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OF THE INCOMPRESSIBLENAVIER— STOKESEQUATIONS
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Abstract — Within the framework of finite element methods, the paper investigates a
general approximation technique for the nonlinear convective term of Navier — Stokes
equations. The approach is based on an upwind method of the finite volume type. It
has been proved that the discrete convective term satisfies the well-known collection
of sufficient conditions for convergence of the finite element solution. For a particular
nonconforming scheme, the assumptions have been verified in detail and the estimate
of the semidiscrete velocity error has been proved.
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1. Introduction

The system of incompressible Navier — Stokes equations is one of the most interesting and
challenging models in computational fluid dynamics (CFD). A particular problem is the
choice of stabilization approaches for the case of high Reynolds numbers.

The present paper focuses on this and describes a general approach to the design and anal-
ysis of discretization methods for the Navier — Stokes equations of viscous incompressible
homogeneous fluids, where the stabilization effect is based on so-called FVM-based upwind
methods.

For particular discretizations of the stationary system, a lot of work on error analysis
(including numerical illustrations) has been done by Schieweck, Tobiska and co-workers
[17–21]. Kanayama and Toshigami [12] have applied Ikeda’s “partial upwind scheme E” [11]
(see also [5]) to the Navier — Stokes equations and Miller and Wang [14] have described
an exponentially fitted finite volume method for the streamline-vorticity formulation, but
in both papers no analysis is given. In the papers by Feistauer and co-authors [4, 8–10],
the so-called “combined method” has been investigated, where the finite volume method is
applied to the convection terms and the resulting formulation is interpreted in a variational
context as within the finite element method. However, these papers mainly treat the case of
simplicial finite element partitions with finite volumes of the barycentric type.

For the present work, the papers [2] and [3] served as starting points. In the first of these
papers, an attempt was made to extract the underlying principles of FVM-type discretiza-
tions for the stationary Navier — Stokes equations. In the second paper, an overview on
certain problems in the full discretization of linear parabolic problems is given for the case
where the semidiscretization in space is done by finite volume methods.
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240 L. Angermann

Here, some ideas of both papers are merged to get a result on the non-stationary Navier —
Stokes equations. In this respect the proposed discretization can be viewed as a variant of
the “hybrid” or “combined” finite volume–finite element method. In addition to [2], we will
investigate in more detail a particular discretization method. This is based on the second
part of the preprint [1], the first part of which has been published as [2].

The key point of the approach is the treatment of the convective term which is usually
considered in a variational context as a trilinear form. In fact, a detailed study of Sect. IV.2
in [17], where a complete convergence analysis is given for the spatial discretization of the
stationary Navier — Stokes equations by means of the Crouzeix and Raviart element, shows
that there are three distinguished properties of the discrete trilinear form that guarantee
(first-order) convergence, provided the family of finite element spaces satisfies a discrete inf-
sup condition. These properties are (a precise formulation will be given in the next section):

(i) semidefiniteness,

(ii) Lipschitz-continuity,

(iii) (linear) consistency.

The basic principle of the discretization method for the trilinear form such that these
properties can be fulfilled stems from finite volume methods which have been successfully
applied in many situations, especially when it is important to have a discrete conservation law
or a discrete maximum principle. In contrast to many standard approaches for finite volume
methods, where the design of the control volumes follows narrow rules, in our approach
the control volumes can be chosen relatively free. In particular, the correlation to other
partitions of the domain is not very strong.

The paper is subdivided into four parts. The introductory section is followed by a tech-
nical section where the basic notation is described and both the weak and semidiscrete
problems are formulated. In the third section, we discuss the discretization of the convective
term. The main part illustrates the basic aspects of the theory by demonstrating the appli-
cation to a finite element method due to Schieweck [19], where the particular treatment of
the trilinear form slightly differs from Schieweck’s originally proposed one. We will demon-
strate an estimate of the semidiscrete velocity error measured in a discrete L2-norm without
use of any linearized stability theory. As long as the numerical solution satisfies a certain
smallness assumption, the stationary pendant of which is widely used (cf. [17, Sect. IV.2]),
it will be shown that the constant in the error estimate is time-independent and of order
O(ε−1/2) = O(

√
Re) but not O(exp(ε−1)) = O(exp(Re)).

2. Notation and preliminaries

2.1. Formulation of the problem. Let ε > 0 be a real number, Ω ⊂ Rd with d = 2
or d = 3 be a bounded, polyhedral domain with Lipschitz-continuous boundary, t∞ > 0
and f : (0, t∞) × Ω → Rd, u0 : Ω → Rd be given vector fields. The following nonlinear
system of partial differential equations with respect to the d+1 variables u = (u1, . . . , ud)� :
(0, t∞) × Ω → Rd, p : (0, t∞) × Ω → R is considered:

∂tu − ε∆u + (u · ∇)u + ∇p = f in (0, t∞) × Ω,

∇ · u = 0 in (0, t∞) × Ω,

u = 0 on (0, t∞) × ∂Ω,

u = u0 on {0} × Ω

(2.1)
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Transport-stabilized semidiscretizations of the incompressible Navier— Stokes equations 241

(Navier — Stokes equations of viscous incompressible homogeneous fluids with homogeneous
nonslip boundary condition).

In order to give a weak formulation of this problem, we introduce the function spaces

V :=
◦

W 1
2(Ω)d, Q := L2,0(Ω) := {q ∈ L2(Ω) : (q, 1) = 0}, W := {v ∈ L2(Ω)d : (q,∇ · v) =

0 ∀q ∈ Q} and define a trilinear form n : V 3 → R by

n(w, u, v) := ((w · ∇)u, v), (2.2)

where (·, ·) denotes the L2(Ω)- or L2(Ω)d-inner product.
If the symbol ∇ is applied to a vector field, say v ∈ V, then, as usual, it will be understood

as a tensor of order two with elements (∇v)jl := ∂jv
l, j, l = 1, . . . , d, where ∂j denotes

differentiation with respect to the j-th spatial variable.
Finally, for two vector fields v, w∈V, the bilinear form (∇v,∇w) is defined by (∇v,∇w) :=∑d

l=1(∇vl,∇wl). Then, given f ∈ L2((0, t∞), V ∗) and u0 ∈ W, the corresponding weak
formulation of (2.1) reads as follows:

Find (u, p) ∈ L2((0, t∞), V ) × L2((0, t∞), Q) such that

(∂tu, v) + ε(∇u,∇v) + n(u, u, v) − (p,∇ · v) + (q,∇ · u) = (f, v) ∀(v, q) ∈ V × Q,

u = u0 on {0} × Ω, (2.3)

where the variational equation holds, on (0, t∞), in the sense of distributions.
Now let us suppose that there are given two finite-dimensional spaces Vh ⊂ L2(Ω)d,

Qh ⊂ L2(Ω) approximating, in a certain sense, the spaces V, Q. In general, these discrete
spaces need not be subspaces of V and Q, respectively.

Typically, they consist of piecewise polynomial functions with respect to certain partitions
of the domain Ω. While it is not difficult to replace the forms

(∇u,∇v) and (p,∇ · v)

by their “broken” counterparts on the underlying partitions Th of Ω

(∇u,∇v)h :=
∑
T∈Th

(∇u,∇v)T and (p,∇ · v)h :=
∑
T∈Th

(p,∇ · v)T

and to analyze the resulting properties, the trilinear form n has to be defined in a more careful
way for stability reasons. In the above formulas, the subscript T indicates the restriction of
the integration domain on the subset T ⊂ Ω.

It was pointed out in [17, Sect. IV.2] that if the finite element spaces Vh × Qh are stable
(i.e., they satisfy a discrete inf-sup condition), then essentially the following three properties
of the discrete form nh : V 3

h → R are sufficient conditions for establishing convergence of
the numerical method for the stationary incompressible Navier — Stokes equations:

semidefiniteness: nh(wh, vh, vh) � 0,
Lipschitz-continuity: |nh(wh, uh, vh) − nh(zh, uh, vh)| � C‖wh − zh‖h‖uh‖h‖vh‖h,
consistency: |n(w, u, vh) − nh(Ihw, Ihu, vh)| � Ch‖w‖2,2,Ω‖u‖2,2,Ω‖vh‖h,

uh, vh, wh, zh ∈ Vh, u, w ∈ W 2
2 (Ω)d

⋂
V,

where ‖ · ‖h is a norm on Vh and Ih : V → Vh denotes some interpolation operator.
Here we will show that these conditions allow to formulate a similar result for a non-

stationary situation.
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242 L. Angermann

We consider the following semidiscrete formulation, where (·, ·)l denotes a discrete L2(Ω)d-
inner product that is different from (·, ·)h in general: for the given approximation u0h ∈ Vh

to u0, find (uh, ph) ∈ L2((0, t∞), Vh × Qh) with ∂tuh ∈ L2((0, t∞), L2(Ω)d) such that

(∂tuh,vh)l+ε(∇uh,∇vh)h+nh(uh,uh,vh)−(ph,∇·vh)h+(qh,∇·uh)h =(f,vh)l ∀(vh, qh)∈Vh×Qh,

uh = u0h on {0} × Ω. (2.4)

In order to give an overview on what follows we will sketch the typical steps of the
proof of convergence of the semidiscrete solution uh (provided it exists uniquely) to the weak
solution u.

