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Chapter 1
Introduction and Motivation

The work of this thesis is focused on the rejection of harmonic disturbances with time-
varying frequencies through gain-scheduling controllers. These disturbances can be found
in industrial applications where rotating machinery operates with varying speed, e.g.,
vehicles and aircrafts. This control problem is shown in Fig.[I.1] where a harmonic dis-
turbance with ngq harmonic components is acting at the output of a single input single
output (SISO) linear time-invariant (LTI) plant. The state-space matrices are represented

with Aé""x”p), Bl(onpxm”p) and ngpxnp). The plant input is denoted by wu, j, the plant
output is yp, &, the harmonic disturbance is yq 1 and y;, is used for the adition of disturb-
ance with the plant output. To solve this problem it is assumed that the frequencies of
the disturbances are known or they can be measured.

Gain-scheduling controllers that are automatically adjusted to the disturbance fre-
quencies are usually used for the rejection of disturbances with time-varying frequencies
(Balini et al. (2011), Ballesteros & Bohn (2010, 2011a, 2011b), Ballesteros et al. (2012,
2013, 2014a, 2014b, 2014c), Bohn et al. (2003, 2004), Darengosse & Chevrel (2000), Du
& Shi (2002), Du et al. (2003), Duarte et al. (2012, 2013b, 2013c), Fiiger et al. (2012,
2013), Heins et al. (2011, 2012a, 2012b), Karimi & Emedi (2013), Koroglu & Scherer
(2008), Kinney & de Callafon (2006a, 2006b, 2007, 2009), Shu et al. (2011, 2013) and
Witte et al. (2010)).

Four control approaches are presented in this thesis for the reduction of time-varying
harmonic disturbances applying linear parameter varying (LPV) control design tech-
niques. Two observer-based state-feedback controllers are designed based on the control
structure proposed by Bohn et al. (2003, 2004) and Kinney & de Callafon (2006a). Two
output-feedback controllers are also designed based on the control design of Gahinet &
Apkarian (1994) and Apkarian & Gahinet (1995). All the LPV controllers are designed
in discrete time and validated experimentally in three different test benches.

Control Approaches

The reduction of harmonic disturbances with time-varying frequencies can be achieved
using adaptive active noise control (ANC) or active vibration control (AVC) techniques
(Bein et al. (2012), Duan et al. (2013), Inoue et al. (2004), Kuo & Morgan (1996),
Landau et al. (2013), Matsuoka et al. (2004), Sano et al. (2001, 2002), Shoureshi &
Knurek (1996), Shoureshi et al. (1997) and Svaricek et al. (2010)). Adaptive filtering
updating the filter weights through the filtered-x LMS (FxLMS) algorithm is the common
approach in ANC/AVC (Bein et al. (2012), Duan et al. (2013), Kuo & Morgan (1996)
and Svaricek et al. (2010)). The main disadvantage of this approach is that the analysis
of the closed loop is difficult. The stability and transient behavior (convergence speed)

depend on the system input. Also, to date, only approximate stability results are available
for the FxLMS algorithm (Feintuch et al. (1993) and Kuo & Morgan (1996)).

1
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Figure 1.1: Control problem example for a harmonic disturbance with nq harmonic com-
ponents

Another approach is the use of gain-scheduling controllers for the rejection of periodic
disturbances with time-varying frequencies. These controllers adjust their gain-scheduling
parameters from the disturbance frequencies (Balini et al. (2011), Ballesteros & Bohn
(2010, 2011a, 2011b), Ballesteros et al. (2012, 2013, 2014a, 2014b, 2014c), Bohn et al.
(2003, 2004), Darengosse & Chevrel (2000), Du & Shi (2002), Du et al. (2003), Duarte
et al. (2012, 2013b, 2013c), Fiiger et al. (2012, 2013), Heins et al. (2011, 2012a, 2012b),
Karimi & Emedi (2013), Kéroglu & Scherer (2008), Kinney & de Callafon (2006a, 2006b,
2007, 2009), Shu et al. (2011, 2013) and Witte et al. (2010)). Depending on the method
used for the calculation of the gain-scheduling parameters, the controllers can be further
subdivided into indirect and direct scheduling.

In indirect scheduling, the controller or part of it, for example a state-feedback or
observer gain, is determined from a set of pre-computed quantities through interpolation
or switching. For example, for linear parameter-varying (LPV) systems, where the un-
certain parameters are contained in a polytope (polytopic LPV (pLPV)), one controller
or a feedback gain is calculated for each vertex and the resulting controller is obtained
from interpolation (Ballesteros et al. (2012, 2013, 2014a, 2014b, 2014c), Darengosse &
Chevrel (2000), Du & Shi (2002), Duarte et al. (2013c), Fiiger et al. (2012, 2013), Heins
et al. (2011, 2012a, 2012b), Kinney & de Callafon (2006a), Koroglu & Scherer (2008)
and Shu et al. (2013)). In the approach of Bohn et al. (2003, 2004), the observer gain is
selected from a set of pre-computed gains by switching. An interpolation between a grid
of controllers is proposed by Karimi et al. (2013). Kinney & de Callafon (2006b) uses a
look-up table to switch between state-feedback gains. A different approach is considered
by Kinney & de Callafon (2007), where linear time-invariant (LTI) controllers are directly
interpolated.

In direct scheduling, the dependence of the controller on the scheduling parameter does
not correspond to a simple interpolation or switching law (Ballesteros & Bohn (2010,
2011a, 2011b), Du et al. (2003), Duarte et al. (2012, 2013b), Kinney & de Callafon
(2007), Shu et al. (2011) and Witte et al. (2010)). For example, for LPV systems
where the parameter dependence is expressed as an LF'T, the uncertain parameters also

2



1. Introduction and Motivation

Gain-scheduling controllers Adaptive methods
Direct Indirect
scheduling scheduling Other
FxLMS adaptive
Other LPV Other methods
direct indirect
scheduling LFT- scheduling
methods LPV pLPV methods

Figure 1.2: Overview of the control approaches used for the reduction of time-varying
harmonic disturbances

enter the controller through an LFT (Ballesteros & Bohn (2010, 2011a, 2011b) and Shu
et al. (2011)). Another example for direct scheduling is a controller based on a time-
varying state estimator, for example a Kalman filter, where the scheduling parameters
enter the controller through the recursive equations for the state estimation and the
error covariance matrix. Such a controller is presented and compared to an indirect
(interpolation) approach by Kinney & de Callafon (2007).

An overview and a classification| of all the control approaches is shown in Fig.[1.2] This
thesis is focused on the control design of discrete-time LPV controllers (LFT and pLPV)
for the reduction of time-varying harmonic disturbances. The advantages of applying

discrete-time LPV techniques are discussed in Secs. and [L.3]

Stability Considerations

For the reduction of time-varying harmonic disturbances there are approaches that take
stability into consideration and such those do not. In indirect scheduling, for example, the
controllers or gains are sometimes pre-computed for fixed operating points and then inter-
polated in an ad-hoc fashion (Bohn et al. (2003, 2004), Kinney & de Callafon (2006b)).
Stability is then not guaranteed, although it might be expected that the system is stable
for slow variations of the scheduling parameter. For the adaptive filtering approaches,
only approximate stability results seem available to date (Feintuch & Bershad (1993),
Kuo & Morgan (1996) and Ardekani (2012)).

To take stability into consideration, it is attractive to model the control problem as an
LPV system and then use suitable gain-scheduling techniques. Linear parameter-varying
(LPV) techniques are used by Apkarian & Gahinet (1995), Ballesteros & Bohn (2010,
2011a, 2011b), Ballesteros et al. (2012, 2013, 2014a, 2014b, 2014c), Cauet et al. (2013),
Daafouz et al. (2000), Darengosse & Chevrel (2000), Du & Shi (2002), Du et al. (2003),
Duarte et al. (2012, 2013b, 2013c), Fiiger et al. (2012, 2013), Heins et al. (2011, 2012a,
2012b), Kajiwara et al. (1999), Kéroglu & Scherer (2008), Kinney & de Callafon (2006a),

In Unbehauen (2011) gain-scheduling is considered as a feedforward adaptation (in German
“gesteuerte Adaption”)



1. Introduction and Motivation

Rugh & Shamma (2000), Shu et al. (2011, 2013), Veenman & Scherer (2014), White et
al. (2013) and Witte et al. (2010) and the stability is then guaranteed for arbitrarily fast
changes in the gain-scheduling parameters. This work uses LPV techniques (LFT and
pLPV) and independent Lyapunov functions for the design of gain-scheduling controllers
for the rejection of time-varying harmonic disturbances.

In some applications, an LPV controller is not able to cover a range of the gain-
scheduling parameter. A switch between pLPV controllers is in thesis presented to aug-
ment the actuation range of the controllers guaranteeing the stability at the same time.
This method is based on independent Lyapunov functions. In Shimomura (2003), a switch
between controllers based on parameter-dependent Lyapunov functions is proposed. A
“smooth” switching is achieved in Hanifzadegan & Nagamune (2014) using also parameter-
dependent Lyapunov functions. The main objective of the switching strategy presented
in this thesis is to augment the actuation range of the controller, not to reduce the con-
servatism using parameter-dependent Lyapunov functions as in Shimomura (2003) and
Hanifzadegan & Nagamune (2014).

Implementation Aspects

For a practical application, the controller obtained with the LPV control design has to
be implemented in discrete time. In ANC/AVC applications, the plant model is often
obtained through system identification. This usually gives a discrete-time plant model. It
is therefore most natural to carry out the whole design in discrete time. If a continuous-
time controller is computed, the controller has to be discretized. Since the controllers
considered here are time-varying, the discretization would have to be carried out at each
sampling instant. An exact discretization involves the calculation of a matrix exponential,
which is computationally too expensive. Particularly in LPV gain-scheduling control, an
approximate discretization is proposed by Apkarian (1997). However, this leads to a dis-
tortion of the frequency scale. Usually, this can be tolerated, but not for the suppression
of harmonic disturbances. It is therefore not surprising that the continuous-time control-
lers of Darengosse & Chevrel (2000), Du et al. (2003), Kinney & de Callafon (2006a) and
Koroglu & Scherer (2008) are only tested in simulations with a very simple system as a
plant and a single frequency in the disturbance signal.

The design methods that are tested in real time are usually formulated in discrete time
(Ballesteros & Bohn (2010, 2011a, 2011b), Ballesteros et al. (2012, 2013, 2014a, 2014b,
2014c), Bohn et al. (2003, 2004), Duarte et al. (2012, 2013a, 2013b, 2013c), Heins et
al. (2011, 2012a, 2012b), Kinney & de Callafon (2006b, 2007), Shu et al. (2011, 2013)).
Exceptions are Witte et al. (2010) and Balini et al. (2011), who designed continuous-time
controllers which then are approximately discretized. However, Witte et al. (2010) use a
very high sampling frequency of 40 kHz to reject a harmonic disturbance with a frequency
up to 48 Hz (in fact, the authors state that they chose “the smallest [sampling time]
available by the hardware” and Balini et al. (2011) use a maximal sampling frequency
of 50 kHz. Another exception is Ruderman et al. (2014), they designed continuous-
time observer-based LTT controllers for the reduction of a disturbance with a dominant
frequency of 10 Hz using a sampling frequency of 11 kHz. It seems more natural to directly
carry out the design in discrete time to avoid discretization issues.

All the controllers for the rejection of time-varying harmonic disturbances of this thesis
are designed in discrete-time and validated experimentally in three different test benches.
Discrete-time SISO gain-scheduling controllers are validated in an ANC headphone and an

4
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Chapter 2

LPV control
design

Chapter 5

Figure 1.3: Structure representation of this work

AVC test bed and a multiple-input multiple-output (MIMO) LPV controller is validated
experimentally in a Golf VI Variant for the rejection of nine time-varying frequency com-
ponents induced by the engine vibration. To the best knowledge of the author, it is the
first time that a discrete-time MIMO pLPV controller for the rejection of harmonic dis-
turbances with time-varying frequencies is implemented and validated with experimental

results. A switching strategy assuring the stability is used to augment the actuation range
of the MIMO LPV controller.

Thesis Outline

Three pLPV control structures (Ballesteros et al. (2012, 2013, 2014a, 2014b, 2014¢) and
Heins et al. (2011, 2012a, 2012b)) and an LFT control structure (Ballesteros & Bohn
(2010, 2011a, 2011b) and Shu et al. (2011)) for the reduction of harmonic disturbances
with time-varying frequencies are presented in this thesis. The control structures are
explained for the LTI case (constant disturbance frequencies) and then are extended to
the LPV case (time-varying disturbance frequencies).

This thesis is organized as follows (see Fig. In Chapter, the internal model prin-
ciple (IMP) (Francis and Wonham (1976)) is explained and three discrete-time LTI control
structures fulfilling this principle are presented. Two observer-based control structures
and an output-feedback control structure are considered for a general disturbance acting
on a plant. These control structures are presented here for the LTI case and they achieve

5



1. Introduction and Motivation

disturbance rejection for a general disturbance acting on the plant. Chapter[3] extends
the control structures of Chapter[2] to the LPV case and general pLPV and LFT control
structures are presented. The rejection of harmonic time-varying disturbances through
LPV gain-scheduling control is explained in Chapter[dl Different methods to model the
disturbance are discussed and a polynomial approximation to reduce the gain-scheduling
parameters is used. A pLPV or an LFT control structure is obtained depending on the
technique used to model the disturbance. A switching control strategy is also presen-
ted to augment the actuation range of the controller. The LPV controllers obtained in

Chapter[d]are validated with experimental results in Chapter[p] The conclussions are given
in Chapter[6]



Chapter 2
Internal-model-principle-based Control

This thesis focuses on the rejection of disturbances acting on a plant. This problem is
shown in Fig.[2.1] The discrete-time state-space representation of a plant is given by

Lp, k+1 | _ AP BP :| |: Lp, k :| 21
sl 2

with the plant state-space vector @ i, the plant input w, ; and output y, , and the

plant state-space matrices AJ»*"), Bénpxmup), C;(JTypxnp) and Dl(arypxmup) The state-
space representation of a disturbance is described by

T4, kt1 Aq | By Ty k
; _ ) 2.2
[ Ya,k } [ Cq| Dy } [ Wy, k } ( )

with the disturbance state-space vector xq j, the disturbance model input wq, 5, output

Ya., and the disturbance state-space matrices Afndxznd), Bf”dxmwd), C((fydxznd) and

D(Tydxm“’d)
d .
According to the well known IMP proposed by Francis and Wonham (1976), controllers

designed for the rejection of a disturbance must contain a model of it. A trivial example
illustrating this principle is shown for a harmonic disturbance yq = sin(27 ft;) acting
on the output of a system described by the difference equation

Yp ki1 = a¥p i + (1 — @)up x + Ya,x (2.3)
where the constant ¢ > 0 and f is the frequency of the disturbance in Hz. A transfer
function representation between input and output of the system is given by

Yo(2) 1-a
Up(2) z-—a’

Go(z) = (24)

> Aq ‘Bd
Waq, ;5 | C4 ‘Dd

Disturbance model

Yda, k

A, | B,

Up, & Cy ‘Dp Yok Yk
Plant

Figure 2.1: Plant and disturbance model
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"o

Disturbance
Yd, k
[ G (#)
Up, k Yp, & Y
Plant
K(z) [e——
Controller

Figure 2.2: Control structure

In this example, the algebraic control design method is used to obtain a controller for the
rejection of the disturbance.

The controller

— (z —a)(s12 + so0)
K(z) = (1 —a)(2?2=2cos(2nfT)z+ 1)(r1z +1o) (2.5)

obtained with

r = ]_,

ro = —(a1 + as + as) + 2cos(2w fT)ry,

$1 = aias + agaj + asas — 11 + 2cos(2w fT)rg

and

Sog = —Tog — ai1aqas

is capable to place the poles in closed loop in z = ay, 2 = ay and z = ag rejecting the
harmonic disturbance at the same time. The control structure is shown in Fig.[2.2l The
closed-loop transfer function between disturbance and output is given by

1 (22 —2cos(2n fT)z+ 1)(r1z + 1)

Gyd(z) = 1+KGp - (Z—al)(z—ag)(Z—ag)

(2.6)

The pole-zero map and amplitude frequency response of the controller K (z) and the
closed-loop transfer function G,4(z) are shown in Fig. for T = 0.001s, f = 20Hz,
a=0.1,a, =04, a; = 0.6 and a3 = 0.8. The controller poles at the frequency of the
disturbance to be cancelled (20 Hz) show up as zeros in the closed-loop transfer function,
as long as the model of the disturbance is contained in the controller the IMP is fulfilled.
As a result of this, the controller is able to reject the harmonic disturbance.

In the next section three L'TT controllers which contain a model of the disturbance are
presented to achieve disturbance rejection.
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Figure 2.3: Pole-zero map (top) and amplitude frequency response (bottom) of controller
(left) and closed-loop transfer function (right) for a sampling frequency of 1 kHz

LTI Controller Structures

This section presents LTI observer-based state-feedback and output-feedback control struc-
tures for the rejection of general disturbances acting on a plant (see Fig. It is assumed
that the nature of the disturbance is known and therefore a model of it can be obtained.
The controllers presented in these subsections reject the disturbances since they contain
a model of the disturbance fulfilling the IMP.

Observer Based Control Structures

Two LTI observer-based state-feedback controller structures for the rejection of disturb-
ances acting on a plant are explained in this section. The LTI disturbance-observer state-
feedback control structure of Bohn et al. (2003, 2004) and the LTI error-filter observer-
based control structure of Kinney and Callafon (2006a) are briefly reviewed. In the next
chapters, these control structures are extended to LPV control structures. The LTT control
design approaches presented here use state augmentation to add certain desired dynamics
to the controller in order to fulfill the IMP.
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Observer-based
state-feedback

/ controllers

Disturbance
rejection through
LTT controllers

Based
on the IMP

Output-feedback
controllers

Figure 2.4: LTI controllers for the rejection of disturbances based on the IMP

Disturbance Observer Control Structure

In this control design, a disturbance y, , acting at the input of the plant

Tp,k+1 | _ Ap Bp]{ Lp, k ] 2.7
[ Yo,k } [Cp 0 Up,k + Ya,k 27

is modeled as the output of an unforced LTT exo-system

e - [oefe] [ e o5

as shown in Fig.[2.5. The dimensions of the system matrices for plant and disturbance
are defined with Axm) | BU™X™e) o) gRnaxana) o o),

To obtain a disturbance-observer controller, an augmented system is built combining
plant and disturbance model through

Td, k+1 Ay 00 T4 1
Lp, k+1 = BpCd Ap Bp Lp, k (29)
Yo k 0 C,| 0 Up &
and it can be written in compact form as
[ Lo, k+1 } _ [ Ag, | By, ] [ Lo k } (2.10)
yp,]g Cdo 0 Up, k ‘
with
_ | Tk (2na+np)x(@2natny)) _ | Aa 0
ok = { Lp, k ] A B [ B,Caq A, ] 7
(2.11)
B((i(:nd‘i’np)xmup) — |: gp :| and C((;pr(2nd+np)) _ |: 0 Cp :|

where the acronym “do” is used for disturbance observer approach.

10
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Wy, A Ya, k
anf Aa| 0

Ciql 0
Disturbance
model Ap Bp
—>
Up, CP 0 Yok

Plant

Figure 2.5: Disturbance modeled at the input of the plant

The control structure of this approach is a constant state-feedback gain K g:"p X (@natnp))

. T
up k= —Kao®aor = — [ Ka K, | { Adﬁ’f} (2.12)
Ly k
of the augmented system with the estimated states &4, calculated through an identity
observer

Lo, k
CAcdo,lc—&-l = [ Ado - Ldocdo ‘ Bdo Ldo ] up,k (213)

yp7 k

with
((2natnp)xry,) | Lg
Ldo - |: Lp :| :

The feedback gain K, can be chosen to change the dynamics of the plant, whereas K4 can
be chosen equal to Cy to achieve disturbance rejection. This leads to the typical observer-
based state-feedback control structure shown in Fig.[2.6] A state-space representation of
the obtained controller is given by

[ ido,kJrl :| _ |: Ado — LdOCdO — BdoKdo ‘ Ldo :| |: ido,k :|
Up, k Kdo ‘ 0 Yo,k .

(2.14)

(2.15)

The controller is written in compact form as

|i ﬁjdo,k-}—l :| _ |: Adoc Bdoc :| |: ﬁ:do,k :| (2 16)
up,kz Cdoc 0 yp,k .

with
Ac(i(fgld+np)><(2nd+np)) = Ado - LdOCdO - BdoKdm

(2.17)
B((Qnd-‘rnp)xryp) _ Ld07 C(mupx(2nd+np)) _ Kdo

doc doc
and disturbance-observer controller is denoted by “doc”. The controller is stable as long
as the eigenvalues of A4, are contained inside the unitary circle. The gain Lg, can
be calculated by means of a discrete-time linear quadratic regulator for the augmented
system. This is equivalent to calculate the observer gain Lg, solving the LMIs

P PAdo - YTCdO

(PAy, — Y'Cu)" PoI >0, (2.18)

11



2. Internal-model-principle-based Control

Ya, k
9 Uy, k; % Ap ‘ Bp Yo, k >

Ado - LdOCdO ‘ Ldo BdO -‘i’(lo, k
[
BN 1 0 o

;
|
|
|
I
I
Observer for [
|
|
I
I
|

augmented system

K do
State-feedback

Figure 2.6: Disturbance-observer controller structure

W QP — RY
. - >0 2.19
Lop vy TR |20 219
trace(W) < ~2 (2.20)
for Y (rvp*(2ratme)) and for the positive definite matrices P((2ratme)x(2natnp))
and W((Typ+2nd+”p)><(Typ+2nd+np)) with
~ ((r nq+np nd+np 3 ~ ((r ng+np)Xr 0
&\ 2natne)x (o)) _ { %z } | Rlrwrrmatn)xryy) { o } (2.21)
and
Y' = PLg, (2.22)

using the same weighting matrices Q((?7a+me)x(2natme)) anq Rwo*7vp) ag the discrete-time

linear quadratic regulator.

Finally the observer gain L((i(jnd"rnp)xryp)

is calculated through
Ly, =P 'Y" (2.23)

These LMIs are based on the Ho-norm optimization problem, if solutions for P, W and
Y are found, the system has an Hs-norm bounded by 7 (see and [A.4)).

The stability analysis of the overall closed-loop system is obtained from the observer
error for the plant states

T,k
T k1 = Tp k1 — Lp 1 = [ B,Cq A, - L,C, ‘ —-B, } T, k (2.24)
Yak
and the plant states under state feedback

xr
x, 11 =] —B,Kqs —B,K, A,—~B,K,|B,]| ™" |. (2.25)
Yak

12
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Ad _Lde 0 id. k .
gur » B,Ca Ay - L,Cy |-By Ty 1 _[Cd KP} A - BPKP‘ By M
1 0 ‘ 0 —» c, |o
0 I 0

Figure 2.7: Dynamics of the overall closed-loop system

The overall closed loop dynamics of the system are given by

5 T
T4, k+1 Ay —LsC, 0 0 id,z
Lp, k+1 -B,Kq« —-B,K, A,-B,K,| B, ﬁ

The structure of the overall system dynamics is shown in Fig.[2.7] The plant under
state feedback is driven by the dynamics of the observer for the augmented system. From
here it follows that as long as a stabilizing state-feedback gain K, for the LTI plant
(A,—B,K) and a stabilizing observer gain Ly, for the augmented system (Aqo—L4oCdo)
are found the closed loop system is stable. The feedback gain K4 does not have influence
on the eigenvalues of (A, — B,K,) and (A4, — L4oCdo) and therefore does not have
influence on the overall closed loop system stability.

An example of this control design is shown for the simple system of with the
state-space representation given as

Tp, k41 a 1 Tp, k

' = ’ 2.27

{ Up.k ] {(1—61) OHUM] (220
when a single harmonic disturbance yq , = sin(27ftx) (nqg = 1) is acting at the input of

the plant for a = 0.1, f = 20Hz and t, = T, 27, ... with 7" = 0.001 s. A model for a
harmonic disturbance with a constant frequency f is given by

0 1 0
{ Fd, k+1 ] = | = 2rcos(2rfT) |0 [Zd’“ } (2.28)
Ya, k 1 0 ‘ 0 d, k

with 7 = 0.9999. From 1) and 1) the values for AJ*™ = q, Bé”"xm“p) =1,

™~ (-
A(2nd><2nd) _ 0 1 and C(rdeQnd) — [ 1 0 ] (2 29)
d —r? 2rcos(2nfT) d .

are obtained with n, = m,, =1, =nq=r, = 1.

