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1. Introduction to Electron
Correlation

The theoretical understanding of the electronic, magnetic, and structural properties of
strongly correlated electron materials is one of the most challenging topics in solid
states physics. The properties of such materials can not be explained by using standard
computational methods, based on a single electron representation in which electrons are
treated as independent particles. At the same time, theses materials exhibit a fascinat-
ing and unexpected physical behavior which is the subject of nowadays technological
applications. In particular, the interplay of electronic correlations, chemical bonding
and lattice structure in these systems leads to the emergence of complex phenomena
such as the Mott metal-insulator transition [1} 2 3], Kondo effect [4], heavy fermion
behavior [5], band ferromagnetism, high temperature superconductivity [6] etc. It was
first recognized in the early 40’s when the unexpected insulating behavior of various
metal oxides was discovered. Magnetite, Fe304, was one of the first transition metal
oxides (TMO) in which the metal-insulator transition was reported by Verwey [7]]. The
transition is characterized by a sharp two orders of magnitude drop of the electric con-
ductivity below about 120 K. Thus, the low T magnetite shows an insulating behavior,
while above the transition it is metallic. This result has been shown to be in direct
contradiction with single particle band structure descriptions. Now we know that such
difficulties are generic and often arise in materials where one needs to deal with partially
filled d-bands. It was understood by Mott and Peierls that a new theoretical explanation
is required which further lead to the theory of a Mott metal-insulator phase transition.



1. Introduction to Electron Correlation

The latter is based on the observation that the tunneling matrix elements for electrons
to move from a given lattice site and orbital to its neighbors are small as compared to
the on-site electrostatic Coulomb interaction U between the electrons.

In the 60’s Hubbard proposed a simplified model which is able to treat both, the
itinerant and the localized nature of the electrons on the same footing. The model
accounts for the interplay between the Coulomb repulsion and the kinetic energy. The
Hubbard model is defined by the Hamiltonian:

H=- Z tj (cjcrcjg + h.c.) + UZ nigni| — yZ (nip + njy) (1.0.1)

ijo i

where i, j are site indices, o the spin index. c;(a and cj, are the creation and annihilation
operators for the sites i, j and spin o-. The occupation number operator is n;; = c;_ci(,
and u represents the chemical potential. The Hubbard model is characterized by the
hopping parameters #;; which describe the tunneling amplitude from one lattice site i to
another lattice site j and the local Coulomb repulsion U. The latter has its origin in the
Coulomb repulsion felt by two electrons which sit on the same site with opposite spins.
This model naturally explains an insulating state observed at half filling in the limit
of large Coulomb repulsion U. In particular, in this limit the interaction term (second
term in Eq. [1.0.T) dominates the kinetic energy (the first term in Eq. [[.0.1), so that the
electrons show a similar behavior as electrons in isolated atoms. At the same time, the
Hamiltonian can be also used to explain the opposite limit in which the Coulomb repul-
sion is small in comparison to the hopping amplitudes #;;. In this case, the electrons are
delocalized which gives rise to a metallic behavior. However, in spite of its relatively
simple form, the Hubbard model cannot be solved exactly except for some limiting
cases. For example, analytic solutions exist in one spatial dimension employing the
Bethe Ansatz [8]. In more than one dimensions the model cannot be solved exactly
and a variety of approximate techniques have been proposed. Nevertheless, in spite of
the long term active research in this field, the problem of correlated electrons remains
open mostly because of the computational complexities which arise for arbitrary chosen
interaction U.

The Hubbard model can be used to explain the interplay between localized and itin-
erant electrons in the presence of the local interaction. In particular, itinerant electrons
in the conduction band may for instance interact with a localized magnetic moment.
This interaction leads to the Kondo effect which describes the screening of the local-
ized moment by conduction electrons. In the dilute limit, when the number of localized
moments are few as compared to the number of lattice sites, the moments are screened
by spin clouds of the itinerant magnetic moments. This leads to the formation of the
so called Kondo-singlet. In the opposite limit, when the number of magnetic moments
takes a macroscopic value so that any lattice site forms a local moment, the system can
be described by the periodic Anderson model. At low temperature the singlets form a
Fermi-liquid which is characterized by a very narrow band which can be interpreted as
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a very large effective mass of the electrons. The latter is specific to the heavy fermion
systems where the bare electron mass is enhanced by a factor of hundreds.

The first successful attempt to make progress in solving the Hubbard model in the
limit of infinite dimensions was done by Metzner and Vollhardt [9]. This lead to the de-
velopment of dynamical mean-field theory (DMFT) of correlated electron systems [[10]].
The central idea of DMFT is to replace the d-dimensional lattice by a set of single im-
purities, which are self-consistently embedded in a bath of non-interacting electrons.
In the translational invariant case, the computational complexity is further reduced to
the solution of a single unit cell for which the corresponding impurity problem needs
to be solved in DMFT. With the impurity problem, which is a full many-body problem,
the main characteristics of the Hubbard model are kept, since the interplay between
local and itinerant physics is still preserved. In doing so, one gains a lot, since numer-
ical methods to solve single impurity problems are relatively well established. This is
the case because the solution of the Anderson impurity model can be understood as
an effective low-dimensional problem that can in principle be solved exactly within
numerical accuracy.

The understanding of the limit of infinite dimensionality or high connectivity of the
underlying lattice is crucial for the understanding of DMFT. In this limit, the action of
the surrounding lattice sites on a given site can be replaced by an effective field which
is similar in construction to the Weiss mean-field theory. With DMFT, it was shown for
the first time that the high dimensional limit was not only useful for the investigation of
spin models, which was a well studied case at that time, but also for the understanding
of lattice fermions.

Applications of DMFT in combination with conventional band structure techniques
(e.g. using the LDA+DMFT approach) to study real correlated materials have shown
to provide a good quantitative description of their electronic, magnetic and structural
properties [[11} (12} [13, [14} [15]. Nowadays, band structure calculations in the frame-
work of the local density approximation (LDA) in density functional theory (DFT) are
usually employed as a starting point. Exchange and correlation contribution to the total
energy density-functional are taken from the homogeneous electron gas in LDA. The
Kohn-Sham orbitals provide highly accurate electron densities especially for the s- and
p-band materials and good ground state energies. This makes DFT a well established
method for the investigation of weakly correlated electron systems. Especially elec-
tronic densities arising from s- and p-bands seem to be close enough to the one of the
homogeneous electron gas. However, certain narrow electronic bands with dominant
d or f character have to be treated differently, since those orbitals are well localized
within one atomic site so that their nearest neighbour overlap can be comparable to
the intra-atomic Coulomb repulsion U. The part of the Hilbert space which is affected
dominantly by d and f electron systems is called the correlated subspace of the full
Hilbert space. For this subspace, the Kohn-Sham states are not a good description. One
needs to treat the correlated subspace separately by writing an effective low energy
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Hamiltonian which has a similar form as the Hamiltonian in Eq. (I.0.1). The effec-
tive low energy Hamiltonian can then be solved self-consistently in the framework of
DMEFT and it can also be embedded into the full Hilbert space in the framework of DFT.
The DMFT treatment allows to access additional information about the excitation spec-
trum of the material which is not possible in conventional time-independent DFT by
construction. The apparent advantage is the possibility to explain many-body effects
in the excitation spectrum as seen in photo-emission spectroscopy (PES) and inverse
photo emission spectroscopy (IPES) experiments. Here, the quasi-particle resonance
at the Fermi level, placed between the upper and lower Hubbard band, is a signature
of a strongly correlated state which is absent in DFT. Another important application of
LDA+DMEFT is the investigation of structural properties of materials in the presence of
electronic correlations and finite temperature.

The physical properties of transition metals are characterized by partially filled nar-
row d-bands which are superimposed by broad s- or p-bands. The latter bands screen
the bare electron-electron Coulomb repulsion of the d-electrons. A small overlap exists
between neighboring d-orbitals, so that the hopping integrals and hence the bandwidth
are comparably small. The interplay between the local Coulomb repulsion U and the
small bandwidth leads to the appearance of ferromagnetism in 3d transition metals
such as elemental Ni. In a partly filled shell of an isolated atom the exchange interac-
tion between electrons leads to parallel spin alignment (Hund’s rule). The state of the
electrons in solid metals is extended with a competition of the kinetic energy of the elec-
tronic system which would favor no spin alignment and the exchange interaction which
favors spin alignment. For narrow band 3d transition metals, the energy gain from the
exchange interaction wins and the parallel spin alignment is favored. Therefore, the
magnetism of 3d materials is a consequence of the narrow 3d bands. The LDA+DMFT
framework has been used successfully in order to describe these systems [[16} 17]].

The success of state-of-the-art many-body techniques, like LDA+DMFT, in describ-
ing 3d metals raises the question about correlation effects in materials with higher
atomic numbers like 44 transition metals. They usually form structures where the band-
width is increased as compared to their 3d counterparts. Consequently, the electronic
system will find it preferable to form a paramagnetic state with no spin alignment. In
these materials the energy gain from the Hund’s exchange interaction is not big enough
for the formation of a ferromagnetic state with a long range order. The larger band-
width also suggests that the electronic state in 4d materials might be better represented
by itinerant free electron band-like picture in contrast to an atomic-like localized pic-
ture. Nearly ferromagnetic materials like palladium are on the verge of a magnetic
instability. Evidences for this are the relatively large density of states at the Fermi level
and the larger Stoner enhancement factor [18] in the magnetic susceptibility. Nowa-
days, palladium already finds its use in the industrial application as a catalyst and for
hydrogen storage. It is also an interesting material from the theoretical point of view
due to the formation of a satellite in the spectral function [[19] and the appearance of the

10
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so called Kohn anomaly in the phonon spectrum [20, 21], i.e. a remarkable softening
of a certain phonon mode. The presence of the soft mode indicates that the interplay of
the electronic and ionic degrees of freedom are important, too. The anomalous change
in the phonon frequency appears around a phonon wave vector q which is close to the
wave vector which can connect many states {e€,} at the Fermi level. This so called
nesting condition can be responsible for various kinds of instabilities, like charge or-
der, magnetic order or structural ordering. Palladium is an example where the nesting
property is not sufficient to lead to a transition of any kind at ambient pressure and
room temperature. The proximity to a transition makes palladium an interesting mate-
rial where the inclusion of correlation effects in the theoretical description can have an
influence on the interplay of electron and ionic degrees of freedom.

Experimental techniques, like de Haas van Alphen (dHvA) measurements or an-
gle resolved photo-emission (ARPES) allow us to probe the Fermi-surface. There-
fore, the theoretical description, in the form of the state-of-the-art ab-initio calculations
(LDA+DMFT), can be compared with the experimentally observed data. The compu-
tational resources and theoretical descriptions are powerful enough, so that we are even
able to predict the outcome of experiments on correlated materials. However, ARPES
and dHVA measurements are sometimes of limited use due to the surface sensitivity
and sensitivity to defects, respectively. The applicability of dHvA measurements in
materials with defects is limited due to the fact that the quantum oscillations around
the Fermi surface happens on a longer time scale than the characteristic scattering time
of the electrons on defects. Since we are often neither interested in the surface prop-
erties of a given material nor in its defects one might want to consider alternatives to
ARPES and dHvA. The recent advance in the accuracy of positron annihilation and
Compton scattering experiments is one of those alternatives [22]]. Compton scattering
spectroscopy relies only on the energy and momentum conservation. It is a quite ro-
bust experimental technique against high concentrations of defects and of dopants. The
observed frequency shift of Compton scattered light on electrons in solids can be used
to reconstruct the Fermi surface [22]. Compton scattering spectroscopy, in general, al-
lows one to probe the ground state properties of metals directly, namely the electron
momentum density. In fact, this was one of the first experiments which demonstrated
that electrons in solids obey Fermi-Dirac statistics [23, 24, 25]. It also plays a cen-
tral role in theoretical physics for the concepts of Fermi liquid theory [23, 24, 25]. In
order to model the process of Compton scattering on electrons in solids realistically,
it is essential to take into account strong electron correlations of its constituent parts.
First principle methods, which are able to predict the outcome of this spectroscopic
experiments and at the same time include strong electron correlations, are of great im-
portance for the understanding of material specific properties in the presence of strong
correlation.

11
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1.1. Aim of the Present Thesis

In this work, I have investigated the effect of electronic correlations in real mate-
rials with the main focus on the electronic and structural properties employing the
LDA+DMFT approach. The main computed quantities are the local Green’s function

and the charge density in position space which contain sufficient information to deter-
mine the total energy of the system. I also take a complementary view to the local
one-particle quantities in position space by considering the electron momentum distri-
bution in momentum space which is naturally connected to spectroscopic methods like
Compton scattering spectroscopy and two-dimensional angular correlation of annihila-
tion radiation (2D-ACAR).

In the chapters to come the following subjects will be treated:

12

In chapter [2] the methodology will be introduced. This includes the multiple
scattering approach to the calculation of the electronic structure of solids.

In chapter [3] DMFT and the spin-polarized 7-matrix fluctuation-exchange ap-
proximation (SPT-FLEX) solver for the impurity problem is explained. At the
end of this chapter we show how LDA and DMFT can be combined in a charge
self-consistent manner (in the so called fully charge self-consistent LDA+DMFT
scheme).

The chapter [ presents Compton profiles for Alkali metal elements and the scal-
ing behavior at high momenta. We also investigate the effect of electron correla-
tion for the transition metals Fe and Ni.

In chapter [5} we present our results for the effect of electronic correlations on
the electronic and structural properties of the 4d transition metal Pd. The dy-
namical self-energy in DMFT is used to describe the satellite structure of Pd,
the Fermi surface nesting and the ground state properties. We also compare
the LDA+DMFT approach with the quasi-particle self-consistent GW (QSGW)
method.

In chapter [6] we investigate the lattice dynamics in palladium using the frozen
phonon method. We show the effect of electronic correlation on the phonon
frequencies in this material.

In chapter [/, the main conclusion of the present thesis will be drawn. We also
outline consequences of the current research for future studies.

In the appendix of this thesis (chapter[A)) we explain some technical details about
the fitting procedure of the Compton spectra in chapter 4]



Part I.

Theory and Methods






2. Muffin-Tin Methods in Solids

ABSTRACT

In the following chapter, the basic principles of the so called muffin-tin methods in
solid state physics will be introduced. First, we are going to provide an introduction
to density functional theory (DFT) and the Kohn-Sham formalism where a mapping of
the many-body problem to a system, consisting of non-interacting electrons (the Kohn-
Sham system), is done. The exchange correlation functional will be introduced together
with the local density approximation (LDA) which is a widely used approximation to
the exchange correlation functional. After presenting the multiple scattering theory in
solids in a general form, we present three different implementations for the solution of
the Kohn-Sham problem. We also demonstrate how many-body effects can be included
in Green’s function based methods in the form of a local self-energy.

2.1. Density Functional Theory

The following sections are mainly based on the book by Ashcroft and Mermin on solid
state theory [26]. We also found it useful to follow in parts the lecture notes with the title
“Correlated Electrons: From Models to Materials” and the chapter on “Crystal-Field
Theory, Tight-Binding Method and Jahn- Teller Effect” by Eva Pavarini therein [27].
The idea of so called first principle (or ab-initio) methods is to describe real materials
without any adjustable parameters. In this section, we will use atomic units (h = m, =
e = 1) in order to match the convention used in the literature. The central equation



2. Muffin-Tin Methods in Solids

of solid state physics is the eigenvalue problem H|¥) = E|¥), where the many-body
Hamiltonian is given as:

sz 2Z|rl_rl erl

Z ZoZ!,
|2M 2 —~ |R, ~ Ro/|’

2.1.1)

a

where {r;} are the coordinates of N, electrons, {R,} are the coordinates of the nuclei,
Z, are the atomic numbers, and M, are the nuclear masses. The Born-Oppenheimer
Ansatz is to split the wave function |'¥) in two factors

Y{ri}, {(Ro}) = ¢ ({ri}, {RHP(R,}), (2.1.2)

with an electronic part [) and the ionic part |®). This allows us to write the
Schrodinger equation for the electronic system as follows:

H |y ({Ro})) = e({Ra DY ({Ro})), (2.1.3)

where the electronic wave-function [ ({R,}) and the corresponding eigenvalues
€({R,}) depend parametrically on the ionic positions. The Hamiltonian operator for
the electrons H, becomes:

( Z.Z,
Hom o T Y e MR T N R @

where the first two terms are the kinetic and potential energy of the electrons, respec-
tively. We denote the Coulomb interaction term as U = % Dt ﬁ and the kinetic

energy term as T = —5 V2 The ionic charges give rise to an electrostatic poten-
tial Vext = — o | rfRnl in Wthh the electrons move (the third term). The last term is
the electrostatic energy contribution due to the repulsive Coulomb interaction between
ions. The dependence of H, on the ionic positions has to be understood as a parametric
dependence. Once the equilibrium structure {R,} is known experimentally one can fo-
cus on solving Eq. (2.1.3). After solving the electron problem, one can investigate the
ionic degrees of freedom which follow the equation

H,|®) = E|D), (2.1.5)

with the Hamiltonian operator H, of the nuclei which is given in the adiabatic approx-
imation as

2M + e({Ry}), (2.1.6)

where the electronic eigenvalue €({R,}) takes the form of a potential felt by the nuclei.

16
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Note, that for the solution of Eq. one needs to solve the electronic problem (2.1.3))
for various ionic positions {R,}. This determines the equilibrium structure which is
given by the minimum of the potential €({R,}). Finite temperature results in oscilla-
tions of the ions around the equilibrium position which are the phonon modes of the
material. The Hamiltonian (2.1.3) is usually too complicated to be solved directly.