If the weak solution (u, p) of (2.3) additionally belongs to

L2((0, t∞), W 2
2 (Ω)d) × L2((0, t∞), W 1

2 (Ω)), (2.5)

the variational equation in (2.3), restricted to the test space V × {0}, can be written as
follows:

(∂tu, v) − ε(∆u, v) + n(u, u, v) + (∇p, v) = (f, v) ∀v ∈ V (2.6)

i.e., by Sobolev’s embedding theorem, the first equation of (2.1) is satisfied in space in the
L2(Ω)d-sense. Therefore, since Vh ⊂ L2(Ω)d, equation (2.6) makes sense for test functions
from Vh, too. After a simple manipulation, we arrive at the following equation:

(∂tu, vh) + ε(∇u,∇vh)h + ((u · ∇)u, vh) − (p,∇ · vh)h = (f, vh) + 〈f̃h, vh〉 ∀vh ∈ Vh, (2.7)

where 〈f̃h, vh〉 := ε(∆u, vh) + ε(∇u,∇vh)h − (∇p, vh) − (p,∇ · vh)h.

Remark 2.1. Rewriting the terms (∆u, vh) and (∇p, vh), where vh ∈ Vh, in the element-
by-element manner and integrating by parts locally on each element T ∈ Th, the consistency
error functional can be represented as follows:

〈f̃h, vh〉 :=
∑
T∈Th

[
ε

(
∂u

∂ν
, vh

)
∂T

− (p, ν · vh)∂T

]
,

where (∂u/∂ν, vh)∂T :=
∑d

l=1(ν · ∇ul, vl
h)∂T .

Finally, for the following it will be convenient to use an element-by-element version ñh

of n:
ñh(w, u, v) :=

∑
T∈Th

((w · ∇)u, v)T .

Then the above equation (2.7) reads as

(∂tu, vh) + ε(∇u,∇vh)h + ñh(u, u, vh) − (p,∇ · vh)h = (f, vh) + 〈f̃h, vh〉 ∀vh ∈ Vh. (2.8)

Restricting the semidiscrete formulation (2.4) to the test space Vh ×{0} and subtracting the
result from (2.8), we obtain

(∂tu, vh) − (∂tuh, vh)l + ε(∇(u − uh),∇vh)h = nh(uh, uh, vh) − ñh(u, u, vh)+

(p − ph,∇ · vh)h + (f, vh) + 〈f̃h, vh〉 − (f, vh)l ∀vh ∈ Vh. (2.9)

For arbitrary elements vh, wh ∈ Vh, (∂tu, vh) = (∂tu, vh)l+(∂tu, vh)−(∂tu, vh)l = (∂twh, vh)l+
(∂t(u − wh), vh)l + (∂tu, vh) − (∂tu, vh)l holds.
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Transport-stabilized semidiscretizations of the incompressible Navier— Stokes equations 243

Thanks to u − uh = (wh − uh) + (u − wh), we get from (2.9) that

(∂t(wh − uh), vh)l + ε(∇(wh − uh),∇vh)h =nh(uh, uh, vh) − ñh(u, u, vh) + (p − ph,∇ · vh)h−
(∂t(u−wh),vh)l+(∂tu,vh)l−(∂tu,vh)−ε(∇(u−wh),∇vh)h+(f,vh)+〈f̃h,vh〉−(f,vh)l ∀vh∈Vh.

(2.10)
Furthermore, we have

nh(uh, uh, vh) = nh(wh, wh, vh) + nh(uh, uh, vh) − nh(wh, wh, vh) =

nh(wh, wh, vh) + nh(uh, uh, vh) − nh(wh, uh, vh) − nh(wh, wh − uh, vh),

hence we finally arrive at the following velocity error equation:

(∂t(wh − uh), vh)l + ε(∇(wh − uh),∇vh)h =

nh(wh, wh, vh) − ñh(u, u, vh) (2.11)

+ nh(uh, uh, vh) − nh(wh, uh, vh) (2.12)

− nh(wh, wh − uh, vh) (2.13)

+ (p − ph,∇ · vh)h (2.14)

− (∂t(u − wh), vh)l (2.15)

+ (∂tu, vh)l − (∂tu, vh) (2.16)

− ε(∇(u − wh),∇vh)h (2.17)

+ (f, vh) − (f, vh)l (2.18)

+ 〈f̃h, vh〉 ∀vh ∈ Vh. (2.19)

If we set vh := wh − uh with wh := Ihu, we can apply a standard energy argument
provided we are able to estimate the terms (2.11) – (2.19) in an appropriate manner. That
is, in the subsequent sections we have to investigate the following aspects:

• definition of nh and the three properties mentioned above,
• definition of the interpolation operator Ih : V → Vh and its properties,
• definition of the interpolation operator Jh : Q → Qh and its properties,
• definition of the lumping operator Lh : C(Ω)d + Vh → L∞(Ω) generating (·, ·)l and its

properties,
• consistency error caused by the use of the broken inner product (·, ·)h.

2.2. Geometrical definitions and relations. The discretization procedure is based
on three different families of partitions of Ω. An element of the first family of (primary)
partitions is denoted by Th and is either a triangulation (i.e., it consists of d-simplices)
or a block-partition (i.e., it consists of convex quadrilaterals (d = 2) or convex hexahedra
(d = 3)). It is assumed that Th is admissible in the usual sense, i.e., two elements of the
partition are allowed to have in common either a vertex or a complete edge or, if d = 3, a
complete face. Using the notation T for the elements of Th, the parameter h of the partition
is defined as follows: If T has the diameter hT , then h := max

T∈Th

hT . Notice that this partition

is related to the approximation uh of the unknown u; in certain situations the partition for
the discrete unknown ph may differ from Th.

Next, on each partition Th a (not necessarily conforming) finite element space is defined,
whose elements are piecewise polynomials of maximal degree l ∈ N

⋃{0}. In particular, the
polynomial space on T may be incomplete, especially for quadrilateral/hexahedral elements.
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244 L. Angermann

Given some finite element space, the corresponding set of functionals (global degrees
of freedom) naturally splits into Langrangian functionals and others, where a Langrangian
functional is defined via the point values of its argument. Therefore, considering these
Langrangian functionals, a collection of (global) nodes, called Langrangian nodes, can be
associated in a natural way. For example, Langrangian nodes may be the vertices of trian-
gles or the barycenters of faces of hexahedrons, where the above admissibility assumption
allows to identify nodes with the same geometrical position. This collection of nodes can
be subdivided into the class of nodes lying on element boundaries and the class of nodes
belonging to the interior of some element.

Let Λg denote the set of indices of all Langrangian nodes from the first class. The subset
Λg ⊂ Λg contains, by definition, the indices of interior (w.r.t. Ω) nodes only. Finally, declare
∂Λg := Λg \ Λg and let ΛgT ⊂ Λg contain the (global) indices of the nodes belonging to
the element T. Due to the boundary conditions in (2.1), the above finite element space is
restricted to elements satisfying a discrete boundary condition, i.e., we set

Shl := {vh : (vh|T ∈ Pl(T ) ∀T ∈ Th) ∧ (vh(xi) = 0 ∀i ∈ ∂Λg)} .

The distance between two nodes xi, xj (i, j ∈ Λg) is denoted by dij.
Now, an important observation is that the index set Λg can be decomposed into two

disjoint subsets Λ, Λ
∆

such that Λg = Λ
⋃

Λ
∆

and Λ
⋂

Λ
∆

= ∅. Such a decomposition can
be generated, for example, by a hierarchical decomposition of the finite element space Shl

into a “lower degree part” and its linear complement. Then Λ corresponds to the nodes of

the first part and Λ
∆

to the nodes of the complement. Obviously, this decomposition induces
similar decompositions of Λg, ∂Λg and ΛgT , respectively. If Shl is a space of elements of low
degree, then it is allowed that the decomposition is trivial, i.e., the complement may be the

trivial space consisting of the zero element only. In this case, Λ
∆

is empty by definition.
To describe the discretization of the trilinear form n, a further family of partitions of

Ω is needed. The element T∗
h of the second family consists of subdomains Ωi ⊂ Ω, whose

boundary part Ω
⋂

∂Ωi is a union of subsets of (d − 1)-dimensional hyperplanes.
The incidence relation between these two partitions is defined with the help of the nodes

of Th, i.e., each Ωi should correspond to one node xi and vice versa.
So we assume that a collection of points N := {xi}i∈Λ ⊂ Ω, where Λ ⊂ N is a finite

index set, is given. Furthermore we assume that Λ is split into two disjoint subsets Λ ⊂ Λ,
∂Λ := Λ\Λ such that N := {xi}i∈Λ ⊂ Ω. Then we also have the decomposition N = N

⋃
∂N

with ∂N := {xi}i∈∂Λ.