The augmented system of (2.10)) is built with

A 0 0 1 0
Ado((2nd+”p)x(2”d+np)) — d — —r2 9 COS<27TfT) 0 , (230)
ByCa Ay 1 0 a

13



2. Internal-model-principle-based Control

2 0 0
B(d(ond“r?’bp)Xmup) — |: B :| — O (231)
p 1
and )
Cg;ypx( natnp)) _ [ 0 Cp ] _ [ 0 0 (1 _ a) ] (2.32)

to calculate the observer-feedback gain Lg,. The observer-feedback gain can be calculated
using a discrete-time linear quadratic regulator for the augmented system or equivalently,

solving the LMIs of ([2.18)-(2.20). The matrices

00l 0 0
QFratne)x(@ratme)) — 10 0.01 0 and  ROw>"w) = 1000 (2.33)
0 0 001

are chosen after trying different values to achieve a desired performance in the closed-loop
system. The observer-feedback gain

r\ZratmXre) 10,0346 0.0337 0.0387 |" (2.34)

is obtained.
The state-feedback gain

Kgronupx(2’l’bd+np)) — |: Cd 0 ] (235)
is chosen to achieve disturbance rejection. The controller of (2.16)) is obtained with

A((2nd+np)><(2nd+np)) — Ado _ LdoCdo — By Ky, =

doc

0 1 —0.0311 (2.36)
= Agoe = | —1* 2rcos(2rfT) —0.0304 |,
0 0 0.0652
BlZratme ) _ py 0 — 100346 0.0337 0.0387 7, (2.37)
and
cmex@ratm) g 10 0], (2.38)

The pole-zero map and the amplitude frequency response are shown in Fig.[2.§8|for the
controller and the closed-loop system. The closed-loop system is stable since (A, — B, K})
is stable (K, = 0) and the matrix (Agqo — LaoClo) is stable (Fig.2.7 and (2.26)). The
gain K4 = Cy does not have influence in the closed-loop stability.

Error Filter Observer-based Control Structure

Disturbance rejection is achieved in this approach including the dynamics of the disturb-
ance into the controller through an error filter. A schema of this control structure is
shown in Fig.. The error e;, obtained with the output vy,  of the plant

Lp, k+1 — AP BP :| |: Lp, k :| 2.39
[ yp,k 1 |:Cp 0 Up K ( )

14
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Figure 2.8: Pole-zero map (top) and amplitude frequency response (bottom) of controller
(left) and closed-loop system (right) for a sampling frequency of 1 kHz

is filtered through a model of the disturbance

[md,kﬂ 1 _ { Aq | B ] { T, ] (2.40)

yd,k I O ek

with ex = —y,, . The dimensions of the system matrices for plant and disturbance are
defined by Al()”pxnp), BI()nPXm"p)7 CS"”PX""), Agnd“nd) and Bfndxryp).

The models of plant and error filter are combined in this control design to obtain a
state-space representation

T4 k41 Ay —BsC, | 0 T4k
2orn |=| 0 A, |B, || (2.41)
yp,k 0 Cp 0 Up, |

of the augmented system. In compact form the augmented system can be written as

[mef,k-i-l ] _ { Ay Bef] {wef,k ] (2.42)

Yp. & Cs| O Up,

15
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Error filter

ekl Ad Bd La, k :'u'p.,k Ap Bp Yo, k >
- I |0 I C,l 0

| Controller | Plant

Figure 2.9: Error-filter controller structure

with
L4,k :| A((Qnd+np)><(2nd+np)) . l Ad —Bde :|
’ ef - 3

Lef, k = { 0 A
P

Lp, k

(2.43)

(2nq+np) Xmay,) 0 (ry. X (2ng+np))
Ba " p:[BJ’Cefyp w=[0 G, ]

and “ef” is used for the error-filter approach.
X (2nq+np

The error-filter control structure is a state-feedback gain K ,(;fn"p D of the aug-

mented system

T
up,k:_Kefwef,k:_[Kd Kp ] |: Ad7k :| (244)
LTy, k
with the estimated plant states &, ; calculated using an identity observer
Ty i
Tph = | Ay — L,Cy | By, L, | | upy (2.45)
yp,k:

. . (npXry.)
with an observer gain L P

A state-space representation of the controller is given by

L4, k+1 Ad 0 Bd Ly, k
Tpry | = | —ByKaq Ay,—B,K,—-L,C,| L, Tp, i (2.46)
’U,p,k —Kd —Kp ‘ 0 €L

and the control structure is shown in Fig.[2.10, A state-representation of the controller in
compact form is given by

[ Lefe, k1 1 _ [ Acte | Bete } [ Lefe, k } (2.47)

Uy | Cefc 0 €k
with
o = |TAR| | AlCratn)x@natng) _ Aq 0
ek = g | ek ~B,K, A,—B,K,—L,C, |’

(2.48)

gCratm)xryy) _ { By }

efc L

p

16
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Figure 2.10: Error-filter control structure
and )
clmwxCratm) 1 g, —K, ] (2.49)

Error-filter controller is denoted by “efc”. The controller is stable if the eigenvalues of the
matrix Aep are placed inside the unitary circle. The constant state-feedback gain K¢
can be calculated solving the LMIs

P (AefP—BefY)T
{ AP — BY P-1 } >0, (2.50)
w )P — RY
[ (QP — RY)" N P } >0, (2.51)
trace(W) < ~2 (2.52)

for the positive definite matrix P((2ratnme)x@natnp)) yp7 (mup+2natnp) X (mup +2natne)) apq for
the matrix Y (e *(2ratme)) with

Q((mup+2nd+np)x(2nd+np)) _ |: %é :| and R((mup+2nd+np)><mup) _ |: ‘RO% :| (253)

for the matrices Q((2ratme)x(2ratnp)) gpnq R(MupXmup),

The constant state-feedback K i;n"px(%ﬁnp)) gain is calculated as

Ky=YP "' (2.54)

The closed-loop system has an Hs-norm bounded by ~ if solutions for these LMIs are

found (see and |A.4]).

To study the stability of the closed-loop overall system, the observer error of the plant

- . T
Tp k+1 = Lp k41 — Lp k+1 = [ A, - L,C, ‘ —B, } { yz’z } (2.55)

17
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Figure 2.11: Overall closed-loop dynamics

and the plant under state feedback

Lo, k

xr
Tp k+1 = [ -B,K, —-B,Kq A,-B,K, ‘ B, ] il?jz (2.56)

Ya, k

are combined to obtain the overall closed-loop system dynamics given by

- x

&y pi1 A, - L,C, 0 0 -B, wzz

Td, k1 = 0 Aq —BdC’p 0 - ’ . (257)
Lp, k+1 -B,K, -B,Kq A,—-B,K,| B, ﬁ:

The dynamics of the overall closed-loop system are shown in Fig.2.1T} From this repres-
entation it can be seen that the dynamics of the augmented plant under state feedback
are driven by the dynamics of the observer error for the plant states. Choosing an ob-
server gain L, for the plant and a state-feedback gain K¢ for the augmented system such
that (A, — L,C}) and (A¢ — BeK ) are stable; it guarantees overall stability of the
closed-loop system.

A simple example of this control design is realized with the plant of

-t ] o
Yp, k 1—a]|0 Up, k

for @ = 0.1 and a disturbance yq = sin(27ft;) with only one frequency component
(ng=1), f=20Hz, t, =T, 2T, ... and T = 0.001 s acting at the input of the plant. The

plant matrices are given with AI()annp) = a, Bf,npxm“p) =1 and C’I()Ty"xnp) = (1—a). The

error e, = —Yp  is filtered with the model of the disturbance as in . For a harmonic

disturbance the error-filter is given as

Ld, k+1 Ay | By T4 K
7 = ' 2.59
{yd,k}{IO}{ek] (2:59)
with
(2ngx2nq) __ 0 1 (2naxry,) | 1 N
Ad - |: —7"2 o COS(QTFfT) :| ) Bd = |: 0 :| and r = 0.9999 . (260)

18
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From these system matrices from plant and error filter the dimensions n, = m,, =r, =
ng = ry, = 1 are obtained.

(Mup X (2ng+np)

For the calculation of the state-feedback gain K ) the augmented system
T, ht1 Ay —ByC, | 0 Ty k

Tp, k+1 = 0 Ap Bp Tp, k (261)
Yp. k 0 Cy |0 Up. 1

is built. A state-feedback gain

Ky=[Kq K, ]|=[-00346 0.0337 0.0348 ] (2.62)

is obtained with a discrete-time linear quadratic regulator or using the LMIs from ([2.50))-

(£52) with

001 0 0
QCratre)xCratmo)) — 10 0.01 0 and R(™MwXmu) = 1000 . (2.63)
0 0 001

The matrices @ and R were chosen to satisfy a desired performance in closed loop after

testing different values for them. The observer gain Ll(pnpwyp) = 0.0499 place the pole
for the observer (A, — L,C,) in 0.0551. A state-space representation of the controller

obtained is given by ([2.47) with

A((2nd+np)><(2”d+”p)) _ Aq 0
efc _BpKd Ap - Bpr - LPCP

. ) . (2.64)
=Ag.=| —r* 2rcos(2nfT) O :
0.0346  —0.0337  0.0203
2 B L
B((gicnd—ﬁ-np)xryp) _ |i Ld :| — 0 (265)
P 0.0499
and

clpwx @t _ g K, ] =1[00346 —0.0337 —0.0348 ]. (2.66)

Pole-zero map and amplitude frequency responses of controller and closed-loop system are
shown in Fig.[2.12] The closed-loop system is stable since (A, — L,C}) and (Aef— BerK o)

are stable (see Fig.[2.11| and (2.57))).

Output Feedback Control Structure

The control design techniques used here to obtain the output-feedback controller are based
on the well-established H, control framework (see and [A.5]). The basic idea is to use
the generalized plant shown in Fig.[2.13]and minimize the H,-norm between performance
input wy, and performance ouput g, using weighting functions. Here weighting functions

TW,, k+1 Aw, | Bw, } { Tw,, k }
| , 2.67
|: qy, i :| |: CWu ‘ DWu Up, | ( )
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Figure 2.12: Pole-zero map (top) and amplitude frequency response (bottom) of controller
(left) and closed-loop system (right) for a sampling frequency of 1 kHz

A(an Xan) B(an Xmu) C(TQu Xan)

for the control input w, ; with the matrices Ay, , By, W ,
Dg{}’:xmu) and
{ Twy, k+1 } _ [ AWy ‘ BWy } [ LTwy, k } (2.68)
Ay, k Cw, ‘ Dy, Yo,k
plant output y,, , with Ay, >y ) B%Wywy), Ci;}’yxnwy), D(&;‘;X ™) are used. For dis-

turbance rejection, addltlonal dynamlcs are included in the generalized plant modeling the
disturbance at the input of the plant (IMP). A state-space description of the generalized
plant is given as

L1 A ‘ Bw Bu Ly
q; = Cq qu un Wi (269)
Yo,k Cy|Dyw Dyu Up, k

assuming D,,, = 0 (see Gahinet and Apkarian (1994)) with

mp,k
T,k
T, = ’ , 2.70
K —_— (2.70)
LWy, k
A, B,Cqy 0 0
((np+2nq+nw,, +nw,, ) X (np+2ng+nw,, +nw,,)) _ 0 Ad 0 0
A P y P Yy 0 0 AWu 0 s (271)
Bw,C, 0 0 Ay,



2. Internal-model-principle-based Control

I
| . .
wi | Wi | Aq | Ba [Yar Weighting |
T > C ‘ 0 functions :
I d
| . Aw. |Bw. I
| Disturbance > u W
| model Cw, Dw, :
: | QA:
| AWy B wy : >
: C W,y DWy :
' A, | B
! >6_> P —P : >
up. k : Cp 0 I y]x k
I
: Generalized plant Plant |
Figure 2.13: Generalized plant including weighting functions and model of the disturbance
0 B,
((np+2na+nw,, +nw, ) X (Mw+mu)) By 0
| B, B, | =0 Bw. |’ (2.72)
0 0
C ((rgu +7rgy +7ry) X (np+2na+nw,, +nwy, ) 0 0 CWu 0
[ Cq } = | Dw,C, 0 0 Cyw, (2.73)
Y cC, 0 0 0
and
((rqu +7ay +ry) X (maw+ma)) 0 Dw,
o o] ~lo 0" o)
vt yu 0O O

The orders n = ny, + 2nq + nw,, +nw, and 74 = rq, + 74, are introduced for an easier
representation of the generalized plant matrices.

Applying H,, control design techniques, the ouput-feedback controller of Fig.[2.14] is
obtained. The procedure proposed by Gahinet and Apkarian (1994) for the calculation
of a suboptimal controller is briefly explained.

The closed-loop system is obtained from the combination of controller

zicwn | _ [ATBYY | Fas (2.75)
i c® | DX | | vy '
with A mxn) BLK)(”XTy), C K muxn), Dg;)(m“”y) and generalized plant {D
" xp1] [A O | By | By 0 ([ ap]
wa k+1 0 A(K) 0 0 BéK) iBK7 k
% | =| €4 O |Dgw|Dgu O Wy (2.76)
Up & o ¢ o | o D Up
L Ypr | Cy 0 Dy | Dyy 0 1L Y |
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A, | B,
; Cp ‘ 0 yp.k
Plant

A(K)‘B,(JK)
cply)

Controller

Figure 2.14: Output-feedback control structure

The equation (2.76)) can be written as

Lp, k41 Lp, k
LK, k+1 A, B, B, LK,k
a, = | C, Dy Dy wy, (2.77)
Up, C; D, Dy Uy, |
Yo,k Yo, k

with A§2n><2n)’ Bg2n><mw)7 Bé?nx(mqury))’ CgquQn)’ ngiquw)’ Dgqu(mu+Ty)), Cg(mu+ry)><2n)’

Dllmetry)xme) - plinutry)x(mutry)) o q the LFT is applied here to obtain a representation

of the closed-loop system

A1 Bl i B2 1
[ C, D, } | Do, (I—Dx) ' [ C2 Dy | (2.78)
as _
cl cl
LK, k+1 = [ :| LK, k (279)
— C. | D,
q, : : Wy,
with %) %)
(2nx2n) A+ BuDu Cy BuCu
Aj = [ B(K)Cy A | (2.80)
y Yy
Bmme) { By, + ByDyy) Dy, } (2.81)
cl B;,K)Dyw )
i = [ Cy+ D@uD®C, D,.CH ], (2.82)
D™ = [ Dy + DguDE) Dy, | (2.83)

and D,,, = 0 (see Gahinet and Apkarian (1994)). Using the BRL this control problem is
solvable if a solution for the positive definite matrix X fj"“") exists for the LMI
-X;' Ay Bg O
A, X4 0 C)
B 0 —1 D]
0 Ccl Dcl _’YI

<0. (2.84)
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The LMI (2.84) can be rewritten as
Y+ PIQQ+Q'Q"P <0 (2.85)

with the matrices

P((n+mu)x(4n+mw+rq)) = [ET 00 Qzu }

(2.86)
Qrvtmxtintmuwtra) — 9 C D, 0]
defined with
0 B 0 I
@2nx(nd+mu)) _ u ((ntry)x2n) _
B —{I 0}’Q {Cy 0}’
(2.87)
T N+May n—+r Maw 0
D) = [0 Dgy |, Dol ) = [Dyw ]
and the matrix
-X' A B 0
A" -x o cC
¢((4n+mw+7”q)><(4n+mw+7"q)) — _ T N (288)
B 0 —I D,
0 C qu _/71
built with
A(2n><2n) _ |: xg g :| : B(anmw) _ |: -BOw :| and Cv(TqXQH) — [ Cq 0 } . (289)

Here it is important to notice that the controller € can be calculated using (2.85)) for a
given positive definite matrix X. A method to calculate the matrix X will be explained
later in this section.

Solvability conditions
WErypWp <0 (2.90)

and
WHypWeo <0 (2.91)

are derived in Gahinet and Apkarian (1994) from ([2.85)) multiplying all the elements of
this equation by the nullspaces W p and W g of the matrices P and Q, respectively.
These conditions are equivalently expressed (see Apkarian and Gahinet (1994)) as

A'X A- X, A'X B, C,

T
Nx O - T 2 Nx O
{ 0 1] BIX, A -1+ By,X B, D, o 11<0
C, D, —~1
AY AT -Y AY,C*t B,
Ny 01" ! e Ny 0 (2.92)
0 I CqYIA —’}/I + Cqchq un 0 I < 0,
B} D, —1
X, I
>
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where

N()((n—&-mw)x(n-&-mw)) _ null([ C, Dy, ]) (2.93)
and

N{rtralx(ntra)) null([ B, Dy, |). (2.94)

If solutions X" and Y{"*™ for these LMIs exist, the control problem is feasible.
Furthermore, the matrix

X, X
(2nx2n) _ 1 2
X [ XTI 1 ] (2.95)
is built with the solutions X, Y1 and
X — (X, — Y. (2.96)

Once the matrix X is built, the controller can be calculated from (2.85).

All the steps needed for the calculation of the controller are explained in the following in
detail.
The dimensions of the matrices of the generalized plant are defined here as

AMn BRXTe BT
C’;"X” Dz‘;ﬂxm“’ D;zfm“ (2.97)
Oy Dy D
to make more clear the calculation of the controller.
First of all, three linear matrix inequalities (LMIs)

ATX A- X, A'X B, C,

T
Nx 0 T T k Nx 0
|: 0 I :| BwX1A —”}/I + BleBw un 0 1 < 07
C, D, —~1
AY AT Y AY,C*t B,
Ny 01" ! o e Ny 0 (2.98)
B, D,, —1
X, 1
>

are solved for X\ and Y™™ with the matrices N ") (mtme)) gpng N{ntra)lx(ntra))

calculated through
Nx =mull([ Cy Dy, |)

(2.99)
Ny =null([ B, Dg, |).
Next, the auxiliary matrix is defined by
-X' A B 0

A" -x o C
qp(Untmautra)x (dndmutrq)) o (2.100)

B 0 —1 D,

0 C Dy, I

with
4 (2nx2n) A0 > (2nXmay) Bw ~(rgx2n)

A _[OO],B _{0},0 =[C; 0] (2.101)
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X, X
(2nx2n) _ 1 2
X { X 1 } (2.102)

and X" calculated through
X,=(X;-Y[")e. (2.103)

The matrices
P(tmu)x(dntmwtrq)) {ET 00 Q?Iu }

(2.104)
Q((ry+n)><(4n+mw+7“q)) — [ 0 C D,, 0 }
are built with
0 B 0 I
(2nXx(nt+mu)) _ u ((nt+ry)x2n) _
B {I 0]’Q ’ {Cy 0]’
(2.105)
T, N+May, NTry) XMy 0
Finally, the basic LMI
Y+ PTQQ+QTQTP <0 (2.106)

is solved for QUn+muw)x(+7v)) with the matrices ¥, P and Q. The controller matrices are

extracted from € with

(K) (K)
_[a® ]| B (2.107)
c DY)
and a state-space representation of the controller is written as
oo ] - |t [ o] 2108
Up, & c | DY) | L Yo

This control design guarantees the stability in closed loop (X = X > 0).
An example to obtain an output-feedback controller for the rejection of a disturbance
Ya,k = sin(27 fty) (na = 1) acting at the input of the plant

Tokrr | @ L] o (2.109)
Yp, k 1—a |0 Up, k
for a = 0.1 is here made using the control design explained in this section, where f =

20Hz, t, =T, 2T, ... and T'= 0.001s.
The plant matrices are obtained from (2.109) as AY*™ = q, BS*™) = 1 and

CI()ranp) = (1—a) with n, = m, = r, = 1. The disturbance is modelled as the ouput yq,

of a system given by
T, k1 Aq | Ba || xar

' = ’ 2.110

| =Ler 10
with r = 0.9999 and

(2nd><2nd) o O 1 (2nd><mwd) o 001
A4 N [ —r? 2r cos(2nfT) } » By = {0'01 ;

(2.111)
CérdeQnd) _ [ 10 } '
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Figure 2.15: Pole-zero map (top) and amplitude frequency response (bottom) of controller
(left) and closed-loop system (right) for a sampling frequency of 1 kHz

The weighting functions are chosen as constant gains with the state-space matrices

Afpwaxmwa) — gl _ ol x<mii) — g and - i) = 0,001 (2.112)
with r, =m, =1, ny, =0
for the input u, ; and
(nwy xnwy,)  Swyxry)  (reyXnwy,) (ray XTy) __
AWy y y) _ BWy Y — CWyy v = (0 and DW;’ =1 (2.113)

for the output y, » with r,, = r, = 1 and ny, = 0. Different weighting functions were
tested, these functions satisfied a desired performance for the closed loop system.
The generalized plant from (2.69)) is built with the matrices

/ép ijd 8 8 0.1 1 0
A — o od 4 o | =10 0 1 . (2.114)
W, .
Bu.Cy 0 - 0 —0.9998 1.9840
o 0 1
[Bw B, }(nx(mw+mu)) _ d — o001 0], (2.115)
O Bw, 0.01 0
0 0 '
C ((rq+ry)xn) 0 0 Cw, 0 0O 0 0
{qu = | Dw,C, 0 0 Ciw, | =109 0 0| and (2.116)
¥ C, 0 0 0 09 0 0
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((rg+ry) X (Mw+may)) 0 Dw, 0 0.001
{qu unl —lo o |=]l0 o |. (2.117)
Dy Dy 0 0 0 0

The controller is obtained applying the control-design and solving the LMIs from ([2.98))-
(2.106)). A state-space representation of the obtained output-feedback controller is given
with

—0.4810 —0.8350 —1.2496 | —7.9756
T || 03135 1.1488  0.7014 | —18.6391 TK, kK
Uy | 0.0072 —0.0286 1.0256 | —9.8357 Yp
0.0043  0.0155  0.0148 ‘ —0.3994

(2.118)

and pole-zero map and amplitude frequency response of controller and closed loop system
in Fig.[2.15] Once more, the controller has poles at the disturbance frequency to be
cancelled.
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Chapter 3
LPV Gain-scheduling Control

Disturbances acting on a system may vary with the time. The LTT control structures
presented in chapter[2] do not reject time-varying disturbances. Gain-scheduling control-
lers obtained by switching or interpolation between LTT controllers could be a solution
but then the stability is not guaranteed for changes in the gain-scheduling parameters.

An LPV disturbance model can be used since the disturbances are time-varying. Then
LPV gain-scheduling control design techniques can be used to achieve disturbance rejec-
tion and assure the stability for changes of the gain-scheduling parameters. This chapter
is the LPV extension for all the LTI controllers presented in the previous chapter. Dif-
ferent LPV techniques are used for the reduction of nonstationary harmonic disturbances
depending on how the disturbance is modeled (polytopic LPV (pLPV) or linear fractional
transformation (LFT)) as shown in Fig.|3.1

LPV systems

LPV disturbance

pLPV
systems

LFT
systems

Sec. 3.1

Chapter 3

Figure 3.1: Schema of the chapter outline
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3. LPV Gain-scheduling Control

This chapter introduces pLPV and LFT systems and the corresponding pLPV and
LFT control structures for the reduction of time-varying disturbances. General pLPV
systems are explained in Sec.[3.1] and the pLPV control structures in Sec.[3.2] Sec.[3.3]
explains LPV systems in LFT form and Sec.[3.4] their control structures.

pLPV Systems

An LPV state-space representation of a system given by

ol [ o

is called a pLPV system (Amato (2006) and Heins et al. (2011, 2012a, 2012b)) if the

matrices

A(O))rerevmney) = Ay 4+ A0y g+ Aglfly g + - + AnOn i
B(ek)(nPvameLPV) = Bo + Blel,k -+ BQQQ’k + ...+ BNQN,k (32)
C(0y)rorrvxmoey) = Co+ Ciby, + Coby i+ ... + CnOni
depend affinely on the parameters 8y = [0y, 02,1 ... Oy k] Where © is a convex polytope
in RN and AQ, Al; AQ, ceey AN, Bo, Bl, BQ, ey BN and Co, Cl, CQ, ceey CN are
constant matrices. The convex polytope © has a finite set of constant vertices V =
0,10y ...0, ] with 0, ; € RY for j =1, ..., M. A point 8, € © can be written
as a convex combination of the constant vertices, which means there exist a coordinate
vector Ay = [A1k Aok oo Amk] € RM such that 8 can be written as
M
0= > \jiby, (3.3)
j=1
with
M
Nk >0Vjand » N =1 (3.4)
j=1

The state-space matrices of (3.1) can be written in the same way as (3.3))
A0r) = MiAcL+ A rAvo+ . F A Ay
B(Ok) = )\l,ka,l + >\2,ka,2 + ...+ )\M,ka,M (35)

C0r) = MiCo1+21Coo+ ...+ A kCo i

with
A\(:l?LPVX”prv) — A(0, ), B‘(:;vaxmpwv) — B(o,) (3.6)

and
clrmrvtey) — ¢(g, ;) for j=1,..., M. (3.7)
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Pl Pl

M

M
(9 Lk _ Ly, :
—A’ g )\j. A:B\'. Jj —» s 4 ! ! » E /\j./\:C\z J L’
j=1 j=1

Wk

M
Z )\,‘. L-Av.j <
J=1

Ak

Figure 3.2: Schema of the pLPV system

A state-space pLPV representation of the system is given by ({3.1)) with

M M M
A(0r) =) NiwAvj, B(6) =Y N By jand C(0x) =Y X 4Cy (3.8)
j=1

j=1 j=1

and the coordinate vector Aj calculated from (3.3]) and with @, and the M vertices
6, ;. A schema of a pLPV state-space representation is shown in Fig.[3.2]
A pLPV system is stable (Amato (2006)) if exists a positive definite matrix PpLPv*moLev)
such that

A0, ))TPAO,;,)—P<0 for j=1,....M (3.9)

for all the vertices of 8, ;. These LMIs can be written as
P— A, ,)"PP'PA0, ) >0 for j=1,..., M. (3.10)

The Schur complement (Horn and Johnson (1985)) is then applied to obtain an equivalent
expression
P PA(6, ;)
{ A6, )P P
for the LMIs . The stability is guaranteed for the whole parameter space if a positive
definite matrix P exists solving the LMIs for all the vertices of 8, ;.