One attempt to simplify the description is the so called density functional theory
(DFT) which allows to map the complicated many-body problem onto a non-interacting
reference system. Since its introduction in the 60’s, DFT has become one of the most
successful methods in first-principles electronic structure theories. The foundation of
DFT rests on the seminal work of Hohenberg and Kohn [28]. What is nowadays known
as the Hohenberg-Kohn theorem can be divided into two theorems:

The first theorem is based on the fact that two different potentials with their corre-
sponding Hamiltonians cannot both have the same ground state wave-function. The
authors showed that not only the ground state wave functions but also the correspond-
ing one particle densities have to be different if the two potentials differ by more than a
constant shift. In other words, for every given density n(r) there is at most one potential
function Ve (r) for which n(r) is the ground state density. This establishes a map from
the set of densities to the potential called a density functional V.4 [n]. The theorem can
be used to translate every functional dependence on V. into a functional dependence
on n by substituting Vex[n]. The ground state energy for example can also be consid-
ered as depending functionally on the external potential. This defines the ground state
energy E, as a functional of the density:

Eg[n] = Eg[vext[n]]- (2.1.7)

The second theorem of Hohenberg and Kohn says that it is possible to split up
Eq. into two density functionals one depending on the external potential and the
other being independent of the external potential. The latter is called the Hohenberg-
Kohn density functional

Fyk([n] = Eg[Vexinl] - / drVex (r)n(r). (2.1.8)

The functional Fyyx does not depend on the external potential, hence it is universal for
all materials.

Conceptual progress was done by Levy [29] who introduced the so called constrained
search method. This was defined as the constrained minimum search of kinetic and
interaction energy contributions over the set of all antisymmetric wave functions ¥
which yield the same density n:

F[n] = min{¥Y|T + U|¥)
Y—-n

-

(2.1.9)
Es[n] = F[n] + /drVext(r)n(r).

17
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Here, the search over trial wave-functions runs over a wider class of wave-functions
than the wave-functions which were considered in the original functional (2.1.§).

The Hohenberg Kohn variational principle can then be used to find the ground state
energy E,[v] for a given potential Vex(r)

Eg[Vixi] = min {FHK[n] + / drVext(r)n(r)} (2.1.10)

The minimum principle offers an elegant way to the solution of the prob-
lem of calculating ground state energies and densities. This comes at the expense of
determining the functional F[n], which is, in general, as complicated as the complete
solution of the Schrodinger equation. It is, in general, not possible to obtain the exact
expression for F[n]. Hence, for any practical purposes one has to introduce approxima-
tions. Approximations are usually not done on the level of finding expressions for F[n],
but one makes use of the so called Kohn-Sham formalism [30]. The main idea of the
Kohn-Sham formalism is to map the interacting system to a system of non-interacting
electrons in an external potential which is used to mimic the many-body effects of the
interacting system. The so called Kohn-Sham (KS) system is given by the Hamiltonian
Hgs = T + Vks with the external potential Vks and the kinetic energy term 7. The po-
tential Vkg has to be chosen in such a way that the same value for the real-space density
is obtained as for the interacting system:

(Po[Vextl2(0) [Fo [ Vexe]) = (P5> [Vis1In(r) [P [Vks 1) (2.1.11)

Here, |'WWo[Vext]) is the many-body ground state of the interacting system and I‘P(I)(S[VKS])
is the ground state of the KS system. The external potential Vks in Eq. (2.1.T1) can
always be found to produce the desired observable (n(r)) and the first part of the
Hohenberg-Kohn theorem tells us that this potential is unique.

Within the Kohn Sham theory one usually writes the ground state energy of the Kohn-
Sham system as a functional of the density in the following way:

Exs[n] = Ti[n] + / drVis (r)n(r) (2.1.12)
where
T.[n] = min <‘PKS|T|‘PKS> (2.1.13)
YKS Sn(r)

is non-interacting kinetic energy functional. This is the kinetic energy of a non-
interacting system whose ground state density is n(r). Note, that this is just the
Hohenberg-Kohn density functional in the non-interacting case. The minimiza-
tion in Eq. (2.1.13) is a constrained minimum of the kinetic energy over wave functions
|‘PK S > which all yield the density n(r). The Hohenberg-Kohn density functional of the

18
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interacting system (Eq. (2.1.8))) can be formally decomposed in three contributions
F[n] = Ti[n] + Unln] + Exc[n]. (2.1.14)

Where Ti[n] is defined by Eq. (2.1.13)) and Uy 1s the Hartree energy functional

Uyln] = %/dr/dr’w (2.1.15)

Ir — 1’|

and E.[n] is everything that is not included in Eq. (2.1.13) and Eq. (2.1.15). This is
the so called exchange and correlation (xc) energy contribution since it includes contri-

butions due to the Coulomb interaction term that go beyond the Hartree approximation.
According to the first part of the Hohenberg-Kohn theorem, the ground-state density
should minimize the energy functional of the interacting system in Eq. [2.1.9] Hence,
by taking the variation with respect to n(r) gives:

0Eg[n]  6F(n]
sn(r)  on(r)

5
+ Sn() / drVex(r)n(r)

(2.1.16)
oT, !
_ OLlnl / ar )4 V() + Vieln()] = 0,
on(r) r — 1|
where Vi [n(r)] = 55E;;Er[)"]. The same holds for the Kohn-Sham system:
OoE oT.
kslnl _ OTslnl vy =0, 2.1.17)

on(r)  6n(r)
Combining Eq.(2.1.16) and Eq.(2.1.17)) results in the explicit expression for Vj,:

n(r’)

Ir —r’|

Viks(r) = Voxe(r) + /dr + Vie[n(r)]. (2.1.18)

The Kohn-Sham scheme is very useful for practical applications because the density
n(r) for a given potential Vs can be computed very efficiently. Since the reference
system consists of a set N non-interacting particles in an external potential a single
Slater-determinant can be used to solve the problem. All one needs to do, in order to get
the ground state density of the reference system, is to solve the Kohn-Sham equations:

2
[—% + VKS(r):| Yi(r,o) = €ihi(r,0) (2.1.19)

where ¢;(r,o0) are the single electron orbitals and ¢; are the Kohn-Sham eigenvalues.
The ground state density is simply given by

N

()= > > i, s)I1” (2.1.20)
1 o

i=
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The Kohn-Sham orbitals ¢; are the N lowest eigenstates of the Kohn-Sham system and
€; are the corresponding eigenvalues. This density is used to calculate the new potential
Vks[n]. This procedure is repeated until the self-consistency condition is reached. In the
Kohn-Sham scheme, we no longer need to approximate the Hohenberg-Kohn functional
itself but only its exchange correlation part Ex.[n].

2.2. Local Density Approximation

The Kohn-Sham scheme in DFT allows the reduction of the complicated many-body
problem to a single-particle problem with an effective potential, which itself depends
on the ground state density. The potential takes the form so that the density of the Kohn-
Sham problem mimics the true density of the interacting system. The self-consistent
equation are exact provided that the form of the exchange-correlation functional Ey. is
known. Ey. can be formulated as functional of the ground state density n(r) and the
exchange-correlation hole n.(r,r — r’):

E,.[n(r)] = % / drn(r) / dr"“cl(:’_—r_r/). 2.2.1)

r’|
The exchange correlation hole density is defined as
1
Ne(r,r = 1) = n(l")/ dA(ga(r,r’) = 1) (22.2)
0
where g, is the pair correlation function and A is the coupling constant. It can be show

that E,. is fairly insensitive to the shape of the exchange correlation hole [31, 32]. In
order to see this one makes the substitution r — r’ = R giving:

Ey[n(r)] = %471' / drn(r) /0 dRRn%(r,R) (2.2.3)

where ni%(r,R) = %ﬂ [ dQn,.(r,R) is the spherical average of the exchange correla-
tion hole. It might be that the exact exchange correlation hole is strongly aspherical,
but since only the spherical average enters in the exchange correlation energy it is not
necessary in approximations to describe its anisotropy. The exact exchange correlation
hole fulfills the following sum rule:

/dr’nxc(r,r -r)=-1 2.2.4)

which expresses the fact that the hole should contain one unit of charge. The spherical
averaged exchange correlation hole fulfills the same sum-rule:

47 / R*n%%(r,R)dR = -1 (2.2.5)
0
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The local density approximation (LDA) is widely used, easy to understand and at the
same time most successful. Here, one substitutes the unknown functional 7,.(r,r — r’)
with the expression from the homogeneous electron gas. The homogeneous density
N/V is replaced by spatially dependent density n(r) from the inhomogeneous problem:

1
nkPAr,r -1 = n(r')/ da [g§(|r—r'|,n(r)) - 1] (2.2.6)
0

where gfl’(lr —1’|,n(r)) is the pair correlation function for the homogeneous electron
gas. The fact that we used the exchange correlation hole of a reference system, namely
the homogeneous electron gas, guarantees that the sum rule (2.2.4) is satisfied auto-
matically. Together with Eq. (2.2.1)) one gets the local density approximation to the
exchange and correlation energy functional:

Eycln] = /n(l‘)exc(n(l’))dr (2.2.7)

where €,.(n(r)) is the exchange correlation energy per electron of a homogeneous sys-
tem. A modern parametrization of €,.(n(r)) which is based on Monte-Carlo simulation
of Ceperly and Alder [33] can be found in the paper by Perdew and Wang [34]].

2.3. Multiple Scattering Theory in Solids

In the sections about multiple scattering theory and its implementations, we will use
Rydberg units (h = 2m, = e2/2 = 1) in order to match the convention used in the liter-
ature. In the rest of the thesis we will use atomic units instead, if not stated otherwise.
Multiple scattering theory (MST) in solid state physics is based on two observations.
The first observation is that, if the potential landscape in a solid can be divided into non-
overlapping scattering regions, the Schrodinger equation can be solved by assembling
local or partial solutions. The second observation is that the exact crystal potential is
atomic-like around the lattice sites and almost flat between the atoms. Hence, the di-
vision of space can be used to assemble partial solutions to the solution of the original
problem. This is comparable to the principle of propagation of light in inhomogeneous
media which was proposed by Huygens in 1678, where every point in space can be
understood as a point scatterer which emits a spherical wave. The amplitude of the
electromagnetic wave at a given point is the sum of the amplitudes of all point scatter-
ers.

Electronic structure calculations are one application for MST where the quantum me-
chanical system that needs to be solved is, for example, the Kohn-Sham system in DFT.
Since the original work of Korringa [335] there exists a variety of different implemen-
tations of this idea. The methods that will be discussed in the present thesis all have
the so called muffin-tin approximation in common which is just the division of space
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into atomic like regions inside the so-called muffin-tin spheres and the flat interstitial
region between the ions. The so called shape approximation of the ionic potential finds
its application in the Korringa-Kohn-Rostocker (KKR) [35, [36] the exact muffin-tin
orbitals (EMTO) method [37] and the linearized muffin-tin orbital (LMTO) method
[38]. The approximations involved are usually good for closed packed structures. The
relativistic spin polarized test code (RSPt) [39], which is the LMTO implementation
which was used in this thesis, has the big advantage that it was extended to be a full
potential method (FP), so that also open structures can be accurately described to some
extent [40, 39]. It also means that ground state energies corresponding to microscopic
distortions like atomic displacements in certain phonon modes are accessible.

In the following, a brief introduction into MST which naturally leads to the concept
of muffin-tin-orbitals (MTOs) will be given. The derivation and notation follow mainly
the book about multiple scattering theory by A. Gonis and W. Butler [41] and Korringa’s
derivation therein [35]. Korringa’s derivation is preferred over the formal derivation
through the concept of Green’s functions in the spirit of Kohn and Rostocker 36l be-
cause of the connection to MTOs.

The external potential of a one-body Schrodinger equation, which can be thought of
as the Kohn-Sham potential Vkg of the reference system in DFT theory, is approximated
in shape by muffin-tin-spheres:

Vis(8) = Vo + D (Va(ra) = Vo) (2.3.1)

where Vj is the so called muffin-tin-zero and r,, = r,7, = r — R,,. This means that
space is divided into two parts. The first part consists of spheres of fixed radius s,
centered around the lattice sites R,,. Inside these spheres the ionic potential is assumed
to be spherical symmetric. The outside region is called the interstitial region where it is
assumed that the potential takes a constant value Vj. This is how the potential landscape
in the interstitial region between ions is approximated in this method. Inside the muffin-
tin spheres the external potential is spherical symmetric with the 1/r-singularity at the
center. The main idea is now that one can set up a suitable basis for the wave-function
Y(r) which allows an efficient solution of Schrédinger’s equation. The basis should
somehow comprise the local solutions of the Schrodinger equation for each muffin-tin-
sphere.

(=2, + Va(ra) = €) W(x,) =0 (23.2)
The local solutions inside a given muffin-tin sphere can be determined to be:
¢Z(rn) = Rln(rnaf)YL(fn) (2.3.3)

where Y..(7,) and R} (r,, €) are the spherical harmonics and the radial solutions, respec-
tively. We made use of the short-hand notation for the orbital and magnetic quantum
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numbers (/,m) which is represented by a single index L = (/,m). It should be empha-
sized here, that ¢} (r) solves the Schrodinger equation in the locally confined region
centered around n within the muffin-tin radius. However, these wave functions are not
considered physical since they do not fulfill the correct boundary conditions. This is
what is called “basis-functions” in Ref. [41] in order to make the distinction to the phys-
ical wave function W(r) of the electrons in the material. The basis-functions should be
thought of as building blocks to construct the physical wave function which fulfills the
correct boundary conditions. Inside the muffin-tin sphere, the physical wave-function
can be expanded in the basis ¢ (r):

¥(r,) = ) ¢} (r)a] (2.3.4)
L

where aj are the expansion coefficients and r,, is the position inside the n-th muffin-tin

sphere.

In the region between the muffin-tin spheres, which we call the interstitial region,
we assume that the potential equals the muffin-tin zero V. The Kohn-Sham equation
simplifies to

(-V2, + (Vo - ) ¥(ry) = (-V, - &%) ¥(r,) =0, (2.3.5)

which is the Helmholtz equation. Outside the muffin-tin-sphere the solution (2.3.4) can
be smoothly continued to a linear combination of regular and irregular solutions of the
Helmholtz equation [2.3.5}

¥(r,) = ) {Jea) + Hoe)bp} = > {Jue) + Hoe)iy faf - (23.6)
L L

where Ji (ry,) = ji(kr,)YL(7,) and Hy (r,) = —ikh;(kr,)Y. (7,) are the spherical Bessel-
and Hankel functions multiplied with the spherical harmonics. These are the basis
functions in the interstitial region. The requirement that ¢/ (r,) joins smoothly with
the linear combination of interstitial basis functions determines the so called 7-matrix
1} = b} /aj. The t-matrix completely specifies the single site scattering on a given site
R, which can be expressed equivalently with the phase shift due to the scattering on a
single scattering site. The phase shift follows from the asymptotic form of the regular
and irregular solutions in the interstitial region and can be obtained from the 7-matrix
as follows:

N = arccot| — (2.3.7)

Until now the expansion of the wave function ¥ was done around a given muffin-
tin-sphere at position R,. The expansion allows us to express the region within a given
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muffin-tin-sphere and the interstitial region around it. The latter region can also be rep-
resented in a different way. The wave function in the interstitial region can be seen as
the sum of outgoing waves coming from all the scatterers in the system. The require-
ment of regularity at infinity results in:

W(r) = > Hj(r,)b], (2.3.8)
L'n’

That the expansion (2.3.8)) can be done is one of the postulates of multiple scattering
theory [35] which should hold for a bound state of the system. Hence we can use the
expansions (2.3.8)) and (2.3.6) to determine the eigenstates of the system. The combi-
nation of those two expansions leads to:

Do dienal = > Hy(ry)by, (2.3.9)
L

n’#n,L’

which is equivalent to the requirement that the incoming wave on site R, have to cancel
the outgoing waves from all the other sites R}, # R,,. Here again, the indices n and
n’ are used to distinguish different muffin-tin-spheres, so that the coordinate center of
Ji(r,) and Hy (r,) are the center of the muffin-tin-spheres R,,. The condition (2.3.9)) is
difficult to use in practice since both expansion coefficients of the regular and irregular
solutions of the Helmholtz equation are involved. One would like to formulate the
MST-condition in a different way where only expansion coefficients of one basis set,
like Jy (r,,), appear.

To achieve this, one expands the irregular solution centered around site n’ by a sum
of regular solutions centered around site n:

Hy(vp) = I Gy, (2.3.10)
L

where the expansion coefficients G’L”‘L/, are called MST structure constants. This enables

us to formulate (2.3.9) in the more convenient form

Dawnd = Y JL)GYLa, (2.3.11)
L n’#n,L,L’

which has to hold for each basis function separately:

aj= Y Gyl (2.3.12)

n’#n,L’

which is the MST for muffin-tin-potentials. Equation (2.3.12) shows clearly the sep-
aration of the structural and potential scattering information. The latter is given by
the t-matrix t?,' which encodes the necessary information to describe the scattering on
the muffin-tin-sphere centered at R,». For rotational symmetric scattering sites the z-
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matrix does not depend on the magnetic quantum number and can be expressed through
the phase shift of the asymptotic form of the incoming and outgoing solution of the
Helmholtz equation. The structural information of the lattice is completely specified
through the expansion coefficients (2.3.10) of the irregular solutions of the Helmholtz
equation.

The solutions a7 ; of are the solutions of the homogeneous linear equations

’ _1 ’
D (5 @) Gwnrn = G () (1= 8| e, = 0 (23.13)
n’'L’

where ¢} ; = (t?)_l aj ;- Eq. 2.3.13) is the secular equation of MST which is used
to find the eigenvalues ¢; and the expansion coefficients az,l. of the wave functions V.
Previously the energy dependence of the structure constants and the z-matrices were
suppressed to simplify the notation. In Eq. the energy dependencies €, k are
explicitly written out. The structure constants depends implicitly on the energy via «,
so that /<l.2 = €; — Vp. The mutual dependence of the parameter € and « is related to the
mutually dependence of the phase shifts and the structure constants.

