ω̄). It is easy to show that the mass-lumping mapping P is surjective from
Uh to Vh because any function in Uh or Vh is determined uniquely by its nodal values at the
vertices of Th not on ∂Ω. Using this mapping, we define the following finite element problem:

Problem 3.1. Find uh ∈ Uh such that

a(uh, vh) + (P (Guh), vh) = (F, vh) ∀vh ∈ Vh,

where a(·, ·) is a bilinear form defined by

a(uh, vh) = −
∑

d∈D′h

∫

∂d

(ε∇uh − âuh) · nvh|dds. (3.6)

Here vh|d denotes the restriction of vh on d.
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Clearly, a(·, ·) is a nonstandard bilinear form. It is motivated by the resulting form of
multiplying both sides of (2.1) by a piecewise constant function on Ω (i.e., an element in Vh)
and then integrating by parts.

Because the mass lumping operator P defined in (3.5) is surjective from Uh to Vh, Problem
3.1 can be rewritten as the following Bubnov-Galerkin problem:

Problem 3.2. Find uh ∈ Uh such that

b(uh, vh) = (F, P (vh)) ∀vh ∈ Uh,

where b(·, ·) is a bilinear form on Uh × Uh defined by

b(uh, vh) := a(uh, P (vh)) + (P (Guh), P (vh)). (3.7)

4. Convergence

In this section we consider the convergence of the approximate solution to Problem 3.2. We
first show that the bilinear form defined in (3.7) is coercive. This implies that Problem 3.2
is uniquely solvable and the finite element formulation is numerically stable. We will then
use the coercivity result to show that the approximation error of the finite element solution
in a discrete norm is bounded above by O(h1/2).

Before further discussion, we first make the following assumption.

Assumption 4.1. Assume that the mesh size h is sufficiently small and â is properly
chosen such that the inequality

1

2

∫

∂di

â · nds + G(xi)|di| > 0 (4.1)

holds for all di ∈ D′
h, where â is the approximation of a defined in (3.4) and xi denotes the

mesh node contained in di. Also, there exists a positive constant C, independent of h, such
that for any ei,j ∈ E

(1)
h ,

either a(x) · ei,j = 0 or |a(x) · ei,j| > C, (4.2)

for all x ∈ bi,j.

We comment that (4.1) is essentially a discrete analogue of (2.4). In fact, it can be obtained
by integrating (2.4) over di ∈ D′

h, applying the integration by parts to the first term and then
approximating a and G by â and G(xi) respectively. Since the approximation āi,j = â · ei,j

on any edge ei,j is rather arbitrary, it is possible to choose ai properly so that (4.1) is satisfied
when h is sufficiently small. The second condition (4.2) requires that the mesh is aligned in
such a way that in each bi,j, the edge ei,j is either perpendicular to the characteristic direction
or the smaller angle between them is uniformly away from π/2. Clearly, (4.2) implies that

for any ei,j ∈ E
(1)
h

either āi,j = 0 or |āi,j| > a0 (4.3)

for some a0 > 0, independent of h.
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Furthermore, since all the mesh lines in T
(2)
h are parallel to one of the axes and a satisfies

(2.5), it is obvious that

min
ei,j∈E

(2)
h

|â · ei,j| = min
ei,j∈E

(2)
h

|āi,j| > min{α1, α2}. (4.4)

Let κi,j be defined by

κi,j =

{
|ei,j|, |āi,j| > a0,

ε, |āi,j| = 0.

We now define two functionals, || · ||h and || · || respectively by

‖uh‖2
h :=

∑

ei,j∈E′h

κi,j

(
uj − ui

|ei,j|
)2

|bi,j| (4.5)

and

||uh||2 := ||uh||2h +
N ′∑
i=1

u2
i


1

2

∫

∂di

â · nds + Gi|di|



for each uh =
N ′∑
i=1

uiφi ∈ Uh.

In the following lemma we show that both of these are norms on Uh.

Lemma 4.1. The functional || · ||h is a norm on Uh. Furthermore, if Assumption 4.1 is
fulfilled, then || · || is also a norm on Uh.

Proof. The proof that (4.5) is a norm is easy and thus omitted here. The proof that || · ||
is a norm is just a consequence of the first part of this lemma and (4.1).