Remark 2.2. In this setting, the situation that ∂N
⋂

Ω �= ∅ is not excluded. In some
applications, ∂N may consist of points close to the boundary ∂Ω as well as of points lying
at the boundary.

The set T∗
h = {Ωi}i∈Λ of control volumes Ωi is assumed to satisfy the following properties:

(A1) T∗
h is a partition of Ω.

(A2) (i) ∀i ∈ Λ : xi ∈ Ωi,

(ii) ∀i ∈ ∂Λ : xi ∈ Ωi

⋃
(∂Ω

⋂
∂Ωi).

(A3) ∀i ∈ Λ : Ω
⋂

∂Ωi is a union of a finite number of subsets of (d − 1)-dimensional
hyperplanes.
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Transport-stabilized semidiscretizations of the incompressible Navier— Stokes equations 245

For all indices i, j ∈ Λ, j �= i, let Γij := Ωi

⋂
Ωj, mij := measd−1(Γij) and xij :=

(xi +xj)/2. The distance between two nodes xi, xj is denoted by dij. Then it makes sense to
introduce the index set

Λi :=
{
j ∈ Λ \ {i} : mij > 0

}
, i ∈ Λ.

As a consequence of these definitions, for i ∈ Λ the following representation of ∂Ωi is
valid: ∂Ωi =

⋃
j∈Λi

Γij. Moreover, there are obvious symmetry relations

dji = dij, Γji = Γij , mji = mij . (2.20)

If, in addition, the primary partition Th = {Ti}nh

i=1 , nh ∈ N, has the node set Λg = N, then
a natural correlation between the two partitions Th, T∗

h exists and some further assumptions
are necessary. Before formulating these assumptions, some additional notation has to be
introduced.

ET is the set of all faces (i.e., (d− 1)-dimensional hypersurfaces) E ⊂ ∂T of the element
T. ΛT ⊂ Λ denotes the set of indices of the nodes of the element T ∈ Th. For a face E ∈ ET

of some element T ∈ Th, ΛE ⊂ ΛT denotes the set of indices of the nodes of E. Finally, for
i ∈ ΛT , we set Ωi,T := Ωi

⋂
T for the element control volume induced by Ωi.

(A4) ∀i ∈ Λ : Ωi ⊂
⋃

T∈Th: ΛT �i T .

(A5) ∀T ∈ Th ∀i ∈ ΛT : Ωi,T is an open, simply connected, strongly Lipschitz set.

(A6) ∀T ∈ Th ∀i ∈ ΛT : The set ∂(Ωi,T )
⋂

∂T \ ⋃
E∈ET : ΛE�i E consists of at most one

point1 of ∂T.

(A7) ∀T ∈ Th ∀i ∈ ΛT ∀j ∈ ΛT

⋂
Λi : xij ∈ ∂Ωi,T .

Obviously, for T ∈ Th, i ∈ ΛT and j ∈ ΛT

⋂
Λi, the boundary parts Γij can be structured

in a finer way: ΓT
ij := Γij

⋂
T. Analogously, mT

ij := measd−1(Γ
T
ij).

(A8) There exists a third partition
{
ΩT

ij

}
T∈Th,i∈ΛT ,j∈ΛT

T

Λi: mT
ij>0

of Ω such that the subdo-

mains ΩT
ij have the following properties:

(i) ΩT
ij = ΩT

ji,

(ii) ΓT
ij ⊂ ΩT

ij , xi ∈ ΩT
ij , xj ∈ ΩT

ij .

(iii) Each ΩT
ij can be decomposed into a finite number lTij of pairwise disjoint open d-

simplices ΩT,l
ij such that Ω

T

ij =
⋃lTij

l=1 Ω
T,l

ij and, for any l ∈ [1, lTij]N , ΩT,l
ij is the image

of a fixed (reference) simplex T̂ under a regular affine transformation, where the

pre-image Γ̂ of ΓT,l
ij := Γij

⋂
Ω

T,l

ij does not depend on particular values of i, j, T, l.

(iv) On each ΓT,l
ij , the unit outer (w.r.t. Ωi) normal νT,l

ij is constant.

The diameter of the simplex ΩT,l
ij is denoted by hT,l

ij . Furthermore, we set mT,l
ij :=

measd−1(Γ
T,l
ij ) and Ωij := int(

⋃
T∈Th : ΓT

ij �=∅
Ω

T

ij).

Finally, in some cases certain regularity conditions are also needed.

1The (stronger) condition ∂(Ωi,T )
⋂

∂T ⊂ ⋃
E∈ET : ΛE�i E is not satisfied for Voronoi diagrams on

Friedrichs — Keller triangulations.
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246 L. Angermann

(A9) There exists a constant C > 0 such that for all i, j ∈ Λ, d5
ij � Cmij holds.

(A10) There exists a constant C > 0 such that for all i, j ∈ Λ,

dij

(
max

T∈Th :mT
ij>0

max
l∈[1,lTij ]N

hT,l
ij

)2

� Cmij

holds.

(A11) There exists a constant C > 0 such that for all i, j ∈ Λ, T ∈ Th, l ∈ [1, lTij ]N ,

mT,l
ij dij � Cmeasd(Ω

T,l
ij )

holds.

(A12) There exists a constant C > 0 such that for all i, j ∈ Λ, T ∈ Th, l ∈ [1, lTij ]N ,

(hT,l
ij )4 � Cmeasd(Ω

T,l
ij )

holds.

Remark 2.3. Dimensional analysis of the quantities that appear in Assumptions (A9),
(A10), (A12) easily shows that these conditions are not very restrictive.

3. Discretization of the trilinear form n

Using the decomposition

n(w, u, v) =
d∑

l=1

((w · ∇)ul, vl),

the description of the discretization can be reduced to the scalar case. So let w ∈
◦

W 1
2(Ω)d

be such that ∇ · w = 0 and define, for u, v ∈
◦

W 1
2(Ω), the form

ns(w, u, v) := ((w · ∇)u, v) = (w · ∇u, v).

The transport stabilization will be controlled by some control function r : R → [0, 1] satis-
fying the following properties:

(P1) r(z) is monotone for all z,

(P2) lim
z→−∞

r(z) = 0, lim
z→∞

r(z) = 1,

(P3) 1 + zr(z) � 0 for all z,

(P4) [1 − r(z) − r(−z)]z = 0 for all z,

(P5) [r(z) − 1/2]z � 0 for all z,

(P6) zr(z) is Lipschitz-continuous on the whole real axis.
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The choice of exactly this control function dictates the upwind strategy of the numerical
method. Typical examples of such control functions are:

r(z) = [sign z + 1]/2 (full upwind scheme),

r(z) = 1 − 1

z

[
1 − z

exp z − 1

]
(exponentially fitted scheme).

It is wellknown that the full upwind scheme introduces too much artificial diffusion. Although
the exponentially fitted scheme should be preferred for theoretical reasons, in practice the
full upwind scheme is frequently applied, in particular, in connection with an additional
correction procedure such as Patankar’s power law scheme ([15], [16]).

Now, for wh ∈ Vh := Sd
hl, uh, vh ∈ Shl we define

γij := m−1
ij

∑
T∈Th :mT

ij>0

∫
ΓT

ij

ν · wh ds, rij := r

(
γijdij

ε

)

and set

nsh(wh, uh, vh) :=
1

2

∑
i∈Λ

∑
j∈Λi

[(
rij−1

2

)
(uhi−uhj)(vhi−vhj)+

1

2
(uhjvhi−uhivhj)

]
γijmij . (3.1)

Returning to the original form n, we set for wh, uh, vh ∈ Vh

n(w, u, v) ≈ nh(wh, uh, vh) :=

d∑
l=1

nsh(wh, u
l
h, v

l
h).

Collorary 3.1 (Semidefiniteness of nh). If the control function r satisfies (P5), then
there holds

∀wh, vh ∈ Vh : nh(wh, vh, vh) � 0.