Treating « as energy independent leads to major simplification since the structure
constants can be calculated once and for all. The constant energy « is usually chosen
to be zero, so that the corresponding energy € is the muffin-tin zero ;. This approx-
imation can be problematic when the structure constants show strong energy depen-
dence. In general, the structure constants can have relatively strong energy dependence
and long range, so that a different representation of the structure is necessary. It was
shown [42, 43]], that the so called screening representation of the structure constant
can be used in order to remove the strong energy dependence and the long-range. The
screened representation is introduced in the Korringa-Kohn-Rostocker (KKR) method
by replacing the flat interstitial potential with finite repulsive potentials. In that way,
one uses a different reference level to set up the multiple scattering formalism with the
advantage that the number of expansion coefficients in Eq. are reduced consider-
ably. The screened structure constants are related to the bare structure constant matrix
through an inhomogeneous Dyson equation [44].

2.3.1. Korringa-Kohn-Rostocker Method

The derivation of MST in section [2.3| was the starting point of the method which nowa-
days is known as the Korringa-Kohn-Rostocker (KKR) method. In Korringa’s deriva-
tion the MST secular equation was found by solving the Schrédinger equation in an
energy dependent basis, while Kohn and Rostocker solved a scattering problem with
many scattering sites. The latter approach naturally leads to the formal language of
Green’s functions. Hence, Kohn and Rostocker showed that Korringa’s equation of
MST theory can also be derived using the Green’s function formalism. The Green’s
function formalism might be considered more systematic with the downside that one
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needs to introduce the required formal language. The interested reader is redirected
at this point to the paper by Kohn and Rostocker [36l]. In the present thesis we only
describe very briefly how MST is applied in KKR:

e Single site or atomic scattering 7}/ (€) at a given site R, are usually described by
the phase shifts:

n ()
n, (€) = arccot v (2.3.14)
-V

e The lattice structure of the solid gives rise to multiple scattering sites which is

: nn’
specified by the structure constants G},

The wave function coefficients, ¢; ; are the solutions of the homogeneous linear equa-
tions:

’ _1 ’
Do (@) Swrns = G (k0 (1 = 6|, =0 (23.15)
n’'L’

The number of equations are given by the number of sites R,, and the number of orbitals
L = (Im). The energies ¢€; are roots of the determinant of t~!(e) — G(«x). Note, that we
introduced the matrix notation for the 7-matrix and the structure constant in RL-space
for simplicity.

2.3.2. Exact Muffin-Tin Orbital Method

In the following, an introduction to the exact muffin-tin orbital (EMTO) method within
the spherical cell approximation will be given which was developed by Andersen and
coworkers [41,45] 146, 47]. We would like to mention the article by 7Tank and Arcan-
geli [48] where the EMTO method is introduced in an easily understandable way.

This method allows the muffin-tin spheres to overlap which has shown to serve as a
better approximation to the full potential than non-overlapping spheres. As usual, the
trial wave function ¥ is expanded in a complete set of basis functions

Wi(r) = > P (e rn)al (2.3.16)
Ln

where W (€;,1y) are the exact muffin-tin orbitals which will be introduced below. a}“

are the expansion coefficients that have to be chosen such that ¥;(r) solves the Koh;—
Sham equation in the entire space.

The expansion in different basis functions are of course mathematically equivalent as
long as the basis set is complete. The reason to go from the unscreened representation
(Eq. (2.3.4)) to the screened representation (Eq. (2.3.16)) is just a practical one. For

all practical purposes we would like to keep the number of basis functions as small
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as possible. One might even want to consider a plane wave basis set. The problem
is that plane waves look nothing like the wave function within the potential spheres,
so that a very large number of plane waves would be necessary to describe ¥. The
MTOs are already closer to the physical solution by satisfying the local solution of the
Schrédinger equation. EMTOs are even more localized in r-space and show a weaker
energy dependence than the MTOs [37]. In that way, the number of required basis
functions to describe the physical wave function can be further reduced. The EMTO
basis functions can be decomposed in other types of functions each satisfying their
own constrains and boundary conditions. In the following, the parts of the EMTO basis
functions will be discussed separately and we will describe how they are combined.

The Screened Spherical Waves and the Slope Matrix

In the EMTO method, the first part of the basis functions are the so called screened
spherical waves (SSW) which are solutions to the Helmholtz equation

(-V2, - &) ¥} “(ern) =0 (2.3.17)

in the interstitial region. As the potential in the interstitial region is flat the Schrodinger
equation reduces to the Helmholtz equation, which we know how to solve efficiently.
The matching condition of the SSW with the solutions inside the muffin-tin spheres
should be chosen to be as simple as possible and we demand that these functions are
well localized in r-space. The latter demand can be fulfilled formally by going to a
screened representation of the structure constants (see Ref. [42, 43]]). Here, we in-
troduce screening in a different way by demanding a certain kind of boundary condi-
tion. The superscript a in (2.3.17) stands for the boundary condition on the hard- or
a-spheres. In order to specify these conditions, we first place the hard-spheres of radius
a" at each site n. The hard-spheres are defined to be non-overlapping and the radius
does not have to coincide with the muffin-tin radius s,,. The SSW are chosen to be
zero on all screening spheres except for the screening sphere at its own site n. Inside
the hard-spheres centered at the sites n’ # n the potential is assumed to be infinitely
repulsive which is equivalent to the boundary condition mentioned above.

Analogous to the unscreened representation one can introduce the so called screened
structure constants or slope matrix

WP (e n) = £ (P YLEn)Sun L+ ) 8 (P TV (Fur) Sty (K7 (23.18)
L/

where the Sy, L(KZ) is the slope matrix which is related to the bare KKR structure
constant matrix through an inhomogeneous Dyson equation [44]].

In Eq. 23.18) f,"“ and g are the head and tail functions in this representation,
respectively. The previously described boundary conditions for the screened spherical
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waves lead to the following conditions at the a-spheres:

)|, =1
g ()| =0
na, 2
Ofy” (k%) ~ 0 (2.3.19)
ar,
Ag™ (k2,1
g ( n) “1/a,.
or,

It can be shown by applying (2.3.19) that the screened structure constants is just
given by:
Ok S 1

or |,_, an

S (k%) (2.3.20)

which explains why S/, L(KZ) is called slope matrix. Inside the a-spheres the SSW
are identical to zero, so that also the its derivative vanishes. Hence, (2.3.20)) is also the
kink of the SSW.

The Partial Waves

The treatment of the area inside the muffin-tin spheres is equivalent to the description
in section in 2.3 The wave-function is written as:

¢ (r) = ¢ (NYL(P), (2.3.21)

which is the solution of the Schrédinger in the spherical-symmetric potential inside
the muffin-tin region. The separation of radial and angular coordinates allows the ef-
ficient solution of the Schrodinger equation. Even in the scalar relativistic extension
the separation Ansatz is still possible so that the numerical solution can be found very
efficiently. In principle, one could think of matching the partial wave inside the muffin-
tin-spheres and the screened spherical wave in the interstitial region which would allow
us to define the Schrodinger equation as an algebraic equation in general. This would
be equivalent to the MST secular equation which we saw previously. However, the
hard-spheres and the muffin-tin spheres do not have to be chosen to be equal in contrast
to the general MST. To increase the hard-spheres to the size of the muffin-tin-spheres
is certainly not possible because the hard-spheres are not allowed to overlap due to the
boundary conditions of the screened spherical waves. If instead the muffin-tin spheres
would be chosen to be non-overlapping, instead we would have a bad approximation
of the true potential. That is why one usually chooses the hard-spheres to be different
from the muffin-tin spheres. The downside of this is that one needs to add an additional
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region between those two spheres which needs to be described somehow by the EMTO
basis set.

The shell a < r < s around the atom is going to be represented with a third set
of wave functions ¢;*. These are the so called backward extrapolated partial waves
which satisfy the Helmholtz equation in the shell around the “hard”-spheres and in-
side the muffin-tin-spheres. These additional basis functions are necessary to make the
connection between the partial waves and the screened spherical waves. The bound-
ary conditions are such that the backward extrapolated partial waves join continuously
and differentiable to the partial wave at sk and continuously to the screened spheri-
cal wave at ag. The value at the hard sphere boundary can be chosen freely to be
" (a,) = c/)'L””(a) = 1 while their derivatives do not have to match in general. Here
¢} (a) is just the partial wave from equation (2.3.21) up to normalization which will
be specified later. With the choice ¢"“(a,) = 1 the backward extrapolated partial wave
matches automatically the screened spherical waves at the a,,.

The radial part of the extrapolated free-electron solution can be written in the form
&) (e,rn) = £, rR) + 8] (K%, rR) DYy (€) (2.3.22)

where we introduced the logarithmic derivative D¢, () = D { ¢, " (€,a R)} of ¢/ (€,7,)
at r, = a,. The definition of the logarithmic derivative is

__S o)
DU =757 |

(2.3.23)

We also introduce the energy dependent normalization function N, for the partial
wave

¢ (e,x) = Ny(€)d] (e,r)YL(F) (2.3.24)

in order to match the normalization condition qbﬁ’a(e, a,) = 1. The normalization func-

tion in Eq. (2.3.24) and the logarithmic derivative D¢ (€) are determined by the match-
ing conditions:

Ny#7(€,50) = ¢, (€,50)
O (esn)| 09 (€,50)
arn B a}"n

(23.25)
Ny

"'n=Sn rn==Sn
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It can be shown [49] that the following relation holds:

(k2 sn) D {fln’“(K2,sn)} -D {g,’”“(KZ,sn)}

¢ (e.50) D {¢>?(6,an)} -D {gf’“(KZ,s”)}
4 (42, 5,) D {¢7(e,an)} s {f,"’“(Kz,Sn)}

& (6%5n) D g (e.an)} - D (g (k250))

Ny (e) =
(2.3.26)
Dy (e) = -

The kinked partial wave or the exact muffin tin orbitals can than be constructed to be:
P 0) = 97 (000) = @] (€)Y () + W (k1) (23.27)

where the name kinked partial wave comes from the non-differentiability at the a-
sphere boundaries.

The Kink Cancellation Equation

The exact muffin-tin orbitals can now be used as a basis to expand the physical wave-
function (2.3.16)),

¥i(r,2) = ) Pz r,)a) (2.3.28)
Ln

where we denote the energy variable by z from now on to emphasize the fact that the
energy dependence does not have to be restricted to real energies. Inside the potential
spheres (r, < s, for some n) Eq. (2.3.28)) can be written in the following form:

; 1 ,
¥(r.2) = 3 Ni@@L @Y Eap™+ ) g () 3 —Kiyp Ye(Fuap® (2.3.29)
L L n’,L’

where we have introduced the kink matrix

K1 (2) = a (88,01 (2) = Sawdri DY (2) (2.3.30)

This matrix is called the kink matrix since it is the kink of the trial wave-function.
Hence, our trial wave function (2.3.28]) is a solution of the Schrodinger equation when
the kink cancellation condition

DK (D) = a (S8 (2) = SandLDY(2)) = 0 (2.3.31)
n,L

is fulfilled. The corresponding energies z = €; when this happens are the single-electron
eigenvalues and the corresponding eigenfunctions ‘¥; are just given by evalu-
ated at z = ¢;. Theses are just the energies at which the wave function ¥ is a smooth and
continuous function. The equation (2.3.37T)) needs to be solved which leads in general
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to non-linear equation in the energy z. For practical reasons (2.3.31)) is solved using
Green’s function methods on complex energies z. First one might notice that the roots
of (2.3.31)) can also be found by investigating the poles of the so called path operator:

Z KV?’L’I’Z"L”(Z)gg”L”nL(Z) = 6n’n5LL’ (2.3.32)
n”L

here the path operator g;,,, , (z) is just defined as the inverse of the kink matrix. This
is similar to the definition of Green’s functions which are defined as the solution of
a differential equation with a 6-function as inhomogeneity. The path operator is con-
nected to the inverse of the operator z — Hxs which would be the Green’s function for
the Kohn-Sham problem. The path-operator however misses the correct normalization
condition to be a “true” Green’s function. This means g, ,  (z) has the right pole
structure but wrong residue.

In the case of translational symmetry, the sum over spatial indices in can be
formulated as a sum over site indices over atoms in the primitive cell and a sum over
Bloch k-vectors. The latter is defined in the first Brillouin zone. The k and energy

dependent slope matrix is obtained from the Bloch sunﬂ

i k) = Y R ®RIgn () (2.3.33)
R,-R/,

A similar expression can be derived for the path operator. In reciprocal space the path-
operator can be expressed as

1

gk = S D0

(2.3.34)

where S(k, «?) and D(z) are matrices in orbital space, namely the screened structure
constant and the logarithmic derivative, respectively. In order to arrive at the properly
normalized Green’s functions one needs to normalize the path operator so that the poles
in (2.3.34) have the residue 1 after normalization. This can be achieved by choosing
the following normalization:

Sk, x?) = D(z)
S(k,k2) = D(z)

(2.3.35)

However, the local term D(z) introduces unphysical poles which have to be subtracted,
so that the proper normalized Green’s function takes the following form:

_ Sk, «?) - D(2)

G(z,k) = Sk.<?) —D(z)

Dpoles(z) (2.3.36)

where the unphysical poles Dpgles are now removed. The scheme for removal of the

! We restrict ourselves to one atom per primitive cell for simplicity.
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unphysical poles is described in Ref. [S0]. As already mentioned the Green’s functions
in EMTO are formulated on a complex energy variable z. In the Kohn-Sham scheme
the central observables like the number of particles N or the one-particle density n(r)
are z-integrated quantities. According to Cauchy theorem they can be determined from
the Green’s function through contour integration. The analytic properties of Green’s
functions and the Cauchy theorem allow us to chose a variety of different contours in
the complex plane where the Green’s function and the path operator are defined. In
practice, one usually chooses a semi-circular contour on which the Green’s function
G(z,Kk) is defined. In Fig. the contour in the complex z-plane is depicted. The
Kohn-Sham eigenvalues ¢; are the resonances of the Green’s function. These are lo-
cated on the real axis since the Hamiltonian matrix is hermitian. For example the total
number of particles in the Kohn-Sham system can be computed as:

N(EF) = 2%” Z §1§TLr G(z,k)dz (2.3.37)
k

which is equivalent to counting the number of poles of G(z,Kk) according to the residue
theoremE] This choice of contour integration is just convenient due to the fact that
the integrand is much smoother far away from the imaginary axis, so that integrals of
the type can be performed with only a few mesh points as compared to the
evaluation of the integral along a contour which goes parallel to the real axis.

2.3.3. Linearized Muffin Tin Orbital Method

The local solution to the Schrodinger equation in MST can be expanded in a superposi-
tion of irregular and regular solutions of the Helmholtz equation (2.3.6). This matching
condition can also be met by a different set of basis functions:

" H;(r,) for r, outside of the muffin-tin sphere n
X1 (rn) = " o ) (2.3.38)
@7 (ry) — Jp(ry)  for ry inside the muffin-tin sphere n,

which are the muffin-tin orbitals (MTOs) of Andersen [S1]. The difference in compar-
ison to (2.3.6)) is the fact that the regular solutions are put inside the muffin-tin sphere.
Hence, the MTOs satisfy the Schrodinger equation in the interstitial region but do not
satisfy the Schrodinger equation inside the muffin-tin sphere. This is due to the extra
term —Ji,(r,) appearing in (2.3.38)). The condition for the wave function

¥(r) = ) X)) (2.3.39)
nL

2 The contour integral in Eq. is a closed loop integral in the complex plane which is just the
contour in Fig. [2.3.T| closed in the lower half-plane with a mirrored semi-circle. Since both half-
circles contribute equally to Eq. the contour integration is only performed on one side of
the half-plane.
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%EF “R(z)

Figure 2.3.1.: Schematic picture of the different domains on which the Green’s
function and self-energy are defined. The natural domain we
usually use in EMTO/KKR is the complex contour along a semi-
circular curve. The Matsubara frequencies are denoted by dots
along the imaginary axis. They are measured relative to the
Fermi level Er. The interface between EMTO/KKR and DMFT
is created by performing analytical continuation between these
domains via Padé interpolation.

to be solution of the Schrodinger equation will lead at the end to Eq. (2.3.12) of MST. In
order to arrive at the point, where the wave function W is a solution to the Schrodinger
equation, this term has to cancel in the expansion (2.3.39). This is the case when the
“tails” of the MTOs from all other sites n’ # n cancel the term —J (r,) from site n.
In that way we arrive at Eq. (2.3.9). However, the difference comes into play if we
consider a finite cutoff in the L-summation. In that case the condition (2.3.9) cannot be
exactly satisfied, so that the required cancellation in order for x/ (r,) to be solution of
the local problem inside the muffin-tin sphere can only be met approximately.

The connection with the structure constants can be made by dividing the space out-
side of a given muffin-tin sphere n further:

Hy(r,) for r, in the interstitial area
X1(X0) ==, G"™ J (r,) forr, inside the muffin-tin sphere n’  (2.3.40)

¢} (rn) — Jp(ry)  forr, inside the muffin-tin sphere n

where the expansion of Hy(r,) around the centers n’ was used. The expansion co-
efficients G'LZ”L are the unscreened structure constants from section n The condi-
tion (2.3.12)) is called the tail-cancellation theorem in the MTO theory.
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However, the secular equation of MST is a complicated equation which is non-linear
in its energy-dependence due to the energy dependence of the structure constants and
the 7-matrix. In the next paragraph the energy dependence in the secular equation will
be simplified.