The following theorem shows that the bilinear form b(·, ·) is coercive with respect to the
norm || · ||.

Theorem 4.1. Let Assumption 4.1 be fulfilled. Then, for all u ∈ Uh, we have

b(u, u) > C||u||2, (4.6)

where C denotes a positive constant independent of ε, h, and u.

Proof. For any u ∈ Uh it is shown in Section 4 of [12] that

a(uh, P (uh)) = −
∑

d∈D′h

∫

∂d

(ε∇uh − âuh) · nP (uh)ds

=
∑

ei,j∈E′h

σi,j

2

ρi,j

eρi,j − 1
(1 + eρi,j)(uj − ui)

2 2|bi,j|
|ei,j|

+
∑

ei,j∈E′h

āi,j

2
(u2

i − u2
j)|li,j|

(4.7)

where li,j = ∂di∩∂dj, σi,j = ε/|ei,j|, ρi,j = āi,j/σi,j and B(·) is the Bernoulli function defined
in (3.3). We consider the following two cases.
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Case 1: |āi,j| > a0.
Since

(eρi,j + 1)

(eρi,j − 1)
āi,j > |āi,j|.

We have

∑

ei,j∈E′h

σi,j

2

ρi,j

eρi,j − 1
(1 + eρi,j)(uj − ui)

2 2|bi,j|
|ei,j| > C

∑

ei,j∈E′h

|ei,j||āi,j|
(

uj − ui

|ei,j|
)2

|bi,j|

> C
∑

ei,j∈E′h

|ei,j|
(

uj − ui

|ei,j|
)2

|bi,j|,

since |āi,j| > a0.
Case 2: |āi,j| = 0.

When |āi,j| = 0, ρi,j = 0 and

lim
ρi,j→0

ρi,j

eρi,j − 1
= B(0) = 1

by (3.3). Therefore,

∑

ei,j∈E′h

σi,j

2

ρi,j

eρi,j − 1
(1 + eρi,j)(uj − ui)

2 2|bi,j|
|ei,j| > C

∑

ei,j∈E′h

ε

(
uj − ui

|ei,j|
)2

|bi,j|.

Combining the above two cases, we have

∑

ei,j∈E′h

σi,j

2

ρi,j

eρi,j − 1
(1 + eρi,j)(uj − ui)

2 2|bi,j|
|ei,j| > C

∑

ei,j∈E′h

κi,j

(
uj − ui

|ei,j|
)2

|bi,j|

= C||uh||2h.
(4.8)

Now, let us consider the last term in (4.7). Transforming from a summation over the
edges to a summation over the nodes of X ′

h,

∑

ei,j∈E′h

āi,j

2
(u2

i − u2
j)|li,j| =

1

2

N ′∑
i=1

u2
i

(∑
j∈Ii

āi,j|li,j|
)

=
1

2

N ′∑
i=1

u2
i

∫

∂di

â · nds .

Therefore, substituting the above inequality and (4.8) into (4.7), we obtain from (3.7)

b(uh, uh) = a(uh, P (uh)) + (P (Guh), P (uh))

> C||uh||2h +
N ′∑
i=1

u2
i


1

2

∫

∂di

â · nds + Gi|di|



> C||uh||2.

We now establish an upper bound for ||uI−uh||, where uI and uh denote respectively the
Uh-interpolant of the solution u to Problem 2.1 and the solution to Problem 3.1. We start
this discussion by the following lemma that will be used in the proof of the main result of
this section.
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Lemma 4.2. Let Assumption 4.1 be fulfilled. Then, for any sufficiently smooth function
u, the approximate flux defined in (3.2) satisfies

||f ·ei,j−fi,j||∞,bi,j
6

{
C|ei,j|

(|f |1,∞,bi,j
+|a|1,∞,bi,j

||u||∞,bi,j

)
, |a · ei,j| > a0 on bi,j,

Cε|ei,j||u|2,∞,bi,j
, a · ei,j = 0 on bi,j,

(4.9)

where C is a positive constant, independent of h, ε, and u.

Proof. Let C be a generic constant, independent of h, ε, and u. When |a · ei,j| > C,
|āi,j| > a0 by (4.3). Then on ei,j,

f · ei,j − fi,j =

((
ε

du

dei,j

− āi,ju

)
− fi,j

)
+ (āi,j − a · ei,j)u .