A very simple example of an LPV system is given by the system of (2.4]) written as a
state-space representation

- e L 61
yp,k 1-— (073 0 up’k )
with a; € [0.2 0.8]. In this case, A(f)™>*™) = a5, B»*muw) = 1 and C())w*me) =
1 —ay with n, = m,,, =r, = 1. The objective is to obtain a pLPV representation of this
system.
The parameter 0;, = a5, and therefore the vertices of the system are given by 6, ; = 0.2

and 6, » = 0.8. For a given 6, the coordinate vector A;, can be calculated using (3.3)) and
(3.4). These conditions are expresed by the following equation

RECEIEY
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written in matrix form. Knowing the value 6, the coordinate vector A, is calculated

Mr ] [ 6er 6] 6k
= L] 319

as a simple matrix multiplication. For example, with a; = 0.4 the values of A\; = 0.6667
and A9, = 0.3333 are obtained and 0 is given by

O = A ify.1 + Ao 1By 2 = 0.6667 - 0.2 + 0.3333 - 0.8 = 0.4. (3.15)

The matrices A()) and C(6x) depend on the parameter 65 and they can be written for
this reason in the same way as

A(@k) — Al,kA(ev,l)_F)\Z,kA(evJ) — 04

(3.16)
Clr) = M rC(by1) + A2 1C(02) = 0.6.
A pLPV representation is obtained for the system of (3.12)) as
Tp, k41 A(k) | B } { Tp, k }
’ = ’ 3.17
|: yp,k } |: C(@k) 0 up7k ( )
with ) )
A(Qk) == Z Aj,k}AV,j7 C(@k) == Z )\j,ka, Av,j == A(ev,j) and Cv,j == C(Qv,j)-

j=1 Jj=1

The stability of this system is checked using ({3.9) for all the vertices. The system is then
stable if for the two vertices A(6y 1) = Ay1 = 0.2 and A(f,,2) = A, 2 = 0.8 a constant P
is found such that

A0y )T PA®Oy 1) — P <0
A(0V72>TPA(0V72> —P<0 (318)
P>0.

From here it follows, that any matrix P > 0 fullfills all the three inequalities and therefore
the pLPV system is stable.

pLPV Control Structure

This section focuses on pLPV control structures for the rejection of disturbances. pLPV
controllers are obtained using control design techniques for LPV systems written in pLPV
form. The controller for a given 8y is calculated from the M vertex controllers using the
coordinate vector Ag. Similar to the pLPV controller can be written as

)= [t [ ] @19

32



3. LPV Gain-scheduling Control

X Wl

y;\. M L, k+1 1 L,k M U
—= > NiBevj z > NiiCevi =
J=1 j=1
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Z A/ kAc. v, J
j=1

'/

Figure 3.3: Schema of the pLPV controller

with
AC(Hk)(nCXnC) = Z Ac,v,j Aj7k7

J=1

BC(Ok)(nCch) - B.. Aj,k» (3_20)

M=

Il
—

J
M

Co(0r)m) = 3 Cev,jAin
j=1

and Aglf,’xjnc) = A.(0,,), B((ff,fjmc) = B.(0,,;) and C‘(:f,,x]m) = C.(0y, ;). A schema of this
control structure is given in Fig.[3.3] The control structures of the previous section are in

the next sections extended to the pLPV case.

pLPV Gain-scheduling Observer-Based Control Structure

The control structures of the subsections|2.1.1]and [2.1.2|are extended here to pLPV control
structures. This section is focused on the pLPV control structure. The calculation of the
feedback gains (observer-based approach) and the controller matrices (output-feedback
approach) is considered in the next chapter.

pLPYV Disturbance Observer Control Structure

The disturbance observer control structure was briefly reviewed in Sec.[2.1.1] for an LTI
disturbance. In most industrial applications, the disturbance is time varying, therefore to
guarantee the stability for changes in the parameters pLPV design techniques are used in
this section.

A state-space representation of the augmented system for time-varying disturbances
is given by

Ld, k+1 Ad7 k 0 0 L4,k
Lp, k+1 = BpCd Ap Bp Lp, k (321)
Yo k 0 C, ‘ 0 Up,

where Agzd“nd) = Aq4(6%). A representation of this system can be written in compact
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form as

Tdo, k+1 Aok | Bao Tdo, k
’ = : ’ 3.22
e | = e e ] @22

with A((i(()2,7llqd+np)><(2nd+np)) _ Ado<9k), Béfnd+”p)xmup) and C((;ypx(Qnd'i'np)). KHOWng ek
and their M vertices
0, ;, fory=1,...M (3.23)

the coordinate vector Ay can be calculated using (3.3) and (3.4). The LPV system of
(3.22)) is represented in pLPV form with the matrix Ag,, , written as

M M
Adok = Ado(Or) = Z Aj kAdo,v,j = Z Aj kAdo(Oy, 5)- (3.24)
=1 =1

The disturbance-observer control structure is a combination of a state-feedback gain
and an identity observer. A state-space representation of the controller is given for LTI
systems by ([2.16)) and here is written as

ﬁjdo k+1 Adoc k ‘ Bdoc k :| [ ido k :|
AL = ’ ’ 7 3.25
|: up,k :| |: Cdoc ‘ 0 yp,k ( )

with
A(d(OQ‘:LC;g-i-np)X(Qnd—i-np)) _ (Ado,k — Lo xClao — BdoKdo) _

= Agoc(01) = (A4o(0r) — Lgo(01)Cao — BaoK go)
(3.26)

((2nat+np)xry,

Bdoc,k ) = Bdoc(ek) = Ldo,k = Ldo(ak)7

C(m"px(2”d+np)) — Kdo — [ Cd Kp ]

doc

for an LPV system.

The same procedure to study the stability can be here realized as in by simply
changing Lg, with Lg, r and A4, with Ag, . The overall closed-loop dynamics of the
LPV system is given by

. T

Tq, kt1 A g —Ly ;,C, 0 0 :i:dy];:

ibp7 k+1 pr— BpCd Ap - _Z-Jp7 ka 0 _Bp mp’k . (327)
Tp kt1 —B,C4 B, K, A,-B,K,| B, yZ’k

The structure of the closed-loop dynamics for the LPV system is shown in Fig.[3.4]
From here it follows that the stability of the closed-loop system depends on the stability
of two systems in series. An LTI system (plant under state feedback) and an LPV system
(dynamics of the observer for the augmented system). The system is stable if a stabilizing
state-feedback gain K, for the LTI system (A, — B, K ) and a stabilizing observer-gain
Lg, . for the LPV augmented system (Aqgo, x — Lao kCao) are found. That is, if a common
positive definite matrix P{(2ratme)x2ratm)) g found for

(Ago.k — Lao, sCa0) "P(Ago,r, — Lao,sCa0) — P <0 (3.28)
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Aq, i —Lq,1C), 0 | &g |
———p] p. k
voly| Boy 4 -5uc B, [ Joi K] A, - B,K, B, [
m]).k
I 0 ‘ 0 C, |0
0 I 0

Figure 3.4: Dynamics of the overall closed-loop LPV system

or equivalently using the Schur complement

P P(Ado,k - Ldo,deo) :| >0 (3 29)

{ (Ado,k — Lao,kCao) " P P

for the whole parameter space 8, € ©.

This infinite set of LMIs is reduced to a finite set of LMIs if the system is written
in pLPV form. Using the pLPV system is stable if a positive definite matrix P is
found such that

(Al6..)) ~ L6, )C0) P(Asu(6..)) ~ Lao(8..)Cuo) — P <0

(3.30)
j=1,....M
or
P P(Ado(ev,j> - Ldo(ev,j)cdo> 0
T >
(Aa(61.5) = Lao(6y,,)Ca0) P P (3.31)
j=1,....M

for all the vertices 0, ;.
The vertex observer gains L, (6, j)(( Ly, j will be obtained in the next
chapter. A pLPV representation of the controller is given as in (3.19) and (3.20)) with

2na+np)Xry,) _

A((@natng)x@natny) _ Adov.j — Lo v.iCao — BaoKao

C7 V7J

B((Qnd-i-np)xryp) _ Ldo,v,ja (332)

C? V?]

O ¥ @ratm)) _ pe

C7 V7J

and the coordinate vector Ay calculated through (3.3) and (3.4)).

pLPV Error Filter Control Structure

The augmented system for this control design is a combination of an LTI plant and a
time-varying disturbance model. A state-space representation of the LPV augmented
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system is given with

T, k41 Agr —ByC,| O T i
Lp, k+1 = 0 Ap Bp Ty k (333)
Yo & 0 C, \ 0 Up &
and N
Tef, kit 1 of, ki | Bet Tef, o
’ = : ’ 3.34
e = e L 531

is an LPV state-space representation in compact form with Agfgﬁn")x(%ﬁnp) ),

Bii?”d"'np) XMy, ) and Ci;yp X (2na+np)) )

If the matrix Ag?jwnd) depends on the parameter 6,
Agp= AB;) (3.35)
then the matrix A, depends also on 6y
At p = Aet(Or). (3.36)

A pLPV representation of this system is given with the matrix A, written as

M M
Ack = Act(0) = > NikAerv; = > NikAer(0 ). (3.37)
j=1 j=1

It is assumed that the vector 8; is known or can be measured and it is also known the
range variations of 8, to calculate the M vertices 8, ; of the polytope. The coordinate
vector Ay, is calculated as in and with 8}, and the M vertices 0, ;.

The control structure of is here written as an LPV system

Td, k1 Aqk 0 By T4,k
@p, k+1 = —BpKde Ap — BprJf — LpCp Lp CABpJg (338)
Up & —Kg —K, |0 ey
and this LPV system is written in compact form as
Lefc, k+1 Aefc k Befc Lefe, k
’ = : ’ 3.39
an e e e
with
A(Cratnp)x@natng)) _ [ Ad 0 } _
efe, k -B, Ky, A,—B,K,,—L,C,
Ad(ek) 0
= Ae C 0 — )
w(0x) { _BPKd(ek) Ay — Bpr(ek) - L,C,
B((Qnd'i‘”p)xryp) - |: B4 :| (340)
efc -
L,
M 2ng+np
Cifc,kpX( ) [ —Kaqr —Kpi | =

= Cuel0) = [ —Ka(6) —K,(6) ]
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3. LPV Gain-scheduling Control

The closed-loop stability is studied as in (2.57]) but here for the LPV case. The overall
closed-loop dynamics are described by

7 T

Tp, k+1 A, - L,C, 0 0 -B, mz:z

T, ki1 = 0 Ad,k —Bde 0 - ’k . (341)
$p7k+1 _BprJf _BpKng Ap — Bpr,k’ Bp ﬁ

The structure of the closed-loop dynamics is shown in Fig.[3.5] The closed-loop stability
depends on two systems in series, an LT system (observer error for the plant states) and
an LPV system (augmented system under state feedback). The system is stable if an

(Mup X (2nq+np))

observer gain L, that stabilizes (A, — L,C},) and a state-feedback gain K ;
that stabilizes (Aef — BetfCer, i) are found. The system is stable if a positive definite

matrix P(Zratme)xCnatme)) ig found with
(At k — BetKos 1) "P(Ags, — BoKop ) — P <0 (3.42)
or
[ (s B-P;fKerk)TP P(Ag i —PBefKef,k) } S0 (3.43)

for the whole parameter space @, € ©. If the LPV system can be written in pLPV form,
the infinite set of LMIs is converted in a finite set using (3.9). The stability is guaranteed
if a positive definite matrix P is found such that

(Al0..)) ~ BuK (0, ,)) P(Ax(b.,) ~ BaKul0,))) ~ P <0

(3.44)
j=1,....M
or
P P(Aef(ev,j) - BefKef(ev,j)> 0
T >
(Aef<0v,j) - BefKef(ev,j)> P P (345)
j=1,....M

for all the vertices 0, ;.
If the vector @}, varies inside of a polytope with M vertices 6, ;, a pLPV representation
of the controller is given as in (3.19) and (3.20) with

A((Qnd+"p)><(2nd+np)) - A

Cc,V, ] efc, vyJ

B((Qnd+np)xryp) — BefC7 (346)

C7 V,j

C(m“p X(2ng+np)) — C

Cc,Vv, j efc, v,

and Ay, calculated through (3.3) and (3.4]) with 8, and the M vertices 6, ;.
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3. LPV Gain-scheduling Control

. Aq, i -BiC, o
yor| LA, - LG }—Bp o oy K, “B,Kur A -B,K, 1 B,
I 0
0 c, |0

Observer error dynamics
Plant dynamics

Figure 3.5: Dynamics of the overall closed-loop LPV system

pLPV Gain-scheduling Output-Feedback Control Structure

The output-feedback control structure presented in this thesis is based on H., control
design techniques. Before solving the LMIs to calculate the output-feedback controller
the generalized plant is built with the weighting functions and the desired aditional
dynamics (model of the disturbance). The generalized plant is here written

Tl Ak‘ B, B, T
q; = | Cq | Dgw Dguy wy, (3.47)
Yo,k Cy|Dyw Dyu Up, k
with
.’,Cp,k
&4,k
T = ’
F LW, k
Tw,, k
(3.48)
A, B,Cy 0 0
A((np+2nd+nwu +nw, ) X (np+2na+nw,, +nw, ) _ 0 Ad,k 0 0
k 0 0 Aw, 0 ’
BWpr 0 0 AWy
0 B,
((np+2ng+nw,, +n )X (Maw+ma)) Bd 0
[ B, B, | "W =10 Bu | (3.49)
0 0
C. 1 Pauttay+ry) < (np+2natnwy +nws ) 0 0 Cw, O
[Cq] = DWyCp 0 0 C’Wy (3.50)
v C, 0 0 0
and
((rgu +7ay +7y) % (p+2na+nw,, +nw, ) 0 Dw,
[qu unl =10 0 (3.51)
D,, D, 0
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3. LPV Gain-scheduling Control

in LPV form. This system can be written in pLPV form if the matrix A; depends on
the parameter 6, and this parameter varies inside a polytope with M vertices 6, ;. The
matrix

A, = A(6y) (3.52)
is written in pLPV form as
M M
Ay =A0,) =) NiAv; =D NrA(By) (3.53)
j=1 j=1

with the coordinate vector Ay calculated through (3.3)-(3.4) with 6; and the M ver-
tices 0, ;. Applying to this system pLPV control design techniques an output-feedback
controller is found for each vertex of the polytope. These controllers are written here

[ Tof ki1 } _ [ Aoiv,j | Boiv. } [ Lotk } (3.54)
up Cotv,j | Dotv,j Yp

((np+2na+nw,, +nw, ) X (np+2n4+nw,, +nw,,))

forj=1,..., M, Ay ;
C(Tyx(”p+2nd+nwu+nwy))
Of,V,j

(np+2na+nw,, +nw, ) Xmu)
0f7 v7 j ’

, B

DUv*™)  This system is written in pLPV form as

of,v,j

{ ekt ] _ { Ac(0)) | Be(6y) ] { o,k } (3.55)

and

uy, C.(6:) | D.(6y) Yi
with
M
AC(Ok)((np+2nd+nwu+nwy)><(np+2nd+nwu+nwy)) — Z Aof Y j)\j s
j=1
M
BC(ek)((np+27’ld+nwu+nwy)Xmu) — Z Bof,v,j)\j,lm (3.56)
j=1
M
Cc(ek)(ry><(np+2nd+nwu+nwy)) = Z Cof, v,jAj,k
j=1
and
M
D (0,)v*™w) = 3" Dty iAok (3.57)
j=1

Knowing the value of 8; and the vertices 6, ; the coordinate vector A is calculated

fulfilling the conditions (3.3]) and (3.4]).

LFT Systems

An LPV system given by the equations

PR sl -
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3. LPV Gain-scheduling Control

Ay le
Wy, i qo.k
m CB Dﬂﬂ D0u yk
- Cy Dy0 Dyu "

Figure 3.6: LPV system in LFT form

and the matrices A(8;) ™™, B(8;)"™) C(0;)™v*™ can be written in LFT form if
a representation of the LPV system is obtained as a lower LFT (see|A.1]) of the system
defined by

Lht1 A ‘ By B, Ty
o, | = | Co|Dos Doy We_ (3.59)
Yy Cy DyG Dyu Uk

with 14(()”><n)7 B(enxme)’ Bu(nxmu)7 Cg(ran)’ Deg(r@xmg)7 Dgu(T‘ngu)7 C«y(ry><n)7 Dye(’f‘yxmg)’
Dyu(rmeu) and the matrix

01,k 0
Almerro) - (3.60)
0 On. &
defined with the parameter 8, = [0; , ..., On,]. For a disturbance with n4 harmonic

components the dimension N = nq. A representation of an LPV system in LFT form is
shown in Fig.[3.6] As this figure shows, the parametric uncertainty Ay is “pulled out” of
the system.

An example to obtain an LFT model is here realized for the LPV system example

Tp, k+1 _ ag 1 Ty, k (3 61)
yp7k 1-— Qg 0 up7k )
with ay, € [0.2 0.8], A(0) ™™ = ag, B™™) =1 and C(0;,)"*™ =1 — a; for n = m, =
ry = 1.
An LFT representation of the LPV system can be obtained by simply doing 6y = ay.
The relation between a; and 6, can be written as

ar = ag + blekbz (362)
for 6y € [amin Gmax] With ag = 0, by = by = 1. The matrix A(f;)™*™ can be written as
A(@k) = a = Ag + B0.Cy (363)

with AV =0, B =1, ¢ =1 and my = ry = 1. The same procedure is
realized for the matrix C() written as

C(@k) =1—aq;= Cy + Dy99k09 (364)
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3. LPV Gain-scheduling Control

with "™ =1 and D;;meg) = —1. Finally the system is written in LFT form as

Tpos1 0] 1 1 T
QQ’ k = 1 O O w(;, k (365)
Yk 11—-1 0 UL

WithAOZO, Bgzl,Bu:LCg:L DQQZO, Dgu:O, Cyzl, Dygz—l, Dyu:Oand
) € [0.2 0.8]. For a, = 0 = 0.4 the lower LET (see[A.1)) results in the system given with
the state-space representation

[IZ? } B [%H [Z: } (3.66)
LFT Control Structure

An LPV system in LFT form was shown in Fig.[3.6l For the control design, a general-
ized plant G(z) in LFT form is built with input and output weighting functions and a
parametric uncertainty block

01,k 0
0 On, &

For this general system, a gain-scheduling controller K (z) can be calculated following the
method presented in Apkarian and Gahinet (1995). In this method, two sets of LMIs are
solved. The first set of LMIs determines the feasibility of the problem which means that
a bound on the control system performance in the sense of the H,, can be satisfied. With
the second set of LMIs, the controller matrices are calculated from the solution of the
first set of LMIs.

As a result of applying this control design method, the gain-scheduling control struc-
ture of Fig.[3.7 is obtained. The time-varying plant parameter is directly used as the
gain-scheduling parameter of the controller.

LFT Gain-scheduling Output Feedback Control Structure

The control structure presented in this section is obtained modeling the disturbance acting
at the input of the plant as an LET system. The system matrix Aq4(6y) of the disturbance
can be written as

Aq(0r) = Ago+ Ba,oArCuy0 (3.68)
and a state-space representation of the disturbance model in LFT form is written as
Ld, k+1 Ad,o ‘ Bd,o By L4, k
do. | = | Cao| Do9 Dow W i (3.69)
Ya,k Cq Dye Dyw Wy, K
with
A((fgd X2nq) Bg%Zd Xmeg) B((f”d X My
C((;GBXQnd) D(oreg Xmg) D(g?;ixmw) (370)

CérdeQHd) D;rgdxmg) D’S;%dxmw)'
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3. LPV Gain-scheduling Control

Ak‘

W, i 4o,k
w, —» q:
— () —">

—>

Uy, 1 Yok

4_
K (2)

- ]

qo.x Wa, ;

——p A,

Figure 3.7: LF'T control structure

Then the combination of plant and disturbance results in the LFT system shown in
Fig.[3.8] A state-space representation of the LFT system is given as

T
LEt1 AQ ‘ Bg Bw Bu w:k
o | = | Co|Dos Dgw Do wd’k (3.71)
yp,k Cy Dy@ Dyw Dyu up’]{
with
_ | Tk (np+2na)x (np+2n) _ | Ap BpCa
Ly = |: dec :| ) AO - [ 0 Ad70 5 (372)
((np+2ng) X (me+mw+mu)) 0 0 B,
By B, B | _{Bde RO L
Co ((ro+ry)x (np+2naq)) 0 Ci,
o e % 610
and
Do Dy, D, |\t tmetmotm) 1000 (3.75)
Dy@ Dy'w Dyu N 0 0 0] ’
Additional weighting functions for the control input w,
TW,, k+1 Aw, | Bw, } { Tw,, k }
’ = ’ 3.76
|: qy, i :| |: CWu ‘ DWu Up, i ( )
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3. LPV Gain-scheduling Control

Ak4
We, i qo.
Wy, i G4 (z)
—>
Ya. k
Up, & Yo, k
O Gy (2) ——

Figure 3.8: LFT disturbance model acting at the input of the plant

with
A(an Xan) B(anxmu)
W W

C%;g:Xan) Dg;g:xmu)

and for the plant output y,

{ LTw,, k+1 } _ [ Awy ‘ Bwy } [ Tw,, k }

qy,k: CW‘y ‘ DWy yp,k‘
with
Ai}’r‘l}\:/y any) B&:/‘;Vy XTy)
Cg;jxnwy) D(v‘rgjxry)

(3.77)

(3.78)

(3.79)

are added to apply the H,, control design techniques of Apkarian and Gahinet (1995).
The generalized system with plant, disturbance model and weighting functions is shown

in Fig.[3.9 and can be written as a state-space representation

Lr+1 Ao ‘ By B, B, Lk
do.x | _ | Co|Doe Dow Dou We,
q; Cq DqO qu un wy,
Yok Cy|Dyo Dyw Dyy Up, k
with
Lp, k
_ Ld, k _
T = S ; = "Np +ng + nw, + Nw,
LWy, k

A(n Xn) _ 0 14d7 0 0 0
0 0 Aw, 0 |
Bw,C, 0 0 Aw,

(3.80)

(3.81)

(3.82)
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Ajle
W, i 4o,k
:r R » W, (z) :—’
W :'wd | Ga (z) : q:
L ; > Gy (Z) ; Yo, :
| |
| |

Figure 3.9: Generalized plant with disturbance model in LFT form and weighting func-
tions

0 0 B,
(nX (me+mw+ma)) Bd79 Bd 0
[ By B, B, } = 0 0 Bw. |’ (3.83)
0 0 0
Cg ((re+rq+ry)xn) 0 Cd79 0 0
- 0 0 Cw, 0
Ca “| DwC, 0 0 Cw, (384)
Y C, 0 0 0
and
((ro+rq+7y) % (Mo+maw+mu)) 00 O
DOO Dew Dﬂu 0 0 DWu
Dy Dg, Dg, = (3.85)
00 O
D yo Dyw D yu 0 0
in LET form with the parameter Ay.
Applying H,, control design techniques a LFT controller
(K) K (K)
TK, k+1 AO ‘ Bé : BG LK,k
uwr | = | CO DY) DY) Yp, (3.86)
o, 1 cy D(OI;) DY) W, i
is obtained for
AE)K)(”KXTLK) BLK)(nKX""y) B‘(gK)(nKXTe)
CELK)(manK) DSLI;)(muXry) Dgg)(mum"e) (387)

C(GK)(WH XnK) Dg;)(me XTy) D(efe()(me XTg)

and nxg = n with the same gain-scheduling parameter as the generalized plant. The
calculation of the controller will be explained in the next chapter.
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Chapter 4

LPV Gain-scheduling Control for Har-
monic Disturbances with Time-varying
Frequencies

Harmonic disturbances with time-varying frequencies appear in industrial applications
with rotating machinery (e.g., aircrafts and automotive applications). In this thesis, this
problem is considered and solved through the use of LPV gain-scheduling controllers for
the reduction of harmonic disturbances. The complete control design is explained in
this chapter resulting in LPV controllers with the frequency of the disturbance as the
gain-scheduling parameter.