Linearization

Now, we have the equations to formulate the band structure problem. The requirement
that the total wave-function is a solution both inside and outside the spheres with the
mutual dependence of € and k would lead to non-linear KKR equations. The structure
constants and the phase shift would be connected on the basis of the tail cancellation
condition. We can take advantage of the fact that we can treat € and « separately. By
choosing a fixed « we obtain a major simplification, since the structure constants do not
depend on the energy any more.

The second issue of the MTO construction is the energy dependence of the basis
functions. The solution of Eq. (2.3.12)) as a variational principle would lead to a non-
linear equation. Solution of this problem is Andersen’s linearization technique [52].
The energy dependent basis functions can be expanded in a Taylor series:

P (r.€) = ¢y (r. €, )) + P (r.€), ) (e — €,)), (2.3.41)

where ¢7 (r, EZ ;) and qﬁﬁ(r, EZ ;) are the partial waves and their energy derivative eval-
uated at appropriately chosen energy points EZ,I’ respectively. The approximation of
linearizing the energy dependence introduces an error which is quadratic in the energy
difference. However the final total energy of the system is correct up to third order [S3]].

The linearization destroys the matching condition between the approximated partial
waves and the envelope functions. The continuity and differentiability condition can be
recovered. This defines the linearized muffin tin-orbitals (LMTOs) i (r,)-MTO.

Band Structure Calculation with LMTO

For translational invariant system we can apply the Bloch theorem which allows us to
index the Kohn-Sham eigenfunction with a Bloch vector k and the band index v:

Uiy (1) = ) af” x5 () (2.3.42)

L

where we introduced the “Bloch-sums” of LMTOs

) = 37 MRyt () LMTO, (2.3.43)

n

In this basis set, the eigenvalue problem for the stationary Schrédinger equation in
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the Kohn-Sham system can be written as follows:

> HS ) - E,(0)0L1(K)| af” =0, (2.3.44)
L

where O 1/(K) is the overlap matrix. E, (K) is the band dispersion. The system of
equations has a non-trivial solution if the determinant of the term in brackets is zero.
This is can be understood as a generalized eigenvalue problem with the Hamiltonian
matrix HEE/ and the overlap matrix O ;- being the coefficient matrices. The lineariza-
tion transformed the non-linear secular equation (2.3.12) into a linear equation in the

energy which can be solved very efficiently using standard linear algebra routines.

2.4. Adding Many Body Effects

In the combined framework of EMTO/KKR and dynamical mean-field theory (DMFT),
many-body corrections are included on a local level [54, 55]. Here, we already an-
ticipate the concepts of DMFT in order to explain the way in which the many-body
corrections are included in Green’s function based methods. So, we do not intend to
provide a coherent picture of DMFT and LDA+DMFT at this point. For a more com-
plete understanding the reader might find it useful to read sections [3first and return to
this part at a later point. In that approach the LDA Green’s function (2.3.36) is used
as a starting point. Different to Hamiltonian based methods in which the LDA Green’s
function has to be constructed from the Kohn-Sham eigenvalues and Kohn-Sham or-
bitals via Lehmann summation, Green’s function based methods like EMTO or KKR
provide these propagators automatically. The self-energy correction can be added as
usual via Dyson equation:

(G2 = [6"*4(k,2)] - Z(2), (2.4.1)

where the self-energy X(z) is the k-independent DMFT self-energy and G(k, z) is now
the LDA+DMFT Green’s function. It is worth to mention that the self-energy correction
in EMTO/KKR+DMEFT is only included on certain orbitals (d- and f-orbitals) from
which we know that their local character cannot be accurately described by plain LDA.
A reference system is constructed from which we demand that it describes the same
local physics as the lattice mode]ﬂ This means that the k-integrated lattice Green’s
function

G(2) = | Gk 2)dk = Gipp(2) (2.42)
BZ

is the same as the impurity Green’s function of the single impurity Anderson model
(SIAM) reference system. The requirement (2.4.2) can be met by adjusting the bath

3 In this case the lattice model is a complicated multi-orbital system.
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Green’s function G(z) which characterizes the SIAM completely as long as we are
only interested in impurity observables. In practice this is done by inverting the Dyson
equation of the SIAM in order to get a new guess for the self-energy:

(6] = [Ginp(D)] ' +Z(2) (2.4.3)

It is worth to mention that in the Kohn-Sham scheme the choice of contour inte-
gration in Fig. was chosen for convenience. This is just due to the fact that the
quantities of interest are energy independent in DFT. Many-body extensions however
usually allow us to get more information about the system than static ground state prop-
erties. Also information about the excitation spectrum are accessible here. In DMFT
for example, the effect of interaction can be seen usually in the formation of Hubbard
bands, which describe the high energy excitation of the system. The downside of this is
that in order to access these dynamical quantities one needs to keep this energy depen-
dence. In many-body physics the Green’s functions are usually defined on Matsubara
frequencies w, = (2n + 1)xT, where T is the temperature. These naturally appear in
the imaginary time formalism of many-body theory due to the anti-periodicity of the
Green’s functions in the imaginary time argument. In order to create an interface be-
tween the so called Matsubara Green’s functions and the contour Green s function in
EMTO/KKR one needs to perform the analytical continuation G(z) —> G(iw,). After
solving the impurity problem with the SPT-FLEX-solver the self-energy X (iw,) has to

. . . . Padé . .
be analytically continued to contour points X(iwy,) iy Y (z). In Fig.[2.3.1|the analytic
continuation steps are illustrated with arrows.
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ABSTRACT

In the following chapter, Matsubara Green’s function methods of many-body theory
will be introduced. Two important observables are discussed, namely the spectral func-
tion and the momentum distribution. Concepts like the quasi-particle weight and the
Fermi liquid behavior are outlined. We will demonstrate the relation between the quasi-
particle weight in the spectral function and the discontinuity in the momentum distribu-
tion. The connection and differences between the Bloch vector and the electron momen-
tum are also discussed. The underlying ideas of dynamical mean-field theory (DMFT)
and the mapping of the Hubbard model to the single impurity Andersen model in the
infinite dimensional limit are shown using the cavity construction. We demonstrate how
the impurity model can be solved perturbatively which allows us to treat multi-orbital
models with a complicated interaction-matrix. Finally, we show how first-principle
methods, like LDA in DFT, can be combined with DMFT in a charge-self-consistent
LDA+DMFT setup. The following sections are based on the book by Martuk [56] on
many-body theory.

3.1. Introduction

In condensed matter theory there is another branch which developed from the opposite
direction of first principle methods. Model Hamiltonians use only minimal ingredients
of arealistic system in order to describe a specific effect. Despite of their simplicity very
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often we are not capable in finding an exact solution to these problems. The Hubbard
model, is one important case which describes the electrons moving on a lattice with
certain tunneling amplitudes ¢;; and on-site repulsion U.

H=- Z tij (c;rﬁcjg + h.c.) + UZ nipn| — uZ (nir + njy) (3.1.1)
ij,o i i
where i, j are site indices, o the spin index, clr and cj, are the creation and annihilation
operators for the sites i, j and spin 0. The occupation number operator is n;, = cl.trcm
and u represents the chemical potential. This model is a simplified version of a real
material where the electrons are free to move in the background of an ionic potential.
The ionic positions are rigid and are arranged in a periodic way forming a lattice. The
Hubbard model in the non-interacting case U = 0 is fully characterized by the hopping
amplitudes 7;;. Already in the absence of the local Coulomb interaction one can learn
a lot from this simplified model. If the model is translational invariant ¢;; = #;_;, the
Hamiltonian can be diagonalized with the Bloch-Ansatz

ety = V2 el exp(ik-Ry)
i

ic

cf =y Z ¢} exp(~ik-Ry) (3.1.2)
k

where Kk is a Bloch vector and R; = [ja; + [,a; + [3a3 are the lattice sites. {a;,a),a3}
is the set of primitive translation vectors and /1, l,/3 are integer numbers. The Bloch
vector is a good quantum number due to the translational symmetry in the system. This
allows us to find a relation between the Bloch vector and the eigenvalue ey of the non-
interacting Hamiltonian known as the dispersion relation.

€k = ézt,’j exp [—ik' (Ri—Rj)] (3.1.3)
ij

The information about the lattice symmetry is encoded in #;;. We want to assume here,
that the hopping matrix elements are zero if i and j are not nearest neighbors. But
also longer ranged hopping processes can be included in Eq. (3.1.1). We would like
to point out the difference between the Bloch vector k and the electron momentum
p. The latter is an eigenvalue of the momentum operator which is the generator of an
infinitesimal translation. If the Hamiltonian is invariant under infinitesimal translations
there is according to the Noether theorem a conserved current, namely the momentum
conservation. The Bloch vector instead belongs to a different type of symmetry, namely
discrete translation by a unit of the lattice constant a. This cannot be connected to the
Noether theorem, therefore we shouldn’t expect a conservation law to hold. However,
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it can be shown that the Bloch vectors fulfill the following equivalence relation:
k+G~k (3.1.4)

In the limit of large wavelengths or small momenta the Bloch vector can be interpreted
as the electron momentum. This is just the limit in which the lattice spacing a can be
neglected.

In the interacting case U # O the electronic degrees of freedom cannot be treated
independently anymore because there exists a interaction region in which the position
of one electron affects the behavior of all the other electrons. The interaction region in
this simplified model is just given by the lattice sites, where U plays the role of the en-
ergy penalty for double occupation. In spite of its relatively simple form, the Hubbard
model cannot be solved exactly except for some limiting cases. For example, analytic
solutions exist in one spatial dimension employing the Bethe Ansatz [8]. In more than
one dimension the problem cannot be solved any more analytically. Attempts to solve
the problem with numerical methods have been very limited. In the limit of infinite di-
mensions, however, it was shown by Metzner and Vollhardt that the self-energy X (k, w)
of the Hubbard model becomes independent of k. To understand the concepts that lead
to DMFT one should introduce the basics of Green’s function theory first. In brief, the
single particle Green’s function is just a certain kind of correlation functions related to
single particle events. We can imagine for instance experiments where one injects or
extracts a single electron. The square of the amplitude for the injection and extraction of
an electron at different points in space and time is the quantum mechanical probability
for this event to happen. Hence, what one needs to consider are probability amplitudes
of the following kind:

GR; - R;.t — 1) = =i (T (cjo(t).c} (1)) (3.1.5)

where G 1is the time-ordered Green’s function and (- - - ) is just the usual quantum me-
chanical averaging where the state of the system is described by the density matrix
p = exp(—BH)/Z and the partition function Z = Tr (exp(-BH)). T is the so called
time-ordering operator defined as:

cio(t)el (1) fort >t

T [cje(t)c) ()] = { (3.1.6)

—cjo (el (1) fort’ >1t.

Let us assume that there is no explicit time-dependence of H. In this case, the propa-
gator only depends on time and space differences. Analytic continuation to imaginary
time and Fourier transformation in space and time leads to the compact form in the

39



3. Dynamical Mean Field Theory

non-interacting case (U = Oﬂ

Gok,iw) = (kl;lk’), (3.1.7)
iw, + u— Hy

where iw, = m(2n + 1)/ are the fermionic Matsubara frequencies. Even though the
so called temperature or Matsubara Green’s function Go(k,iw) lacks a direct physical
interpretation, it is very useful for the formulation of approximate schemes to solve
many-body problems. The physical relevant Green’s function, like the causal Green’s
function can in principle be obtained by analytical continuation iw,, — w + in, where
w 1is the real energy variable and in is a small shift away from the real axis. The expres-
sion (3.1.7) is only valid for non-interacting systems. We anticipated already that the
non-interacting Green’s function is diagonal in K, so that the off-diagonal elements of
Gy are zero. In the translational invariant and non-interacting case the Green’s function
can be simply written as:

1

Go(k,iwp) = ————.
lwy + U — €k

(3.1.8)

G(k,iw,) is going to be changed if interaction is switched on Hy — Hy + V. How-
ever, certain properties of the non-interacting Green’s function are the same for the
interacting Green’s function. The interacting Green’s function G(K,iw,) for example
will also be diagonal in k-space as long as the interacting term does not vary from site
to site. The interacting Green can be written as follows:

1

G k’ ] = s
(k,iwn) iw, + u—ex —2(K,iwy,)

(3.1.9)

where X(k,iw,) is the so called one-particle irreducible self-energy. The self-energy en-
codes the many-body effects and X(k,iw,,) is zero when the system is non-interacting.
The interacting Green’s function and the non-interacting Green’s functions are con-
nected via Dyson equation:

Go(k,iw,) ' = G(k,iw,) ™' = Z(Kk,iw,). (3.1.10)
When one iterates the Dyson equation,

G(K,iwp) = Go(K,iw,) + Go(K,iw,) X(K,iw,) G (K, iw,)
= Go(k,iwy) + Go(K,iw,)Z(K,iw,)Go(K,iw,) (3.1.11)

it becomes clear that the Green’s function is given as the sum of all diagramﬂ that end

! G(k,iw) denotes the analytic continued Green’s function G (k,w). We use the subscript "0" for

the non-interacting Green’s function.

2 We use the word “diagrams” for terms which appear in expansions of Green’s functions, partition
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at the destruction of a particle and begin at the annihilation of a particle. In order to
avoid double-counting of scattering processes the self-energy (K, iw,) has to be one-
particle irreducible. Those are diagrams that cannot be disconnected by cutting a non-
interacting Green’s function line. If reducible diagrams were included one would count
certain scattering events too often which would violate the superposition principle of
quantum mechanics. Approximate schemes to solve the Hubbard model are constructed
by taking into account certain X(k,iw,) diagrams. In this way one takes into account
infinite many scattering processes.

3.2. Spectral Function and Momentum Distribution

The following paragraph is taken from the book by Mattuk [S6] about the many-body
problem. The self-energy in the Matsubara representation X (K, iw,,) lacks a direct phys-
ical interpretation. It is useful to consider the analytic continuation of the X(k,iw,) to
the real axis:

Wy —w+in

S(Kiw,) — @ IRk w)

Wy —w+in

GKk,iw,) —  GRkw),

(3.2.1)

where the retarded Green’s function G®(k,w) and self-energy Z®(k,w) has been intro-
duced. The corresponding spectral weight is:

Ak,w) = -2ImG* (k,w)
_ —2ImER(k,w) (3.2.2)
(w + p — ex — ReZR(k,w))? + (IMER(k,w))*

The spectral function A(k,w) is a very important quantity from which many single
particle properties and also thermodynamic quantities can be derived. It is also of great
importance for the understanding of real materials since the so called angle resolved
photo emission (ARPES) experiments allow to measure A(k,w) directly (times the
Fermi function). In the non-interacting case the spectral function reduces t

Ao(K,w) =216 (w — ek + ). (3.2.3)

In the non-interacting case the spectral function is simply determined by ex. With the
help of (3.2.2)) the spectral function can also be used to understand the physical meaning
of 2R (k,w) in the interacting case. If the imaginary part of the self-energy, the so called
scattering rate, is not too large and varies smoothly with frequency, the spectral weight

functions etc. The pictorial way to present scattering terms and the associated Feynman-rules will
not be introduced here. They can be found in standard textbooks like for example the book by
Negele and Orland [57].

3 We follow the convention from the book by Martuk [S6]. Sum rule: f %—‘;’A(k,w) =1.

41



3. Dynamical Mean Field Theory

will have a maximum as soon as the following transcendental equation is fulfilled:
w + u— e — Rex®(k,w) = 0. (3.2.4)

Let us assume the equation has a solution which we would like to denote Ex — u. E is
called the quasi-particle energy of the system. For a non-interacting system the quasi-
particle energy Ex is just given by the bare band dispersion ex. In general, however, the
maximum of the spectral weight can differ quite drastically from the bare dispersion.

The expansion of w +  — € — ReX®(k,w) around w = Ey — u enables us to write
the transcendental equation (3.2.4)) as

w + - ex — Rex®(k,w)

a R
=50 [w + 1 — ex — ReZ (k,w)]szk_H (w—FEx+ ) +--- (3.2.5)

R
(1M )(w—Ek+u)-
ow

w=Ex—p

With this expansion around the maximum of the spectral function we can rewrite (3.2.2))
as:

I'k(w)
(w = Ex + w)? + (TN(w)?)

Ak, ,w) =27 [ + incoherent part, (3.2.6)

where the scattering rate I (w) = —Z ImZ® (k,w) and the quasi-particle weight

1

Zx = = P
- %Rez (k’w)|w=Ek—,u

(3.2.7)

have been introduced. This is useful for the interpretation of the spectral function
around the k and w points where A(Kk,w) is the sharpest. One can further say something
about the values which Z can take for an interacting system. From equation (3.2.6)) one
can see that for a fixed k the first term is simply a Lorentzian with a finite width I'k(w)
and weight Zg. Hence, the integral over the first term is Zx and since the A(K,w)/2x is
normalized to unity we get the inequality

Zi< 1 (3.2.8)

We would like to discuss another important single particle quantity, namely the Bloch
distribution function in the Hubbard model:

0
d
(cfex) = /_ § S Akw) (3.2.9)

where the T = 0 case is assumed for simplicity. The incoherent contribution in
Eq. (3.2.6) varies smoothly with k, so that no discontinuity can appear due to this term.
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(a) Schematic picture of the Bloch distribution function of
the Hubbard model: non-interacting and interacting.
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Figure 3.2.1.: (b): Electron momentum density of an electron gas (left) ho-
mogeneous non-interacting and (right) homogeneous interact-
ing [28]-

The quasi-particle term on the other hand turns into Zg, 6 (w) when Ex — u — 0. For
infinitesimal energies below the Fermi level Ex — u = —n the delta-function is inside
the domain of integration hence it contributes to the integral (3.2.9) while for energies
just above the Fermi level Ex — u = n is outside of the integration range and does not
contribute to the integral. This means, that there is a big difference between these two
nearby wave-vectors, namely:

Jim_ (che) - Jim (ciex) = Zug. (3.2.10)

It is worth to mention, that we neglected in this derivation the frequency dependence
of I'x(w) and also assumed implicitly that it takes an infinitesimal small value. It can
be shown, however, that the additional frequency dependence does not change the end
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J(q)

Figure 3.2.2.: Compton profiles of an electron gas (a) non-interacting (b) ho-
mogeneous interacting [58].

result. This implies that, even in an interacting system, there is a sharp Fermi surface as
it is the case for free electrons. A qualitative sketch of the Bloch distribution function
can be found in many textbooks of many-body physics (see for example the book by
Mattuck [56]). This is depicted in Fig. for the Hubbard model in a schematic
way. The discontinuity at kr becomes smaller when the interaction U takes a finite
value. Also the formation of a tail can seen which has the meaning of a finite probability
of finding electrons in Bloch states with wave-vector larger than Kk in the ground state
of the system.