Because the mappings (ε du
dei,j

− āi,ju) 7→ fi,j and a · ei,j 7→ āi,j preserve constants, we have

(cf., [4], Theorem 3.1.4) from the above equality

||f · ei,j − fi,j||∞,ei,j
6 C|ei,j|

(|f |1,∞,ei,j
+ |a|1,∞,ei,j

||u||∞,ei,j

)
.

This inequality can then be extended to the element bi,j, yielding the first case in (4.9).
When a · ei,j = 0 on bi,j, we have āi,j = 0, and so

fi,j =
ε

|ei,j|(uj − ui),

which is a difference approximation to ε∇u · ei,j on ei,j. Therefore,

||f · ei,j − fi,j||∞,bi,j
=

∥∥∥∥ε∇u · ei,j − ε
uj − ui

|ei,j|

∥∥∥∥
∞,bi,j

6 Cε|ei,j||u|2,∞,bi,j
.

This completes the proof.

We now state the following lemma without proving.

Lemma 4.3. Let Assumption 2.1 be fulfilled. If β > 2 in (2.6) and M1 = M2 = M , a

positive integer, then, for any element edge ei,j ∈ E
(2)
h , the set of edges in T

(2)
h , there exists

a positive constant C, independent of h, u, and ε, such that

∫

li,j

|f · ei,j − fi,j|ds 6





C|li,j|hK1, ei,j ⊂ Ω̄
(1)
2 ∪ Ω̄

(2)
2 ,

C|li,j| 1

M
ln

1

ε
, ei,j ⊂ Ω

(3)
2 ,

where f and fi,j are defined in (2.2) and (3.2), respectively, and

K1 = max

{
1, h−1εβ/2M , h−1ε ln

1

ε

}
. (4.10)

Proof. The proof of this lemma which uses (4.4) can be found in [24].

The upper error bound for the error in the finite element solution is established the
following theorem.
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Theorem 4.2. Let Assumptions 2.1 and 4.1 be fulfilled. If β > 2 in (2.6) and M1 =
M2 = M , a positive integer, then there exists a positive constant C, independent of h, u,
and ε, such that

||uI − uh|| 6 Ch1/2
(
1 + h1/2K2

)
, (4.11)

where uI and uh denote respectively the Uh-interpolant of the solution u to Problem 2.1 and
the solution to Problem 3.1, and K2 is defined as

K2 = max

{
M1/2K1,M

−1/2
√

ε ln
1

ε

}
, (4.12)

with K1 being defined in (4.10).

Proof. Let C denote a generic positive constant, independent of h, ε, and u. For any
vh ∈ Uh, multiplying the continuous equation (2.1) by P (vh) and integrating the first term
by parts, we have

−
∑

d∈D′h

∫

∂d

f · nP (vh)ds + (Gu, P (vh)) = (F, P (vh)).

From this and Problem 3.2 we obtain

a(uh, P (vh)) + (P (Guh), P (vh)) = (F, P (vh))

= −
∑

d∈D′h

∫

∂d

f · nP (vh)ds + (Gu, P (vh)).

Taking a(uI , P (vh)) + (P (GuI), P (vh)) away from both sides of this equation gives

a(uh − uI , P (vh)) + (P (Guh)− P (GuI), P (vh))

= −
∑

d∈D′h

∫

∂d

f · nP (vh)ds− a(uI , P (vh)) + (Gu− P (GuI), P (vh)).

So, using (3.7) and taking absolute value on both sides of the above, we have

|b(uh − uI , vh)| 6
∣∣∣∣∣∣
−

∑

d∈D′h

∫

∂d

f · nP (vh)ds− a(uI , P (vh))

∣∣∣∣∣∣
+ |(Gu− P (GuI), P (vh))|

=: R1 + R2.

(4.13)

We now consider the two error terms R1 and R2 separately.