According to the IMP, the controller must contain a model of the harmonic disturbance
to achieve disturbance rejection. Since the harmonic disturbance is time varying, the
disturbance is modelled as an LPV system using the models explained in Sec.[l.1 As
shown in Fig.[4.1] depending on how the LPV disturbance is modelled a pLPV or LFT
system is obtained and approximations to reduce the gain-scheduling parameters are
presented. The control structures from the previous chapters are used with pLPV control
design techniques to obtain pLPV gain-scheduling controllers in Sec.[d.1.2l The LFT
control design techniques for the calculation of an LFT gain-scheduling controller are
presented in Sec.[4.1.6]

LPV Disturbance Model

An MIMO state-space representation of a disturbance with ng components of constant
frequencies, n inputs and n outputs (n x n) is given as

Td, kt1 Ak | Ba Ld, k
5 — ) ’ 41
[ Ya, k ] { Cqa| O }{wd’k} -y

with
Adl,k e 0

A _ | (4.2)

0 - Adn,k

Adl,k 0
AR = = AR = (4.3)
0 Adnd k
~@x2) [ 0 1

Adi7k T =2 2r cos(, ) |’ (44)
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4. LPV Gain-scheduling Control for Harmonic Disturbances with
Time-varying Frequencies

Chapter 4

Sec. 4.1 LPV harmonic
disturbance

LPV disturbance in LPV disturbance in
Sec. 4.1.1 - LET form Sec. 4.1.2
pLPV controller LFT controller
See. 4.2 1 4 Ifilling the IMP Fulfilling the IMP | S¢¢ 43
Figure 4.1: Chapter schema
R
By, 0 0
B((i2ndn><mwd) _ . : B((flndxl) - Béindxl) _ (45)
0 . By, 1
0
and
Cy, 0
C((irdeann) _ : ‘ 7
0 Ca, (4.6)
1x2n 1x2n,
e = =0 =110 ..10]
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Time-varying Frequencies

with €, p = 2nf; T fori =1, ..., nq. This model is only correct for constant frequencies,
but this model was used to obtain controllers for the rejection of time-varying frequencies
in Ballesteros and Bohn (2010, 2011a,2011b), Ballesteros et al. (2012,2013), Duarte et al.
(2012,2013,2013a,2013b), Heins et al. (2011,2012,2012a), Shu et al. (2011,2013) and
they were validated with experimental results. The main advantage of this model is that
only one parameter per frequency is needed. The system described with the state-space

representation of (4.1)) and (4.2))-(4.4) needs nq parameters.

For time-varying frequencies the disturbance model is as in 1} with the matrix Adi’ k

from (4.2))-(4.3]) given as

~2x2) | rcos(Q k)  rsin(€ k)
Agk = —rsin(Q; x) rcos( k) (4.7)
for €, =27 f; T and i = 1, ..., nq. This model is correct for time-varying frequencies

but it has the disadvantage that it needs 2nq gain-scheduling parameters to obtain an
LPV representation of the disturbance model. This model needs twice as many number
of gain-scheduling parameters as the disturbance model for constant frequencies of (4.1))-
)

A very useful idea was introduced in Fiiger et al. (2012, 2013) that uses a polynomial
approximation to reduce the number of gain-scheduling parameters if the components of
frequency are harmonically related and the range of variation of the fundamental frequency

fO,k: € [fO,minu fO,max] (48)

is known. The polynomial approximation was used in Fiiger et al. (2012, 2013) with
the model of constant frequencies for the rejection of time-varying harmonic disturbances
for a SISO system. This thesis and the work realized in Ballesteros et al. (2014a, 2014b,
2014c) uses the polynomial approximation for a MIMO model of time-varying disturbance
frequencies . The cosine function and the sine function can be written as

T’COS(QZ'JC) 2 Q.0 + (1@190’[‘; + ...+ a;, NpQé\ﬁc
(4.9)
’I“SiH(Qi,k) ~ b@g + bi,lgo,k + ...+ b@ NPQ(])\,/P];
for nq harmonically related time-varying frequencies
-fk: = [ka f2,k . fnd k] = [hl hg Ce hnd]f(),k and Q()’k = 27Tf07k;T (410)
for fo.x € [fo.mins fo.max]- A least square fit can be used to calculate the coefficients
@0, -, N, and b; o, ..., b; n . Simulations and experiments achieved a very good

approximation with only three coefficients. Therefore here the sine and cosine function
are approximated as

7 cos(Q k) & ai o + i, 20, + @i 482 1
(4.11)
rsin(€; k) & bio + bi,2Qg,k + bi,4Qé,k'

The time-varying parameters

01k = 1, = 27 fo,x)?,
(4.12)
0o,k = Q1 = (27 fo,x)*
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are introduced and the matrix Ag, , can be written as

Agf) _ [ a;, 0 bz’,o } i [ Q;, 2 bm :|01,k+ [ Q. 4 bi,4 } 92,k (4.13)

_bi,O ;0 _bi,2 7 _bi,4 Qj 4

with only two gain-scheduling parameters independently of the number of frequencies. An
LPV representation of the matrix Agq, , with two gain-scheduling parameters is possible
since the matrices Adi’ r are included in the matrix Agq, .

Through an example, the three LPV models presented in this section are compared.
The objective is to obtain the three LPV disturbance models for a harmonic disturbance
with two components of frequency nq = 2

Fr=forll 2] = [fik for] (4.14)

harmonically related with fy . € [80, 85] Hz with a sampling time of 7" = 0.001 s.
Using the disturbance model for constant frequencies from (4.1))-(4.4]) the matrix

0 1 0 0
2
@nax2nq) | —1° 2rcos(2mfi,,T) 0O 0
Ag = 0 0 0 ] (4.15)
0 0 —r?  2rcos(2m fo 1 T)
can be written in LPV form defining 0y, = [6 x 03 k] as
01k = 2rcos(2m f1, 1 T'), b2 1 = 21 cos(2m fo, 1 T) (4.16)
and then the matrix
Ag = Aa(0r) = Ao + Ai0y ) + Azl i, (4.17)
is written as an LPV representation with
0O 1 0 O 0O 00O
2
(2nax2ng) —r= 0 0 0 (2nax2ng) 0100
Ao - 0O 0 0 1}’ Ai 10000
0 0 —2% 0 0O 00O
(4.18)
00 0O
(QndXQHd) _ 0 0 0 0
A; 10 000
0 001

The disturbance model for time-varying frequencies (4.1)-(4.3) and (4.7)) is used now to
obtain an LPV representation for the harmonic disturbance of the example. The matrix

rcos(2mfy xT)  rsin(2wfi ,T) 0 0
A |7 sin(2m fy 1 T) rcos(2nmf1T) 0 0 (4.19)
4k~ 0 0 rcos(2mfo  T)  rsin(2mwfo (1) '
0 0 —rsin(2m fo  T) 7 cos(2m fo k1)
is written using
01k =1rcos(2m f1 k1), bax = rsin(2m f1 1), O3 = rcos(2m fo 1, T),
(4.20)

04k = rsin(2m fo 1 T)
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in LPV form as

ASQ,ZM”‘” = A4(0r) = Ao + As0: i + Asly 1 + Azl3 1 + Asby ), (4.21)

with
0000 1000
@nax2ng) _ | 00 0 0 @nax2ng) | 01 0 0
A “loooo| " “loo0o0o0
0000 0000
0 100 0000
@nax2ng) _ | —1 0 0 0 @ngx2ng) | 0 0 0 O
Az =l o 0oo0o0| " 10010 (4.22)

0 000 0001

00 0 0

(2nd><2nd)_ OO O 0

and A “loo 0 1

00 -1 0

This LPV model needs double gain-scheduling parameters as the LPV model for constant
frequencies.

A reduction of the gain-scheduling parameters is done using the polynomial approx-
imation for the frequency range of fy x € [80 85] Hz. The cosine function is approximated
as

T COS(27Tf0, kT) ~ CLO7 1 + (127 1 (27Tf()7 kT)2 + CL47 1 (27Tfo7 kT)4

(4.23)
r COS(27T2fO,kT) ~ Qo, 2 + Qaz, 2(27Tf0’ kT>2 + &4,2(27Tf0,kT>4
with » =0.9999, T" = 0.001 s and the coefficients
ap,1 = 09999, Q21 = —04997, Q4,1 = 0.0406
(4.24)

ap,2 = 0.9983, as o = —1.9815, a4, » = 0.5976

calculated through a least square fit. For fy , = 82 Hz, rcos(27fy 1) = 0.87012 and
the value obtained using the polynomial approximation is 0.87009. The absolute error
obtained in this case is 0.00003. The same approximation is realized for the sine function
doing

T sin(27rf07 kT) ~ b()’ 1 + b27 1(271'f()7 kT)Z + b4, 1 (27Tf0’ kT)4

(4.25)
T sin(27r2f07 kT) ~ boyg + b272(27Tf07kT)2 + b472(27Tf07kT)4
obtaining the coefficients
bo,1 = 0.1973, by = 1.3807, by, 1 = —1.0098
(4.26)

bo’g = 04151, b2’2 - 23339, b4’2 == —25146
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with a least square fit. Finally the matrix

ap,1 bo1 0 0 as1 by 0 0
_ —bo, 1 dp,1 0 0 —bz, 1 a1 0 0
Adr = 0 0 ag,2 by 2 + 0 0 az o bao O, xt

0 0 —bo,z Qo, 2 0 0 —52,2 a2, 2
(4.27)
as,1 by 0O 0
—by1 as1 0 0
0 0 Q4,2 b4,2
0 0 —b4,2 Qy,2

+ 02, 1

is written with the coefficients calculated before with the gain-scheduling parameters 6, j
and 03 . Independently of the number of frequencies contained in the disturbance, if
the frequencies are harmonically related this model requires only two gain-scheduling
parameters.

The pLPV and LFT disturbance models are explained and obtained from the LPV
form in the next subsections.

pLPV Disturbance Model

Substituting 27 cos(€; ;) with 6; , and knowing the range of variation 6; . € [0; min, 0:, max]
with
0 min = 27 €0S(€; min) = 27 cos(27 f; min 1),
(4.28)
0i max = 21 c08(§2;, max) = 27 coS(27 f; max1)

for i =1, ..., ng, the LPV model for constant frequencies — can be written in
pLPV form if the parameters 6y = [01 x 021 ... On, k| varies inside a convex polytope
©. The vertices V = [0,,1 0,2 ... 0, y] with 6, ; € R™ for j =1, ..., M with all the
posible combinations of f; min and f; max form a convex polytope ©. The parameters 6,
are calculated with the coordinate vector Ay, = [\ k Aok ... A k) as in and (3.4).

These conditions can be expressed in matrix form as

T
[O\fl oviM}A;f: [elk } with A\; x>0 for j=1,..., M. (4.29)

The disturbance model of (4.1)-(4.4) is written in pLPV form as

R s | b e o vl

Ya,k Ca| O Uq, i Ca |0 Uq, k
with
Ay(0,)mamnam) — N\ Ay o1+ A rAd e+ Ak Ad v (4.31)
and
A = A(6,). (4.32)

As an example, a disturbance model with two frequencies f,, € [70, 80] Hz, fo ) €
[140, 160] Hz, nq = 2, T = 0.001 s and » = 0.9999 will be written in pLPV using
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the coordinate vector Ay fulfilling the conditions of (4.29). The disturbance model is
represented now as

0 1 0 0
A2rax2na) _ —r? 2rcos(2nfi T) O 0 _
d,k 0 0 0 1
0 0 —r? 2rcos(2m fo 1 T)
(4.33)
0 1 0 0
o —T2 01 k 0 0
o 0 0 0 1
0 0 —7"2 92,k ]
with )
T pi1 Ay | Ba T,k
’ = ’ ’ ) 4.34
{yd,k} [Cd 0}_“&1@} (4.34)
The vertices of the disturbance model are defined with
Ql,mm =2r COS(ZT(fLminT) = 18095, Ql,max =2r COS(27Tf17maXT> =1.7524
(4.35)
02 min = 27 co8(27 fo minT") = 1.2747, 03 wmax = 27 co8(27 fo, max 1) = 1.0715
and then the disturbance model is written in pLPV form as
Ay(0;) 2 2ma) = X L Ag(0y.1) + Ao 1 Ad(Oy.2) + A3k Ad(0y3) + Mk Aa(By4)  (4.36)

The difficulty to calculate the coordinate vector increases with the number of vertices of
the pLPV system. For the calculation of the coordinate vector, the method presented in
Heins et al. (2012,2012a) based on Daafouz et al. (2000) can be used. Here, this method
is briefly reviewed. The following steps are then carried out for the calculation of the
coordinate vector Ag.

1. ei,k = COS(27Tfi7kT), 1= 1, ...y Ng,

2. Cipk = Oik — 0 mins Cip kb = Gimax — Oi i, 2 =1, ...,n4,

(4.37)
ng
3' >\.77k = H (bimax,jcimaxak _I_ bimilujciminak?)?j = 1’ ey M
=1
with
bimirn 1 bimax, 1
bimin = 9 b’imax = (438)
bimina M bimax, M
are pre-computed such that
1
) ifv'izeimam
bimax,j = Qi,max Qz‘,min 7 ’ (439)
0, if Vi, i = 91', min
1
, if Vji = Hi,mina
imin, J 6@', max ei, min (440)
Oa if Vji = H'i,max
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where v; ; is an element of the matrix
OV, 1
: (4.41)
ev, M
Applying these steps to our example the following auxiliar matrices
0 0 0 0
— 0 i 0 b 62,maxi92,min _ _49219
Lmax = m ~ | —17.5331 | Pmex T 0 N 0 ’
1
Gl,rnax*el,min _175331 ‘92,max702,min _49219
1 1
gl,maxfgl,min _175331 92,max*92,min _49219
— —17.5331 0 0
= 0 ,max_0 , min — — —
bltnin — ! 0 1 O Y bzmil’l 0—2 maxl_02 - —4.9219
0 0 0 0
(4.42)
are calculated. For the frequencies f; , = 75 Hz and f5 = 150 Hz the coefficients
Cluae, k = 01,k — 01, min = —0.0276, co,0k = 02,k — 02, min = —0.0993
(4.43)
Clmimk = Hl,max — gl,k = —00294, chimk = 02,max — 92,k = —01039
The coordinate vector Ay
)\1719' = (blmax, 1ClmaX7 k + blmim lclminyk‘)(meax, 162maX7k + b2miny 1c2min7 k) = 02636
)\2yk = (blmaX72clmaka + blminaQClminvk)<b2mam2C2maX7k + b2min7202mimk) = 02518
(4.44)

)\37k - (blmaxa3c]-ma>c7k' + blmim3clminak)<b2maX7302maX7k + b2min7302min7k) = 02478

)\47 k= (blmaxy 4clmaX7 k + blmiln 4clminy k) (b2maXa 4C2max, k + b2min7 402mina k) = 02368

is obtained as in (4.37)) for the frequencies f1 = 75 Hz, f , = 150 Hz with f; ;, € [70, 80]
Hz and f5 5 € [140, 160] Hz. The pLPV disturbance model is written as

Tq k+1 Ay | Ba Ld, k
’ = : ’ 4.45
{ Ya,x } { Cqa| O }[ud,k] (4.45)

with

Ag k=M Ad(O0y 1) + X2 1 Aa(Oy 2) + A3 1 AG(0y 3) + Ay 1 A4(0y 4). (4.46)
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This equation can also be written as

0 1 0 0 0 1 0 0
—’1"2 91 min 0 0 —7“2 Hl,min 0 0
Ag = Mk 0 0 0 ] + Aok 0 0 0 . +
0 0 —r% 6o 0 0 —r? 0o max
0 1 0 0 0 1 0 0
—7"2 01 max 0 0 —7”2 el,max 0 0
Tkl oo 0 o0 1 | TMEL o 0 0 1
0 0 —-Tr 02’ min 0 0 - 62, max
(4.47)
and it is equal to
0 1 0 0 0 1 0 0
-2 O, 0 0 —0.9998 1.7818 0 0
As=1 909 ¢ o 1 |~ 0 0 0 1 (4.48)
0 0 —r* g 0 0 —0.9998 1.1755

for the frequencies fi , = 75 Hz, fs, = 150 Hz.

The use of the polynomial approximation if the frequencies are harmonically related
can reduce the complexity of the interpolation, the number of vertices and the number of
gain-scheduling parameters.

The polynomial approach of the previous section is used here with the disturbance
model for constant frequencies by simply doing

2r cos(27 fi 1k T) =~ a0 + a;,2(27 fo 1 T)? + a;, 4 (27 fo, 1. T)* (4.49)

for i = 1, 2 with
01, = (27 fo 1 T)?
(4.50)
(92,k = (QWfo,kT)4 = 9%,19

where fo , € [70, 80] Hz is the fundamental frequency of the harmonic disturbance that
is [fi.x fo.xl = [fo,r 2fo0 k). An LPV representation of the disturbance model is obtained
as

0O 0 0 O 0 0 0 0
(2nax2nq) 0 ai o 0 0 0 a172917k 0 0
A= 0 00 o |[Tlo o 0 o |7
0 0 0 a2, 0 0 0 0 a27201’k
(4.51)
0 1 0 0
—7’2 (l17492’k 0 0
0 0 0 1
0 0 —7“2 a274927k
with
ay,o = 1.9998, a2 =-0.9995, a; 4= 0.0815,
(4.52)

A2.0 = 19979, A2 2 = —39743, ag.4 = 1.2181.
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Figure 4.2: Triangle as polytope

The gain-scheduling parameters vary inside a triangle in R? as shown in Fig. with
vertices

BV, 1= [el,min 9%’ min] ’

T

6)1,min + 6)1,max Ql,minel,max (453)

2

0v,2 -

0\;73 - [el,max 9% max:|T

for
el,min = (27Tf07minT)2 = (27T 70 T)2
(4.54)
01, max = (27 fo, maxT)? = (2780 T)?

since the relation between the two gain-scheduling parameters 6, , and 6, is known
(2, = 67 4). A pLPV representation of the disturbance model with the polynomial
approximation is obtained as

T4 k+1 A | Bq L4,k
’ = ’ ’ 4.55
[ Ya, k } [ Cq | O :||:ud,k:| (4.55)
with
AT = N1 L AG(01) + Ao, Aa(By,2) + A3, Aa(6y3). (4.56)
The calculation of the coordinate vector is fairly simple using the polynomial approx-

imation and a triangle as polytope. From (4.29) the coordinate vector Ay is calculated
through

Ak 1| Ok
’ 6.. 0,, 0, ’
Ao | =0T YT T e | (4.57)
A3,k 1

The matrix inverse can be calculated offline and the calculation of the coordinate vector
i at each sampling time is only the result of a matrix multiplication. For a fundamental
frequency fo 1 = 75 Hz the coordinate vector

Ao =k Aok Ase] = [0.2669 0.4994 0.2336] (4.58)
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is obtained and the matrix Agq j is written in pLPV form as in (4.56|) with

0O 0 0 O 0 0 0 0
0 a0 0 0 0 a1,261,min 0 0
Abv)=149 6 0 o [t]lo o o0 o +
0 0 0 ago | 0 0 0 a2 201 min
(4.59)
0 1 0 0 i [0 1 0 0
N —r? a1,491’min 0 0 B —r2 1.8095 0 0
0 0 0 1 o 0 0 0 1
0 0 —r? g, 407 min |0 0 —r? 1.2747
0 0 0 0 [0 " 0 0
0 aro 0 0 0 a0y 0 0
AadOv2)=1 o "9 o [tlo 0 0 o |7
0 0 0 asg | 0 0 0 as 29‘(,1)2
0 1 0 0 0 1 0 0
X —1% a1,401 minf1, max 0 0 _ | —r* L7808 0 0
0 0 0 1 o 0 0 0 1
0 0 —7“2 a274917min917max 0 0 —7"2 1.1710
(4.60)
0O 0 0 O 0 0 0 0
0 a;jog O 0 0 C11,291,max 0 0
AaOvs) = 00 o |Tlo o 0 o +
0 0 0 a270 0 0 0 a2,2(91,max
(4.61)
0 1 0 0 0 1 0 0
+ —7’2 a174€imax 0 0 . —T2 1.7524 0 0
0 0 0 1 o 0 0 0 1
0 0 —T2 a9 40%7 max 0 0 —7"2 1.0715
with P 0
9\(/1)2 _ 1, min + 1, max (462)
’ 2
resulting in
0 1 0 0
—r?2 1.7818 0 0
Ay = 0 0 0 ) (4.63)

0 0 —r? 1.1755

An LPV disturbance model representation for time-varying frequencies of needs two
parameters per frequency as shown in the previous section. There are two alternatives
to obtain a pLPV model. The first alternative is to use the interpolation used by Heins
et al. (2012,2012a) and Daafouz et al. (2000). This approach results in a pLPV model
with 22" vertices, complicating significantly the calculation of the coordinate vector at
each sampling time. The second alternative is to use the polynomial approximation if the
frequencies are harmonically related. The use of this approach simplifies the coordinate
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vector calculation and reduces the number of gain-scheduling parameters to two, inde-
pendently of the amount of frequencies contained in the disturbance.

A disturbance model for time-varying frequencies is in the following example written in
pLPV form using the polynomial approximation for a disturbance with two components
of frequency fi, € [70, 80] Hz and fo ), € [140, 160] Hz. The disturbance model for
time-varying frequencies is given by

Td, k11 Aq i | Ba | | @ak
| o 2l ’ 4.64
[ Yak } [ Cq | O } [ U,k } (4.64)
with

recos(2mf1 xT)  rsin(2wfi xT) 0 0

| —rsin@2nfy (T) rcos(2mfi k1) 0 0
Ad. = 0 0 rcos(2mfo kT)  rsin(2mfo k1) (4.65)

0 0 —rsin(2m fo ) 7 cos(2m fo k1)

The cosine and the sine function are approximated with

rcos(2m fo,xT) & a1 + as,1(27 fo, e T)? + as,1 (27 fo,xT)*

rcos(2m2fo 1 T) & ag,2 + az,2(27 fo, kT)* + a4 o (27 fo 1 T)*

(4.66)
T Siﬂ(27’l’f07 kT) ~ bo7 1 + b27 1 (271']007 kT)Q + 64’ 1 (27Tf0’ kT)4
T Sill<27T2f0’ kT) = bo’g + [)2’2(271'.]0011;?)2 + b4,2(27Tf0,kT)4
obtaining the coefficients
a1 azq agi | [ 0.9999 —0.4997 0.0407 (4.67)
| Go,2 Q2,2 Q42 1 0.9990 —1.9872 0.6090 '
and )
bo1 b21 b4 | 0.1787 1.5324 —1.3187 (4 68)
i boa ba2a by o ] 0.3723 2.6817 —3.2224 |- '
The matrix
o, 1 bo,1 0 0 a2 1 52,1 0 0
(2ngx2nq) __ —50,1 Qp, 1 0 0 —bz,1 a2 1 0 0
Ad’k B 0 0 &0,2 boyg T 0 0 a/2,2 62,2 61’k+
0 0 —bo’g Qo, 2 0 0 _bZ,2 a2, 2
Q4,1 b47 1 0 0
—b4,1 Q4,1 0 0
+ 0 0 Qy,2 b472 92’k
0 0  —byo ago
(4.69)

is written in LPV form with 6; , = (27 fo,xT)? and 6 . = (27 fo,xT)*. The same procedure
as before is here realized since the relation between the two gain-scheduling parameters
is known 0y = Gik. A triangle as polytope is used here as in @D with the same
vertices since the range of variation of the fundamental frequency is fo 5 € [70, 80] Hz.
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The coordinate vector depends only on ¢y min and 0 max and the pLPV model for time-
varying frequencies can be written as

T4 k1 Ag | Bq T4k
’ et 2 ’ 470
[ Y,k } [ Cq | O } |:ud,k } (4.70)
with
AR =\ Ag(B01) + Ao Aa(By2) + s Aa(By3). (471)
and
ap,1  bo1 0 0 as1 by 0 0
(2nax2ng) —bo,1 @01 0 0 —ba,1 ag1 0 0 )
Ad’ v,1 o 0 0 Qo, 2 b()’ 2 T 0 0 a2 2 b2, 2 6)17 min "
0 0 —b072 g, 2 0 0 _b2,2 a2, 2
Q4,1 b471 0 0
—bs1 as 0 0 2
b ) 0 .
+ 0 0 CL472 b472 1, min>
0 0 —b472 Q4,2
(4.72)
Qo, 1 50,1 0 0 a21 52,1 0 0
(2nax2nqa) | —bo,1 ao1 0 0 —b21 a1 0 0 (1)
Ad’V’Q o 0 0 a072 boyg + 0 0 02,2 b2,2 Qv 2+
0 0 —b072 Qo, 2 0 0 _b2,2 a2, 2
Q4,1 b471 0 0
—b4,1 Q4,1 0 0
+ 0 0 a472 b472 el,mmel,max;
0 0 —b472 Qy,2
(4.73)
ao,1 bo1 0 0 az1 b2 0 0
(2ngx2nq) —50,1 Go, 1 0 0 —bZ,l az,1 0 0
Ad’ v,3 - 0 0 a072 b072 T 0 0 a2,2 b2,2 61,max+
0 0 —bo,2 Qg, 2 0 0 —52,2 a2 2
Q4,1 b471 0 0
—54,1 Q4.1 0 0 2
* 0 0 Q4,2 [)47 2 91’ max
0 0  —byo aso
(4.74)
with 0 n
0\(:)2 _ 1, min l,maxl (475)

2
The coordinate vector is calculated with (4.57). For example for f; , = 75 Hz and
fo.r = 150 Hz the values of

Ao =[Ar Aok Ase] =[0.2669 0.4994 0.2336] (4.76)

are obtained. The use of the polynomial approximation reduces the number of gain-
scheduling parameters to two if the frequencies are harmonically related and a triangle as
polytope simplifies the calculation of the coordinate vector to a matrix multiplication.
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Experimental results will show later the effectiveness of these models for the rejection of
harmonic disturbances. Results will be shown for controllers using the model for constant
frequencies without polynomial approximation and the use of the model for time-varying
frequencies with the polynomial approximation.