We would like to point out the connection between the Bloch distribution function
in the Hubbard model and the electron momentum density for a homogeneous electron
gas with and without interaction. A qualitative sketch of n,, by Eisenberger et al. from
1972 [58] is shown in Fig. [3.2.1b] The comparison between the non-interacting ho-
mogeneous electron gas and the interacting homogeneous electron liquid is depicted.
When the electron-electron interaction is switched on, a tail appears in the momentum
density for momenta higher than pr. The discontinuity at pg persists but the value is
reduced from one to Z,,.. This distribution, when integrated over two directions, gives
the parabolic Compton profile in Fig. [3.2.2] When the interaction is turned on, the
Compton profile shows a tail for p larger that pr. Therefore, the Compton profile can
be taken as direct evidence for the quasi-particle weight Z,,. for real materials.

The ny distribution in the interacting Hubbard model shows the same qualitative be-
havior than the electron momentum distribution of the homogenous interacting electron
gas. One only needs to replace the momentum labels p with the Bloch labels k. The
difference lies in the meaning of p and k and it would be wrong to equate them in gen-
eral. The Hubbard model is a discrete model while in the homogeneous electron gas the
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electrons are moving in continuous space. The Hubbard model can be derived from the
electronic Hamiltonian in Eq. (2.1.3) by introducing the notion of second quantization.
This can be used to make the connection between n(p) and n(k).

Electrons in a periodic potential can be situated anywhere in real space. In the second
quantized formalism, the field operator ‘PT(r, o) creates an electron with spin o at the
point r. This operator can be expanded in Bloch waves:

¥, o) = Z o Bve (D), (3.2.11)
K,y
where a:mr annihilates an electron with Bloch vector k in the band v with spin o.

¢xvo 1s the Bloch wave-function in the positron representation. The connection with
the electron momentum can be drawn by taking a further expansion in plane waves
according to

1/2
iy (T) = (é) ZG] a,(k + G)expli(k + G)r], (3.2.12)

where V is the volume of the system and G is a reciprocal lattice vector. With this, we
can write n(p) as follows:

np) =Y > nwKay(k+G)ay (k + Gk + G - p)
vw k G (3213)

nyy (k) =Tr, <C1J£vo.ckv/0'> .

When the momentum p is much smaller than 27/a only the G = O term contributes.
In this limit, which corresponds to the long wave-length limit, the electron momentum
density coincides with )}, n,,/(K). For large momenta, Umklapp processes become
important which result in deviations between n(p) and n(Kk).

3.3. DMFT Self-Consistency

A successful attempt to make significant progress in solving the Hubbard-model non-
perturbatively was to consider the infinite-dimensional limit by Metzner and Voll-
hardt [9] in which 2(Kk,iw,) = Z(iw,) becomes k-independent. In the real-space rep-
resentation the self-energy becomes local:

1
%ij(ion) = D e M RRIS (iy) = 52 iwy). (3.3.1)
k

In order to arrive at a solution of the Hubbard model in the high dimensional limit
one needs to find a way how to determine X(iw,). It can be shown, using the “cav-
ity construction”, that the Hubbard model can be mapped onto an effective impurity
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model in the high dimensional limit [10, 59, 60, 61]. The cavity construction is a well
know method from statistical physics which has been applied for lattice fermions in
this case. The underlying idea is to focus on a given site of the lattice i = o and to
explicitly integrate out the degrees of freedom on all other lattice sites using the ac-
tion formalism [57]]. The action formalism is an alternative to the Hamiltonian based
description where the operator algebra is incorporated by using Grassmann variables
instead of complex numbers. The partition function and also the time-ordered temper-
ature Green’s function can be written in terms of a functional integral of Grassmann
variables:

Z = Tre PH-HN) = / I;D(c}, ) D(cis) exp(—A), (3.3.2)

where ¢! and ¢;, are Grassmann fields and A is the action
ﬁ %k
A = / dr | " ci(7) (0 = ) cio(0) + H({c}, } cio D) | (3.3.3)
0 ioc

and H ({cz‘g} ,{cis}) 1s the Hamiltonian of the Hubbard model where the creation and
annihilation operator are replaced by the Grassmann variables ¢ and c;,- respectively.
The action A is split into three parts: A = AD + Ay + AA, where A is the lattice
action with the cavity

8
A0 = /O dr [Z e (1) (8 = ) i (1) + H({c;, | ,{ci(,})] : (3.3.4)

o0

and
B % k k
Ay = / dr Z Do (a‘r - /1) boo + U/2C00'C00'c05'c05'
0 o

B
AA = / dr Z tio (c;"gcw + c;acig) .
0 ioc

The next step is to trace out the degrees of freedom i # o which brings us to the effective

(3.3.5)

action for the site i = o:

1 . 1
z/HiioD(Cio—)D(CiO')exp(_ﬂ) =

eff

exp(—Aer [Co*o-a C()O‘)] . (3.3.6)
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The effective action can be expressed as follows:

(o)
Aer = Ap + Z Z /filol..i(,jn...CZU(Til) o (Ti) ) oo (T)) - -+ Cor (T),)

n=1i1,.jn (3.3.7)
(0)
X Gil...j,, (Tiy -+ - Ty Tjy - - - Tj,) + CORSE,
where Gl(lo)] (ti, - .- T, Tj, - - . Tj, ) denotes the connected Green’s function of the cavity

action. This action allows us to calculate all local correlation functions of the original
Hubbard model. This observation is valid in any dimensions whereas the d — oo limit
is rather special since it comes with crucial simplifications. A non-trivial limit is only
achieved when the hopping ¢;; is scaled by the factor 1/ Vd. With this choice of scaling
the action of the cavity reduces to the action of the SIAM:

B rB | B

A= [ [ drar Y e85 e )+ ) [ UG corcson
o Jo ~ ~ Jo

(3.3.8)

with the following bath Green’s function:

_ , 0
gol(T,T ) = - ((57172(9_7_1 - ,Ll) - Z toitole.(;)(Tl -T)
1 f(f) (3.3.9)
g()_ (iwp) = iwy, + p— Z toitojGi]('] (iwp).
i

Thus, the Green’s function of the Hubbard model with one site removed can be related
to the bath Green’s function G, Yiw,) of a single impurity Anderson model. It is not
possible to write a Hamiltonian which only involves the single degree of freedom of the
cavity (cgg,co(r) and at the same time describes the dynamic effects of G; Y(iw,). This
is why the action formalism is more suitable to map the Hubbard model to the SIAM.
The effective action Aesr allows us to include retardation effects very easily. One can,
however, return back to the Hamiltonian formalism by introducing auxiliary degrees of
freedom which describe these retardation effects. The additional degrees of freedom
are usually called “bath” or “conduction” electrons. We arrive at the SIAM in the
Hamiltonian formalism which is a single magnetic impurity coupled to non-interacting
conduction electrons:

HSIAM = Z EqNdo + UndTndl —M (ndT + l’ldl) + Z €Njs + Z [Vldcjo.do' + h.C.] N
loa lo lo
(3.3.10)

KX
[

where d:; = ¢, 18 the creation operator for an electron on the impurity site d, C;U_ is
the creation operator for a conduction electron in the one-particle state /, and V}, is the

47



3. Dynamical Mean Field Theory

hybridization between the magnetic impurity and the conduction electrons. The first
term is the on-site energy of the magnetic impurity. On the d-site, the electrons can
interact so that there is a energy penalty if two electrons occupy the d-site (the second
term). The third term is just the chemical potential term which is used to control the
occupation. The comparison of Eq. and Eq. (3.3.10) shows that the local term
for a given lattice site i = o of the Hubbard model is equivalent to the interaction
term in the SIAM. The kinetic energy term in the Hubbard model is replaced by the
hybridization of the impurity site with a bath of non-interacting conduction electrons
in the SIAM. The last term in Eq. (3.3.10) connects the magnetic impurity with the
conduction electrons via Vj; which is the matrix element for the transition between
the impurity site and the one particle state / in the conduction band. In DMFT, the
Hamiltonian (3.3.10) serves as a reference system from which we can demand to have
the same local Green’s function than the lattice problem (3.1.1):

Giiliwn) = ) G(K,iwy) = Giwn)imp. (33.11)
k

The bath degrees of freedom CZG play an important role in this. The hybridization of
the magnetic impurity with the electron bath has to be adjusted in order to mimic the
effect of the surrounding electrons on a given lattice site, so that the relation (3.3.11))
can be fulfilled. The so called hybridization function

Alio.) = Vial®
(iw,) = Z (3.3.12)

; iw, — €

describes uniquely the effect of the bath degrees of freedom on the impurity site with
a certain occupation. Alternatively one can work with the non-interacting Greens-
function G(iw,) = iw, + u — A(w) which carries essentially the same information.
This is just the “bath” Green’s function which appeared already earlier in the action
formalism. It is connected to the interacting Green’s function Gjnp via Dyson equation:

Gimp(i@n) = G (i) ™" = Zimp (i) (3.3.13)

For finite dimensional systems the dynamical mean-field approximation means that
we equate self-energy of the Hubbard model with the impurity self-energy

2ij(w) = 6;jZimp(w) (3.3.14)

where we assumed translational invariance, so that one impurity self energy can de-
scribe the correlation of every lattice site in the Hubbard model.

We would like to summarize the DMFT equations which are solved self-consistently
in order to determine the three unknowns: the local Green’s function G;;(iw;,), the bath
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Green’s function G (iw,) and the self-energy X(iw,):
Gii(iwy) = Gimp(ia)n) (3.3.15)

. . _ . -1
Giiliwn) = [Gliwn)™" = Z(iwy)] (3.3.16)
Giioy) = / de— PO

iw, +pu—2(iw,) — €’

(3.3.17)

where we introduced the density of states of the lattice problem p(€) = >k d(€ — €k).
These equations are in practice solved in the following way:

1. Calculation of Gj;(iw,) with a starting guess for X(iw,) (e.g. Z(iw,)=0):

Eq. (3.3.17).
2. Calculation of G (iw,): Eq. (3.3.16).

3. Solution of the impurity problem which is specified by G(iw,) providing a new
guess for Gj;(iw,): Eq. (3.3.13).

4. Calculation of the new guess for Z(iw,): Eq. (3.3.16).
5. Calculation of Gj;(iw,) of the lattice model with the new X(iw,): Eq. (3.3.17).

6. Go back to step 2 and iterate until self-consistency condition is fulfilled to the
required accuracy.

The crucial step in the self-consistency loop is to solve the impurity problem in step
3 above. Even though the impurity problem is much simpler to solve than the full
lattice problem one cannot find a analytic solution except for certain limiting cases.
The impurity problem remains a full many-body problem in contrast to Kohn-Sham-like
approaches where the reference system is non-interacting. A large number of numerical
methods that were developed over a thirty-year period of intensive study of impurity
models are nowadays available. The need for those techniques in DMFT lead to further
development of impurity solvers. The reader is referred to review articles [[10]] for more
information.

3.4. Spin Polarized T-matrix FLEX Approximation

In this section, we will introduce an approximation for the impurity problem which
will be used. The spin-polarized T-matrix fluctuation-exchange (SPT-FLEX) approxi-
mation [12,162,15] is non-conserving, in contrast to the fluctuation exchange approxima-
tion (FLEX) [63, 64]. Before presenting the SPT-FLEX approximation we will briefly
introduce the FLEX formalism.
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Fluctuation Exchange Approximation (FLEX)

The FLEX formalism was developed for weak and intermediate correlated electron sys-
tems. The theoretical foundations which lead to FLEX were set by a series of papers
by Baym and Kadanoff 65, 166] on conserving approximations for the electron gas. Ap-
proximate schemes which are conserving obey the basic conservation laws of energy,
particle number and momentum. Baym and Kadanoff gave a relatively simple crite-
rion which can be used to classify approximations into conserving and non-conserving
approximations. An approximation is conserving when X(41, 4;) can be obtained as a
functional derivative of a functional ®[G] of the full Green’s function

00[G]

2(A, ) = ————,
(42 = Se D

(3.4.1)
where we made use of the short-hand notation 4 = (r,7,0°) for simplicity. The func-
tional ®[G], from which the self-energy can in principle be obtained by taking the
functional derivative, is the Luttinger-Ward functional [67]. While the latter is in gen-
eral unknown, it can be formally constructed using the action formalism [68]. The
one-particle Green’s function contains the information about the equilibrium statistical
physics of the system. It was shown by Luttinger and Ward that the following relation
between the free energy functional and the Green’s function holds [[65} [14]]:

F[G] = Tr (In G) — Tr(Z[G]G) + ®[G]. (3.4.2)

The stationary condition of F[G] yields the physical free energy F of the system. The
corresponding Euler-Lagrange equation is just the Dyson equation:

Y(iwy,) = Goliw,) ™" = Gliw,) ™. (3.4.3)

The connection between the free energy functional and the Dyson equation is true for
conserving approximations even though the approximated free energy Fpp, might be far
off from the true free energy F of the system. Also the approximated Green’s function
Gapprox might be a very bad approximation to the true Green’s function of the system G
even though the approximation is conserving. One example for such an approximation
is the Hartree-Fock approximation which is conserving but excludes correlations by
construction. In approaches which go beyond the Hartree-Fock approximations, one
takes into account the correlations which are produced by inter-particle collisions. One
example for a conserving approximation which goes beyond Hartree-Fock is the T-
matrix approach. Approximations which are based on collective excitations, like the
T-matrix approach, allow the analysis of charge and spin fluctuations [S7].

The FLEX approximation is also a conserving approximation. Originally FLEX was
proposed by Bickers and Scalapino [63| 164] where the spin-rotational invariance was
exploited which is only possible in the non-relativistic case. Spin-rotational invariance
allows a separation of scattering processes into different channels, like the particle-
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hole with total spin angular momentum S=0 (corresponds to charge density ordering),
particle-hole with S=1 (spin-density ordering), particle-particle S=0 (singlet supercon-
ductivity) and particle-particle S=1 channels (triplet superconductivity). A computa-
tional efficient SPT-FLEX-solver has been proposed for spin-polarized system [69].
Here we will follow the notation introduced by Pourovski who generalized FLEX to the
relativistic case [63]]. The implementation by Pourovski finds its use in the implemen-
tation of LDA+DMFT in the RSPt-code while the non-relativistic version was used in
EMTO and KKR.

We use a very general many-body Hamiltonian for now, where spin-orbit coupling
can be included in the one-particle term:

H = H, + Hy
H; = Zt/lﬂ’c;c/l’
A’ (3.4.4)
1 .
_ Y il
Hy = 3 Z </11/12|u|/11/12> c/'hcbc%c,lq,
1A

where A = (i, L,0) is now the combined index for the site number i, the orbital number
L = (I,m), and the spin quantum number o, and u is the Coulomb interaction between
electrons. The Coulomb matrix elements are:

(A1 A2|u|AzAg) = /drdr"l’;l(r)‘l’jz (M u(r — ')V, (r) ¥, (1), (3.4.5)

where u(r — r’) is the Coulomb repulsion between electrons. The difference to the
non-relativistic case is that the wave functions and consequently the interaction ma-
trix elements are dependent on both orbital and spin indices. Let us consider first the
particle-particle (PP) channel with the bare susceptibility

X (™) = G, (DG, (1), (3.4.6)

where G, 4,(7) 1s the temperature Green’s function which depends on the imaginary
time variable 7. The T-matrix can as usual be obtained from the following matrix
equation:

T(iQ,) =U-U - x*P(iQ,) - T(Q,), (3.4.7)

where capital letters Q,, = 2nnT are used for bosonic Matsubara frequencies. y* and
U are four index matrices. Eq. is a Dyson-like equation which can be expanded
in a similar way as the Dyson equation for one-particle Green’s functions. The physical
meaning of 7'(i€),) is that of dressed two-particle scattering processes, which is two-
particle reducible. Two-particle reducibility means that diagrams can be separated into
two pieces by cutting two Green’s function lines (a.k.a. reducible vertex). Here, U
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plays the role of the two-particle irreducible vertex since it cannot be separated into
two pieces by cutting two Green’s function lines. The irreducibility of the two-particle
vertex is important in order to avoid double-counting of terms in (3.4.7). The self-
energy can be written as a sum of three contributions:

Y(iwy) = 2 Gjwy) + 217 (iwy,) + 2P (iw,) (3.4.8)

where the superscripts TH,TF, PH stand for the Hartree, Fock and particle-hole con-
tribution to X(iw,), respectively. The Hartree and Fock contributions are the tadpole
and oyster diagram, respectively where the interaction vertex U has been replaced by
the 7-matrix:

: 1 _ , '
= Giwy) = 3 Z Z (3T Q) A28) Gy, (1 — i)
iQ,, A344
3.4.9
TF .. 1 , ‘ ‘ ( )
Eﬂl,ﬂz(lw”) = _E Z Z (A AT Q) A322) G Ay 2, (2 — iwp).
iQ,, A3y

YTH and 27F (iw,) contain the bare Hartree and Fock contribution where the U-matrix
in (3.4.9) is used as the interaction vertex. Diagrams which are of second order in U
are also included in (3.4.9).