For R1, using (3.6) and transforming from a summation over the nodes to one over the
edges, we have

R1 =

∣∣∣∣∣∣
−

∑

d∈D′h

∫

∂d

(f − (ε∇uI − âuI)) · nP (vh)ds

∣∣∣∣∣∣
6

∣∣∣∣∣∣∣

∑

ei,j∈E′h

(vi − vj)

∫

li,j

(f · ei,j − fi,j)ds

∣∣∣∣∣∣∣
.
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We split E ′
h into two parts: E

(1)
h and E

(2)
h corresponding to T

(1)
h and T

(2)
h , respectively, and

so R1 =: R
(1)
1 + R

(2)
1 . Using the Cauchy–Schwarz inequality, Theorem 2.1, the error bounds

(4.9) in Lemma 4.2 and |li,j| = 2|bi,j|/|ei,j|, we have

R
(1)
1 6

∑

ei,j∈E
(1)
h

|vj − vi|
∫

li,j

|(f · ei,j − fi,j)|ds

6 C
∑

ei,j∈E
(1)
h

|vj − vi| sup
x∈bi,j

|(f · ei,j − fi,j)|2|bi,j|
|ei,j|

6 C
∑

ei,j∈E
(1)
h

κi,j
|vj − vi|
|ei,j| |bi,j|

6 C




∑

ei,j∈E
(1)
h

κi,j

(
vj − vi

|ei,j|
)2

|bi,j|




1/2 


∑

ei,j∈E
(1)
h

κi,j|bi,j|




1/2

6 Ch1/2||vh||h,

(4.14)

since κi,j 6 h.

For the term R
(2)
1 , using Lemma 4.3, it can be shown (cf., [24]) that

R
(2)
1 6 ChK2




∑

ei,j∈E
(2)
h

|ei,j|
(

vj − vi

ei,j

)2

|bi,j|




1/2

6 CK2||vh||h . (4.15)

Let us now consider R2 in (4.13). This term can also be split into two terms as follows:

R2 = (Gu− P (GuI), P (vh))Ω1 + (Gu− P (GuI), P (vh))Ω2 := R
(1)
2 + R

(2)
2 .

Since the mapping P preserves constants, using the standard finite element interpolation
argument [17, Theorem 6.8], we have

R
(1)
2 6 Ch|Gu|1||vh||∞ 6 Ch||vh||∞ (4.16)

because of Theorem 2.1. It has been shown in [24] that

R
(2)
2 6 Ch||vh||∞

(
ε ln

1

ε
+ eβ/2M

)
6 Ch||vh||∞.

Substituting (4.14), (4.15), (4.16) and the above inequality into (4.13), we have

|b(uh − uI , vh)| 6 C
[
h1/2(1 + h1/2K2)||vh||+ h||vh||∞

]
.

Choosing vh = uh − uI and using (4.6), we obtain

||uh − uI ||2 6 C
[
h1/2(1 + h1/2K2)||uh − uI ||+ h

]
,

since ||uh − uI ||∞ 6 C. This is of the form

y2 6 C(1 + h1/2K2)h
1/2y + Ch
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or (
y − 1

2
C(1 + h1/2K2)h

1/2

)2

6 Ch +
(C(1 + h1/2K2))

2

4
h.

The above reduces to

y 6
√

Ch +
(C(1 + h1/2K2))2

4
h +

1

2
C(1 + h1/2K2)h

1/2 6 Ch1/2
(
1 + h1/2K2

)
.

Replacing y with ||uh − uI ||, we obtain

||uh − uI || 6 Ch1/2
(
1 + h1/2K2

)
.

This completes the proof of the theorem.

Corollary 4.1. Let the assumptions in Theorem 4.2 be fulfilled and assume that ε ¿ h.
Then, there exists a positive constant C, independent of h, ε, and u, such that the following
results hold.

1. If M is chosen such that h−1εβ/2M 6 O(1), then we have

||uI − uh|| 6 Ch1/2(1 + h1/2M1/2). (4.17)

2. If M is such that h−1εβ/2M = O(1), then

||uI − uh|| 6 Ch1/2

(
1 + h1/2

√∣∣∣∣
ln ε

ln h

∣∣∣∣
)

. (4.18)

3. If M = 1, then,

||uI − uh|| 6 Ch1/2. (4.19)

Proof. Let C be a generic constant, independent of h, u, and ε. When ε ¿ h,
h−1e ln(1/ε) < C. From the definition of K1 and K2 in (4.10) and (4.12), respectively,
we see that in this case, K2 6 C. Therefore, (4.17) follows from (4.11) and K2 6 C.