Proof. Follows immediately from the above definition (3.1) of nsh and from (P5). �
Finally, some discrete norms and operators have to be introduced. For u, v ∈ V + Vh,

we set

|v|h :=
√

(∇v,∇v)h, ‖v‖h :=
√
‖v‖2

0,2,Ω + |v|2h.

By Ih :
◦

W 1
2(Ω) → Shl, the interpolation operator is denoted, whereas Lh : C(Ω) + Shl →

L∞(Ω) stands for the so-called lumping procedure. That is, the image of Lh is a subspace
consisting of functions being constant on the elements of the secondary partition T∗

h. The
application of Ih or Lh to a vector field from V or [C(Ω) + Shl]

d, respectively, should be
understood in a componentwise manner.

Concrete properties of these operators will be included in the subsequent assumptions.
We also recall for completeness some results from [2] related to the remaining two properties
of nh, i.e., the Lipschitz-continuity and consistency.

One group of assumptions ((A13) – (A15)) establishes relations between different semi-
norms or norms on Vh, the other group ((A16) – (A19)) includes requirements for the oper-

ators Ih :
◦

W 1
2(Ω) → Shl and Lh : C(Ω) + Shl → L∞(Ω) mentioned at the end of Section 3.
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(A13) There exists a constant C > 0 independent of h such that for all vh ∈ Shl∑
i∈Λ

∑
j∈Λi

(vhi − vhj)
2 mij

dij
� C|vh|2h.

holds.

Collorary 3.2. Under Assumption (A13)

∑
i∈Λ

∑
j∈Λi

|whj − whi| |vhi − vhj |mij

dij
� C|wh|h|vh|h.

holds.

Proof. Elementary. �

(A14) There exists a constant C > 0 such that for all vh ∈ Shl,

‖vh‖0,6,Ω � C‖vh‖h.

holds.

Collorary 3.3. Under Assumption (A14), for arbitrary p ∈ [1, 6],

‖vh‖0,p,Ω � C‖vh‖h.

holds.

Proof. Elementary. �

(A15) There exists a constant C > 0 such that for arbitrary p ∈ [1, 6] and for all vh ∈ Shl,

‖Lhvh‖0,p,Ω � C‖vh‖0,p,Ω.

holds.

Remark 3.1. Since Λ∆ is nonempty, in general, ‖Lhvh‖0,p,Ω is only a seminorm on Shl.
Both assumptions (A13) and (A15) are weakened versions of properties that do hold in many
standard cases (cf. [11]). A more essential assumption is the discrete Sobolev inequality
(A14). Frequently, its proof requires more involved arguments.

The above set of assumptions provides sufficient conditions for the proof of the Lipschitz-
continuity of nh (see Lemma 3.1 below). However, the rest of the assumptions about Ih and
Lh will be given here, too.

(A16) There exists a constant C > 0 such that

(i) for arbitrary p > d and for all v ∈ W 1
p (Ω), ‖(I − Lh)v‖0,p,Ω � C h|v|1,p,Ω holds,

(ii) for all vh ∈ Shl, ‖(I − Lh)vh‖0,2,Ω � C h|v|h holds.

(A17) There exists a constant C > 0 such that

(i) for all v ∈ W 2
2 (Ω), ‖Ihv‖0,∞,Ω � C ‖v‖2,2,Ω holds,

(ii) for all v ∈ W 2
2 (Ω) and all T ∈ Th, |Ihv|1,2,T � C ‖v‖2,2,T holds,

(iii) for arbitrary p ∈ (d, 6], v ∈ W 1
p (Ω) and all T ∈ Th, |Ihv|1,p,T � C ‖v‖1,p,T holds.

 - 10.2478/cmam-2006-0013
Downloaded from De Gruyter Online at 09/09/2016 11:23:05AM

via Universitaetsbibliothek Clausthal



Transport-stabilized semidiscretizations of the incompressible Navier— Stokes equations 249

(A18) There exists a constant C > 0 such that

(i) for arbitrary p ∈ (d, 6], v ∈ W 1
p (Ω) and all T ∈ Th, |(I − Ih)v|l,p,T � C h1−l

T ‖v‖1,p,T ,
l = 0 or l = 1, holds,

(ii) for all v ∈ W 2
2 (Ω) and all T ∈ Th, |(I − Ih)v|l,2,T � C h2−l

T ‖v‖2,2,T , l = 0 or l = 1,
holds.

(A19) There exists a constant C > 0 such that for all v ∈ W 2
2 (Ω) and all T ∈ Th,

‖Lh(I − Ih)v‖0,2,T � C h2
T‖v‖2,2,T .

holds.

All the assumptions (A16) – (A19) are rather typical properties of the interpolation and
lumping operators Ih and Lh, respectively. They do not imply essential restrictions on the
applicability of the method. In particular, in many standard finite volume methods, the
left-hand side of inequality (A19) simply vanishes.

Lemma 3.1. Suppose (A8) – (A15). Then, for arbitrary wh, zh ∈ Vh and uh, vh ∈ Shl the
estimate

|nsh(wh, uh, vh) − nsh(zh, uh, vh)| � C‖wh − zh‖h‖uh‖h‖vh‖h

holds, where C > 0 is a constant which does not depend on h.

Proof. See [2, Lemma 3]. �
Lemma 3.2. Suppose (A8), (A11), (A13) – (A15), (A16) (ii), (A(17) – (A19). Then, for

any w ∈ W 2
2 (Ω)d

⋂
V satisfying ∇ · w = 0, any u ∈ W 2

2 (Ω)
⋂ ◦

W 1
2(Ω) and any element

vh ∈ Shl, the estimate

|ns(w, u, vh) − nsh(Ihw, Ihu, vh)| � Ch‖w‖2,2,Ω‖u‖2,2,Ω‖vh‖h

holds, where C > 0 is a constant which does not depend on h.

Proof. See [2, Lemma 4]. �

4. Discretization by quadrilateral/hexahedral elements

4.1. Definition of the finite element space. We consider one of the four finite elements
introduced by Schieweck [19], namely the so-called P1-parametric element, and apply the
above discretization method to the trilinear form n. The resulting discrete form nh differs
from Schieweck’s one in two aspects: The internal geometry of the control volumes Ωi and
the choice of upwind parameters are different.

Each partition Th, h ∈ (0, h0], h0 > 0, of Ω ⊂ Rd consists of convex quadrilaterals
(d = 2) or hexahedra (d = 3), where the faces (i.e., the two-dimensional boundary surfaces)
of the hexahedra are plane.

We define
ρT := sup

{
ρ : B(xT , ρ) ⊂ T

}
.

Remark 4.1. In his original work [19], Schieweck did not require the convexity of T ∈
Th. He defined ρT by

ρT := sup
{
ρ : T is star-shaped w.r.t. B(xT , ρ)

}
.
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By hT , the length of the shortest edge of T is denoted. Finally, let αT be the smallest
angle between neighbouring edges and, for d = 3, also between neighbouring faces, and let
αT be the corresponding largest angle.

Definition 4.1. The family F := {Th}h∈(0,h0]
is called shape-regular iff there exist posi-

tive constants γ0, γ1, α0 independent of any particular element T ∈ Th such that

∀Th ∈ F ∀T ∈ Th :
hT

hT

� γ0,
hT

ρT
� γ1, 0 < α0 � αT � αT � π − α0.

holds.

Now, let T ∈ Th be fixed. Denote by ET the set of all its faces and let xE ∈ E be the
barycentre of the face E ∈ ET . Using local enumeration of the 2d faces E ∈ ET such that Ej

and Ej+d are opposite to each other, j ∈ [1, d]N, it is possible to define an affine mapping
FT in such a way that

FT (êj) = xEj
, FT (−êj) = xEj+d

,

holds, where êj denotes the j-th canonical unit vector in Rd.
It is not difficult to give this mapping explicitely. In fact, if BT ∈ Rd,d is a matrix with

column vectors bTj := xEj
− xT , then the transformation FT (x̂) := BT x̂ + xT possesses the

indicated properties.
The fundamental difficulty in the analysis of this approach is, unfortunately, that the

“reference” element T̂T := F−1
T (T ) does not form the unit d-cube, in general. The only

statement that can be given about the “family of reference elements” is as follows.

Remark 4.2. All the reference elements T̂T have the same face barycenters (and, there-
fore, the same element barycentre 0̂).

Proof. Simple calculation. �
Lemma 4.1. Assume that F is shape-regular. Then there exist constants depending only

on F such that

∀Th ∈ F ∀T ∈ Th : ‖BT‖ � ChT , ‖B−1
T ‖ � Ch−1

T , c−1hd
T � det BT � c−1hd

T ,

holds, where ‖ · ‖ is an arbitrary but fixed matrix norm.