What is still missing are the particle-hole contributions 27 (iw,) to the total self-
energy. In the non-relativistic treatment the diagrams which contribute to this term can
be further divided. This separation cannot be used in the relativistic case, where off-
diagonal elements of the Green’s function in spin-space lead to coupling of different
channels. For the PH channel one needs to take into account all permutations of direct
and exchange interaction vertices. These combinations can be achieved by introduction
of the antisymmetric vertex [70]:

(11221U%12324) = (41 20U 0324) = (21 22]U1243) . (3.4.10)
The particle-hole contributions can be written as follows:

S, (7) = Z (M1 A3IW (1) A442) G a5, (1), (3.4.11)
34

where W (7) is the particle-hole potential matrix which can be obtained from the bare
PH susceptibility

X (@) = =G, (-T)G () (3.4.12)

by means of the random-phase approximation (RPA) type summation

WaiQ,) = UA- {)(PH(iQ,,) r-vt M) - )(PH(iQn)} UA, (3.4.13)

52



3. Dynamical Mean Field Theory

where I is the unit matrix. The subtraction of y"#(iQ,) on the right hand side is
necessary to cancel the second order contribution to ¥ because this contribution has
been already included in the PP channel.

Spin Polarized T-FLEX

The spin-polarized T-matrix FLEX (SPT-FLEX) in a multi-band formulation can be
found in various papers by Katsnelson and Lichtenstein 12,162, 5]]. Here, we will how-
ever follow further the work by Pourovski [63]. The difference between the conserving
FLEX and SPT-FLEX is that in the latter the bare interaction vertex in the particle hole-
channel is replaced with the static limit of the 7T-matrix: U — T (i€, = 0). This is in
the spirit of the Kanamori approximation [[/1] where an approximate expression for the
effective magnitude of the interaction was derived.

3.5. LDA+DMFT

Among first principle methods that are used to describe electronic structure properties
of materials the density functional theory implemented within the local density approx-
imation (LDA) is most widely used. Especially the description of ground state proper-
ties of most metals, semiconductors, ionic compounds, etc. is very well described on a
quantitative level in the LDA approach. Attempts to apply this first principle method to
strongly correlated electron systems encounter fundamental difficulties [[72]. Already
elemental transition metals are affected by correlation effects [54]. Therefore, there is
a very challenging problem in physics to describe transition metals, their alloys and
compounds by using efficient first principle methods that go beyond LDA by including
many-body effects.

DMEFT is not an ab-initio approach. However, it can be efficiently used in DFT
by taking the Kohn-Sham system as a starting point. The LDA describes weakly-
interacting systems very well, whereas DMFT is an excellent method to investigate
strongly correlated systems. In LDA the fundamental quantity is the overall charge
density n(r), so there is by construction no distinction made between delocalized s-
and p-orbitals and localized d- and f-orbitals. They are all described by the same den-
sity functional Ey.[n]. The d- and f- orbitals are well localized within one atomic site
so that their bandwidth can be comparable to the intra-atomic Coulomb repulsion U.
For these orbitals one expects that relatively large energy contributions arise from Ej.
Hence, the error made by approximating Ey. can be large for materials with localized
orbitals.

For localized orbitals the atomic solution might be a better starting point than LDA
where the relatively weak tunneling to other atomic sites can be treated as a small per-
turbation. The simplest example is the so called Hubbard-1 approximation where the
self-energy is local with a very simple pole structure [73]]. This method is, however,
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affected by several undesirable pathologies. DMFT goes beyond perturbation theory
and the kinetic energy contributions are treated in a more sophisticated way. The self-
energy in DMFT is taken to be local, similar to the one in the Hubbard-I approximation
with the difference that now one seeks for the best local approximation for X(iw;).
Non-local spatial correlations are completely excluded while non-local temporal corre-
lations are fully taken into account.

There are simpler ways than LDA+DMFT to improve upon LDA like, for exam-
ple, the LDA+U method [72]]. This is a famous method which already goes beyond
conventional LDA, where at the first time a distinction was made between electrons
in different orbitals. The occupation numbers of the correlated orbitals are computed
in this approach and a mean-field Hubbard interaction term is included in the energy
functional. In the many-body context one can understand this as a correction to the
exchange-correlation potential with a static self-energy. Due to the absence of dynam-
ical contributions to the self-energy important many-body effects, beyond the Hartree-
Fock approximation, cannot be explained. These effects, which are also seen experi-
mentally, are directly connected with the frequency dependence of the self-energy [54].
LDA+DMEFT can be used to calculate a large range of materials where the strength of
electronic correlation can vary from weak correlation to strong correlation.

LDA+U

One important difference between LDA and the exact Kohn-Sham density functional
is the way in which total energy changes when electron charge is added or subtracted.
The exact Kohn-Sham density functional has to have a discontinuity in its slope when
a fraction of the electron charge is added or removed. Here, it is useful to imagine that
the system is in contact with a reservoir of electrons which controls the particle number
with some chemical potential u. The system may exchange an integer number of par-
ticles with its environment. In the grand canonical formulation of DFT also fractional
number of particles can appear statistically. The total energy of a system with N + €
electrons with 0 < € < 1 can be described by

Enic = (1 - G)EN +eEns (351)

where Ey and Ey, are the total energies of the system with integer number N and
N + 1 electrons [74,[75]]. This is depicted schematically in Fig.[3.5.1] One can also see
that the LDA+U correction can improve on this. The difference between the exact DFT
curve and the LDA stems from the self-interaction error and leads to many failures of
LDA.

The difference between the exact DFT and the LDA total energy at fractional oc-
cupation is not the only shortcoming of LDA but also the delocalization error. This
describes the tendency of LDA to delocalize electrons in the system. This leads to
the failure of LDA to describe strongly-correlated materials. One of the simplest ex-
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Figure 3.5.1.: Sketch of the total energy profile as a function of number of
electrons [74]

ample for the delocalization error is the H}-molecule where LDA is able to describe
the chemical bond quite accurately for realistic ionic distances. However, it fails com-
pletely to describe very large separation of H atoms. The LDA predicts a system with
very delocalized electrons instead of isolated atoms in an atomic state.

The LDA+U scheme [72] is a simple mean-field Hubbard like extension of the LDA
density functional. It can be understood as an extension of density functional theory
since the additional U term depends on the occupation number of the localized elec-
trons. The occupation number of the localized electrons is determined from the total
charge density. The LDA+U method introduces orbital dependence into the Kohn-
Sham potential which can be employed to describe the upper and lower Hubbard bands
while dynamic effects are completely neglected. The main idea is the separation of the
localized d-electron subsystem from the rest of the system. The strong Coulomb repul-
sion U is taken into account in the form of a mean-field Hubbard term % iz (ni)n;.
The delocalized electrons are described by the orbital independent one-particle LDA
potential. The LDA+U energy functional is chosen in such a way that the first variation
of it with respect to the orbital occupation produces an orbital dependent Kohn-Sham
potential which is able to describe the upper and lower Hubbard bands:

Vi = VERAIn(m)1 + U(1/2 - mp) (3.5.2)

The last term shifts the occupied LDA orbital (rn; = 1) down by —U/2 and the unoccu-
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pied orbitals (rn; = 0) up by U/2. The potential follows from taking the derivative of the
following energy functional:

1 1
E,, = EZLO?A _ EUNI(NI -+ EUZninj (3.5.3)
i#]

where 7; are the orbital occupation in the d-shell and N’ are the number of electrons
with [ = 2. The second term is the Coulomb interaction energy of all d-d-interactions
in a N'-electron system. In LDA+U the third term is given by the Hubbard term in the
static mean-field approximation. This form restores the discontinuous behavior of the
energy functional as a function of particle number.

The Coulomb Interaction Matrix

The orbital-dependence of the Hubbard term needs to be taken into account as accurate
as possible. One can construct the total energy as a functional of the full local density
and the d-occupation matrix [76} 77, 78]:

Eoiln(r),ngl = EEPAn(r)] + EV[n4] — EPC[ng4] (3.5.4)

where EV is the Coulomb interaction energy of the d-shell and EPC is the so-called
double-counting energy which should cancel the Coulomb d-d interaction which is
already included in EtLof,) Aln(r)]. The interaction term in the multi-orbital case can be

written as:

1
EY[ng] = 3 Z V0000 = V43040010, .10 05245 (3.5.5)
Ao d3ds

where the indices A4 = i, L,0 enumerate the localized spin resolved orbital functions
WinL(r) = R,-,nlY,fl(H,gb) which can be taken to be atomic orbitals for simplicity. The
generalization to Wannier orbitals is straight forward. The on-site rotational invariant
Coulomb interaction V), 1,142, 1s given as follows [[78]:

21
V/1113/12/14 = 50'10'360'20'4Um1m2n13m4 = 60‘10’360'20'4 Z ak(m1m3m2m4)Fk (356)

k=0
with ay are the angular Slater integrals
4 L
a(mimymyms) = 52— q;k (tmy Y \ma) (1m3) V¥ 1ms) (3.5.7)

56



3. Dynamical Mean Field Theory

and Fj are the radial Slater integrals
2 2p2 ko
Fp = | drir drzranl(rl)mRnl(rz) (3.5.8)
>

From this expression we can identify certain elements of the interaction matrix. The
most important Coulomb integrals are the direct (U/mm’) and exchange (U m'm)
integrals, which can be expressed as

21
Unm'mm' =Upnm = Z ak(mmam,m/)Fk
k=0
21
Jmmm'm =Imm = Z ak(mml’m,m)Fk-
k=0

(3.5.9)

Let us further introduce the average Coulomb parameters. Those are defined by aver-
aging over all possible pairs of indices {(m,m’)} within a certain spin subsystem:

1
U:—E Uy = F,
(20 + 1)2 L4 0
mm

| 2 (3.5.10)
U-J=—— Ui = Jum) = Fo = = > (CIOD)*F
2[(21+1) ngtn;,( mm mm’) 0 2] kZ:;( 1kl ) k
where CIOI?IO are Clebsch-Gordon coefficients. In particular for / = 2 one gets:
1
J = ﬁ(Fz + Fy). (3.5.11)

The value of U for atomic states is relatively large (15 — 20eV). It has the physical
interpretation as the energy increase of the system when orbitals within the d-shell are
occupied with more than one electron. The value of U used in LDA+U calculations
should be significantly smaller than the bare interaction U due to screening effects.
Screening effects can be understood as the s- and p-electrons which lower the total en-
ergy cost for the double occupation of the d-electrons by lowering their kinetic energy.
The calculation of the screened interaction from ab-initio methods is a very difficult
task and strictly speaking is as complicated as the solution of the full many-body prob-
lem. It is, however, possible to estimate the Coulomb interaction from the constrained
LDA (cLDA) [[79] and constrained RPA (cRPA) [80] method. While the estimated val-
ues from cLDA studies are in rather good agreement for Ce and late transition-metal
oxides, in 3d-transition metals the values of U are largely overestimated [80, 81]].

Due to the difficulty to estimate the true interaction parameter from first principles
one often uses the Coulomb interaction in the calculation scheme as an input parame-
ter. This will also be pursued in the current thesis in the LDA+DMFT framework. In
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practice one can also use the U and J to match experimental data as close as possible.

The second term in Eq. (3.5.3) is the so called double-counting term. Its purpose
is to subtract contributions from the total energy functional which originate from the
Coulomb interaction between d-electrons in LDA. In order to perform the exact sub-
traction one would need a diagrammatic representation of the LDA exchange and cor-
relation potential which is not known. Hence it is not possible to find the rigorous
expression of the double-counting term as a function of U and J. For certain limiting
cases, however, one might be able to write down the double-counting term exactly. One
of these cases is the so called fully localized limit (FLL) which corresponds to the case
when the considered orbital is either fully occupied or completely empty. The other case
is the mean-field limit (MF) which corresponds to uniform orbital occupation [76].

The around mean-field (AMF) double-counting term is the Hubbard-interaction term
written in its mean-field form:

EAME|

1 0
f’ld] ZE Z (Uil/l3/12/l4 - U/ll/13/12/l4) n/13/l4n/13/14’ (3512)
A3,44

where the following average over the diagonal elements of the occupation matrix
Nmo3me 15 chosen for n33 2

0 _ Yooy
Raa = 2 + 1 4 Nmo3mos -

(3.5.13)
The averaging of the occupation matrix over orbital quantum numbers takes into ac-
count that the exchange and correlation functional in DFT depends only on the total
charge density, while orbital dependence is not resolved. Consequently, it only makes
sense to subtract orbital independent terms from E,.[n(r)]. The interested reader is
directed to the work by Anisimov et al. [82] where an extensive justification of this
formula can be found.

Similarly, one can show that the DC correction around the atomic limit takes the
following form:

1 1
EPCn,) = EUNZ(NZ -1) - 5JZ NYT(NDT — 1) (3.5.14)
(oa

where N'o = Tr (nemom) and N I'= NYo 4+ NL9 and U and J are the average Coulomb
and exchange [Tarameters.

It is also possible to combine the double-counting methods (AMF and FLL) in order
to explore intermediate regimes [83]]. In this method, which is usually called “interpo-
lation double-counting”, the double counting term is adjusted according to the orbital
occupation. If the system is very close to the uniform orbital occupation the interpolat-
ing double-counting term takes the AMF form. If there is a big imbalance in the orbital
occupation the interpolating double-counting term takes the FLL form.
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The LDA+U method is a well established extension of LDA which was mostly used
for strongly correlated transition metal oxides with well localized orbitals [72]. There
it can be used to describe several interesting effects like orbital and charge ordering. Its
application however for weakly correlated metals is questionable [83]. It was shown
for example by Petukhov et al. [83]] that the LDA+U method enhances the Stoner factor
while reducing the density of states. There it was shown that the LDA+U method is
not able to account for the most important correlation effects in metals, like fluctuation
induced mass-renormalization and suppression of the Stoner factor. For these materials
one needs to go beyond the static mean-field description.

Beyond Mean Field: LDA+DMFT

Most of the interesting correlation effect, like mass enhancement, damping and lifetime
effects are missing in LDA+U. These effects require a more sophisticated treatment
of electronic correlation where the self-energy is a dynamical quantity X(w,,) instead
of a static mean-field expression. One attempt, which also has proven to be a major
step forward in realistic band-structure calculations for materials, is the LDA+DMFT
method [11]. Here, one needs to distinguish LDA+DMFT methods which omit charge
self-consistency [11] and those where charge-self-consistency is fulfilled. The former
methods also include the so called LDA++ method which were developed later [12].
Non charge self-consistent implementation of LDA+DMFT employ LDA calculations
to generate initial non-interacting Green’s functions which are used as input for DMFT.
Nowadays, one can also pursue the more ambitious goal to fulfill both, charge and
many-body self-consistency within DMFT. This allows us in principle to access struc-
tural properties of materials as a function of temperature which can be used to construct
the free energy by thermodynamic integration. The obtained spectral functions have the
convenient property that they fullfill conservation laws of number of particles, total en-
ergy etc. within the applied approximations [65} 14, 84].

The thermodynamic consistency of such theories has been formulated by Chitra and
Kotliar (84, 85, 186] where they used a Baym-Kadanoff type of functional of the local
Green’s function. This defines the so called spectral density functional theory. This the-
ory can be understood as the following approximation to the Luttinger Ward functional
D[G]:

O[G] = P[] + " (PTG gpoca] = @°[ngsocall) (35.15)
d
where the summation is performed over all correlated atoms in the unit cell and

G dlocal and ngjocal are the local Green’s function and the local occupation, respectively.
Here, we also combined the Ef[n] and E*“[n] into a single functional (DLDA[n]ﬂ In

4 @ is the free energy functional. At this point we do not make the distinction between total energy

and the free energy for simplicity.
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LDA+DMFT one also needs to introduce the double-counting term CI)DC[nd,local], which
is a necessary correction to avoid to count electron-electron interactions twice. The cor-
rect choice for this term depends on the physical limit to which the system is closer. In
the following we will focus on the AMF double-counting term, for simplicity. This
correction can either be formulated as an energy term which one needs to subtract from
the LDA+DMEFT total energy or as a self-energy term which needs to be subtracted
from the self-energy in DMFT. In the LDA+U method, the self-energy correction can
be found by taking the functional derivative of Eq. (3.5.12):

Z?ﬁf = Z (U/l|/l3/12/14 — U/l[/l3/l4/12) n(/)13,14' (3516)
A3,44

This choice of self-energy correction however is unsuitable for the LDA+DMFT
scheme, since it implies that LDA can be used to predict the average occupation as
accurate as in DMFT. This scenario seems quite unlikely for the following reason: in
DMEFT the orbital occupation is computed in the SIAM reference system using the bath
Green’s function as input while in LDA the orbital occupation is computed in the Kohn-
Sham reference system using the charge density as input. Hence the reference systems
are entirely different, one being non-interacting and the other being interacting with
the capability to describe strong correlation physics. One expects that those systems
predict different average orbital occupations for the lattice problem. Thus, the common
choice is to choose a different form for the self-energy correction namely the orbital
average of the iw, — 0 limit of Z(iw,):

DC _ 511/12
A Y

> Sy (i = 0), (3.5.17)
m3

which reduces to the AMF double-counting term used in LDA+U in the static limit
of Z(iw,). We want to call this correction the X(0) double-counting choice from now
on. This scheme has been shown to be very successful in the description of moderately
correlated systems as transition metals [16, [17]], actinides monochalcogenides [63]] or
metallic plutonium [87]. However, the double-counting problem is still an open ques-
tion especially for metals, where the dynamical part of the self-energy is very important.