To prove item 2, we note that h−1εβ/2M = 1 implies M =
⌈

β ln ε
2 ln h

⌉
. Thus, (4.17) implies

(4.18).
Finally, if M = 1 and ε ¿ h < 1, then

h−1εβ/2M 6 h−1ε < h−1ε ln(1/ε) < C.

So, (4.19) follows from these inequalities and (4.11).

Remark 4.1. We comment that it would be thought that the error bound in (4.17) is
independent of ε. But in fact, M is dependent on ε when h and ε are given. However,
if a Shishkin-type mesh is used, i.e., the transition widths in (2.6) are chosen according to
the Shishkin law [16], then the resulting error bounds may be independent of ε. We will
investigate this in the near future.
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Remark 4.2. Though the right-hand side of (4.18) is still a function of ε, it depends
very weakly on ε. This can be seen by considering the equation h1/2

√
ln ε/ ln h = 1 when

h = 0.1. It has the solution
ε = e−10×ln 10 ≈ 10−11.

Therefore, even for this very coarse mesh, h1/2
√

ln ε/ ln h remains bounded for the values of
ε as small as 10−11. This implies that the error bound in (4.18) is independent of ε for any
practical range of the values of ε.

Remark 4.3. We also remark that (4.19) offers an ε-uniform convergence at the rate
O(h1/2). In this case, all the interior mesh points are away from the layers and thus the box
method does not resolve the layers.

Remark 4.4. We comment that notable advances on the uniform convergence of the
streamline-diffusion method and the standard piecewise bilinear finite element method are
given in [20, 21] and [25], respectively. All of these existing works are based on structured
Shishkin type piecewise uniform rectangular partitions. The error bounds obtained in both
[21] and [25] are of order N̄2 ln N̄ in the respective energy norms, where N̄ denotes the
number of mesh points along the x and y directions. Clearly, these error bounds are better
than what we have established in this paper due to the supercovergence. While [21] and [25]
focus on the superconvergence phenomena of the methods on piecewise uniform meshes of
Shishkin type, the aim of this paper is, however, to provide realistic error estimates for the
finite volume method on unstructured meshes of a combination of triangles and rectangles.
The error estimates and the stability have been established without using any unrealistic
assumptions on the meshes such as that of ‘no-obtuse angles’. However, if a mesh is favorably
aligned, the finite volume method may provide a convergence rate higher than O(h1/2), as
demonstrated numerically in the next section. Furthermore, the (discrete) energy norm used
here is virtually ε-independent, while energy norms in most of the existing work depend on
ε. Therefore, the stability of the method is independent of ε. Unlike the streamline-diffusion
method discussed in [20,21], the finite volume method does not depend on any users’ chosen
parameter. Also, the computed fluxes are locally conservative because the finite volume
method is based on the local conservation law. This is important for solving problems such
as semiconductor device equations (cf., [3, 23]).

To conclude this section, we note that the finite volume method has been applied to
many real-world problems, we will not compare it numerically with some other existing
ones. Instead, we only present, in the next section, some numerical results to verify the
theoretical rates of convergence obtained in the previous sections.

5. Numerical experiments

To demonstrate the theoretical results obtained in the previous sections, numerical experi-
ments on the following test problem have been performed. All the computations were carried
out in double precision on a Pentium PC under the Cygwin environment.

Test. The test problem is chosen to be the following PDEs:

−∇ · (ε∇u− au) = F in Ω = (0, 1)2,

u = 0 on ∂Ω
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with the exact solution being given by

uexact = x2y2

(
1− exp

(
x− 1

ε

))(
1− exp

(
y − 1

ε

))

and a = (1, 1)>.
This problem has two exponential layers at x = 1 and y = 1. Let us first look at the

computed rates of convergence of the method for mesh points away from the layers by using
conventional quasiuniform meshes. This corresponds to the case of M = 1 in Corollary 4.1.
To do so, we choose a sequence of 6 Delaunay triangulations starting with an initial mesh
with 26 nodes. This initial mesh contains 9 interior nodes and 17 boundary nodes, and the
maximum and minimum angles in the mesh are about 147.70 and 15.80 respectively. This
mesh is then refined five times by dividing a triangle in the mesh into four subtriangles by
connecting the midpoints of the three edges of the triangle. We denote this sequence by
Thk

for k = 1, 2, . . . , 6 with h1 ≈ 1/4. The approximated rate of convergence is defined as
follows. For k = 1, 2, . . . , 5, we define

pk = log2

||uhk
− uexact||

||uhk+1
− uexact||

.