Proof. Omitted. �
Collorary 4.1. Under the assumptions of the above Lemma 4.1, there exists some num-

ber ρ > 0 such that
∀Th ∈ F ∀T ∈ Th : T̂T = F−1

T (T ) ⊂ B̂(0, ρ).

Proof. By the lemma,

‖x̂‖ = ‖B−1
T (x − xT )‖ � ‖B−1

T ‖hT � C =: ρ.

�Now we turn to the description of the finite element space. Starting with the local basis
on T̂T , it will be transformed to the original element T by means of FT .

We set
P̂ := span

j∈[1,d]N, k∈[1,d−1]N

{
1, x̂j , x̂

2
k − x̂2

k+1

}
(4.1)

Obviously, dim(P̂) = 2d. For simplicity in what follows, the basis polynomials used in (4.1)
are denoted by p̂k, k ∈ [1, 2d]N (as they appear there). To define the local basis elements

(shape functions), the following functionals on P̂ (local degrees of freedom) are used:

Φ̂j(ϕ̂) := ϕ̂(x̂Êj
),
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where x̂Êj
:= êj , x̂Êj+d

:= −êj , j ∈ [1, d]N. Then the system Φ̂j(ϕ̂i) = δij , i, j ∈ [1, 2d]N,

gives 2d conditions for the canonical determination of {ϕ̂i}i∈[1,2d]N. If the representation

ϕ̂i(x̂) =
∑

k∈[1,2d]N
c
(i)
k p̂k(x̂) is used, then due to the above Remark 4.2 the matrix

(p̂k(x̂Êj
))j,k∈[1,2d]N (4.2)

of the system is the same for all elements T̂T . Therefore, in order to prove that the pairing
({ϕ̂i}, {Φ̂j}) is P̂-unisolvent, it is sufficient to consider a particular situation, namely the unit

cube T̂ := (−1, 1)d. Then it easily turns out that the matrix (4.2) of the system is regular.
Furthermore, we set Qh := {qh ∈ Q : qh|T ∈ P0 (∀T ∈ Th)}.
4.2. Discretization of the trilinear form. For any T ∈ Th and any i ∈ ΛT , we have to

define the contributions ΩT
i to the element Ωi ∈ T∗

h associated with the local nodes xi ∈ ∂T.
To meet Assumption (A8), we first of all describe the subdomains ΩT,l

ij .
So let xEi

, xEj
be the barycenters of two neighbouring faces Ei, Ej (i.e., they have in

common d − 1 vertices yT,k
ij of T, k ∈ [1, d − 1]N, and consider the midpoint xij of the line

segment connecting both points, i.e., xij := (xi + xj)/2. Since T is convex, xij ∈ T . Then
xij , xT and the common vertices determine d (d − 1)-simplices which have the point xij in

common and form the boundary parts ΓT,l
ij .

Namely, for d = 2 (see Fig. 4.1, left),

ΓT,1
ij := conv{xij , y

T,1
ij }, ΓT,2

ij := conv{xij , xT};

for d = 3 (see Fig. 4.2),

ΓT,1
ij := conv{xij , xT , yT,1

ij }, ΓT,2
ij := conv{xij , xT , yT,2

ij },

ΓT,3
ij := conv{xij, y

T,1
ij , yT,2

ij }.
The convex hull of xi, xj with each of these boundary parts generate the subdomains ΩT,l

ij .

F i g. 4.1. The case of d = 2 : ΓT,1
ij , ΓT,2

ij (left, finely
dotted lines) and ΩT,1

ij , ΩT,2
ij (right, bounded by con-

tinuous lines)

F i g. 4.2. Boundary parts ΓT,l
ij in the case of d = 3 (finely dotted lines)
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That is, for d = 2,

ΩT,1
ij := int(conv{xi, xj , y

T,1
ij }), ΩT,2

ij := int(conv{xi, xj , xT});
for d = 3 (see Fig. 4.3),

ΩT,1
ij := int(conv{xi, xj , xT , yT,1

ij }), ΩT,2
ij := int(conv{xi, xj, xT , yT,2

ij }),

ΩT,3
ij := int(conv{xi, xj, y

T,1
ij , yT,2

ij }).

F i g. 4.3. Subdomains ΩT,l
ij in the case of d = 3 (bounded by continuous lines)

4.3. Verification of the assumptions. First of all we will show that the local quasi-
uniformity of the family of triangulations generated by the simplices ΩT,l

ij (see Assumption
(A8)) is a sufficient condition to satisfy the collection of geometrical assumptions (A9) –
(A12).

That is, we assume that there exists a constant c > 0 depending only on F such that

∀ΩT,l
ij : c−1(hT,l

ij )d � measd(Ω
T,l
ij ) � c(hT,l

ij )d (4.3)

holds.

4.3.1. Assumption (A9). We show that d5
ij � CmT,l

ij ; then the statement immediately

follows from the trivial estimate1 mT,l
ij � mij .

From (4.3) we conclude that the length of any edge of the simplex ΩT,l
ij lies within the

interval2 [c̃hT,l
ij , hT,l

ij ], where c̃ depends on c from (4.3). In particular,

dT,l
ij ∈ [c̃hT,l

ij , hT,l
ij ]. (4.4)

In the case of d = 2, mT,l
ij is not smaller than the height of the triangle corresponding to the

edge connecting xi to xj , and that height is not smaller than the diameter of the inscribed
circle, i.e.,

c̃hT,l
ij � mT,l

ij . (4.5)

So we get dij � hT,l
ij � c̃−1mT,l

ij . Since we may assume, without loss of generality, that dij � 1,
the statement follows.

In the case of d = 3, we introduce the temporal notation yT,d
ij := xT and observe that

the central projection of the inscribed ball from the vertex to the opposite face gives a circle

1In fact, it is sufficient that in the set {(T, l)}T∈Th:mT
ij>0, l∈[1,lT,l

ij ]N
there exists one element for which the

relation d5
ij � CmT,l

ij is valid.
2 c̃hT,l

ij is the diameter of the inscribed ball.
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which is contained in that face. Therefore, the length of the edges of the face as well as
the face-heights corresponding to these edges are not shorter than the diameter of the circle
which itself is not smaller than the diameter of the inscribed ball.

The area mT,l
ij of the triangle ΓT,l

ij is equal to the half of the length of the line segment

connecting xij with one of the vertices yT,l
ij multiplied by the height in the triangle ΓT,l

ij .

The first factor is not smaller than the height of the face formed by xi, xj and yT,l
ij

corresponding to the base line given by xi, xj ; hence it is not smaller than c̃hT,l
ij .

The second factor is not smaller than the height of the tetrahedron ΩT,l
ij corresponding

to the face, i.e. it is not smaller than the diameter of the inscribed ball either.
In the final analysis, we get

1

2
(c̃hT,l

ij )2 � mT,l
ij , (4.6)

thus d2
ij � (hT,l

ij )2 � 2c̃−2mT,l
ij . From this relation the statement follows.

4.3.2. Assumption (A10). We show that dij(h
T,l
ij )d−1 � CmT,l

ij . But this is a consequence
of the above relations (4.4), (4.5) and (4.6). Indeed, for d = 2 the first two estimates imply
dijh

T,l
ij � hT,l

ij � c̃−1mT,l
ij , whereas for d = 3, (4.4) and (4.6) they yield

dij(h
T,l
ij )2 � (hT,l

ij )2 � 2c̃−2mT,l
ij .

4.3.3. Assumption (A11). Obviously, we have

mT,l
ij � (hT,l

ij )d−1. (4.7)

It follows by (4.4) mT,l
ij dij � (hT,l

ij )d, and (4.3) results in mT,l
ij dij � measd(Ω

T,l
ij ).

4.3.4. Assumption (A12). This relation is a consequence of (4.3):

(hT,l
ij )4 � (hT,l

ij )d � Cmeasd(Ω
T,l
ij ).

In the next step, the embedding relations (A13) and (A14) will be verified.

4.3.5. Assumption (A13). This assumption can also be verified by using (4.3). Namely,
we decompose the double sum that appears on the left-hand side in a finer manner as

∑
i∈Λ

∑
j∈Λi

(vhi − vhj)
2 mij

dij
=

∑
i∈Λ

∑
j∈Λi

∑
T∈Th :mT

ij>0

∑
l∈[1,lTij ]N

(vhi − vhj)
2
mT,l

ij

dij
.