In the current thesis LDA+DMFT implementations are used which are charge-self-
consistent. DFT codes are used which are all based on the muffin-tin approximation,
namely the SPR-KKR-code [88, [89]], the EMTO-code [90, 50, 911, and the full po-
tential linearized muffin-tin orbitals (FP-LMTO) method implemented within the RSPt
code [39]]. In the former two codes the atomic sphere approximation (ASA) is applied
while the latter is a full potential code without shape approximation. The EMTO-code
uses a basis which is based on an energy dependent wave functions, the so called exact
muffin-tin orbitals (EMTO). The KKR code is based on the multiple scattering theory
in solids. Both codes can be understood as Green’s functions based DFT implemen-
tations. The correlation effects are treated with DMFT [9, [10] with the spin-polarized
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T-matrix Fluctuation Exchange approximation (SPT-FLEX) [12, 162, 15]. In EMTO and
KKR the non-relativistic version of the SPT-FLEX solver is used.
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4. Compton Profile Analysis

ABSTRACT

In the following chapter, an introduction to the basic theory of Compton scattering on
electrons in solids will be given. Many-Body and lattice effects on the Compton profile
are discussed qualitatively.

In the first part, the contribution of the valence electrons to the Compton profiles of
the alkali metals is studied using density functional theory. We show that the Compton
profiles can be modeled by a ¢g-Gaussian distribution, which is characterized by an
anisotropic, element dependent parameter g. Thereby we derive an unexpected scaling
behavior of the Compton profiles of all alkali metals.

In the second part, we discuss the momentum redistribution along nearest and next
nearest neighbor bond axes of Fe and Ni, using the Shannon entropy formula. We find
that within the combined density functional and dynamical mean-field theory weight
redistribution takes place towards lower momenta as a function of the local Coulomb
parameter U. This effect is more pronounced for Fe than Ni.



4. Compton Profile Analysis

This chapter is based on the papers:

e W. Appelt, D. Benea, and L. Chioncel, “Electronic momentum redistribution
along bind axes of Fe and Ni,” (2014), arXiv:1403.2960

[92]

e M. Sekania, W. Appelt, D. Benea, H. Ebert, and D. Vollhardt, L. Chioncel,
“Scaling behavior of the compton profile of alkali metal elements,” (2016),
arXiv:1602.01855

(93]

4.1. Introduction

Among many spectroscopic methods the Compton-scattering experiment stands out
as being connected to ground-state properties, like the electron momentum densities
(EMD) n(p) of the target many-body system. What is measured in experiment is the
so called Compton profile. The Compton line is Doppler broadened due to the motion
of the electron along the “line of sight” (i.e. projected onto the scattering vector).
This is just like in the classical Doppler effect in acoustics where one measures only
the frequency shift from velocity components along the line of sight of the object in
motion. The velocity or momentum distribution of electrons in solids is given by n(p),
so that the Compton profile J(p;) is obtained by integrating out momentum components
perpendicular to a given direction p, = p.Z, where Z is the unit vector in the z-direction,

Pq g

Ipo =4 / n(p)dpo(w -2 L) - / n(®)dpxdp,. @.1.1)

The transferred momentum q = ¢Z is chosen to be along the p, direction, with

p. = % - g (4.1.2)
where w is the frequency shift of the outgoing photon as compared to the incident pho-
ton. In condensed matter theory one makes frequent use of the similarities between the
momentum p and the crystal momentum k. One example of this is the quasi-classical
treatment of transport phenomena where the quasi momentum is commonly used in-
stead of the true electron momentum. The analogy between p and k is even reflected
in the name “crystal momentum” p = h or “quasi momentum” which is given to the
Bloch vector. It would be wrong however to equate the true electron momentum and
the crystal momentum in general, especially when Umklapp processes are important.

! Here, we explicitly write £ to distinguish between p and k
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Figure 4.1.1.: Momentum density of an electron gas (a) non-interacting (b) ho-
mogeneous interacting [58]

Figure 4.1.2.: Momentum density of an electron gas (c) inhomogeneous inter-
acting [58]

Consequently the occupation numbers n(k) and n(p) in Bloch and momentum rep-
resentation have to be distinguished. The EMD has to be distinguished from the real
space density n(r) as well which plays the central role in DFT. It is also worth to em-
phasize that there is no one-to-one correspondence between the real space density and
its momentum space counter-part. The real space density is just given by the diagonal
entries of the density matrix:

Ii(r,r) = N/dl'zdl'zv‘}’(l',l'z,' )T, ) 4.1.3)

where W (r,rp, - - ,ry) is the ground state wave function and N is the number of par-
ticles. The calculation of the momentum space density involves also off-diagonal ele-
ments of I (r,1’).

3
n(p) = (%) /dr/dr' exp [ip (r —r')] ' (r,1’) (4.1.4)
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J(q)

Figure 4.1.3.: Compton profiles of an electron gas (a) non-interacting (b) ho-
mogeneous interacting [58]

Hence no transformation exists which relates n(r) to n(p) because the information
carried by them is different.

Compton scattering is used to study the EMD in condensed matter theory and to
explore its relationship to complementary techniques to probe electron densities in real
space and the Fermi surface topology. It also plays a central role in theoretical physics
for the concepts of Fermi-Dirac statistics and Fermi liquid theory [23] 24} 25]. The
prototype example of the Fermi liquid behavior is given by *He [94] 05|96, 97]]. Fermi
liquid theory can sometimes be applied to electrons in metals where the Fermi surface
is anisotrop. For the homogeneous non-interacting electron gas at 7 = 0 there is a sharp
discontinuity in n(p) (see Fig. d.1.1(a)). It was shown by Luttinger that there is also a
discontinuity for the interacting system but the magnitude of the jump at pr is smaller
than one [98]]. The finite discontinuity in an interacting system is called the quasi-
particle weight Zp,.. As indicated in Fig .1.T[(b) there is a finite probability to find
a particle in momentum states greater than pr. In the isotropic case, where the Bloch
states and the momentum eigenstates coincide, the Compton profile formula (4.1.1)) can
be further simplified

J(p.) = 2n /| n(ppdp 4.1.5)
Pz

The discontinuity in n(p) is smoothed out when the integration in (4.1.5) is performed.
As one can see in Fig. [#.1.3|that a kink in the Compton profile is formed at the momen-
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tum p, = pr. The Compton profile has the interpretation of a probability distribution
of finding electrons with a momentum component in the z-direction.

In the language of a mathematician one can say that the Compton profile is the
marginal distribution with respect to the joint distribution n(p) and the Eqs. @.1.1)
and describe the marginalization of the probability n(p) As one can see in
Fig. for non-interacting electrons and zero temperature the intensity drops to zero
at p, = pr. This means that the chance of finding electrons with a momentum com-
ponents in the z-directions vanishes. In the interacting case there is a formation of a
tail for momenta larger than pr, so that the probability of finding electrons with high
p; 1s increasing with interaction. It is one of the main sucesses of Compton scatter-
ing experiments to measure the n(p) distribution directly which is not possible when
low energetic scattering experiments are performed. High energies which are large in
comparison to the inter-electron interaction are needed to probe n(p).

For lattice systems however, the occupation number in the Bloch representation ny
is not equivalent to the EMD n(p). High momenta with momentum components even
larger than the Brillouin zone boundary become important and they cannot be equated
with momenta in the first Brillouin zone. This is a consequence of the so called Umk-
lapp processes. The transferred momentum ¢ from the incident photon can induce tran-
sition between Bloch states modulo a reciprocal lattice vector G. Also the rotational
symmetry is lost in crystals so that different directions p, give rise to different Compton
profiles. Compton profiles from various directions can be used to reconstruct the Fermi
surface. This can be done analogously to techniques which are used in medicine to
reconstruct images in computerized axial tomography (CAT) [22]. While CAT is used
to reconstruct images in position space the reconstruction of Fermi surfaces is done in
momentum space.

This information about the anisotropy of the system can also be obtained from quan-
tum oscillatory measurements (for example via the de Haas-van Alphen effect (dHvA))
or angle resolved photo emission experiments (ARPES). Even though the resolution
of reconstructed Fermi surfaces using Compton scattering spectra is not as high as on
dHvA or ARPES one can use Compton scattering as a useful alternative in circum-
stances where other methods are excluded. One disadvantage of dHvA measurements
is for example the fact that an applied external magnetic field is needed in order to per-
form the measurement which alters the state of the system. Another problem of dHVA
spectroscopy is the fact that in some cases substitutionally disordered alloys cannot be
measured accurately due to the fact that quantum oscillations around the Fermi surface
happen on a longer timescale than the scattering time of the electrons on defects. One
drawback of ARPES measurements is the surface sensitivity which is not an issue in
Compton scattering experiments.

In the following, we are going to derive (4.1.1)) within the so called impulse approx-
imation (IA). An introduction into the theory of inelastic x-ray scattering processes is
given. The effects of electron-electron interaction and electron-ion interaction are pre-
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sented schematically. After that, we are going to demonstrate the application of DFT
to 1s-metals and the computation of their Compton profiles for various direction. The
striking similarities of Compton profiles of different s-metals especially in the high
momentum regime are further analyzed using g-Gaussians as fitting functions.

We also investigate the effect of electron correlation for the transition metals Fe and
Ni. The information theoretical concept of Shannon entropy as a measure for uncer-
tainty is introduced in momentum space. Directional information can be extracted by
using the interpretation of the Compton profile as the marginal probability of n(p).

4.2. Compton Profiles of Valence Electrons

4.2.1. Basic Compton Scattering

Before we consider the Compton scattering cross section for the scattering experiment
of photons on electrons we provide an overview about different approximations which
are used to describe the Compton scattering cross section. We will first consider the
scattering on free electrons and later we are going to discuss the scattering on electrons
in solids. The reason why we do this here is that in a fully relativistic derivation of the
scattering cross sections, one obtains expressions where the probe and the target proper-
ties are mixed in a complicated way. This is in contrast to other scattering experiments
like neutron diffraction or photo-emission experiments where the double differential
cross section can be separated in two factors:

2

dQdw

= A(Q)S(q,w) (4.2.1)

where the structure factor S(q,w) is independent of the mass and energy of the scat-
tered particle and A(q) encodes the kinematics of the scattered particle. This separation
into two factors of the differential cross section is quite common to many scattering ex-
periments with various scattering probes. It follows from the fact that momentum and
energy transfer can be treated as independent variables [99]]. In a relativistic theory
the separation is not possible in general [100, [101]. One is forced to make additional
approximations in order to obtain expressions of a comparatively simple form as in
Eq. (@.2.1). In the low frequency limit of the incoming photon one can apply classi-
cal electromagnetism to describe the scattering process. In this limit it is sufficient to
describe the force acting on the electron only by coupling of the electric field to the
charge of the particle. So in response to the incident wave, the electron oscillates in
the direction of the electric field. The electron acts as a oscillating dipole which emits
photons with the same frequency as the incident photon. The scattering is fully charac-
terized by the angle 8 between incoming and outgoing photons and the initial and final
polarizations. The #-dependence of the intensity of the scattered wave is determined by
the way how the polarization vectors are modified by the scattering on the target. In the

70



4. Compton Profile Analysis

classical treatment it is clear that the wave aspect of light is important and the particle
behavior is not visible. The Thomson scattering cross section can be shown [102] to
take the following form:

do 5
—_— = re
dQ ),

&2

2
€i€] (4.2.2)

where r, = e
ingoing and outgoing electromagnetic wave. In the following we will always assume a
photon detector which is insensitive to the polarization. The unpolarized cross section
follows from Eq. (4.2.2) by summation over final polarizations. Let us assume incident

is the classical electron radius and €;, € are the polarizations of the

monochromatic plane waves with wave-vector kg = kZ. The outgoing wave is described
by a different wave-vector k = kii and polarization €y with:

N = sin 6 cos ¢X + sin 6 sin @y + cos HZ (4.2.3)

The orientation of the outgoing wave vector relative to the incoming wave vector is
described by the polar angle 6 and the azimuthal angle ¢. It is useful to represent the
outgoing polarization in components within the scattering plane (€;), and perpendic-
ular to the scattering plane (e;) which is spanned by kg and n. We are left with the
polarization vectors

€1 =cosf (Xcosd+¥singp) —Zsin0
1 > .( A¢ ¥ sin ¢) 4.2.4)
€ = —Xsin ¢ + ycos @

The total intensity of the outgoing radiation is build up from both polarizations €1,e€,.
After summation over the final polarization we obtain an expression which still depends
on the initial polarization:

(4.2.5)

Z | 2 cos? @ cos? ¢ +sin’ ¢ for € = &
eie| = | .
cos? @sin ¢ + cos? ¢ for e =9,

f=12
where €; are the incident plane polarizations in X- and j-direction respectively. Let
us further assume for simplicity that the incident wave is randomly polarized, so

that (4.2.5) needs to be averaged over the azimuthal angle ¢. This restores rotational
invariance around Z. The unpolarized differential cross section takes the simple form

( do )unpolarized

_ 2 2
o =57 (1+cos?0). (4.2.6)

Th

In the following we will always assume the unpolarized case and we will suppress the
superscript in Eq. (4.2.6).

The Thomson scattering cross section is only valid when the momentum of the pho-
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ton is much smaller than mc. When the photon momentum becomes comparable to mc
one has to account for the momentum transfer of the photon correctly. Compton derived
the scattering cross section the first time by making use of the energy and momentum
conservation [[103]. The frequency shift of the recoil photon is

Wi Wi

— =1+ 5
wr mec

(1 —cosb) 4.2.7)

where w; wy are the frequencies of the incoming and recoiled photon respectively. As
usual in a relativistic theory one needs to define an inertia frame which we take here to
be the rest frame of the electron before the collision. Let kil and kij be the 4-momenta
of the photon before and after the scattering and let (pi )u and (pf )u be the initial and
final 4-momentum of the target particle. When we parametrize the outgoing photon
momentum in spherical coordinates we get:

(p")" = (mec.0.0.0)
P\M wi
()" = (1,0,0,)— (4.2.8)
w
(kf)ﬂ = (1,sin @ cos ¢, sin 6 sin ¢, cos 9)—‘f
c
Now the conservation of 4-momentum allows us to read of the frequency shift.

wia)f

(1-cos ).
(4.2.9)

(Pf)# (Pf)ﬂ = (pi+ki—kf)“(pi+ki—kf)# = mgcz+2me(wi—wf)—2h2 2

The first term on the right hand side is the relativistic invariant mass-term, so that the
last two terms have to cancel each other which proves Eq. (4.2.7). This shows that the
energy of the scattered X-ray is reduced because of the recoil of the scattered electron.

From relativistic kinematics one could derive the cross section for Compton scatter-
ing in a similar way as it was done for Thomson scattering. Compton used Eq.
as a starting point to derive a correction of the scattering formula [103]]. He made use
of the fact that Eq. has a similar form than the frequency shift of a moving emit-
ter according to Doppler’s principle, so that the frequency shift could be interpreted
as an effective velocity of the target electron. Hence, the change in frequency of the
radiation scattered by the recoiling electrons is the same as if the radiation were scat-
tered by electrons moving in the direction of propagation with the effective velocity.
For an observer moving with this effective velocity the Doppler shift compensates the
frequency shift (4.2.7), so that the classical equation (4.2.2)) can be applied in this frame
of reference. Compton’s formula for the relativistic differential cross section follows
if the transformation is performed to the center of mass frame, where the electron is
at rest [103} [104]]. However, the classical formula in the moving frame of reference is
only valid to first order in * and fails if higher order corrections in ¥ become important.
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The fully relativistic scattering cross section is given by:

2
(d—‘f) =2 (ﬂ) [(ﬂ) + (ﬂ) _ sin? 9] (4.2.10)
dQ /N w; w; wy

This was first calculated by Klein and Nishina in 1929 [103]]. The relativistic formula
needs to be employed if the photon energy is very high, so that the relativistic effects
cannot be neglected. However, for the sake of simplicity we will only provide the
derivation of the double differential cross section of inelastic X-ray scattering in the
non-relativistic limit.

4.2.2. Compton Scattering on Electrons in Solids

In condensed matter theory the scattering formula can be used to understand the target
system. Our interest lies on the scattering of X-rays on electrons in solids. The follow-
ing derivation follows the book by Cooper [106] and the thesis by Sternemann [107].

Within the inelastic X-ray scattering process the incoming photon with energy wj,
momentum p; and polarization €; scatters on a single electron in the solid. The outgoing
photon has the energy wy, momentum py and polarization €. It is useful to define
w= (a)i -w f) and q = (p,- -p f) the transferred energy and momentum, respectively.
Let the scattering be confined to a volume V. The intensity in the infinitesimal volume
element in k-space dK is:

c\! 1%
I = Ppp, g;>—lppas> X (—) X def 4.2.11)

%
where the first factor is the transition rate of the photon from the initial momentum
and polarization state |p;, A;) to the finial state |ps, A ). The second factor stands for
the number of incoming photons per unit of time. The last factor is the number of
momentum states in the infinitesimal volume element dp s in reciprocal space.