LFT Disturbance Model

An (n x n) MIMO LPV disturbance model for constant frequencies is given as

{ T, k1 ] _ { Aa(ar) | B } { Ld, k ] (4.77)

Ya, k Cs | O Wq, k
with
Ad1 (ak) c. 0
Ad(ak)(QnanQndn) — - : (478)
0 Aq, (ar)
Aq, (ay,1) 0
Ad1 (ak)(QndXQnd) = . . = Adn(ak)(QndXZTLd) — ’ (479)
0 Adnd (@n, x)
~ 0 1
At =| S 0] (480)
_ 1 -
Bd1 Bdn 0
BéQnanmwd) _ : B(d21nd><1) I B((iandxl) _ (481)
Bd1 Bdn 1
-~ O -
and
Ca 0
ngdX2ndn) _ : ' :
0 ... Cq (4.82)
1x2n 1x2n
ol = L =c* =10 ..10]

with Qi |k = 2r COS(QLk), Qi,k = 27Tfi7kT for i = 1, ..., Ng.
Knowing the range of variation of the frequencies f; x € [fi mins fi, max], the parameter a; x
can be represented for given frequencies f; ; as

Qi) = o,; + a1,i0; (4.83)
with
amax,i + amin,i CLmax,i - amin,i
pi =~ Ay =
0 2 b 2
(4.84)
Q; | — Qg 4
ei,k == u; ei,k € [_17 1]7
Qg
for
Umax,i = 27 COS(27 finin 1) and Gumin,; = 27 cO8(27 finax,iT). (4.85)
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The disturbance model is written in LFT form as

Ld, k+1 Ad,o ‘ Bd,e By Ld, k
9o, 1 = | Cqe| Dog Doy W (4.86)
Ya,k Cq Dye Dyw Wq, k
with
Ad1 (ao) e 0
A |0 (457)
0 cee Adn (ao)
Adl (CLOJ) Ce 0
14011 (ao)(2nd><2nd) e Adn (ao)(anx2nd) _ . . 7 (488)
0 Aqg,, (a0,n,)
~ 0 1
Adi(ao,i)(2><2) - |: —7“2 ao ; :| ) (489)
BCLQ1 0 Bd,91 0
I e el I T
0 Bd,Gn 0 Bd,ond
BY," = { ! } , (4.91)
ot ay,;
Cq9, ... O Cao, ... O
0 Cd,Gn 0 Cdﬁnd
= (1x2)
Caon =[0 1], (4.93)
6., ... O
0 ... 0.4
and
Orp ... O
0 ... Ok

for mg = rg = ng.
As an example, a 2 x 2 MIMO (n = 2) harmonic disturbance with two frequencies
na =2, fix €[70, 80] Hz and f, € [140, 160] Hz can be modelled in LFT form as

Ld, k+1 Ad,o ‘ Bd,e By Ld, k
4o, 1, = | Cq0| Dog Doy W (4.96)
Ya,k Cq Dye Dyw Wq, k
with ( )
(2nanx2nqn) Ad1 Qag 0
AL = { o Ay | (4.97)
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Ay (ag,1) 0
A (2ngx2ngq) — A (2ngx2ngq) _ d; (40,1 N 4.98
dy (a’O) d2(a’0) 0 Adg(a0,2) ) ( )

~ 0 1 ~ 0 1
(2x2) _ (2x2) _
An)® = | 0y L Anwa® = | Oy L as
(2ngnxnmeg) Bd,91 0 (2naxme) __ p(2naxme) __ Bd,el 5 0
Bd,@ - [ 0 Bd,92 :| ) Bd,91 _Bd,02 - [ 0 Bd,@g )
(4.100)
BV = { Y ] . BYY = { Y ] , (4.101)
1,1 1,2

1

(2nanxmw,) Bdl Bd (2ngx1) (2ngx1) 0
R e F I

0

(nrg><2ndn) o Cd 91 0 (’I”g ><2nd) o (7"9><2nd) o éd,el _ 0
Cio - [ 0 Cag, } , Caly, =C45%, = [ 0 Cus |’ (4.103)
Coo =Chp =10 17, (4.104)
(ryq X2nqn) Cd 0 1x2n, 1x2n

Cvarm { o CdJ,Cng d=c*=[1010], (4.105)
[ Dgg Dy, ]<mm+wd)x<nm9+mmd)) = [ 00 } (4.106)

D, D,, 0 0|’

(nanxngn) Ol,k 0
0 = { 0 Oy 1 : (4.107)
ngxn ngXxXn el,k 0
o oy — | M 0] (4.108)
[ ao,1 ao2 | = 1.7810 1.1731 ] (4.109)
and

[ a1 a12 ] =] —0.0285 —0.1016 ] (4.110)

formn=ng=mg =19 = 2.
The matrix Ad(ak)(znd”“’ld”) of the disturbance model is given for f; ;, = 75 Hz and
fo,x = 150 Hz as

Aq(ar) = Aq,0 + Bq,00:C4,0 (4.111)

for 0

- Lk O
0, = { 0" 0, } : (4.112)
0 0

01, =02 = { B’“ 0 L } (4.113)

with 0
O = 501 — _0.0308, (4.114)

1,1
Oy, = 2E 002 908, (4.115)

ai,2
arp =2rcos(2r75T) and as = 2rcos(2m 150 7). (4.116)

60



4. LPV Gain-scheduling Control for Harmonic Disturbances with
Time-varying Frequencies

pLPV Gain-scheduling Control for Harmonic
Disturbances with Time-varying Frequencies

In this section, LPV gain-scheduling design techniques are applied to the LPV control
structures of the previous chapter. The controllers achieved with these techniques are
gain-scheduling with some functions of the disturbance frequency as gain-scheduling para-
meter. It is assumed that the frequency of the disturbance is known or can be measured.

Disturbance Observer Control Design

A complete representation of the pLPV disturbance observer controller was obtained in
Sec.|3.2.1] In this section the vertex observer gains Ly, v, ; are calculated.
For a pLPV augmented system with M vertices

Tq, k11 Agv; 010 T4,k
Lp k+1 = BpCd Ap Bp Ly k (4117)
Yok 0 C,|o Up &
or in compact form
|: Ldo, k+1 :| _ |: Ado,v,j ‘ Bdo :| |: Ldo, k :| (4 118)
yp7k Cdo ‘ 0 Up, k .

with A((Qnd+np)><(2nd+np)) B((2nd+np)Xmup) and C((;;pr@nﬁnp))

do, v, j N = , M vertex observer

gains are calculated solving the LMIs for the positive definite matrix X ((2ra+ne)x(Zna+np))

Z (g 2natnp) X (ryy 4200410)) a1 for the matrix Yo %) (see|A.4

v,j
X XAgo,j — Y, Cy
s v >0, 4.119
{ (X Agov,; — Y, ,Cy)" X -c,'c, (4.119)
VA B,X — D,,Y. ;
{ (BuX — DyuY, ;)" x > 0, (4.120)
trace(Z) < 4 (4.121)
for j =1, ..., M with
Bgl(}ryp—l—Qnd-‘rnp)X(Qnd—i-np)) _ l: %é :| ’ D;(;yp-i—Qnd—&-np)xryp) _ |: Rf); :| 7
(4.122)
Cy(?“pr(Qnd+np)) = C,
Cq((2nd+”p)><(2”d+np)) — I’ Q((an+np)><(2”d+np)) and R(Typxryp)'
Finally, the vertex observer gains are calculated through
((2ng+np) xr o) _
Lyo; " =XY], (4.123)
The matrices of the pLPV disturbance observer controller are written then as
M
Adoc<0k) ‘ Bdoc(gk) . Adoc,v,j ‘ Bdoc,v,j
Cow |0 = 2; Nk | 0 (4.124)
i
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with
AlratpexGratne) — Ay Ly iCao — BaoK o,
((2ng+mnp)Xry.)
Bdoc,i,j R = Ldo,V,ja (4125)

C(mupx(2nd+np)) — Kdo

doc

and the coordinate vector A; j; calculated fulfilling
01,k

[ev,l HV,M} S with A, >0 for j=1,..., M. (4.126)
A

ng, k
M,k 1

The vector Oy = [0 ... O, 1] is obtained using the frequencies measured from the
disturbance and it is used to calculate the coordinate vector. The pLPV controller is

written as
M
Ldoc, k+1 Adoc,v,j ‘ Bdoc,v,j :| |: Ldoc, k :|
’ = A ’ 4.127
[ Up & ] 321 gk { Cioc ‘ 0 Yo,k ( )

depending on the coordinate vector Ay calculated at each sampling time.
As an example, a controller is calculated for the rejection of a harmonic disturbance
with two harmonically related frequencies (nq = 2) acting at the output of the plant

Tokrt | _ |0 1L T 4.128

|- L] L B

for T =0.001 s, a = 0.1 and [f1,x fok] = fo.k[l 2] with fy, € [40, 50] Hz. Since in
this example the frequencies of the disturbance are harmonically related, the polynomial

approximation of (4.11)) is used to obtain an LPV representation of the disturbance using
the model for time-varying frequencies (4.7) as

ao,1 bo 0 0 a1 ban 0 0
(2ngx2nq) __ —50,1 o, 1 0 0 —52,1 a2 1 0 0
Ad’k B 0 0 agp, 2 boyg 0 0 a2, 2 62,2 617k+
0 0 —bo’g a072 0 0 _b2,2 0,272
Q4,1 b471 0 0
—b4,1 Q4,1 0 0
* 0 0 as2 bspo 2.1
0 0  —by2 ag>
(4.129)
with
ap,1 = 09999, Q21 = —04999, Q4,1 = 0.0413
(4.130)
apg 2 = 09999, a2 2 = —19981, Qg4 2 = 0.6453
and
bo,1 = 0.1060, by = 2.6214, by 1 = —5.7339
(4.131)

b072 = 02150, b2,2 - 50239, b472 - —126601
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for r = 0.9999, 01 r = (27 fo,xT)* and 65 ), = (27 fo xT)*. A triangle as polytope is used

in the same way as (4.53) with the vertices

ev,l - [el,min 92

1, min

]" =[0.0632  0.0040]"

9 o Ql,min + Ql,max 5
v,2 —
’ 2

ev, 3= [91, max 02

1, max

]" = [0.0987 0.0097]"

for
el,min = (27Tf0,mjnT)2 = (27T 40 T)Z,

01, max = (27 fo, maxT)? = (2w 50 T)?

resulting in a pLPV representation of the disturbance

3
T4 k41 Aqv,; |0 Ld,k
) — )\ IAA) )
{ Ya i } ; ”{ Cu OdeJ

01 minf1 max| = [0.0809 0.0062]"

with ~ -
0.9685 0.2487 0 0
A(2rax2na) _ —0.2487 0.9685 0 0
d,v,1 0 0 0.8762 0.4819
i 0 0 —0.4819 0.8762 |
[ 0.9597 0.2824 0 0 ]
A(2rax2na) _ —0.2824 0.9597 0 0
d,v,2 0 0 0.8422  0.5427
i 0 0 —0.5427 0.8422 |
0.9510 0.3089 0 0
A(2nax2na) _ —0.3089 0.9510 0 0
d,v,3 0 0 0.8089 0.5876
0 0 —0.5876 0.8089
and the coordinate vector calculated through
)\1 k -1 91 k
' 0,, 6,, 0, '
Xk | = { 1’1 1’2 1’3 } 02,
A3,k 1

A pLPV augmented system is built

3
Ldo, k+1 o ) 14d0,v7 j ‘ Bdo Ldo, k
[ }_;/\M{ Cdoj‘ 0 }[“p,k}

Yp,k

with

do,v,j do

B,Cq A,

A((2nd+np)><(2nd+np)) _ |:Ad,v7j 0 1 B((2nd+np)><mup) _ |: 0

Cé:)ypx(2nd+”p)) _ |: 0 Cp ]
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Figure 4.3: Variations of of the disturbance frequencies (left) and simulation results (right)
in closed loop (black) and open loop (gray)

Tip XMy

forj=1,...,3, Aé”pm") = a, BI() ) — 1, qﬁ%x”") =(1—a), n, =my, =1y =1,
ng = 2 combining the pLPV disturbance model and the LTT plant.
Finally, three vertex observer gains

p{Pratmlaw) — x1y' T —[0.0115 —0.0076 0.0065 —0.0162 0.0131 |7

do,v,1

L) — x-ly T, — 00115 —0.0077 0.0070 —0.0168 0.0307 |7 (4.139)

Linym ) — x -y T~ 10,0118 —0.0079 0.0068 —0.0165 0.0338 |T

are calculated solving the LMIs of (4.119)-(4.121) for X, Z and Y, ; for all the vertices
of the pLPV augmented system with

Q(ratre)xGnatne)) — [(I) 8] and R(w>"w) = 101, (4.140)

These values of Q@ and R achieved the desired performance of the closed loop system.
The controller is written in pLPV form as

M
Ldoc, k+1 Adoc,v,j ‘ Bdoc,v,j 1 |: Ldoc, k :|
, N 4.141
|: Up, k :| ; Pk { Caoc ‘ 0 Yp, k ( )

with
A((Qnd+np)><(2nd+np)) — Ado,v,j _ Ldo,v,deO — BdoKdoa

doc, v, j

B @ratne)xryy)

doc,v,j = Ldo,v,j; (4142)

C(mupX(Qnd+np)):KdO:[Cd 0]=[1 010 0]

doc

and the coordinate vector Ay calculated from (4.136]).

Simulation results for the system in closed loop and open loop are shown in Fig.[4.3]
for a disturbance acting at the output of the plant with time-varying disturbance frequen-
cies. The stability is guaranteed since pLPV control design techniques and independent
Lyapunov functions are used.
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Error Filter Control Design

This control structure is a state-feedback gain of plant and disturbance model combined
with an observer to estimate the states of the plant. A state-space representation for all
the M vertices of the augmented system is given with

T4 k1 Agv; —B4C,| 0 Ty i
Lp, k+1 = 0 Ap Bp Lp, k (4143)
Yp k 0 C, 0 Up &
or in compact form as
|: Lef, k+1 :| _ |: Aef,v,j Bef :| |: Lef, k :| (4 144)
yp, k Cef 0 Up, '
e P e )
The state-feedback gains K an:f Y X@ratre)) ore calculated solving the LMIs
P (At v ;P —B,Y, ;)"
{ Ao P —BuY, P-_B,B," > 0, (4.145)
w C,P-D,)Y,,
{ (C,P — DY )" p > 0, (4.146)
trace(W) < (4.147)

for the positive definite matrices P((2ratme)x@natnp)) 7 ((mup+2natnp)x(mup +2natne)) opq

for the matrix Y(m“p (2natnp)) with

Cq((mup+2nd+np)><(2nd+np) |: Q2 :| : un((mup+2nd+np)><mup) _ |: 0 :| :

R
B, (@natm)mu,) — B B (@natne)x(2natn) _ (4.148)
Q((@ratmp)x2natnp)) g R(MupXmup)
The state-feedback gains are calculated through
K Crame) _y | p! (4.149)
fory=1,..., M.
The error filter controller matrices are written in pLPV form as
Aefc Ok ‘ Befc efc v,J ‘ Befc
. 4.1
{ 0] Z Ak Cocry| 0 (4.150)
with
A(@natnn)x(@natng) _ { Agv.j 0 }
efevd —ByKaq,y,; Ap —B,K,, .\, - LpCp ’
g CGnatne)xryy) B4 (4.151)
efc Lp )

M 2nq+n
C( pX( d+ P)) — _Kef,V,j = |: —Kd7v’j _vavmj ]

efc, v, j
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forj=1,... M.

The coordinate vector \; j is calculated at each sampling time using the conditions of
(4.126)) using the parameter vector 6.
The pLPV error filter controller representation is obtained as

M
Lefc,k+1 - 2 : ) Aefc,v,j ‘ Befc Lefc,k
|: Up, k :| N j=1 /\Jvk |: C j €k . (4152)

efc, v, j ‘ 0

A controller is calculated as an example with this control design for the rejection of
a harmonic disturbance with two harmonically related frequencies (nq = 2) acting at the

output of the plant
Tpktl | _ a |1 || zpk 4.153
{ Yp, k ] {(1—‘1) O}|:upk:| (4.153)

for T = 0.001s, a = 0.1, A7) = q, BY»* ™) — 1 ™ ™) — (1—a) and [fr fou] =
fo.x[1 2] with fo , € [40, 50] Hz. The frequencies are harmonically related and therefore
the polynomial approximation is used to obtain an LPV disturbance model. Since the
number of frequencies and the range of variation of these frequncies is the same as in
the previous section the same LPV disturbance model of is used. A triangle as
polytope is used to reduce the number of vertices to three.

The pLPV augmented system

Td, k1 Agv; —B4C,| 0 T4 1
l’p k+1 Z )\] k 0 Ap Bp Tp, k (4154)
yp k 0 Cp ‘ 0 up,k

or
Lef k+1 ef, v, j Bef Lef k
: A 7 4.155
[yp»k’} ZM{ Cet 0}{“@’6] ( )
is built with the same vertices (4.132)) and coordinate vector (4.136|) combining pLPV
disturbance model and plant with

0.9685 02487 0 0 0
—0.2487 0.9685 0 0 —09
AlPratre)x@natne)) 0 0 08762 04819 0 |, (4.156)
0 0  —0.4819 0.8762 —0.9
0 0 0 0 01
0.9597 0.2824 0 0 0
—0.2824 0.9597 0 0  —09
AlPrafre)x@natne)) 0 0 08422 05427 0 (4.157)
0 0 —0.5427 0.8422 —0.9
0 0 0 0 01
and
0.9510 0.3089 0 0 0
~0.3089 0.9510 0 0 —09
AlPnafme)x@natne)) 0 0 08089 05876 0 |. (4.158)
0 0  —0.5876 0.8089 —0.9
0 0 0 0 01
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Three state-feedback gains are calculated solving the LMIs of (4.145))-(4.147)) for the three
vertex obtaining

K(mupx(Qnd+np)) _ Yv,lp_l = [ Kgy.1 Ky }

ef,v,1
(4.159)
Kef,v’12[0.0235 —0.0340 0.0383 —0.0207 0.0700},
K(mupx(Qnd+”p)) -Y P—l - [ K K
ef,v,2 — v,2 — [ d,v,2 p,v,2 }
(4.160)
Kef,v722[0.0238 —0.0342 0.0391 —0.0204 0.0748}
and
Moy 2nq+np _
Ke(zf,vf)SX( o )):YV,3P 1:|:I{d,v,3 Kp,v,3}
(4.161)
Kef’v73:|:0.0242 —0.0349 0.0394 —0.0204 0.0824}
with
1000 O
0100 O
QC@ratmp)x@natm)) — | g 0 1 0 0 | and R™=*™w) =1000 (4.162)
0001 O
0 00 0 0.82
and the observer gain of the plant
(”pxryp)i
Ly = 0.1098 (4.163)

obtained solving the LMIs of for @) =100 and R = 1. The dimension of the matrices
are given with n, =m,, =r, =1 and nq = 2.
The controller is then written in pLPV form as

3
Lefe k+1 Aefc,v,j ‘ Befc Lefc,k
’ = A ' 4.164
|: Up,k :| jzl gk |: C’efc7 v,J ‘ O Ck ( )
with
((2na+np)x(2ng+np)) __ Ad,ij 0
Aefc’v’j B [ —ByKaq,v,; Ap— BpKp v, j — LGy } 7 (4.165)

My, 2ngq- Np = — v )
( p><( d )) K £ ] = Kd ’j l(p’Vj ]

efc, v, j
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forj=1,...,3
[ 0.9685 02487 0 0 0 ]
—0.2487 0.9685 0 0 0
AlZratme)xEnatie)) 0 0 08762 04819 0 ,
0 0 —04819 08762 0
| —0.0235 0.0340 —0.0383 0.0207 —0.0688 |
[ 09597 02824 0 0 0 ]
—0.2824 0.9597 0 0 0
AlZratme)xGnatie)) 0 0 08422 05427 0 . (4.167)
0 0 —05427 0.8422 0
| —0.0238 0.0342 —0.0391 0.0204 —0.0736 |
[ 09510 0.3089 0 0 0 ]
—0.3089 0.9510 0 0 0
Algratme)xEnatie)) 0 0 08089 05876 0 :
0 0 —0.5876 0.8089 0
| —0.0242 0.0349 —0.0394 0.0204 —0.0812 |
0
2 B 1
Bigcnd-f—np)XTyp) — [ d :| _ 0 7 (4168)
L, )
0.1098
Ci?;‘?\sj@nd‘knp)) = _Kef,v,l = [ _Kd,v,l _Kp,v,l } -
(4.169)
— [ —0.0235 0.0340 —0.0383 0.0207 —0.0700 ],
02?275,;(2nd+np)) = _Kef,V,Q = [ _Kd,v,2 _Kp,v,Q } -
(4.170)
— [ —0.0238 0.0342 —0.0391 0.0204 —0.0748 ],
and (1 X (21g+15))
Mayy X (2ng+np
Cefcj\l,)yg ¢ = _Kef,v,?) = [ _Kd,v,3 _Kp,v,3 :| -
(4.171)

= [ —0.0242 0.0349 —0.0394 0.0204 —0.0824 ] .

Simulation results are shown in closed loop and open loop for a disturbance acting with
time-varying frequencies acting at the ouput of the plant in Fig.[4.4]

Output Feedback Control Design

In this section pLPV design techniques are applied to obtain a pLPV gain-scheduling
controller with the frequency of the disturbance as gain-scheduling parameter. The gen-
eralized plant with disturbance model, plant and weighting functions for a polytopic
system with M vertices is written as

Lr41 Av,j ‘ Bw Bu Lk
q; = Cy | Dgw Dgu wy, (4.172)
yp7 k Cy Dy'w Dyu Up, x
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Figure 4.4: Variations of of the disturbance frequencies (left) and simulation results (right)
in closed loop (black) and open loop (gray)

with
wp,k:
xp= | FOF | (4.173)
Tw,, k
LWy, k
A, B,Cq 0 0
((np+2nd +nwy, +nWy )) X (np+2nd +nwy, +TLWy )) . 0 14d7 v,J 0 0
BWyC'p 0 0 AWy
0 B,
((np+2na+nwy, +nwy ) x (mw+ma)) | Bg 0
[ B, Bu | =10 Bw, | (4.175)
0 0
C. 1 (Cautray+r)x (np+2na+nwy +nws, ) 0 0 Cw, O
{Cq} = DWpr 0 0 Cwy (4.176)
Y C, 0 0 0
and
((rau +7ay +7y) X (May+ma)) 0 Dw,
{ Dgw Dau } =10 0 (4.177)
Dyw  Dyu 0 0
foryj=1, ... , M.
Then, the LMIs
AT XA, , - X Al X,B, c?
Nx 01| T oo ! i a Nx 0] _,
0 I Bw—XlAv,j —’)/I+BwX1Bw un 0 I <y,
C, D, —1
T AV,jYIA\?j - Y1 Av,lecg‘ Bw
Ny O o T Ny O 0
B, un —1
X, 1
>
(4.178)
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for feasibility and optimality are solved for X 5”*") and Yﬁ””), for every A, ;. The
dimension n = n;, + 2nq + nw, + nw, is used for the system matrix of the generalized
plant and rqy = 14, + rg, for the performance outputs.