Now we transform ΩT,l
ij into the reference simplex and get (for the restrictions on vh into ΩT,l

ij )

|vhi − vhj| = |v̂hi − v̂hj| =

∣∣∣∣(x̂i − x̂j)

1∫
0

∇̂v̂h(x̂j + s(x̂i − x̂j)) ds

∣∣∣∣ � ‖x̂i − x̂j‖ ‖∇̂v̂h‖0,∞,T̂ .

Since ∇̂v̂h ∈ [P1(T̂ )]d, the norms ‖∇̂v̂h‖0,∞,T̂ and ‖∇̂v̂h‖0,2,T̂ are equivalent (as norms on

the finite-dimensional space [P1(T̂ )]d). Consequently, |vhi − vhj| � C‖∇̂v̂h‖0,2,T̂ , and the
back-transformation implies

|vhi − vhj | � C
hT,l

ij

measd(Ω
T,l
ij )1/2

‖∇vh‖0,2,ΩT,l
ij

.
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Since it holds, by (4.4), (4.7), (4.3),

mT,l
ij (hT,l

ij )2

dijmeasd(Ω
T,l
ij )

� 1

c̃

mT,l
ij hT,l

ij

measd(Ω
T,l
ij )

� 1

c̃

(hT,l
ij )d

dijmeasd(Ω
T,l
ij )

� c

c̃
,

we conclude that∑
i∈Λ

∑
j∈Λi

(vhi − vhj)
2mij

dij
� C

∑
i∈Λ

∑
j∈Λi

∑
T∈Th :mT

ij>0

‖∇vh‖2
0,2,ΩT

ij
� C

∑
T∈Th

‖∇vh‖2
0,2,T = C|vh|2h.

4.3.6. Assumption (A14). Verification of this assumption completely follows the lines of
[19, Lemma 4.4 there]. That is, based on the design of the auxiliary interpolation operator
acting in a conforming finite element space, the sharper estimate

‖vh‖0,p,Ω � C|vh|h (4.8)

is obtained by using the standard embedding result (w.r.t. the conforming part) and a
suitable interpolation error estimate. The result is valid under the assumption that the
basic family F of partitions is shape-regular (cf. Definition 4.1).

4.3.7. Assumption (A15). We introduce the following lumping operator Lh : C(Ω) +
Shl → L∞(Ω) via

v �→ Lhv :=
∑
i∈Λ

v(xi)χΩi
, (4.9)

where χΩi
is the indicator function of the element Ωi of the secondary partition T∗

h. This
defines

(·, ·)l := (Lh·, Lh·). (4.10)

Then we can write

‖Lhvh‖p
0,p,Ω =

∑
i∈Λ

∑
j∈Λi

∑
T∈Th : mT

ij>0

∑
l∈[1,lTij ]N

∫

ΩT,l
ij

|Lhvh|p dx.

Now the following estimate is trivial:
∫
ΩT,l

ij
|Lhvh|p dx �

∫
ΩT,l

ij
|vhi|p dx +

∫
ΩT,l

ij
|vhj|p dx. Trans-

forming the integrals into the reference element T̂ , we get for the first integral

∫

ΩT,l
ij

|vhi|pdx =
measd(Ω

T,l
ij )

measd(T̂ )

∫

T̂

|v̂hi|pdx̂.

On P̂, the mapping ϕ̂ �→ {∫
T̂
|ϕ̂(x̂i)|p dx̂}1/p is a seminorm (cf. Assumption (A8) (ii)). Since

in a finite-dimensional space a seminorm can be estimated by the norm (up to some multi-
plicative constant), there exists a constant C > 0 such that

∫

T̂

|v̂hi|pdx̂ � C
measd(Ω

T,l
ij )

measd(T̂ )

∫

T̂

|v̂h(x̂)|pdx̂ � C‖vh‖p

0,p,ΩT,l
ij

.

A similar estimate is true for the second integral. After summation, we arrive at the desired
relation.
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4.3.8. Assumption (A16).

‖(I − Lh)v‖p
0,p,Ω =

∑
i∈Λ

∑
j∈Λi

∑
T∈Th :mT

ij>0

∑
l∈[1,lTij ]N

∫

ΩT,l
ij

|(I − Lh)v|pdx

holds. Now we have∫

ΩT,l
ij

|(I−Lh)v|pdx =

∫

ΩT,l
ij

T

Ωi

|v−vi|pdx+

∫

ΩT,l
ij

T

Ωj

|v−vj|pdx �
∫

ΩT,l
ij

|v−vi|pdx+

∫

ΩT,l
ij

|v−vj |pdx.

Due to symmetry relation ΩT,l
ij = ΩT,l

ji , see Assumption (A8) (i), it is sufficient to estimate
one of the integrals.

By Assumption (A8), we can write, for any fixed w ∈ Lq(Ω
T,l
ij ), q = p/(p − 1), that

∫

ΩT,l
ij

(v − vi)w dx =
measd(Ω

T,l
ij )

measd(T̂ )

∫

T̂

(v̂ − v̂i)ŵ dx̂.

It follows that ∣∣∣∣
∫

T̂

(v̂ − v̂i)ŵ dx̂

∣∣∣∣ �
[
‖v̂‖0,p,T̂ + ‖v̂i‖0,p,T̂

]
‖ŵ‖0,q,T̂ .

Since ‖v̂i‖0,p,T̂ �
√

measd(T̂ )‖v̂‖0,∞,T̂ and, by Sobolev’s embedding theorem, ‖v̂‖0,∞,T̂ �
C‖v̂‖1,p,T̂ , we obtain ∣∣∣∣

∫

T̂

(v̂ − v̂i)ŵ dx̂

∣∣∣∣ � C‖v̂‖1,p,T̂‖ŵ‖0,q,T̂ .

The integral on the left-hand side is a linear continuous functional of the argument v̂ ∈
W 1

p (T̂ ), and it vanishes for constant arguments. Hence the Bramble — Hilbert lemma
implies that ∣∣∣∣

∫

T̂

(v̂ − v̂i)ŵ dx̂

∣∣∣∣ � C|v̂|1,p,T̂‖ŵ‖0,q,T̂ ,

and the back-transformation results in the estimate∣∣∣∣
∫

ΩT,l
ij

(v − vi)w dx

∣∣∣∣ � ChT,l
ij |v|1,p,ΩT,l

ij
‖w‖0,q,ΩT,l

ij
.

Therefore,

‖v − vi‖1,p,ΩT,l
ij

= sup
w∈Lq(ΩT,l

ij )

(v − vi, w)ΩT,l
ij

‖w‖0,q,ΩT,l
ij

� ChT,l
ij |v|1,p,ΩT,l

ij
.

In the final analysis, we get the first estimate

‖(I − Lh)v‖p
0,p,Ω � Chp

∑
T∈Th

|v|p1,p,T = Chp|v|p1,p,Ω.
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To verify (ii), we proceed as in the first part and arrive at the estimate

∣∣∣∣
∫

T̂

(v̂h − v̂hi)ŵ dx̂

∣∣∣∣ �
[
‖v̂h‖0,p,T̂ + ‖v̂hi‖0,p,T̂

]
‖ŵ‖0,q,T̂ .

Since ‖v̂hi‖0,p,T̂ is a seminorm on P̂, we obtain

∣∣∣∣
∫

T̂

(v̂h − v̂hi)ŵ dx̂

∣∣∣∣ � C‖v̂h‖0,p,T̂‖ŵ‖0,q,T̂ � C‖v̂h‖1,p,T̂‖ŵ‖0,q,T̂ .

The integral on the left-hand side is a linear continuous functional of the argument v̂h ∈ P̂

and it vanishes for constant arguments. Hence the Bramble — Hilbert lemma implies that

∣∣∣∣
∫

T̂

(v̂h − v̂hi)ŵ dx̂

∣∣∣∣ � C|v̂h|1,p,T̂‖ŵ‖0,q,T̂ .

and the back-transformation results in the estimate∣∣∣∣
∫

ΩT,l
ij

(vh − vhi)w dx

∣∣∣∣ � ChT,l
ij |vh|1,p,ΩT,l

ij
‖w‖0,q,ΩT,l

ij
.

Therefore, ‖vh − vhi‖1,p,ΩT,l
ij

� ChT,l
ij |vh|1,p,ΩT,l

ij
. In the final analysis, we get

‖(I − Lh)vh‖p
0,p,Ω � Chp

∑
T∈Th

|vh|p1,p,T ,

which gives for p = 2 the desired result.

4.3.9. Assumption (A17). The interpolation operator Ih : V → Vh is defined according
to [19, Definition 4.5], i.e.,

Ihv :=
∑
i∈Λg

viϕi with vi :=
1

measd−1(Ei)

∫
Ei

v ds.