We then define the computed rate of convergence to be p =
∑5

i=1 pk/5, i.e., the average
of the five approximations. Based on this definition, we also define the computed rates of
convergence in the discrete maximum norm

||uhk
− uexact||∞ = max

16i6N
|ui − uexact(xi)|

and the discrete L2 norm

||uhk
− uexact||20 =

N∑
i=1

(ui − uexact(xi))
2|di|.

The computed values of p are listed in Table 1. From the table it is seen that the rates of
convergence in the discrete energy norm || · || are about 0.55 when ε is small.

Table 1. Computed rates of convergence in the three norms

ε || · || || · ||∞ || · ||0
1 1.98 1.92 2.01
10−1 1.79 1.76 1.84
10−2 1.07 0.84 1.23
10−3 0.55 0.25 0.85
10−4 0.57 0.26 0.82
10−5 0.57 0.26 0.82
10−6 0.57 0.26 0.82

To visualize the rates in a different way, we plot the computed errors in || · || for three
different values of ε in Fig. 4, and compare them with the reference rate h1/2. From the
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figure, it is seen that the computed rates are close to h1/2 when ε is small, as predicted in
the previous section. When ε = 0.01, the computed rate is higher than h1/2.
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Figure 4. Computed errors in || · || on unstructured triangular meshes

We now consider the case of M > 1. In this investigation, we choose the transition
parameter β = 2 in (2.6). A sequence of six uniform meshes for Ω1 is chosen as follows.
For a given positive integer, Ik, we first divide Ω1 into a uniform rectangular mesh with
Ik × Ik mesh points so that the mesh parameter is hk = 1/(Ik − 1). Each rectangle in the
mesh is then divided into triangles by choosing one of the two diagonals. The mesh sequence
corresponds to the sequence {hk}6

1 satisfying h1 = 1/4 and hk+1 = hk/2 for k = 2, 3, 4, 5, 6.
For the subdomain Ω2, we choose

M = max

{⌈√
Ik − 1

⌉
,

⌈
β| ln ε|
2| ln h|

⌉
, 1

}
.

The computed rates of convergence in the three norms are listed in Table 2. Clearly, the
numbers in the table show the phenomenon of superconvergence. In particular, the rates
of convergence in || · || and || · ||∞ are about half an order higher than those in Table 1.
This phenomenon may be because of the piecewise uniform partitions, though this super-
convergence has not been proved mathematically. Certainly, it is worth further investigation.

Table 2. Computed rates of convergence using the piecewise uniform meshes

ε || · || || · ||∞ || · ||0
1 2.49 2.00 2.00
10−1 1.46 1.07 1.31
10−2 1.78 1.57 1.54
10−3 1.05 0.90 1.04
10−4 0.97 0.82 0.96
10−5 0.96 0.81 0.95
10−6 0.96 0.81 0.95

As in the previous case, we plot the computed errors in || · || for three different values of
ε in Fig. 5, and compare them with the reference rate O(h). Clearly, from the figure we see
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Figure 5. Computed errors in || · || on piecewise uniform meshes

that the computed rates are equal to O(h) when ε is small, and are higher than O(h) when
ε = 0.01. These show the superconvergence phenomena due to the special alignments of the
meshes.

6. Conclusions

In this paper we presented an analysis of the well-known exponentially fitted finite vol-
ume (or Scharfetter-Gummel box) method for a two-dimensional linear singularly perturbed
convection-diffusion problem containing two exponential boundary layers. The method, con-
structed on a Delaunay partition containing triangles and rectangles, was first formulated
as a Petrov-Galerkin finite element method, and then as a Bubnov-Galerkin finite element
method. The stability and an O(h1/2) error estimate were established. It has been shown
that the upper error bound is almost independent of the singularly perturbation parameter
ε in general and independent of ε if all mesh internal nodes are away from the layers. Nu-
merical results were presented to verify the theoretical rates of convergence. The numerical
results suggested that, when piecewise uniform meshes are used, the method displays the
behavior of superconvergence.
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