With X and Y, the matrix

X, X
(2nx2n) 1 2
X - { X1 } (4.179)

is built and X "™ is calculated through

X, = (X, -Y")e. (4.180)
Let
4 (2nx2n) 14\;7 0 (2N Xmay) B’w ~(rgx2n)
Al _{ OJO],B _{0],0" =[Cq 0] (4.181)
and X define the auxiliar matrix
-X1' A, B 0
A, -x o (T
w((4@+mw+rq)x(4n+mw+rq)) _ 7V7j ) (4.182)
i B 0 -1 D},
0 C Dy, I
Build
P((n+mu)><(4n+mw+7“q)) _ [QT 00 Q'gu }
(4.183)
Q((ry+n)><(4n+mw+7“q)) — [ 0 Q Qyw 0 ]
with the following matrices
0 B 0 I
(2nx (n+ma)) _ u ((n4ry)x2n) _
2 1 ee-lg, ]
(4.184)
rg X (n+ma, n+r. Maw 0
Finally, the basic LMIs
Y, ;+ PO .Q+QMQ, ;P <0 (4.185)

are solved for ngfrmu)x(nﬂy)) with the matrices

matrices are extracted from €2, ; with

P and Q. The M controller

v7.]7

Aof,v,j ‘ BOf7V7j :| (4186)

7]
Of,ij ‘ Ofv"uj

and a pLPV state-space representation of the controller is written as

M
Tof k+1 140f7 v,J ‘ Bof,v7j :| |: Lof k ]
k| N7 4.187
{ (T ] ;:1: gk [ C Yy r (4.187)

of,v,j ‘ Dof,v,j
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with the coordinate vector calculated from (4.126]).

A pLPV output-feedback controller for the rejection of a harmonic disturbance with
two frequency components [f1 x fo.x] = fo.x[l 2], na =2 and fo € [45, 50] Hz acting at
the ouput of the plant

Tptt | _ [ |1} @ 4188
e |-l ] 288
with a = 0.1, AI()an”p) = a, Bg”pm“P) =1, Cffypmp) =1 —-a),ny =my, =r, =1and

T = 0.001 s is calculated here to illustrate this control design.

The same procedure is here realized as in the previous sections to obtain a pLPV
representation of the disturbance. The frequencies contained in the disturbance are har-
monically related and then the polynomial approximation is used to reduce the number
of scheduling parameters. The LPV disturbance model is approximated as

o, 1 50,1 0 0 a2 1 52,1 0 0
(2nax2ng) __ —50,1 ap, 1 0 0 _62,1 a2,1 0 0
Ad’k B 0 0 ap2 by o + 0 0 az o bao Ot
0 0 _b(]’Q o, 2 0 0 _b2,2 as 2
Q4.1 b471 0 0
—b471 Q4,1 0 0
+ 0 0 Q4,2 b472 92’k
0 0 —by2 ag2
(4.189)
with
Qp,1 Q2,1 Q4,1 . 0.9980 —0.4990 0.0412 (4 190)
Qp,2 Q22 Q4.2 o 0.9979 —1.9939 0.6419 '
and
boi ba1 bsn | | 0.1121 24714 —4.8947 (4.191)
boo bas bao | | 02278 4.7115 —10.9058 '

for r = 0.998, 61 x = (27 fo xT)* and by . = (27 fo,xT)*.

A triangle is used as polytope to reduce the number of vertices. A pLPV representation
of the disturbance is obtained as

3
T, k1 Ay, | Ba Tq k

’ = s ’ 4.192

{ Yd, k ] ;: J’k[ C, 0 ] [Wd,k ] ( )
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with ~ _
0.9584 02784 0 0
qCnaxamg _ | —0.2784 09584 0 0
dvil 7 0 0 0.8426 0.5348 |’
0 0  —0.5348 0.8426 |
[ 0.9538 02943 0 0 ]
qCraxang) _ | —0.2043 09538 0 0
dv2 7 0 0 0.8249 0.5626 |’
0 0 —0.5626 0.8249 |
(4.193)
[ 0.9492 03084 0 0 ]
qCraxang) _ | —0.3084 09492 0 0
dvs 7 0 0 08074 0.5866 |’
0 0  —0.5866 0.8074 |
1
B e — 1073 } LYY 101 0]
1
for the vertices
01 = [0 02 ] =1[0.0799 0.0064]"
0 min 0 max T
0, = { L “; L el,minel,ml — [0.0893  0.0079]" (4.194)

Ou5 = [0 max 07 ae] = [0.0987  0.0097]"

with el,min = (27Tf07minT)2 = 00799, gl,max = (27Tf07maxT)2 = 00987, ng = 2, Myy =
Ty, = 1 and the coordinate vector A; calculated through

)\Lk -1 el,k

)\2 . _ |: ov,l 0v,2 0V,3 :| 02 i . (4195)
’ 1 1 1 ’

Ak 1

Before applying the control design explained in this section to calculate the output-
feedback controller, the weighting functions

TW,, k+1 Aw, | Bw, Tw,, k 0] 0 Tw, k
us — U = w 41
|: Qu, k :| |: CWu DWu :| |: Up, k :| |: 01]0.01 Up, k ( 96)
with A(;ZV“X”W“), B&?ZV“XT”“), Cé;}i"on“), Dé;iuxm“), nw, = 0, m, =r,, = 1 for the control

input u, , and

Tw,, k+1 Aw, | Bw Tw,, k 0 O:||:IW k:|
k| = —‘— : vk | = + v 4.197
|: Qy, k :| |: CWy DWy :| |: Y,k :| |: 01 Yp, k ( )

for the plant output y, » are chosen to build the generalized plant

L1 Av,j ‘ B, B, Lk
g, |=| Cq |Dgw Dy wy, (4.198)
Yo, k Cy | Dyw Dyu Up, k
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with
_ | Tk (np+2na)x(npt2n0)) _ | Ap  BpCa
om0 ] A (A BOT
((np+2ng) X (Mw+ma)) 0 Bp
(B, B,] - [ o ] , (4.200)
C. 1 (CatrayFry)x(np+2na)) 0 0
{C’q} = | Dw,C, O (4.201)
v Cp 0
and
((TQu +TQy +Ty) X (mw“‘mu)) 0 DWu
{ Dgw Dy ] =10 0 (4.202)
Puw Dy 00
for =1, ... ;3. The control design explained in this section (4.178])-(4.187)) is applied

to the generalized plant to obtain three vertex controllers. A polytopic representation of
the output-feedback controller is written as

3
Lof k+1 Aof,v,j ‘ Bof,v7j :| |: mof,k; :|
S Py 4.203
|: 'LLpJg :| = gy k |: C ( )

ofv.i | Dot v.j Yp, k
with

—0.5864 —0.5386 —0.0660 —0.5006 —0.2040
04642  1.2119 02825  0.2997  0.0652

Allret2na)xet2na) 101405 —0.3506 0.8653 —0.0598 —0.0593
h 0.4477  0.2784  0.0082  1.0810  0.5602
—0.2208 —0.1697 —0.0604 —0.6469 0.7149

?

—20.3266 0.0051 77 (4.204)
—24.1712 0.0079
Brina) — | 12,8255 |, Ot = 1 0.0006 |
—8.7139 ’ 0.0076
32.2004 0.0024

DU — 0,294,

of,v,1
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—0.6010 —0.5460 —0.0711 —0.5034 —0.2142
0.4540  1.2116  0.2993  0.3055  0.0705
Alrinaxim2na) — 401417 —0.3686  0.8553 —0.0616 —0.0627 |,
0.43890  0.2830  0.0095  1.0659  0.3888
—0.2157 —0.1760 —0.0646 —0.6757 0.6901

T

~21.8338 0.0050 (4.205)

~25.5352 0.0079
B{pra ) — | 13,6657 |, OG0 = 0.0006 |

~8.6885 0.0075

34.3218 0.0024

D = —0.3016

and
[ —2.3084 —1.0534 —0.0482 —1.0157 —0.2479
0.8855 1.3411  0.3072  0.4432  0.0821
Allretzna)xet2na) 101078 —0.3744  0.8453 —0.0528 —0.0654 |
h 0.8824  0.4203  0.0034 1.1866  0.6200
| —0.2438 —0.1917 —0.0680 —0.7103  0.6658
[ —183.1849 0.0185 1" (4.206)
14.8782 0.0119
BYwira) — | 1rmisr |, oYreretra) — 00004 |
34.0517 0.0116
33.0778 0.0026

D) = 0.9757

with the coordinate vector calculated with . Results for the pLPV controller are
shown for time-varying frequencies in Fig[l.5] in open loop and closed loop. All LPV the
techniques presented in this thesis guarantee the stability in closed loop since Lyapunov
independent functions are used in the control design.

2
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= 80 =
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5 s 0
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Figure 4.5: Variations of the disturbance frequencies (left) and simulation results (right)
in closed loop (black) and open loop (gray)
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Figure 4.6: Triangle division to switch between controllers

Switching Control Strategy

All the pLPV controllers presented in this section are able to reject harmonic disturb-
ances with time-varying frequencies for a given range of frequencies or in case where the
frequencies are harmonically related for a given range of the fundamental frequency. The
main objective of this section is to augment the range of actuation through a switching
control strategy between controllers guaranteeing the stability at the same time. This
control strategy can be applied for a general pLPV system where the variations of a para-
meter are enclosed in a triangle, or where a triangle is used as polytope. Therefore here
the polynomial approximation is used to model the harmonic disturbance and a
triangle is used as polytope (see Fig..

For a given range of frequencies, three controllers are calculated for each vertex of the
system. The range of actuation can be augmented here combining pLPV controllers. As

an aoach, three triangles can be used as polytopes placed consecutively as shown in

Fig. 4.6 The controllers Ksr;flm“)x(n’(”y)), Ké(f;ffm“)x(m(”y)) and Ké(f;ffm")x(m{”y))

are calculated for the first triangle using one of the pLPV control designs explained in
this section. For the next triangle one controller is fixed as K; p, = K3 p, and two
new controllers Ky p, and K3 p, are calculated solving the LMIs from one of the pLPV
control designs. The same procedure is carried out for further triangles.

This approach uses the same controller at each union point of the triangles. This switch-
ing strategy guarantees the stability if the parameters vary continuously. The stability is
not guaranteed if the parameters vary from one triangle to another triangle region. For
variations inside the triangle of the gain-scheduling parameters the stability is guaran-
teed. This approach was implemented in test drives in a Golf VI Variant and excellent
results were achieved for three consecutive triangles covering a region of 1200 rpm for the
reduction of nine frequency components of the engine-induced vibration.

The main objective is to switch between controllers guaranteeing the stability. There-
fore an extension of this approach is realized finding a Lyapunov function X M7 for
all the closed loop matrices Afjfcl“"“), Agﬁ‘;x”cl), AEZ%X"CI), Agﬁjxnd) and Agfcgmd) of the
vertex systems obtained from K1 p,, Ko p,, K2 p,, K3 p, and K3 p, shown in Fig.[.7

Stability is then guaranteed if a common Lyapunov function X = X' > 0
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Figure 4.7: Polygon to guarantee the stability of the controllers

X XA, o
AT x x >0, j=1,...,5 (4.207)

is found for all the five vertices of the polytope.

In a similar way as (4.53)), the simple matrix multiplication to obtain the pLPV con-
troller can be used if the polygon is further subdivided in triangles. A pLPV controller is
used for the triangle (K1 p,, K3 p, and K5 p,) and another pLPV controller for the tri-
angle (Ks p,, Ko p, and K3 p,). A switch between controllers is realized in the middle
of the polygon and the controllers are initialized with the same state spaces. The stability
is guaranteed since a common Lyapunov function was found for the five vertices and the
switch is done between the vertices of the polytope.

It is important to notice that this switching control strategy can be applied for n-
number of triangles, finding a common Lyapunov function for the polygon fixes the number
of triangles used and establishes the range of the frequencies variations covered by the
pLPV controllers.

A controller for the rejection of a harmonic disturbance with two frequencies f; €
[40, 150] Hz and f, € [80, 300] Hz acting at the output of the plant

-] ] (209
Yp, k 1—a]|0 Up, k

with @ = 0.1 and 7" = 0.0005 s is calculated as an example to explain in detail the

switching control strategy. From the size of the frequency variation range fi , and fs j it

is clear that a switching control strategy is needed since only one controller is not capable

to cover all this range.

The disturbance observer approach will be used here to illustrate this control strategy.
Since the disturbance frequencies are harmonically related fo k[l 2] = [fix f2.x] the
polynomial approximation can be used. Eleven pLPV controllers are calculated using
triangles as polytopes for intervals of 10 Hz of the fundamental frequency fy x € [40, 150].
The controllers

Kp (A ) (tmu)xutrw)) — K p Ay pog + Ko py Ao pyk + K p, A3 pye (4.209)
for fo € [40, 50] Hz,
K p,(Xg ) (rtmup)x(ctr)) — K p Ay p, ik + Ko pya ok + K3 py A3 py i (4.210)
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for f(),k € [50, 60] Hz,

Kp, (A, ) tme X)) = K po Ay pyyk+ Ko by Ao, pyk + Ks pu s, Pk
(4.211)
for fo r € [140, 150] Hz are calculated with the control design of Sec.|4.1.3| for the values
of

Q((Qnd+np)><(2nd+np)) — |: (I) (O) :| , R(""yXT’y) — 104 and r = 09999 (4212)

used for all the eleven polytopic triangles. A polygon is built with the vertices K; p,,
K27P1, K2,p2, Kg’p?), cey K2,p9, K2,P107 I{Q,p11 and I{37p11 (see Flg A Lyapunov
function X = XT > 0 is found

1.5684  1.8057 —0.4448 1.7025 —0.9069 —0.5962 ]
1.8067  23.7308 —0.7145 1.2733 —1.4462 —0.3522
X — —0.4448 —0.7145 22.4853 —0.1408 0.2274 —0.028 (4.213)

1.7025 1.2733 —0.1408 26.1455 —0.918 —0.4995 '
—0.9069 —1.4462 0.2274 —0.918 25.4096 0.0342

| —0.5962 —0.3522 —0.028 —0.4995 0.0342  26.7855 |

solving the LMIs

X XAcllP |
E >0,
_A5717P1X X
X XACIQP |
T >0,
_Aazplx X

(4.214)

)<y 11 > 07
{ 11 ) 11

cl,3, I C :|
7 > 0
[ )y 11

for the closed loop system matrices defined with the vertices of the polygon.
A very simple calculation of the coordinate vectors is obtained using triangles as
polytopes. Therefore the polygon is further subdivided in triangles with vertices

K p,, Ko p,, Ksp,,
K, p,, Ky p,, K p,,
(4.215)
K py, K2 p,, K2 p,,
K py: Kop,, K3p,-
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Figure 4.8: Variations of of the disturbance frequencies (left) and simulation results (right)
in closed loop (black) and open loop (gray)

The new eleven pLPV controllers are written as

KI(S\Lk)((nK-l-mup)X(nK—i—ryp)) — K17P1/~\§3c + K, Plj‘g)k + KQ,Pz/N\(})kv (4.216)
K2<X2’k)((TLK“rmup)X(TLK"PTl/p)) = }'{27131:\5?3c -+ KQ’ pQS\S)k, + K27P35\§33€, (4217)

Klo(xl()’k)((nK+mup)><(nK+Typ)) — K27P95\S(l)€) + K2,P105\§(])€) + K27P115\§(l)g)7 (4218)

Kll(lek)((nK+mup)><(nK+T?!p)) — K27P105\§T}€) + K2,P115\gf}€) + K37P115\§;}€) (4219)

with the coordinate vector S\M for i+ = 1, ...,11 calculated as a simple matrix mul-
tiplication and the switching between controllers is realized in intervals of 10 Hz (50
Hz, 60 Hz, ...,140 Hz). The stability is guaranteed since a common Lyapunov function
was found for all the vertices of the polygon and the switching is realized between three
vertices of it. Simulation results are shown for the rejection of a harmonic disturbance
with two components of frequency and a fundamental frequency fy , € [40, 150] Hz in
Fig.[4.§l Excellent results are achieved in simulation results even for frequency variations
of 130 Hz s™! as a result of switching between the eleven pLPV controllers.

LFT Gain-scheduling Control for Harmonic
Disturbances with Time-varying Frequencies

The control design to obtain an LF'T controller for the rejection of harmonic disturbances
with time-varying frequencies is considered in this section. The design explained here for
the calculation of a gain-scheduling controller is based on Apkarian and Gahinet (1995).
As explained in Sec.[3.4] this approach leads to an LF'T controller with the same scheduling
parameter as the generalized plant. The control structure of Fig.[3.7] is rearranged as in
Fig.[4.9 leading to a more classical robust problem with the uncertainty parameter block

(2nd><2nd) o Ak 0
A _{ NN } (4.220)
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Figure 4.9: LFT control structure with a rearrangement of the parameters

The closed loop system of this control structure is obtained from the generalized plant
G(2)

Tht1 Ay| B B, B, Ty,

Q9,x | _ | Co|Doo Dow Dou wo, i 4991
qx Cq|Dg Dgw Dgu Wi, (4.221)
Yo,k Cy|Dyg Dyw Dyu Up, k

with the matrix dimensions

A(()nxn) Bénxme) B'(:I;Lxmw) B(nxmu)

(rgxn) (regxmg) (re XMay) (rg xXmauy)
(jfei ) Ijﬁgimé) Dy "™ Do~ (4.222)
quq n D eq 0 D‘(;;mew) Dg;gxmu)
C;ryxn) DSreyxme) D?(j,g,xmw) nggxmu)
and the controller K (z)
(K) (K) (K)
LK, k+1 AO ‘ By BB LK, k
Up i = | c® | D) Dgé) Yok (4.223)
o, cy¥ | Dy Dy | L Wer

with the matrices
A(()K)(NKXNK) B?(JK)(nery) B(eK)(nerg)
C U muxnie) - DU muxry) - U muxre) (4.224)
u uy u
C(OK)(mean) D(HI’;)(mBXTy) D‘(gfef)(msxre)
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applying the lower LFT to

L1 AO 0 0 Bg Bw Bu 0 L
LK, k+1 0 A((JK) B(BK) 0 0 0 B?(JK) LK, k
do.1 0 cy¥ Dy o | o | 0 Dy || wens
do. =|1Co O 0 Dy | Doy | Do, O We,
L Cq 0 0 DqO qu un 0 Wi
Up o ¢®IDY o | o | o D up
Yp. k i c, 0 0 Dyo | Dyy | Dy, 0 || Ypr |
The equation (4.225)) can be written as
[ Lp41 ] [z,
mg,k+1 A, B, B, B, TbK,k
qe’k _ C, D,y Dy, D3 wZ’:
(5 k Cy Dy Djyy, Doy T
—=k Cs; D3 Dj, Dgs b
Up, Uy, K
L yp,k i L yp,k .
with
n+n n+n n+n me—+r n+n Maw n+n My +7
Ag( K)X( i) Bg( K)*x(mg+rg)) Bg( K ) XMap) B((:{ K))X(( y))))
ro-+m n4+n re+m me-+r rg-+m Maw ro+meg) X (maqy+r.
Cg( o+me)x(n+ng)) Dg(lo-l- 0)X(meg+rg)) Dg(2 0+mMg) XMay) D139 ) u
Cg"qX(nJrnK)) Dgqu(me+Te)) Dg;quw) Dgqu(mwrry))
C:())(mqury)X(nJrnK)) Dé(lmu+ry)X(ma+re)) D:())(2mu+ry)xmw) DggMu+ry)X(mu+Ty))
and the lower LF'T
A1 B1 B2 B3
Ci Dy Dy |+ | D3 |(I-Ds3) ' [ Cs Dy Ds |
Cy; Dy Doy Do3

(4.225)

(4.226)

(4.227)

(4.228)

is used to obtain the closed loop system. Assuming D,, = 0 (see Gahinet and Apkarian
(1994) and Apkarian and Gahinet (1995)) the inverse

B o DI\ [1 —p®I1 [1 DX
(I-Dg3) ' = (I— { D J D =10 ¥ =l ¥ (4.229)
yu

is very simple to calculate.
A closed loop representation of the system is given as

L1 Ty,
LK, k+1 LK,k
—_— o Acl Bcl ——
4o, | = [ C. D, } W, i (4.230)
dg We, k
q; Wy

with A((jgn—i-nK)X(n—&-nK))’ C((jgrg+m9+rq)><(n+n1()) Bgn—&—nK)x(mg—&-rg—i-mw))’ D£§r9+mg+rq)><(mg+rg+mw))

|

A, +B,D{)C, B,C{"

Acl =
BMc, AW

(4.231)
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B, DY) B,+B,DYD, B,+B,DYD,,

B, = : (4.232)
BYY B D B D,,

K K

Dy,'C, cy”
C.,= Cy+ DguD,(f;)Cy DQUCELK) (4.233)

C,+ Dg.D{c, Dg,C
and
K K K
Dy’ Dy, Dy Dy, Dy,

Da= | Dg,DYy Dgo+ Do, DEDyy Doy + Do DD, | - (4.234)

unDgg) Dq@'{'unDg;)DyG qu"'unDg;)Dyw

Using the scaled bounded real lemma, a solution for this control problem exists if the LMI

-X;' A, By 0
ALl —X4 0 (of)
B} 0 —L D}

0 Ca D, —L!

<0 (4.235)

((n+ng)x(n+ng)) and L((r9+m9+rq)>< (me+re+muw)) )

holds for some positive definite matrices X ;

The LMI of (4.235) can be written as

Y+ PTQQ+QTQTP <0 (4.236)
with the matrix B B
-X;' A B 0
A" —x, o C"
WP = BT o _I DT (4.237)
0 C D —J
built with
~((n+ng)x(ning)) | A O _ (ntni)x(2met+maw)) | 0 Bg By,
A _lo 0}73 _[00 o |’
0 O 0O 0 0
C,((ZreJrT‘q)X(nJFnK)): CG 0 ’ D((2r6+TQ)X(2m9+mw)): 0 Deg Dgw ,
C, 0 0 Dy Dgu
p(Crozmw)x@rotma) _ | L0 | g(@rotma)x(2rotmu) _ 1
0 I
(4.238)

the matrices P((nK+mu+m9)><(2n+2nK+2mg+mw+2rg+rq))

Y

Q((nK+ry+r9)><(2n+2nK+2m9+mw+2rg+rq))
P = BTOOOOODTZ},QZ[OOCDﬂ000} (4.239)

81



4. LPV Gain-scheduling Control for Harmonic Disturbances with
Time-varying Frequencies

= (n+ng)x(ng+mutme))

defined with B

~ ((ng+ry+re)X(2me+maw))

D21

~((nx+ry+re)x(ntnk)) = ((2re+rq)X(nx+mu+tme))

7C 7D12 )

I 0 O 0
(4.240)
] o o 1] 0 0 o
D12— 0 Dﬂu 0 ; D21— 0 Dy@ Dyw
0 Dgu 0 I 0 0
and the controller matrix
(ng+mut+me)X(ng+ry+re)) __ (K)
Ok 0 K+rytre)) _ C%Ilg D%i; D%‘I‘?) . (4.241)
Cy ' | Dy, Dy

The controller can be calculated from (4.236)) if the matrices X and L are known.
Equivalently (see Gahinet and Apkarian (1994)), a solution €2 for (4.236) exists if and
only if

(4.242)
NG$PNg <0

where N p and N g are the nullspaces of P and @, respectively. A proof of this theorem
is obtained multipliying (4.236) by Np and N p, then

NpyNp+ NpPTQQNp + NpQ'Q'PNp = NptyNp < 0. (4.243)

The same procedure is carried out for N 5 and N q.
The matrix @ can be written as

ATX A - X, A'X,.B c’
P = B'X4uA  —L+B'X,B D' (4.244)
C D —vJ
or
AX'A"-Xx;' B AX,'C"
P = B' —~J D' (4.245)

doing the Schur complement to X and X' in (4.237)), respectively.
The conditions of (4.242)) can be rewritten (Apkarian and Gahinet (1995)) using (4.244)-
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(4.245) and making a decomposition of the positive definite matrix X as

[ ARA" - R ARCj ARC] By B, |
CQRAT —’)/J3 + C@ch CQRCQT Dgg D@w
Ngi| CLRAT C,RC, —I1+C4RC} Dy Dgw | Nr<0
B, Dy, D, —~Ls; 0
L Bg‘v Dgw D:]Fw 0 _71 i
[ATSA-S ATSB, A'SB, Cy C, ]
By;SA  —~yL;+ B,SB, B, SB,, Dy, D%T,,
Ns| Bfsa Bl SB, —1+BLSB, D;, D!, 6 |Ns<0
Co Dyg Dy, —Js3; 0
L Cq D g D g 0 -1 ]
(4.246)
R I
[ I S} >0 (4.247)
Ly 1
> .
[ T, ] >0 (4.248)
with
F((re+rg)x(ro+rq)) _ | J3 0 = (mo+mw)x(me+mw)) _ | Lz 0
J _[0 I],L _[0 e (4.249)
the nullspace IN g of the matrix
[ B D, DI, o q]xtrtretratmetm) (4.250)
and the nullspace N g of
[C, Dy D, 0 0]"xCrmetmetotra) (4.251)

If solutions for the LMI of (4.246)) are found for the positive definite matrices R™ ™,
S pimexme) ang JUe*™) an LET controller exists and it can be calculated through

Y+ PIQQ+QTQ"P <0 (4.252)

building a Lyapunov function X ((ntnsc)x (ntnuc)) fulfilling

cl

AHEAEES] 59

with M) and N5 calculated throug the singular value decomposition of

MN'"=1-RS (4.254)
and a matrix
L, L
(27’9 ><2T9) — 1 2
L { LT L, ] (4.255)
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with L7 and L™ calculated through
Ly —J;'=LyL{'L, (4.256)

using the singular value decomposition.