It is clearly sufficient to consider only one component. As a consequence, we get for v ∈
W 2

2 (Ω)

‖Ihv‖0,∞,Ω = max
T ′∈Th

‖Ihv‖0,∞,T ′ = ‖Ihv‖0,∞,T

for some element T ∈ Th. Now,

‖Ihv‖0,∞,T �
∑
i∈Λg

|vi|‖ϕi‖0,∞,T �
(

max
i∈Λg

|vi|
) ∑

i∈Λg

‖ϕi‖0,∞,T .

holds. From |vi| � ‖v‖C(Ei) � ‖v‖C(Ω) � C‖v‖2,2,Ω we get ‖Ihv‖0,∞,T � C‖v‖2,2,Ω, thus,

‖Ihv‖0,∞,Ω � C‖v‖2,2,Ω.
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Relation (ii) of the assumption is a simple consequence of Assumption (A18) (ii) :

|Ihv|1,2,T � |v|1,2,T + |(I − Ih)v|1,2,T � [1 + Ch̃T ]‖v‖2,2,T ,

where
h̃T := hT + αT , (4.11)

and αT is defined as follows: For d = 2, it is the largest angle between two opposite edges.
For d = 3, such a quantity, say αE now can be defined for any face E of T. Then we set

αT := max
E∈∂T

αE .

To verify (iii), we use a similar argument. In view of (A18) (i), we have

|Ihv|1,p,T � |v|1,p,T + |(I − Ih)v|1,p,T � [1 + C]‖v‖1,p,T .

4.3.10. Assumption (A18). To prove (i), we first of all introduce two additional interpola-

tion operators. The first one is the natural interpolation operator IVh
:
[
W 1

p (Ω)
]d ⋂

V → Vh

defined via
IVh

v :=
∑
i∈Λg

v(xi)ϕi.

Again, it is sufficient to consider one component of it. Moreover, we use for any v ∈ W 1
p (Ω)

the linear interpolant I1v of v on T (for example, an averaged Taylor polynomial [6, Ch. 4]),
for which we have the estimate [6, Lemma 4.3.8],

|(I − I1)v|l,p,T � Ch1−l
T |v|1,p,T , v ∈ W 1

p (Ω), l = 0 or l = 1. (4.12)

Now we make use of the following simple inequality:

|(I − Ih)v|l,p,T � |(I − I1)v|l,p,T + |(I − IVh
)I1v|l,p,T + |(IVh

− Ih)I1v|l,p,T + |Ih(I1 − I)v|l,p,T .

Due to (4.12), it remains to estimate the last three terms. It is not difficult to verify (by a
slight modification of the proof of [19, Lemma 2.14]) that

|(I − IVh
)I1v|l,p,T � Ch1−l

T |I1v|1,p,T .

holds. Now, in order to keep the presentation clear, let w be the restriction on I1v into T,
i.e., w := I1v

∣∣
T
. For x ∈ T,

(IVh
− Ih)w(x) =

∑
i∈ΛgT

[w(xi) − wi]ϕi(x)

holds, where wi = {measd−1(Ei)}−1
∫

Ei
w ds. In the case of d = 2, the midpoint rule integrates

the linear polynomials exactly, hence w(xi) − wi = 0 simply holds. In the case of d = 3, for
any w ∈ P1(T ), we have

w(x) = w(xi) + ∇w(xi) · (x − xi)

on T since ∇w is constant on T.
It follows that

|w(xi) − wi| =

∣∣∣∣ 1

measd−1(Ei)

∫
Ei

∇w(xi) · (x − xi)ds

∣∣∣∣ � hT‖∇w(xi)‖ �
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hT |w|1,∞,T � hT{measd(T )}−1/p|w|1,p,T .

Thus, we arrive at

|(IVh
− Ih)w|l,p,T � ChT {measd(T )}−1/p |w|1,p,T

∑
i∈ΛgT

|ϕi|l,p,T .

The estimate

|ϕi|l,p,T � Ch−l
T {measd(T )}1/p |ϕi|0,∞,T � Ch−l

T {measd(T )}1/p

implies
|(IVh

− Ih)w|l,p,T � Ch1−l
T |w|1,p,T .

It remains to take into consideration the above estimate (4.12) for I1 to get

|w|1,p,T � |v|1,p,T + |(I − I1)v|1,p,T � C|v|1,p,T ,

hence
|(IVh

− Ih)w|l,p,T � Ch1−l
T |v|1,p,T .

In order to prove the fourth estimate, we first consider the stability of Ih in W l
p(Ω). By a slight

modification of the proof of [2, Lemma 2], where it is necessary to take into consideration
the fact (see [7]) that we have no unique reference element, but the constant in the Bramble-
Hilbert lemma only depends on the diameter of T̂T which can be bounded for all T̂T , we have
for w ∈ W 1

p (T )

∣∣∣∣ 1

measd−1(Ei)

∫
Ei

w ds

∣∣∣∣ � 1

measd(T )
[‖w‖0,1,T + ChT |w|0,1,T ] �

measd(T )−1/p [‖w‖0,p,T + ChT |w|0,p,T ] .

Consequently (cf. a similar argument above),

|Ihw|l,p,T � measd(T )−1/p [‖w‖0,p,T + ChT |w|0,p,T ]
∑

i∈ΛgT

|ϕi|l,p,T �

[‖w‖0,p,T + ChT |w|0,p,T ]
∑

i∈ΛgT

|ϕi|l,∞,T .

With the particular choice w := (I − I1)v
∣∣
T

and the above error estimate (4.12) we obtain

|Ih(I1 − I)v|l,p,T � ChT |v|l,p,T

∑
i∈ΛgT

|ϕi|l,∞,T � Ch1−l
T |v|l,p,T .

Thus, the desired estimate has been proved.
To verify (ii), we simply refer to [19, Lemma 4.10]:

|(I − Ih)v|l,2,T � Ch̃T h1−l
T |v|2,2,T .

4.3.11. Assumption (A19). ‖Lh(I−Ih)v‖0,2,T � ‖Lh(I−IVh
)v‖0,2,T +‖Lh(IVh

−Ih)v‖0,2,T .
holds. The first term vanishes, since

Lhv(xi) = v(xi) = IVh
v(xi) = LhIVh

v(xi).
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To estimate the second term, we apply Assumption (A15) locally to see that

‖Lh(IVh
− Ih)v‖0,2,T � C‖(IVh

− Ih)v‖0,2,T � C [‖(I − IVh
)v‖0,2,T + ‖(I − Ih)v‖0,2,T ] .

The first term in this relation can be estimated by means of [19, Lemma 2.14] (again with
h2

T replaced by h̃T hT ), whereas for the second one we use Assumption (A18) (ii).
In the final analysis, we have proved the following result.

Theorem 4.1. Assume that a shape-regular family F of partitions for P1-parametric
elements satisfies Assumption (A8) and that the family of triangulations generated by the
subsimplices ΩT,l

ij is locally quasi-uniform (see (4.3)). Then, the discrete form nh has the
following properties:

semidefiniteness: nh(wh, vh, vh) � 0;
Lipschitz-continuity: |nh(wh, uh, vh) − nh(zh, uh, vh)| � C‖wh − zh‖h‖uh‖h‖vh‖h;
onsistency: |n(w, u, vh) − nh(Ihw, Ihu, vh)| � Ch̃‖w‖2,2,Ω‖u‖2,2,Ω‖vh‖h,

uh, vh, wh ∈ Vh, u, w ∈ W 2
2 (Ω)d

⋂
V,

where h̃ := maxT∈Th
h̃T and h̃T is defined according to (4.11).

4.4. Error estimates. Now we return to the estimation of terms (2.11) – (2.19) in the
error equation.

4.4.1. Estimation of (2.11) – (2.13). If the solution (u, p) satisfies the smoothness as-
sumption (2.5), then we can apply Theorem 4.1, i.e., for w := u, wh := Ihu and arbitrary
vh ∈ Vh,

|nh(wh, wh, vh) − ñh(u, u, vh)| � Ch̃‖u‖2
2,2,Ω‖vh‖h,

|nh(uh, uh, vh) − nh(wh, uh, vh)| � C‖uh − wh‖h‖uh‖h‖vh‖h, nh(wh, vh, vh) � 0

hold.

4.4.2. Estimation of (2.14). To estimate this term, we introduce the L1-lumping operator
Jh : Q → Qh by

Jhq(x) :=
1

measd(T )

∫
T

q dx, ∀x ∈ T ∈ Th.

Then, by [19, p. 67], we get the desired result:

(p − ph,∇ · vh)h = (p − Jhp,∇ · vh)h � Ch|p|1,2,Ω‖vh‖h.