The controller is obtained with this control design in two steps. First, the existence
of the controller is proved solving the LMI and with these solutions a Lyapunov
function X and an auxiliar matrix L are built. Finally the LMI is solved for the
controller matrix €2. From here the controller matrices can be extracted obtaining the
state-space representation in LF'T form

TK k1 LKk
| = | | DE DY || Yo (4.257)
g (K) (K) (K) L
o,k Cg DBy Deo Wy, i

of the controller. For the implementation of the controller, instead of calculating the LF'T
at each sampling time, an alternative method is presented in this thesis.
The state-space representation of the controller is given with

i o1 = Az + BEy  + Bl we (4.258)
up i = Czy i + D)y, i + Dy ive i (4.250)
Qo,k = C(GK)CL'K,k + Dgy()yp’k + D(elg)ﬁ;(,,k (4.260)

'ibe’k- — Akégﬂ]c (4261)

Substituting we 5 in (4.258])-(4.260) and manipulating (4.260|) the following equations for

the implementation of the controller are obtained

i i1 = A T g + BlMy  + B(gK)Ak%,k

(4.262)
up i = C% i+ Dy, .+ Dy Ay,
with gg , calculated as
Q0. = (I — DgoAr) ' (Coxk ik + Doyy, i)- (4.263)
This controller can be implemented only if
(I — DgoAy) #0. (4.264)

This section introduces the general control design to obtain an LFT controller with
the same scheduling parameters as the generalized plant. In the next section the control
design is explained in detail and focused in the rejection of disturbances with time-varying
frequencies.
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LFT Control Design

Before applying the control design, the generalized plant with the plant, disturbance
model and weighting functions is built as

LE+1 AO ‘ Bg Bw Bu Iy
Q9,r | _ | Co|Doo Dow Dou W, j; 1,965
q; Cq Dq@ qu un Wi ( . )
Yo, k Cy|Dyg Dyw Dyu Up, k
with
_ Ld, k (nxn) _ 0 Ad70 0 0
= | gt [ AT = 0 0" Aw. 0 |’ (4.266)
LW, k Bwycp 0 0 Awy
0 0 B, i
(nx (meg+mw+may)) - Bd79 Bd 0
[ B B, B, ] =1 70" o Bw | (4.267)
0O 0 0 |
CB ((re+rq+ry)xn) 0 Cd7g 0 0
B 0 0 Cw, 0
gq “|Dwe, 0 0 Cw | (4.268)
Y C, 0 0 0 |
Dyg Dy Doy, (Crortrattry)xmott i b)) 8 8 D?/V
Dy Dgw Dagu oo 1 (4.269)
Dyo Dyw Dyu 00 0

n =n,+ 2nq + nw, +nw, and rqg =14, + g,

The matrix Agzdxznd) of the disturbance model is calculated using the LFT relation

Ay(6;,) a2 — Ay o+ By gArCao (4.270)

2ng X2 2ng X X2 X
for A((Lgd na), BS’Z“ me), Cg% na), A,(C"d ") and ng = mg = re. An example was shown

in Subsec.[L.1.2

All the necesary steps carried out to obtain the LET controller are explained here in
detail.
First, the matrices

[ B D, DI, o o]mxttretratmetmel) (4.271)

[C, Dy D,, 0 0] xCtmetmetrotra) (4.272)

are built and their nullspaces N g and IN g are calculated.
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Then, the LMI is built and solved for the variables R"*™  gxm = glroxrey 4nq

L;())mg Xmg)

[ ARA" - R ARCj ARC, By B, |
CQRAT —vJ 3+ CQRC;F CQRCQT Dye Dy,
Ngi| CLRAT C,RCy —I+C4RC, Dy Dg, | Nrp<0
B, Dy, D, —~yLy; 0
I B} D;, D,, 0 I
[ ATSA - S ATSB, A'SB, Cy C, ]
B;SA L3+ BySBy B;SB, Dy, D;(,
Ns| Blsa B SB, 1+ BLSB, Dj, D!, |Ns<0
Co Dy Dy, —Js3 0
L Cq Dq@ qu 0 _’71 _
(4.273)
R 1
{ I 51 >0 (4.274)
L; 1
>
{ T, } > 0. (4.275)

with NR and Ns.
The pair of matrices M ™*"x) N®x7K) and LY"XT"), Lg""“"” are calculated through
singular value decomposition with

MN'"=1-RS (4.276)
and
L;—J;'=LyL; "Ly, (4.277)
respectively.
The Lyapunov function
b)) _ { o ] { N ] (4.278)
and the matrix
L, L
LBrox2re) — { - ] 4.279
L, Ly (4.279)

are built with M, N, Ly, Ly and the solutions R, S, L3 and J3 of the previous LMI.
The matrices w((2n+2nK+2mg+mw+2r9+rq)><(2n+2nK+2m9+mw+2rg+rq))

s
P((nK +may+me+) X (2n+2n Kk +2me+mw+2rg+ryg)) Q((nK +ry+re) X (2n+2n K +2meg+mw+2rg+rg))
>

-X;' A B 0

SIS
S

|

)
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are built with

S (n4n)xmrng) [ A O] o(mtnx)x@me+mn)) [ 0 Be By
A _[00_’3 1o 0 o |’
) 0o 0] [0 0 O
C((27’9+Tq)><("+”1<)) _ CG 0 ,D((2T6+Tq)><(2m6+mw)) _ 0 DHG DOw 7 (4282)
C, 0 | | 0 Dy Dy
£ (@rotmu)x@rotmw)) _ | L0 1 g(@rotmu)x@rotmw)) _ 1
0 I M M
B((N+HK)X(HK+mu+m9)) 10 B, O
1 0 o}
((nx+ry+re)x(ntn)) 0 1
énKryrgxnnK _ CyO :
o o (4.283)
o 0 0 I
Dg(z ro+rq) X (N +Myu+me)) _ 0 Dy, O
0 Dy, O
and
= ((nx+ry+7e) X (2mo+muw)) 0 0
Dzan rytTe me+maqy _ 0 Dye Dyw ' (4284)
I 0 0
Finally, the LMI
¥+ PTQQ+QTQTP <0 (4.285)

is solved for Qnxtmutme)x(nktry+re))  From this solution the controller matrices are

extracted
A(()K) ‘ B:I(JK) B(QK)

Q= c® Dgg) Dgg) (4.286)
o | plf) off
with
A(()K)(WKXWK) BéK)(any) BéK)(nme)
C K lmuxn) Dg;)(muxry) Dgé)(muwe) (4.287)
C‘(gK)(mean) D‘(;;)(mewy) D‘(gf;)(mexre)

and the controller can be implemented using (4.262H4.263]).

As an example a controller for the rejection of a disturbance with two frequency
components ng = 2, fi € [40, 50] Hz and f; € [80, 100] Hz acting at the output of the

plant

Gy(z) = L= ° (4.288)

Z—a

with @ = 0.1 and T" = 0.001 s is calculated using this control design and tested in
simulations with the controller implemented as in (4.262{4.263)).
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The generalized plant

Tyl Ay| B B, B, Ty,
do Co | Do9 Dy, Doy, We,
' = ’ 4.289
q; Cq Dq@ qu un Wy ( )
Yo, k Cy|Dyg Dyw Dyu Up, k

is built with the plant, weighting functions and disturbance model.
For this example, a constant is chosen for the weighting function of the control input

Twak+1 | | Aw, | Bw, Twek | | 0] O TW,. k
|: Qu, k :| - |: CWu DWu :| |: Up’k :| o |: 01]0.001 up7k (4290)

with AE;ZV“X”W“), B(W"W“Xm"), C&}Z“X"W“), Dg,‘iuxm“), Tow = My = 1, nyy, = 0 and a low

pass filter for the outgut of the plant

ewyhet | _ [ Aw, | Bw, | [ zw,x | _ [ 0.9813] 0.5 Tw,, k (4.201)
Q. k Cw, | Dw, Yo k 0.3453 | 0.7538 Yo k '

(nwy xnwy)  pwy Xry)  ~(rey Xnwy)  (rey Xnw,)
with Ay, ™ Byt Oy Dyt and nwy, =1y =1, = 1

The low pass ﬁlter is obtalned through the Tustin discretization of the continuous-time

' — D Y v (4 2{)2)
qy C Yy Yy yp

with
a 1
Aw, = —wpa, Bw, = wb(l - —>, Cw,=1 and Dy, = — (4.293)
m m
for
d
wy = 2730 =X 4 =0.1 and m = 1.5. (4.294)
S

This weighting function is proposed by Skogestad & Postlethwaite (2005) for the out-
put of the plant y, . Depending on the parameters chosen for wy, a and m different
controllers are obtained in the control design. The controller obtained with these weight-
ing functions achieved a good performance in closed-loop.

The disturbance model is given as

T, t1 Ago|Bae Bag T i
do, = | Ca0| Deo Dow Wo, i (4.295)
Ya,k Cq | Dyo Dyw Wq, k
with
1 0 0
2
(2nd><2nd) -r aop. 1 0 O
Ad,() - 0 0 0 1 ) (4296)
0 0 —TZ Qo, 2
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0 0 ]0001 0
(2nax(me+mw)) | a1,1 0 | 0.001 0
| Bas Ba ] “| o o] o 0001 |° (4.297)

0 aia| 0 0.001

C ((re+ryy)x(2nq)) 0100
{ (}M} =000 1}, (4.298)
d 1010
((ro+ryy) X (Mmo-+may)) 0 0|0 O
{gee 3"“’] — 0000 (4.299)
vo Huw 0 00 0
for
|: a,071 a072 j| _ |: amax,lgamin,l amax,2_2}‘amin,2 i| — |: 1.9194 1,6852 j| , (4'300)

[a11 ars ] = [ Qa1 5 Omin 1 Bmax, 2 > Gmin, 2 } = [ —0.0175 —0.0673 ], (4.301)

[ Gmax,1 Gmax,2 | = [ 2rcos(2750T)  2r cos(271007) | = [ 1.9019 1.6179 ], (4.302)

[ Umin, 1 Gmin, 2 } = [ 2r cos(2m40T")  2r cos(27807) } = [ 1.9370 1.7524 } . (4.303)

r=0.9999, T'= 0.001 s, ng = My, = mg =19 = 2 and r,, = 1.
Now, combining plant, disturbance model and weighting functions the generalized
plant is built as

Thi1 Ay| B B, B, Ty,
dg, i _ Co | Dgo Dgy Do, We, k 4.304
qi Cq Dq@ qu un Wi ( . )
yp,k Cy Dy0 Dyw Dyu L up,k
with
A, B,Cq 0
Al = 0 Ag, O |, (4.305)
BWpr O AWy ]
0 0 B,
[By B, B, |"™ """ _ 1 B, By 0 |, (4.306)
0 0 0
C, ] rotratra)an) g Cg,e g
gq = Dw.Cy 0 Cw |’ (4.307)
Y ) 0 0
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9 ((re+rg+ry)x(me+mw+ma 00 0
Dgo Dgy Dg, (Cotratry)x(rotmutm)) 0 0 Dy,
Dy Dy, Dy, =loo0 0 , (4.308)
Dyo Dyw Dyu | 00 O

Tp, k+1 _ [ Ap Bp Ty, k _ 011 Tp, k 4.309
|: yp7k :| L Cp Dp :| |: ’LLp7k 0910 Up,k ’ ( ' )
Afe) gl - olre) - plnm) S, =y =1, n0= ny 4 2na 4 nw, + nw, and

rq ="Tg, T Tqy-

The LMI of (4.273H4.275)) is solved for

[ 0.3010 0 0 0 0 —0.5910 |
0 0.0016 0.0015 0 0 0
0 0.0015 0.0016 0 0 0
(nxn) _ 4
R 10 0 0 0 0.0006 0.0005 0 ’ (4.310)
0 0 0 0.0005 0.0006 0
| —0.5910 0 0 0 0 1.1611 |
[ 0.3793  —0.3030 0.0564 —0.3836 0.1371 0 |
—0.3030 1.4080 —0.9939 0.3039 —0.2366 0
(nxn) _ 104 0.0564 —0.9939 0.8481  0.0845 —0.0474 0
S 10 —0.3836 0.3039  0.0845  1.3537 —0.9780 0 , (4311)

0.1371  —0.2366 —0.0474 —0.9780 0.9888 0
0 0 0 0 0 1.3388 |

(roxre) __ 4 8.5564 0 (mexmg) 4 1.6353 0
Ji7 =10 { 0 3016 | L3 =000 1eam (4.312)

where R=R" >0, 8§ = ST > 0 and the diagonal matrices L5 and J3.
These solutions are used with the matrices

[ —0.6077 0.0013  0.0008 —0.0007 —0.0013 0.0016 ]
0.0002 —0.0286 0.0052  0.0039 —0.0027 —0.0002
0.0002 —0.0252 —0.0012 —0.0037 0.0037  0.0004

M(anK) _ 104
0.0001 —0.0081 —0.0131 —0.0042 -0.0024 —-0.0002 |’
0 —0.0016 —0.0085 0.0093  0.0014  0.0003
| 1.1938  0.0007  0.0004 —0.0004 —0.0007 0.0008 |
(4.313)
[ 0.1878 —0.0133 —0.0058 0.0043  0.0032  —0.001 ]|
—-0.15  0.0222 —-0.0078 —0.0042 —0.0009 —0.001
N X)) — 108 0.0279  —0.0077 0.0065  0.0035 —0.0033 —0.0011

—0.1899 0.0219  0.0102  0.0019  0.0026 —0.0003 |~
0.0679 —0.0155 0.0055 —0.0090 0.0012 —0.0005
| —1.3021 —0.0086 —0.001  0.0004  0.0002 0

(4.314)
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Figure 4.10: Variations of of the disturbance frequencies (left) and simulation results
(right) in closed loop (black) and open loop (gray)

L) _ { 10 ] and LYo { 127878 0 (4.315)

0 1 0 127.6487
calculated through singular value decomposition (4.276H4.277D to build the matrices
X (e (tm0) anq g Crox2ro) g in (4.2781.279).

Finally the basic LMI (4.285)) is solved for € obtaining the following state-space rep-

resentation of the controller in LET-form

LK, k+1 LK,k
Up, i = | c® D'z(fy() fo;) Yp, k (4.316)
do, i CgK) Dg;) Dg;) We,

with

1.0414 —0.0003 —0.0023 0.0018  0.0021  0.0036 ]
—8.9562 1.0432  0.3814 —0.2643 —0.3006 —0.4741
A xn) —2.1868 —0.2254 12483 —0.3017 0.0923 —0.2991
0 ~1.4087 —0.1923 1.1161 04414 05639 0373 |’
—38544 02179  0.1762 —0.1833 0.7428  0.6424
46318  0.0502 0.0216 —0.0053 0.1237 —0.4213 |

(4.317)
0.6489 0  —0.0001
—20.1008 | 0.0024  0.015
(nse X (ry+70)) —4.9083 | —0.0068  0.0072
(K) &) =
B, By —3.1609 | —0.0082 0.0369 |’ (4.318)
—8.6493 | 0.0069  0.0098
| 10.3936 | 0.0006  0.0013 |
CK) 7 (mtmo)cne) —0.9911 0.0521 0.0228 —0.0216 —0.0205 —0.0307
{07&0} — | 7=2.9998 6.9502 —2.8504 —0.0864 —7.0382 —9.4264
6 —5.8742 04058 5.7833 —3.4744 1.6679 —2.8869

(4.319)
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and
P pEo ((mutme)x(ry+re)) —1.4997 [0 0
[ () E&"})] = | =6.7359 |0 0 |. (4.320)
Dgy Dee —13.1841 {0 O

This controller is tested in simulations for the rejection of a disturbance containing time-
varying frequencies acting at the output of the plant. The variations of the frequencies
and the simulation results are shown in Fig.[4.10]
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Chapter 5

Experimental Results

All the controllers designed in the previous chapters for the rejection of harmonic dis-
turbances with time-varying frequencies are validated with experimental results in three
different test beds. A MIMO AVC system built in a Golf VI Variant for the reduction of
the engine-induced vibrations, a SISO AVC test bed and an ANC system.

In this chapter, the experimental setups for the three different test beds are described
and results for all the LPV control structures presented in this thesis are shown. The val-
idation of the controllers is done with experimental results for disturbances with constant
frequencies and with time-varying frequencies, since the control design explained in this
thesis is focused on LPV techniques. The controllers presented here, are gain-scheduling
controllers with the frequency of the disturbance as gain-scheduling parameter. There-
fore, it is assumed that the frequency of the disturbance is known or can be measured.
The LPV controllers were extensively tested, this chapter shows only a selection of the
experimental results.

AVC Golf VI Experimental Setup

An AVC system is installed in a Golf VI variant for the reduction of engine-induced
vibrations. A photograph and a schematic representation of the experimental setup are
shown in Fig.[5.1] This setup is used to implement MIMO LPV AVC controllers for the
reduction of the engine-induced vibrations in the car body.

Two inertia mass actuators (shakers) and two accelerometers are attached to the
engine mounts. The battery is moved to the trunk of the car and the resulting space is
used for the power amplifiers driving the actuators. Anti-aliasing filters are applied to
the accelerometer signals and reconstruction filters to the control signals. The controller
is implemented on a rapid control prototyping unit (dASPACE MicroAutoBox) and it uses
the sensor signals to generate the control signals of the shakers. The filters and the rapid
control prototyping unit were placed on the trunk of the car. All the cables between
sensors and control unit and between actuators and control unit are hidden in the car
body. The engine speed (scheduling parameter fy ;) is measured directly from the CAN
Bus.

The anti-aliasing filters and the reconstruction filters are low pass filters with a cut-
off frequency of 500 Hz. The filters were designed taking into account the frequency
component range of the harmonic disturbances (engine-induced vibrations). Two Pololu
High-Power Motor Driver 18v25 CS are used as amplifiers to drive the shakers of the
engine mounts. An accelerometer of 1.5 g was used for the right side (drive direction)
and an accelerometer of +13.3 g for the left side (drive direction).

The main objective of this setup is the application and validation of LPV controllers
in AVC and ANC real applications. At this point, it is important to notice that the
Golf VI Variant does not suffer from vibrations problems. Experimental results of LPV
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Figure 5.1: Schematic representation (top) and photograph (bottom) of the experimental

setup

controllers for the reduction of engine-induced vibrations are shown in Sec.|5.3.1

experimental setup permits the validation of MIMO LPV controllers.
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AVC Test Bed Experimental Setup

The scheme and a photograph of the AVC test bed are shown in Fig. 5.2l Two shakers
(inertia mass actuators) are attached to a steel cantilever beam. One shaker acts as the
disturbance source and the other shaker is driven by the control signal to counteract this
disturbance. An accelerometer is used to measure the output signal. An anti-aliasing
filter is applied to the output signal and a reconstruction filter to the control input with a
cut-off frequency of 500 Hz. The controller is also implemented in rapid tool prototyping
unit (dASPACE MicroAutoBox).

Two Elmo 15/60 Violin current amplifiers are used as power amplifiers. An accelero-
meter of a range of +1.3 g is placed at the tip of the beam. This setup allows a hard test
of the LPV controllers for unrealistic behaviors of the disturbance frequencies such as step
changes in the frequency variations or sweep changes of the disturbance frequencies, since
the disturbance shaker is driven with the MicroAutoBox. It is assumed for the controller
validation that the frequency is known or it can be measured. Experimental results with

this setup are shown in Secs and

CONTROL DISTURBANCE

SHAKER SHAKER
ACCELEROMETER IUQUQUQ" Iﬁvﬂvﬂv,

POWER

AmpLiFier || FIFTER

FILTER

A\ 4

CONTROL
UNIT

g

Figure 5.2: Schematic representation (top) and photograph (bottom) of the experimental
setup for the AVC system
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ANC Test Bed Experimental Setup

The experimental setup of the ANC system is shown schematically in Fig. An
external loudspeaker is used to generate a harmonic disturbance. A headset PXC 300
provided by Sennheiser is used. This headset has one microphone on each loudspeaker.
The objective is to cancel the disturbance with the loudspeakers of the headset using the
measured signals of the microphones. An anti-aliasing filter is applied to the output signal
and a reconstruction filter to the control input with a cut off frequency of 500 Hz.

For the control design this setup can be considered as two independent SISO sys-
tems. One LPV controller is calculated for one side and the same LPV controller can
be implemented for the other side too. The control algorithms are implemented on a
MicroAutoBox from dSPACE.

The characteristics of the LPV controllers would also allow for an application without
measurements of the disturbance frequency. For example, an ANC headset is possible
where the frequency to be rejected can be readjusted manually by the user to the dominant
frequency that is present in a noisy environment.

HEADSET
LOUDSPEAKERS

ANN]
VAVAY

DISTURBANCE
LOUDSPEAKER

FILTER »>
HEADSET CONTROL

UNIT
MICROPHONES 5

A

FILTER

Figure 5.3: Schematic representation (top) and photograph (bottom) of the experimental
setup for the ANC system
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pLPV Disturbance Observer Controller
Experimental Results

The pLPV disturbance-observer controller of Sec.[d.1.3) is validated in a MIMO AVC
system (Golf VI Variant) and in a SISO AVC system (test bed). In these applications,
the polynomial approximation (4.11) and a triangle as polytope is used to reduce the
complexity of the interpolation and to reduce the number of gain-scheduling parameters
to two. Excellent results are achieved for the reduction of vibrations for disturbances with
harmonically related frequency components. Nine frequency components of the engine-
induced vibrations are reduced in the Golf VI Variant and 26 frequency components are

reduced in the AVC test bed.

Golf VI Variant

Black-box system identification techniques with a sampling frequency of 2kHz are used
to obtain a state-space representation of the 2x2 MIMO system between outputs and
inputs of the control unit. The identified system of order 22 is used with the control
design explained in Sec.[£.1.3] to obtain a pLPV gain-scheduling controller with the fre-
quency of the disturbance as gain-scheduling parameter. The engine-induced vibrations
are harmonically related therefore, the polynomial approximation can be used with
a triangle as polytope to reduce the number of vertices and to simplify the interpolation.
The control algorithm is implemented on a rapid control prototyping unit. The controller
obtained with the pLPV control design is interpolated using the fundamental frequency
fo.x (half engine order) taken from the CAN bus with a very simple matrix multiplication
from three controller vertices, see .

In this section, experimental results obtained with a 2x2 MIMO controller designed
with the methods described in Sec.[d.1.3]is validated experimentally in a Golf VI Variant.
The controller is designed for the rejection of nine frequency components fo x[45 ... 12]
with fo r € [25, 28.75] Hz being the half engine order. Controllers for an engine speed
range of 1200 rpm were designed and they worked well in practice, but the stability
was not guaranteed. Before testing the controllers in the car, test drives to record the
accelerations and the engine speed from the CAN bus were realized. These recorded
signals were used in simulations to test that the control signals were not saturated and to
test the stability of the closed-loop system. The controller was validated in the Golf VI
Variant once it was succesfully tested in simulations with the real measurements for the
designed frequencies.

The amplitude frequency responses in closed loop and open loop are shown in Fig.[5.4]
for a constant engine speed of 3000 rpm (corresponding to fo r = 25 Hz). The upper
left amplitude frequency response corresponds to the transfer function between shaker
and accelerometer of the driver side. The lower right amplitude frequency response is the
transfer function between shaker and accelerometer of the rider side. The upper right
amplitude frequency response is the transfer function from shaker of the rider side to
accelerometer of the driver side. The lower left amplitude frequency response corresponds
to the transfer function from shaker of the driver side to accelerometer of the rider side.
From the amplitude frequency responses in closed loop a very good disturbance rejection is
expected for a disturbance containing the constant frequency components fo x[4 5 ... 12]
with a fundamental frequency fo , = 25 Hz.
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Figure 5.4: Open loop (gray) and closed loop (black) amplitude frequency responses for
a sampling frequency of 2 kHz

The controller has been validated experimentally with all the car gears. In the follow-
ing, results in third gear are shown. Accelerations measured in test drives for a constant
engine speed of approximately 3420 rpm are shown in Fig.[5.5 for a control sequence
off/on/off. Excellent results are achieved as shown by the spectra of the measured ac-
celerations. The frequency components fy x[4 5 ... 12| with the fundamental frequency
fo,x = 28.5 Hz are suppressed.

Further test drives are realized to test the MIMO LPV controller with time-varying
engine speeds. The variations of the engine speed and the accelerations measured on the
driver and rider side for time-varying engine speeds are shown in Fig.[5.6] The controller
is switched on for the first one hundred seconds and switched off for the next one hundred
seconds.