4.4.3. Estimation of (2.15). By the definition (4.9), (4.10) of the discrete L2(Ω)-inner
product (·, ·)l, we have

(∂t(u − wh), vh)l = (Lh(I − Ih)∂tu, Lhvh) � ‖Lh(I − Ih)∂tu‖0,2,Ω‖Lhvh‖0,2,Ω,

where we have used the fact that the differentiation commutes with lumping and interpola-
tion.

For v ∈ W 1
p (Ω), p > d, it is possible to prove the following estimate:

‖Lh(I − Ih)v‖0,2,T � C hT‖v‖1,p,T , T ∈ Th, (4.13)

where C is a positive constant independent of T and v. This can be done by a nearly
word-for-word transfer of the arguments used in the above verification of Assumption (A19),
including the necessary modifications of the corresponding passages in [19, Sect. 2.3].
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Using (4.13) with v = ∂tu and (A15), we get

|(∂t(u − wh), vh)l| � Ch|∂tu|1,p,Ω‖vh‖0,2,Ω.

4.4.4. Estimation of (2.16). By the triangle inequality, there holds

|(∂tu, vh)l−(∂tu, vh)| = |(Lh∂tu, Lhvh)−(∂tu, vh)| � |((Lh−I)∂tu, Lhvh)|+|(∂tu, (Lh−I)vh)|.
For the first term, we have

|((Lh − I)∂tu, Lhvh)| � ‖(Lh − I)∂tu‖0,2,Ω‖Lhvh‖0,2,Ω �

measd(Ω)(p−2)/(2p)‖(Lh − I)∂tu‖0,p,Ω‖Lhvh‖0,2,Ω.

Now we use (A16) (i) and (A15) to get

|((Lh − I)∂tu, Lhvh)| � Ch|∂tu|1,p,Ω‖vh‖0,2,Ω.

To estimate the second term, we apply (A16)(ii). As a result of both estimates, we get

|(∂tu, vh)l − (∂tu, vh)| � Ch [|∂tu|1,p,Ω‖vh‖0,2,Ω + ‖∂tu‖0,2,Ω‖vh‖h] .

Since ‖∂tu‖0,2,Ω � C‖∂tu‖0,p,Ω and ‖vh‖0,2,Ω � ‖vh‖h, we finally get

|(∂tu, vh)l − (∂tu, vh)| � Ch‖∂tu‖1,p,Ω‖vh‖h.

4.4.5. Estimation of (2.17). For we have, by (A18)(ii),

|ε(∇(u − wh),∇vh)h| � εCh‖u‖2,2,Ω|vh|h.

4.4.6. Estimation of (2.18). This estimate runs as in the estimation of (2.16) with ∂tu
replaced by f, i.e.

|(f, vh) − (f, vh)l| � Ch‖f‖1,p,Ω‖vh‖h.

4.4.7. Estimation of (2.19). The estimate (2.19) was proved in [19, Lemma 4.14 and
Lemma 4.15 together with the remark on p. 47]:

|〈f̃h, vh〉| � Ch[‖u‖2,2,Ω + ‖p‖1,2,Ω]‖vh‖h.

4.4.8. Summary. Collecting all the above estimates of terms (2.11) – (2.19) together, we
obtain with vh := wh − uh, wh := Ihu the following inequality:

(∂tvh, vh)l + ε(∇vh,∇vh)h � h̃Ψ1(u, p, f)‖vh‖h + Ψ2(uh)‖vh‖2
h, (4.14)

where

Ψ1(u, p, f) :=C[(ε+1+‖u‖2,2,Ω)‖u‖2,2,Ω+‖∂tu‖1,p,Ω+‖p‖1,2,Ω+‖f‖1,p,Ω], Ψ2(uh) :=C‖uh‖h

with constants C > 0 independent of u, p, f, uh, vh, h.
By (4.8) and Corollary 3.3, there holds

‖vh‖0,2,Ω � CP |vh|h (4.15)
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with some constant CP > 0, and thus

‖vh‖h �
√

1 + C2
P |vh|h. (4.16)

Furthermore, Assumptions (A15) and (4.15) imply that there is a constant β > 0 independent
of h such that with ‖vh‖0,h :=

√
(vh, vh)l,

‖vh‖0,h � β|vh|h. (4.17)

Because of the relation

(∂tvh(t), vh(t))l =
1

2

d

dt
(vh(t), vh(t))l =

1

2

d

dt
‖vh(t)‖2

0,h,

it follows from (4.14) and (4.16) that

1

2

d

dt
‖vh(t)‖2

0,h + ε|vh(t)|2h � h̃
√

1 + C2
P Ψ1(u, p, f)|vh|h + (1 + C2

P )Ψ2(uh)|vh|2h �

h̃2 1 + C2
P

ε
Ψ2

1(u, p, f) +

[
ε

4
+ (1 + C2

P )Ψ2(uh)

]
|vh|2h. (4.18)

If (4.17) is used to estimate one half of the term ε|vh(t)|2h, a simple rearrangement of (4.18)
leads to

d

dt
‖vh(t)‖2

0,h +
ε

β2
‖vh(t)‖2

0,h +

[
ε

2
− 2(1 + C2

P )Ψ2(uh)

]
|vh|2h � 2h̃21 + C2

P

ε
Ψ2

1(u, p, f).

Multiplying this relation by eγt, where γ := ε/β2, the identity

d

dt
(eγt‖vh(t)‖2

0,h) = eγt d

dt
‖vh(t)‖2

0,h + γeγt‖vh(t)‖2
0,h

leads to

d

dt
(eγt‖vh(t)‖2

0,h) +
[ε

2
− 2(1 + C2

P )Ψ2(uh)
]
eγt|vh|2h � 2h̃21 + C2

P

ε
Ψ2

1(u, p, f)eγt.

If ‖uh‖h is sufficiently small so that the term in square brackets becomes nonnegative (the
precise formulation of this assumption is given in (4.20) below), then

d

dt
(eγt‖vh(t)‖2

0,h) � 2h̃21 + C2
P

ε
Ψ2

1(u, p, f)eγt,

and the integration over (0, t) results in

eγt‖vh(t)‖2
0,h − ‖vh(0)‖2

0,h � 2h̃2 1 + C2
P

ε

t∫
0

Ψ2
1(u, p, f) eγs ds

for all t ∈ (0, t∞). Multiplying this by e−γt, we get the relation

‖vh(t)‖2
0,h � ‖vh(0)‖2

0,h e−γt + 2h̃21 + C2
P

ε

t∫
0

Ψ2
1(u, p, f) e−γ(t−s) ds.

In the final analysis, we have proved the following result for the case where ‖uh‖h is
sufficiently small.
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Theorem 4.2. Assume that the shape-regular family F of partitions for P1-parametric
elements satisfies Assumption (A8) and that the family of triangulations generated by the
subsimplices ΩT,l

ij is locally quasiuniform (see (4.3)).
Further assume that the unique weak solution of (2.3) with u0 ∈ W

⋂
V satisfies (2.5),

i.e.,
(u, p) ∈ L2((0, t∞), W 2

2 (Ω)d) × L2((0, t∞), W 1
2 (Ω)),

and, for some p > d, the condition

t∫
0

[(ε + 1 + ‖u‖2,2,Ω)‖u‖2,2,Ω + ‖∂tu‖1,p,Ω + ‖p‖1,2,Ω + ‖f‖1,p,Ω]2 e−ε(t−s)/β2

ds < ∞, (4.19)

is met, where β is the constant from (4.17).
Finally, let the semidiscrete problem (2.4) with u0h := Ihu0 have a unique solution

(uh, ph) ∈ Vh × Qh such that ‖uh‖h is sufficiently small in the following sense:
There exists a sufficiently small constant c0 > 0 independent of h such that

sup
(0,t∞)

‖uh‖h � c0ε. (4.20)

Then the following error estimate for the semidiscrete velocity field holds on (0, t∞):

‖Ihu(t) − uh(t)‖0,h � h̃

√
2
1 + C2

P

ε
Cw,

where the quantity Cw is the square root of the left-hand side of (4.19).

5. Conclusion

In this paper we discussed a general framework for the finite-volume-based discretization
of the nonlinear convective term in the incompressible Navier — Stokes equations. The
proposed approach makes it possible to derive an estimate of the semidiscrete velocity error
measured in a discrete L2-norm without use of any linearized stability theory. As long as the
numerical solution satisfies a certain smallness assumption, the stationary pendant of which
is widely used (cf. [17, Sect. IV.2]), it has been shown that the constant in the error estimate
is time-independent and of order O(ε−1/2) = O(

√
Re), but not O(exp(ε−1)) = O(exp(Re)).
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