The effectiveness of the controller for the reduction of the engine-induced vibrations
with time-varying engine speeds is shown with the time-frequency diagrams in Fig.[5.7]
The frequency components (fo x[4 5 ... 12]) of the accelerations are suppressed dur-
ing the first hundred seconds. Excellent results are achieved for the reduction of the
engine-induced vibrations with the discrete-time MIMO LPV observer-based controller
for constant and time-varying engine speeds. The controller remained stable even for fast
changes of the engine speed since LPV gain-scheduling control design techniques are used.
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Figure 5.5: Acceleration measured by the accelerometers (top) for approximately 3420
rpm and fourier transformation (bottom) in open loop (gray) and closed loop (black).
The control sequence is off /on/off
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Figure 5.6: Acceleration measured by the accelerometers (top) and variations of the engine
speed (bottom) for a control sequence on/off
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Figure 5.7: Spectrograms for the acceleration measured by the accelerometers on the left
side (top) and right side (bottom) for a sampling frequency of 2 kHz

AVC Test Bed

A pLPV disturbance-observer controller with the polynomial approximation and sampling
frequency of 1 kHz is validated experimentally on the AVC test bed. The controller is
implemented on the MicroAutoBox from dSPACE.

The transfer function between output and input of the control unit is obtained with
standard black-box identification techniques, resulting in a transfer function of order 10.
The controller is designed for the rejection of a harmonic disturbance with 26 frequency
components with a fundamental frequency fy  between 100 Hz and 110 Hz. The disturb-
ance frequency components are f = [for 1.1fo.x ... 3.5fo k). At each sampling time the
controller is interpolated from only three controller vertices. The disturbance frequencies
are harmonically related and the polynomial approximation can be used with a triangle
as polytope to reduce the number of vertices.

Amplitude frequency responses in closed loop and open loop are shown in Fig.[5.§ for
constant fundamental frequencies fy  of 100 Hz and 110 Hz. A constant state-feedback
gain K, is calculated to damp the resonance frequencies as it can be seen in Fig.[5.8
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Figure 5.8: Amplitude frequency responses in open loop (gray) and closed loop (black)
for a fundamental frequency of 100 Hz (left) and 110 Hz (right) for a sampling frequency
of 1 kHz
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Figure 5.9: Time-varying frequencies behavior (top) and accelerations measured (bottom)
in open loop (gray) and closed loop (black)

Experimental results for a disturbance with time-varying frequencies are shown in
Fig.5.9 Excellent disturbance rejection is achieved for 26 frequency components with
only two gain-scheduling parameters. As predicted by theory, the controller remained
stable even for fast variations of the frequency components (step changes, which is not
very realistic).

In this section, experimental results for the disturbance-observer controller are shown.
The error-filter controller also achieved excellent results with 26 frequency components
and a sampling frequency of 1 kHz for exactly the same range of frequencies (see next
section). It is extremely difficult to compare all the approaches presented in this thesis.
A different controller is obtained with a small change of the weighting functions or the
weighting matrices. It can not be assured that the calculated controller using some weight-
ing matrices is the best controller of the pLPV observer-based control design. The main
advantage of the LPV approaches compared with adaptive filtering (FxLMS) is that the
stability can be guaranteed even for unrealistic changes of the gain-scheduling parameters
since one Lyapunov function was found for the whole range of variation of the gain-
scheduling parameters (Lyapunov stability).
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pLPV Error Filter Controller Experimental Results

The pLPV error-filter controller is validated experimentally in the AVC test bed. The
controller is designed for the rejection of f,, = [fo.x 1.1fo.x ... 3.5f0. k] (26 frequency
components) with a fundamental frequency fy € [100, 110] Hz. Since the frequencies of
the disturbances are harmonically related, the polynomial approximation and a triangle
as polytope are here used. This leads to a controller calculated at each sampling time
as a result of a simple matrix multiplication. Amplitude frequencies responses for a
fundamental frequency of fy ), = 100 Hz and f5, = 110 Hz are shown in Fig.[5.10]
From this figure it is expected a very good disturbance rejection for the case of constant
disturbance frequencies. Some frequency components are amplified, if this is tolerable or
not depends on the frequency components of the disturbance.

Experimental results for a disturbance with time-varying frequencies are shown in
Fig.p.1T] Here it is confirmed what was expected from Fig.[5.10f Very good results
are achieved for constant and time-varying frequencies using only two gain-scheduling
parameters since the polynomial approximation was used. Here it is important to notice
that the LF'T approaches or the pLPV approaches without polynomial approximation
need the same number of scheduling parameters as frequency components contained in
the disturbance.
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Figure 5.10: Amplitude frequency responses in open loop (gray) and closed loop (black)
for a fundamental frequency of 100 Hz (left) and 110 Hz (right) for a sampling frequency
of 1 kHz
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Figure 5.11: Time-varying frequencies behavior (top) and accelerations measured (bot-
tom) in open loop (gray) and closed loop (black)
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The main advantage of the pLPV error-filter controller using the polynomial approxim-
ation compared with another approaches is the reduction of the number of gain-scheduling
parameters to two. The calculation of the controller is then a simple matrix multiplic-
ation. A normal pLPV controller for the application presented in this section needs 26
gain-scheduling parameters and 22 vertices. A huge number of vertices complicates the
interpolation of the controller. The pLPV controller of this section has two gain-scheduling
parameters and three vertices.

pLPV Output Feedback Controller
Experimental Results

The pLPV gain-scheduled output-feedback controller is validated with experimental res-
ults on the ANC headset. The controller is designed to reject a disturbance signal which
contains four harmonically related sine signals f, = [fo.x 2fo,x 3fo,x 4fo0 k] with a funda-
mental frequency fo  between 80 and 90 Hz. The controller obtained is of 21st order.
The pLPV controller of this section has four gain-scheduling parameters and 2 vertices.
The calculation of the controller is not so simple as other pLPV approaches using the
polynomial approximation (two gain-scheduling parameters and three vertices).

Amplitude frequency responses and pressure measured when the fundamental fre-
quency rises suddenly from 80 to 90 Hz are shown in Figs.[5.12|and [5.13] A very good dis-
turbance rejection is achieved even for unrealistic changes of the disturbance frequencies.
In Fig.[5.14] results for time-varying frequencies are shown. The performance attenuation
decreases with fast changes of the fundamental frequency but the controller remained
stable.

The interpolation of the pLPV controller of this section is more complicated as other
pLPV approaches using the polynomial approximation. The performance of the pLPV
controller for the reduction of disturbances with time-varying frequencies was not affected
by the complicated interpolation of the controller.
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Figure 5.12: Open-loop (gray) and closed-loop (black) amplitude frequency responses for
fixed disturbance frequencies of 80, 160, 240 and 320 Hz (left) and of 90, 180, 270 and
360 Hz (right) for a sampling frequency of 1 kHz
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Figure 5.13: Results for a disturbance with time-varying frequencies. Variation of the
frequencies (left) and pressure measured (right). The control sequence is off /on/off
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Figure 5.14: Results for a disturbance with time-varying frequencies. Variation of the
frequencies (left) and pressure measured (right) in open loop (gray) and closed loop (black)

LFT Controller Experimental Results

The AVC test bed is used to test the LET gain-scheduled controller experimentally. The
controller is designed to reject a disturbance with eight harmonic components which are
selected to be uniformly distributed from 80 to 380 Hz in intervals of 20 Hz. The resulting
controller is of 27th order and a sampling frequency of 1 kHz is used. The LEF'T controller
presented in this section uses eight gain-scheduling parameters.

Amplitude frequency responses are shown in Fig.[5.15] and results for an experiment
where the frequencies change drastically as a step function in Fig.[5.16] Experiments with
time-varying frequencies are shown in Fig.[5.17 The controller rejected the disturbance
even with eight time-varying frequencies.

The LFT control design approach needs the same number of gain-scheduling para-
meters as the number of frequency components contained in the disturbance, even if the
frequency components of the disturbance are harmonically related. This is the main disad-
vantage of this method compared with the pLPV control design methods. The polynomial
approximation can only be used in the pLPV control design approach.

Excellent results were achieved using eight gain-scheduling parameters for the reduc-
tion of a disturbance with eight time-varying frequency components. The calculation of
the controller with this method is easier as the traditional pLPV approach. A pLPV
controller can be calculated for this application through interpolation between 2% vertices
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Figure 5.15: Open-loop (gray) and closed-loop (black) amplitude frequency responses for
fixed disturbance frequencies of 80, 120, 160, 200, 240, 280, 320 and 360 Hz (left) and of
100, 140, 180, 220, 260, 300, 340 and 380 Hz (right) for a sampling frequency of 1 kHz
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Figure 5.16: Results for a disturbance with time-varying frequencies. Variation of the
frequencies (left) and acceleration measured (right). The control sequence is off/on/off
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Figure 5.17: Results for a disturbance with time-varying frequencies. Variation of the

frequencies (left) and acceleration measured (right) in open loop (gray) and closed loop
(black)
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Figure 5.18: Open loop (gray) and closed loop (black) amplitude frequency responses for
a sampling frequency of 2 kHz

using eight gain-scheduling parameters. The controller obtained applying the control
design of this section is directly an LFT controller with the frequencies of the disturbance
as gain-scheduling parameters.

Switching Control Strategy Results

Two MIMO pLPV controllers obtained with the control design from Sec.[4.1.3] and the
switching strategy of Sec.[4.1.6]are used for the reduction of the engine-induced vibrations
in a Golf VI Variant. The experimental setup of Sec.[5.I] is used. The controllers are
designed to reject nine frequency components of the engine-induced vibration in a range
of 750 rpm. The controller is calculated as a very simple interpolation (matrix multiplica-
tion) with three vertices using only two gain-scheduling parameters as a result of applying
the polynomial approximation.

Black-box system identification techniques are used to obtain a MIMO state-space
representation of the system between output and input of the control unit using a sampling
frequency of 2 kHz. The controllers are capable of reducing nine frequency components
for € [4 5 ...12] of the engine-induced vibration for a fundamental frequency (half
engine order) fy ; € [22.5 28.75] Hz. The switch between the pLPV controllers is realized
for a fundamental frequency of 25 Hz. Amplitude frequency responses in open loop and

closed loop for a fundamental frequency of fo = 27.6 Hz (engine speed of approximately
3320 rpm) are shown in Fig.|5.18
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Figure 5.19: Acceleration measured by the accelerometers (top) for approximately 3320
rpm and fourier transformation (bottom) in open loop (gray) and closed loop (black).
The control sequence is off /on/off
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Figure 5.20: Acceleration measured by the accelerometers (top) and variations of the
engine speed measured from the CAN bus (bottom) for a control sequence on/off
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Figure 5.21: Spectrograms of the accelerations measured on the driver side (top) and rider
side (bottom) for a sampling frequency of 2 kHz. The control sequence is on/off

The controllers were tested in drives with all the gears. In the following only results in
third gear are shown. Results and spectrums for an engine speed of approximately 3320
rpm are shown for a control sequence off /on/off are shown in Fig.[5.19] Excellent results
were achieved for constant engine speeds as the spectrums of the acceleration in closed
loop and open loop show.

Further experiments were realized in test drives for time-varying engine speeds. The
accelerations measured on the driver and rider side and the engine-speed variations are
shown in Fig.[5.20L The controller is switched on for the first one hundred seconds and
switched off for the next one hundred seconds.

Excellent results are achieved for the reduction of nine frequency components of the
engine-induced vibration for time-varying engine speed as the time-frequency diagrams of
Fig. show. The switching control strategy augmented the frequency range of actuation
for the reduction of the engine-induced vibrations and the switch between controllers did
not affect the performance of this approach. Nine frequency components are reduced
using only two gain-scheduling parameters and a triangle as polytope.
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Chapter 6

Summary and Conclusions

This dissertation focuses on the rejection of disturbances with time-varying frequencies
using LPV control design techniques. The use of LPV control design assures the stability
of the controllers for arbitrarily fast changes of the gain-scheduling parameters. All the
controllers are designed in discrete time and no discretization is needed to test the con-
trollers in real time. Therefore the implementation of all the LPV controllers presented
here is straightforward.

The four LPV controllers presented here are based on the IMP (Francis & Wonham
(1976)). For the reduction of a harmonic disturbance, the controller must contain a
model of it. Since the frequencies of the disturbance are the time-varying parameters the
controllers containing the model of these disturbances are LPV.

Two discrete-time observer-based pLPV controllers are designed and validated with
experimental results. The first control structure is based on the controller of Bohn et al.
(2003, 2004) where a SISO state-feedback observer-based controller is built through state-
augmentation combining plant and disturbance model. The stability is not guaranteed in
Bohn et al. (2003, 2004) for changes of the gain-scheduling parameters but this approach
worked well in practice for the reduction of a disturbance up to 17 frequency components.
In the work presented in this dissertation and in Heins et al. (2012a, 2012b) pLPV control
design techniques are used to guarantee the stability for changes in the gain-scheduling
parameters. The second observer-based controller structure is based on Kinney & de
Callafon (2006a) where the controller is an observer for the plant combined with a state-
feedback gain of plant and a model of the disturbance (error filter). In Kinney & de
Callafon (2006a) the controller is designed in continuous time and only simulation results
are shown. In the work presented in this dissertation the whole control design is carried
out in discrete-time and the controller is validated with experimental results.

Two output-feedback LPV control structures are also used for the reduction of dis-
turbances with time-varying frequencies. The disturbance model is introduced in the
generalized plant through the weighting functions at the input of the plant. One output-
feedback controller uses LFT techniques and the other pLPV control design techniques.
The controllers for the reduction of non stationary harmonic disturbances are calculated
using the control design of Gahinet & Apkarian (1994) applying the pLPV control design
and Apkarian & Gahinet (1995) for the LFT controller.

For the classical pLPV approach, the number nq of gain-scheduling parameters results
in a polytope with 2™ vertices, resulting in a complicated interpolation at each sampling
time. A very useful idea is introduced by Fiiger et al. (2012, 2013) in the case where the
frequencies of the disturbance are harmonically related. A polynomial approximation is
used to approximate the cosine function (model of constant frequencies) of the disturbance
model to reduce the number of gain-scheduling parameters and a rectangle is used as
polytope. The approach of Fiiger et al. (2012, 2013) uses a model for constant frequencies
to reduce time-varying frequencies. In this dissertation, the polynomial approximation
is used for the sine and cosine function (model for time-varying frequencies) reducing
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6. Summary and Conclusions

the number of gain-scheduling parameters to two and a triangle is used as polytope.
This approach leads to a very simple interpolation strategy (a matrix multiplication)
to calculate the controller at each sampling time. For harmonically related disturbance
frequencies only two gain-scheduling parameters are needed independently of the number
of disturbance frequencies.

In some applications, one controller is not capable to cover all the range of variation
of the gain-scheduling parameter (e.g., reduction of the engine-induced vibrations in an
automotive vehicle or an ANC headphone). In this work, a switch between discrete-
time MIMO pLPV controllers based on parameter-independent Lyapunov functions is
presented and validated with experimental results in a Golf VI Variant for the reduction
of the engine-induced vibrations. The main objective of this switch is to augment the
range of variation of the gain-scheduling parameter not to reduce the conservatism of
the control design. The control design presented in this work is conservative because
variations of the gain-scheduling parameters are considered that they do not take place.
For example in the polytopic approaches a triangle is used as polytope but the relation
of the gain-scheduling parameters is quadratic.

All the controllers are obtained applying LPV control design techniques in discrete-
time, this is an advantage compared to those methods where the control design is realized
in continuous-time and then the controller has to be discretized (Balini et al. (2011),
Ruderman et al. (2014) and Witte et al. (2010)). In Balini et al. (2011), Ruderman
et al. (2014) and Witte et al. (2010) very high sampling frequencies were used for the
reduction of disturbance frequencies up to 48 Hz (Balini et al. (2011) used 50 kHz for
time-varying frequencies and Ruderman et al. (2014) used 11kHz for disturbances with
constant frequencies). This dissertation uses sampling frequencies of 1 kHz to 2 kHz for
the reduction of disturbance frequencies up to 500 Hz. The controllers presented here are
validated with experimental results in three different test benches. Excellent results were
achieved even for arbitrarily fast changes of the gain-scheduling parameters. To the best
author knowledge, it is the first time that a MIMO LPV controller is implemented in an
automotive vehicle for the reduction of the engine-induced vibrations.

The future work is focused on reducing the conservatism of the control design through
the use of parameter-dependent Lyapunov functions augmenting at the same time the
range of variation of the gain-scheduling parameters for the LPV controllers.

110



Appendix A
LTI Control Design

Linear Fractional Transformation
Let M (mtn2)x(mitms) po o matrix defined with

M- [ M M)

M21 M22

(A.1)

and a matrix given as A™2*"2) The lower LFT of the matrix M respect to the matrix

A is defined (Zhou and Doyle (1998)) with
Fi(M,A) = My + M A1~ MyA) M,
The upper LFT of the matrix M M1+72)x(mitm2) pegnect to A is defined as
Fu(M,A) = Moy + Moy A(I— M1 A) "M,

with A(mxm),
Let a general system written in LFT form be defined by

Tii1 Ay B, | By Lk
Yo | = | Cy Dyu | Dyo Up, k
o, i Co¢ Dgy | Do W
with
01k 0
Al(gme Xrg) —_ .
0 Oy, k

and the matrices dimensions

A(nxn) B(nxmu) B(nxmg)

0 u 4]
C?(fyxn) D(rmeu) D("’yxms) ]

yu %/9
C(0r9><n) D(e':i;xmu) Dereyxmg)

o mles ]l

is obtained as a result of applying the lower LFT respect to the parameter Ay

A B . AO Bu BG
ENIR e AR P

The system
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assuming Dgg = 0 with
A" = Ay + BgA,Co,

B ™) — B+ BeAiDau,

Cryxn) _ C, + D,oACy

and

PDryxmu) _ D, +DyeAkD9u-

Schur Complement

The block matrix s
[ a5 ] -0

is positive definite if and only if

Q>0 and R—ST'Q'S>0

or, if and only if

R>0 and Q- SR 'S >0.

Hy-norm for discrete-time systems

The Hy-norm of a discrete-time system
A|B
o e

A(nxn) B(nXmu)
C(Tyxn) O(Tyxmu)

with

is bounded by v
G, <~

if exist solutions of the LMIs
APA" - P+ BB" <0,

W —CcPCT >0,
trace(W) < ~?

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)
(A.19)

for the positive definite matrices P"*™ and W™ (Zhou et al., 1996) or equivalently

if exist solutions for the LMIs
ATXA-X+C'C < 0,
Z-B"XB >0,

trace(Z) <
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for the positive definite matrices X ™™ and Z™*™.

Using the Schur complement the LMIs of (A.17))-(A.19)
R-S'Q'S=(P-BB") - APP'PA" >,
Q-SR'S'"=w -cCcPP'PC" >0

and (A.20)-(A.22)
R-STQ'S=(X-C"C)-ATXX'XA>0,

R-S'Q'S=Z-B"XX 'XB>0

can be rewritten as

{ P PAT
> 0,

AP P - BB"

W CP 0
pCct P ’
trace(W) < ~2

and
{ X XA

ATX X—CTC] >0,

X XB 0
B'X Z ’

trace(Z) < %

(A.23)

(A.24)

(A.25)

(A.26)

H, state-feedback control for discrete-time systems

My, X7

The Ho-norm can be used to obtain a state-feedback gain K

) for a discrete-time

system. The objective is to minimize the Hy-norm between performance input wy and

performance output g, of the closed-loop system given by

L1 A ‘ Bw Bu Ly
gy = | Cq| Dgw Dgu Wy,
Yo,k Cy|Dyw Dyu Up,

with (nxn) ( ) ( )
nxn X Mgy X My
A BU BU

C(qun) D(qumw) D(qumu)

w u
?Tan) Ty XMap ) Ty XMay)
Cy Dy'w Dyu

(A.27)

(A.28)

Uy = —Kxy, D¢y =0, Dy,, =0, Dy,, =0, B,, = I and the matrices Q™™ to weight
the states and R™*™w) to weight the control input. The closed loop system is written

as

o

{mkﬂ ] [[A-B.K |1
a Cy— Dy K |0
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with

n+may)Xn) Q% N+May, ) XMay) __ 0
C'((]( )xn) — [ 0 } and Dgﬁt Jxmu) — {Ré 1 : (A.30)

The Hs-norm of the closed-loop system is bounded by ~y (see|A.3)) if solutions for the LMIs

P AP — B,Y)"
{ AP - B,Y | P- BU,BT> >0, (A.31)
w C,P - D,Y
> 0, A.32
{ (C,P - DY) P (A-32)
trace(W) < o (A.33)

are found for the positive definite matrices PM*™ W (mutn)x(mutn)) opq ymaxn) —
K P. The state-feedback gain K™«*™ ig calculated through

K=YP"' (A.34)

The same procedure can be realized to calculate an observer gain L™*™) minimizing
the Hy-norm of the transfer function between w;, and the observer error ;. The observer
error is obtained from

L1 A ‘ Bw Bu L
q; = | Cq| Dgw Dgu wy, (A.35)
Yo,k Cy|Dyw Dyu Up, k
and
Epi A-LC,|L B, )
qy, = Cq 0 Dgy Yk (A.36)
@p,k Cy 0 Dyu Up, k
as
[:Ekﬂ]:{A—LCyBw—LDyw}[:ik} (A37)
qy I ‘ 0 Wi .
with

1 9T T
3 0
B () _ {QOQ } , Dgytmir)) = { P } . Cy=T and Dy, =0. (A.38)

The matrices Q™™ and R ™) are used to weight the states and the output, respect-
ively. If solutions for the LMIs

X XA-YC,
ea e, Xae |0 s
X XB, — YDy,
{ (XBa — YDyy)" 7 } >0, (A.40)
trace(Z) < 7 (A.41)

are found for X () - Zz((ntry)x(n4ry)) 4nq Y ("*79) the system has an Ho-norm bounded
by . The observer gain L™*™) is finally calculated with

L=X"Y. (A.42)
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H.-norm for discrete-time systems

The H,.-norm of a discrete-time system

¢- &0 ] (A.43)

A(n><n) B(nXmu)
C(Tyxn) O(Tyxmu)

with
(A.44)
is bounded by v (Gahinet and Apkarian (1994), Vaidyanathan (1985))
1Gle <7 (A.45)
if exists a positive definite matrix X ™™ for the LMI
-X' A B 0
A" -X o C'

B" 0 -1 D7
0 C D -1

<0, (A.46)

based on the Bounded Real Lemma (BRL) or equivalently using the Schur complement
to (A.46))

R-5STQ's (A.47)
with
AT
Q=-X' 8"=|B"|, S=[A B 0] (A.48)
0
and
-X o0 C"
R=| 0 -1 D" (A.49)
C D —1

if exists a solution X = X T > 0 for the LMI

ATXA-X A'XB c’
B'XA B'XB-+1 D' | <0 (A.50)
& D —1

derived from (|A.47))-(A.49).

H., output-feedback control design for
discrete-time systems
The H,, control design of Gahinet and Apkarian (1994) for discrete-time systems is in

this section reviewed and all the necessary steps for an easier calculation of the controller
are written and enumerated with matrices dimensions.
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1. Build the generalized plant

L1 A ‘ Bw Bu LTk
q; = | Cq | Dgw Dgu wy, (A.51)
Yo,k Cy| Dyw Dyu Up, k

with plant and weighting functions. An example to build the generalized plant is

given in Sec.2.1.2]

2. Next, the matrices dimensions

An><n Bnme BnXmu
Cy™" Dgy™ Dy (A.52)
Ty XN Ty XMy Ty XMy
Cy D Dy,
are obtained for all the matrices of the generalized plant.
3. Solve the LMIs
r [ ATX,A- X, A'X,B,, C,
Nx 0 T T 1? x 0
0 I BwX1A —/}/I‘i‘BleBw un < 07
C, D, —1
| AY, AT Y, AY,CT B,
Ny 0 T - Ny O
B, D,, —1
X, 1
{ 1 Y, } 20
(A.53)
for X™™ and Y{"" with the matrices N/ *(tmed) ynq N{{ntra)x(mira)
calculated through
Nx =mull(| Cy Dy, |)
(A.54)
Ny =null([ B, D, ).
4. The auxiliar matrix ap((4ntmwtre)x(@ntmutrg))
-X' A B 0
A" -x o '
)= T . (A.55)
B 0 —I Dg,
0 C Dy —1
is built with
4 (2nx2n) A0 (2nxmy) Bw ~(rgx2n)
A _{00],3 _{O],C =[Cq 0]  (A56)
and the matrix X 27?7
X X
x-[ 5 %) s
with X "™ obtained through
X,=(X;-Y[")e. (A.58)
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5. Build the matrices P{(mHmu)x(ntmutra)) apq @QUrytn)x@ntmutrq))

P=[B" 0 0 D]

(A.59)
Q=[0 C D, 0]
with
0 B 0 I
(2nXx(nt+ma)) _ u ((ntry)x2n) _
N e A
(A.60)
Tg X (NTMy N+Ty ) XMy O
Q(qux( +mu)) [ 0 un} and Q,(,(w+ )Xmuw) |:Dy'w ]
6. Solve the LMI
P+ PTQQ+QTQTP <0 (A.61)
for QUFm)x(+1)) with the matrices 1, P and Q calculated before.
7. Finally, the controller matrices are extracted from €2
o Aof Bof
- [ Asl B o

with AL, B, €™ and D).
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