The transition probability Pjp, 1,>-p,.1,> can be approximated by Fermi’s golden
rule:

Pip, iy dy> = 27 3 K1 Hinli) >12 6(E - E) (42.12)

|nf>

where |i) = |no; pi,A;) and |f) = |ny;pr, A ) are the initial and final states of the com-
bined system of solid plus photon. The eigenstates of the electron system are written
as |ny), where [ng) is the ground state. The asymptotic states of the photon are written
as |py,Ady), where Ay = 1,2 runs over two polarization directions. Pjp, 1;>—[ps.1;> 18
the probability per unit time for the photon to make the transition from the initial state
|pi, 4;) to the final state |ps, A 7). The summation runs over all many-particle final states
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|ns). The energy conservation E;*" = E‘fOt is ensured by the delta function with

E-tot = Ey+ Wi;

4.2.13
E}O‘_Ef+wkf. ( )
The interaction Hamiltonian is given byEI
=S C 2 ¢ pi-A(r; 42.14
mnt — Z 2mC2 - ; m_cp]' (rj) ( 2N )

where the Coulomb gauge (V;A(r;) = 0) is going to be used. Here, r; is the position
of the j-th electron and p; is its momentum. The vector potential can be expanded in
terms of photon creation and annihilation operators:

A(ry) = Z f(ﬂ,q)ame i+ 6*(/1,q)azqe"'q“‘f) (4.2.15)

where €(4,q) is the polarization of the electromagnetic wave (e(4,q) - q = 0) with
polarization 4 = 1,2. In the Compton scattering process in first order perturbation
theory only the A2-terms contribute. The double differential cross section can be written
as:

I d’o 3
dQdw;  dQdw;

2 \? A :
= (ﬁ) —‘E(ﬂl,k)f(ﬂf’kf)| Z <nm Zelquj no> 6 (w+ (Eyo — En))

[7m) J
do
_S R
(i, S

(4.2.16)

where the dynamical structure factor S(q,w) describes the dynamical response of the
system. The prefactor describes the kinematic of the scattered photon and the interac-
tion term. The factor is the so called flux factor which takes this form in a non-
relativistic approxmlatlon of the inelastic scattering process. Similar as for the Thom-
son scattering cross section expression, the inelastic cross section also depends on the
Fourier transform of the electron density e,

The Thomson scattering cross section and the frequency factor wy/w; in ({.2.16)
follows from the interaction term between probe and target and the kinematics of the
probe. In the following we will show the connection between S(q,w) and Eq.
using the non-relativistic treatment.

2 The radiation field is not considered as part of H in contrast to [108]].
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4.2.3. Impulse Approximation

We assume, that the momentum transfer ¢ and the energy transfer w are large. The large
momentum transfer means that 27/g < [, where [, is some characteristic length scale
of the system which is of the order of the inter-particle distance. Similarly, the limit of
high energy transfer w is justified if 2r/w < 7. where 7, is the intrinsic time-scale of
the electronic system. This will be referred to as the Compton scattering regime or the
so called Impulse Approximation (I1A) [109]. We will show that the Compton profile
takes the form (4.1.1)), where the connection to the EMD is apparent. Let us first explain
in words the underlying idea behind the Impulse approximation before we demonstrate
this employing Eq. (4.2.16)). In the limit of large electron recoil energy, hence short
scattering time, the external potential in which the electron can be taken to be constant.
The energy of the electron is measured, in both the initial and final state, relative to
this constant instantaneous potential. The large momentum transfer also allows us to
neglect interference effects between waves which are scattered from different particles
at different times. Therefore in the Compton scattering regime one is probing the po-
sitions of the same particle at different times (single encounter approximation), which
will allow us to connect the cross section to single particle properties of the system. We
will show that the differential scattering cross section within the IA 1is just the same as
for free electrons, but weighted with the probability with which the plane-wave states
of momentum p occur in the ground state.

The impulse approximation can be easily understood by writing Eq. (4.2.16)) in the
time domain

& — d_O' ﬂi/dteiwtz
dQdw dQ /)y, wi 21

[P )

X <nm etEm Z e itk no>

j’

<n0 Z e AT, nm> X
/ (4.2.17)

By making use of the fact that the final states form a complete set of basis functions
2iinyy 1mm){nm| = 1 the cross section can be written in the form:

d’c do\ wy - , N
=|— - lw —iq-r; JiHt iqr; —iHt
dQdw ¢ B (dQ)Th w; /dte <n0 zjj’: e “Jee”Je n0> (4.2.18)

Now we consider the Compton scattering regime of high frequencies w or short time-
scales. We separate the Hamiltonian operator into kinetic 7 and potential energy term
V, which do not commute. We know however that the factorization can be done for the
time evolution operator for sufficiently small time ¢

GHI o piTt iVl 5TV (4.2.19)
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where higher order terms in ¢ are omitted. Due to the exponential in front of the ex-
pectation value only terms contribute which are of order of +  1/w. For frequencies
which are much larger than the characteristic energy scale of the system one can equate
¢2TVI? = | The procedure is similar to the Suzuki-Trotter decomposition in quantum
mechanics, where the time evolution operator is decomposed in a similar way. We get

> do\ wyr 1 : .
dt wt iqr; iTt iq- l' —iTt 4.2.20
dQdw; (dQ)Th wi o) ¢ <g ;e ee 8 (4220

where the time evolution is only determined by the kinetic energy term. We introduce
now the spin independent one particle density matrix I';(r|r’;) and the two particle
density matrix I>(ry,r|r'1,1’7), defined as follows:

Fl(rllr’l) = N/\PN(I'l,. .. ,I'N)\P;](l'/l,. .. ,I‘/N)dl‘z .. .dl‘N
N 4.2.21)
o(ry,rar',r's) = (2)/‘PN(I'h-.-,I‘N)‘P;;(l‘/l,-.-,I"N)dl‘3~--dl‘1v

Here, we assume that the ground state can be represented by an N-particle wave func-
tion Wy. After separation of the expectation value in (4.2.20) into the diagonal part in
the electron coordinates and the corresponding non-diagonal term one arrives at:

e (do\ ws 1
dQdw; \dQ

N —iar Tt idr. —i
+2 (2 e 4T1 T 1T =TI, (1) o |1, 2 )dr dradr’ 1 dr/s

(4.2.22)

— 3 dre'’ {N/e"q'rle’Tte’q'rle_’TtH(I‘1|r'1)dr1dr'1
Th Wi

It has been pointed out however by Benesch and Smith that the terms involving two
particle density matrices can be neglected when 2r/q is very large as compared to the
characteristic length scale of the electronic system [110]. This is just the conditions
we formulated for the validity of the impulse approximation. After the insertion of a
complete set of momentum eigenstates we obtain:

d’o _[(do\  wy
dQdw;  \dQ)q, wi

1
oy dte”‘”/dpe’fpf —i€p-qf Hi(P=ar1) ,i(p- qu)/dr 1dr’ Ty (r[r'y)

(4.2.23)

Here €; = k?/2m is just the dispersion relation of the free electron. After introducing
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the new momentum variable pp = p — q we finally arrive at

d’o do w 2 .
i = (d—Q) = / dpol's(Po,po)5(w — 5 — LP0)
o (4.2.24)
Ti(plp)) = ZISE //drdr’e_i(pr_p/r/)l“l(r,r’)
JT

where I'1 (p,p) = n(p) is just the EMD. The time integral over exponentials has been
written as the delta-functions which now stands for the energy conservation within the
impulse approximation. This tells us that the frequency shift of the photon is deter-
mined by both, the momentum transfer ¢?/2m and the Doppler shift q - p/m. The latter
connects the ground state property of the system directly to the frequency shift. It was
shown that by Eisenberger and Platzman that the corrections to the impulse approxi-

2
mations are of the order of (%) where Ep is the binding energy of the initial energy

4
2m

It was shown previously that the double differential cross section can be separated
into two parts, where one describes the coupling of the probe to the target and the

state and ER = 5 is the recoil energy.

dynamical structure factor S(q,w) describes the dynamical response of the scattering
system. This separation into two parts is in general not possible in a full relativistic
treatment. However it was shown by Ribberfors [101, [100] that one can use an ap-
proximate relativistic treatment, instead. The double differential cross section yields

dQ

d’o do\ wy
dQdw ¢

m
—Xxn—J(p;) (4.2.25)
Th Wi q

where the Xgn-factor is the Klein-Nishina expression which is the same factor as for
the free-electron case (see equation (#.2.10)):

w .
Xgn = [(—f) + (1) — sin’ e] . (4.2.26)
(O]} wf
Here it was assumed that the there is a relatively low energy and momentum transfer
p.c < mc?.

4.2.4. Homogeneous Electron Gas

In the free electron gas model we neglect the electron-electron and electron-ion inter-
action. In this case the electron momentum density is radial symmetric

n(p) = O(pr — |pl) (4.2.27)

where the Heaviside function ®(pg — |p|) has the value 1 for p < pg and 0O otherwise
(see Fig. 4.2.1) on the left). The highest occupied momentum is the Fermi-momentum
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n(p) A J(p=) A
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Figure 4.2.1.: Schematic picture of the EMD and the Compton profile of the
homogeneous electron gas in comparison to the homogeneous
electron liquid.

pr. The discontinuity at pr defines the spherical Fermi-surface. Note that the isotropy
of the system makes it possible that the Fermi surface is characterized by a single mo-
mentum p = pp. Consequently the information about the momentum distribution is
completely encoded in J(p;). This is in general not true for systems with n-fold sym-
metry, like crystals. At zero temperature we get a sharp discontinuity at pr with mag-
nitude 1 for the free electron gas. The resulting free electron valence Compton profile
is an inverted parabola with

J(p) =7 (pi - p?). (4.2.28)

This is depicted schematically in Fig. 4.2.T] on the right.

4.2.5. Electron-Electron Interaction

In the presence of electron-electron correlation in the Fermi-liquid regime the sharp
discontinuity at p = pp is modified. The effect of correlations is that the magnitude of
the discontinuity Z shrinks to a value smaller than 1. The momentum distribution can
be separated into two parts:

n(p) = ZO(pr — |pl) + n°(Ipl) (4.2.29)

where the renormalization constant Z or quasi-particle weight is the magnitude of the
discontinuity at p = pg. The second part n°(|p|) is continuous across p = pg and con-
tains everything that is left out from the first term. This term can also be understood as a
necessary contribution which ensures that the number of electrons is the same as in the
non-interacting case. The momentum distribution is still isotropic since lattice effects
are explicitly excluded. The main difference in comparison to the non-interacting case
is that, due to electron-electron interaction, densities appear with momenta p > pr.
Thus the Compton profile exhibits tails and the sharp feature at pg, known as the Fermi
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break is, diminished (see Fig.{4.2.1)).

4.2.6. Electron-lon Interaction

In the presence of an external potential the continuous translational invariance is broken
and we are left with discrete translational invariance. A clear distinction should be made
between Bloch states |k) and momentum states |p). It is well known that n(p) exhibits
higher momentum components [111]] which are defined as the finite value of n(p) for
momenta larger than pr which do not arise from the electron-electron interaction but
from the interaction of the electron with the ions. To get and understanding from where
the higher momentum components originate from let us express Eq. (4.1.4)) using field
operators:

3
n(p) = (%) / dr / dr’exp [ip (r = /)] (¥7(r,0") 2 (r',0)) (4.2.30)

where WY (r,0) are the spin independent field operators for simplicity. We expand ¥ (r,7)
in Bloch waves,

Y(r,1) = Z ak,y (1) Py (1) (4.2.31)

K,y

where a, (¢) annihilates an electron with Bloch vector Kk in the band v. In Eq.
the Heisenberg representation was used, so that ay, () is explicit time dependent. In
the expansion above the Bloch wave functions ¢y, (r) are the expansion coefficients.
Those can be further expanded in plane waves according to

12
Py (r) = (%) ; ay(k+G)expli(k + G)r] (4.2.32)

where V is the volume of the system and G is a reciprocal lattice vector. With this we
can write the EMD as follows [3.2.13k

np) =Y > nyKayk+G)a)k+ G5k + G - p)
K G (4.2.33)

nyy (K) = (@) (0%)ax,(0))

where n,,,/(K) is the mean occupation number density of the Bloch state k. This func-
tion can deviate considerably from a simple step function with a jump of 1 at pg due to
electron-electron interactions. For a homogeneous system n(p) and n,,-(k) coincide
since there are no Bragg planes, so that the G-summation collapses to single element
G = 0. Also the summation over v is reduced to a single element in the homogeneous
case. In the inhomogeneous case Fourier components with G # 0O contribute to the
EMD whenever the momentum conservation p = k + G is fulfilled. We can identify
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the contributions to n(p) with G # 0 as the higher momentum components which were
seen experimentally for Lithium [[111] .

4.3. Compton Profiles for s-Metals

Several examples exist which attest the importance of the momentum distribution in-
cluding systems of atoms, solid and liquid phases, nucleons in atomic nuclei, quarks
in high-energy physics. Although these have different energies and length scales the
systems with a given statistics exhibit similar features of n(p).

The momentum density in a quantum system is defined as the average number of
particles with momentum p: n(p) = (¥| >, aTgan‘P). The normalized N-particle
state of the system is represented by [V) and ap, (aps) are the creation (annihilation)
operators for particles with momentum p and spin projection o. At finite temperatures
the ensemble average over all N-particle states is considered. The effects of quantum
statistics become apparent below a temperature at which the thermal de Broglie wave-
length of the particles is comparable to the mean inter-particle spacing. For a Fermi
gas the characteristic temperature is the Fermi energy. Levels near the Fermi surface
are partially occupied, because of thermal excitation. At zero temperature all particles
constitute the Fermi see and the momentum distribution shows a characteristic Fermi-
Dirac shape, with a sharp discontinuity at the Fermi-momentum (k) that divides fully
occupied below kr from empty states above kr. Luttinger [98] showed that even in the
interacting system there is still a discontinuity in the distribution and in addition to it a
tail will develop. For the interacting electron gas (no lattice!) the tails of the momentum
distribution were computed in the lowest order of perturbation theory [[112] and they
fall off as p~8. At large momenta the kinetic energy 2p p*n(p)/2m should still remain
finite, therefore independent of the applied approximation to compute the momentum
distribution, its tail should decay algebraically, at least as p~® [112]. This effect is the
subject of our present work for real materials that are electronically weakly interacting.

The band-theory based local-density approximation (LDA) was shown to provide
remarkably good description of many aspects of the momentum density. However it
also demonstrates the presence of systematic deviation between theoretical and exper-
imental results of momentum densities. For these reasons a renewed interest in the
problem of correlation effects on the momentum density beyond LDA is natural. In
particular results for the transition metal elements such as Fe and Ni obtained using
the combined DFT and Dynamical Mean Field Theory [113,114] has be been recently
reported [115} 116, [117]. Nevertheless some further studies are still required in this
direction.

The goal of the present work is to find a general model for the shape of the Compton
profile for the s-electron systems using results of the electronic structure calculations
obtained in the framework of DFT. In the following sections we present the results of
the electronic structure calculations for the Compton profiles and momentum densities
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for the elements of the first and “Copper” group of the periodic table. The fit to the
g-Gaussian is analyzed on the Compton profiles presented in a log-log scale, and the
material specific (g, §)-parameters are identified.

This part of the thesis is organized as follows: in section 4.3.1| we briefly discuss the
methods and materials employed to compute the Compton profiles. The section 4.3.2]
deals with the general shapes of the Compton profiles and introduces g-Gaussian dis-
tribution. In section [4.3.3] we present our main results and analyze Compton profiles
for 1st and Copper column of the periodic table. A critical discussion of the applied
approximations as well as universal features of the obtained results are presented in
section 4.3.4 Appendix [A] contains a detailed steps of the employed fitting procedure
as well as analyzes of its stability.

4.3.1. Method and Computed Systems

The electronic structure calculations based on the density functional theory (DFT) ap-
proach were performed using the spin-polarized relativistic Korringa-Kohn-Rostoker
(SPR-KKR) method in the atomic sphere approximation (ASA) [118]. The exchange-
correlation potentials parametrized by Vosko, Wilk and Nusair [119] were used for
LSDA calculations. For integration over the Brillouin zone the special points method
is employed [120]. The KKR Green’s function formalism was recently extended to
compute Compton and magnetic Compton profiles (MCPs) [121} 17, 122} [123]]. In the
case of a magnetic sample the spin resolved momentum densities are computed from
the corresponding LSDA Green’s functions in momentum space as:

1 [Er ..
N, (P) = - 3G, (p.p.E)dE,. (4.3.1)

where m; =T (]). The momentum density, ny(p) + ny(p), projected onto the direction
K allows to define the Compton profile as a double integral in the momentum plane
perpendicular to the scattering momentum p:

Jk(p:) = / / (1 (5) + m,(P)ldpadpy; (P, 43.2)

where direction K is given by the scattering vector. The electron momentum densi-
ties are usually calculated for the principal directions K = [001],[110],[111] using an
rectangular grid of about thousand points in each direction. The maximum value of
the momentum, in each direction, that is typically considered is about of a few tens in
momentum atomic units (a.u.). The Compton profiles are normalized either by the area
under its curve or by its intensity at zero momentum (Jg(p, = 0) = 1). In the former
case the area should be the number of valence electrons.

We are primarily interested in modeling of the Compton-profile, therefore our choice
goes for the simple-metal elements — shown in Tab. .3.1 We study the alkali-metals
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Element Symmetry (Z) Electronic Conf.
Lattice param. ag [A]

Li bee/3.510 3 [He] 2s!

Na bee/4.290 11 [Ne]3s!

K bee/5.328 19 [Ar] 4s!

Rb bee/5.585 37 [Kr] 5s!

Cs bee/6.141 55 [Xe] 6s!

Cu fcc/3.6149 29 [Ar] 3d™0 4s!

Ag fcc/4.0853 47  [Kr] 4d'0 55!

Au fce/4.0782 79 [Xe] 4f'4 5410 6s!

Table 4.3.1.: The lattice parameters and the atomic electronic configurations
of the computed s-electron systems with cubic symmetry.

and heavier elements with significant s-electrons contribution, those from the 1st and
Copper group of the periodic table. All the elements listed in the Tab. 4.3.1] are weakly
correlated from the many-body point of view and DFT studies are known to provide
a reasonable description for their ground state. For the heavier elements relativistic
effects (i.e. the spin-orbit coupling) play an essential role.

4.3.2. General Shape of the Compton Profile

Momentum distributions are usually measured by scattering experiments. The pro-
totype experiment is the Compton scattering of X-rays on electrons in metals. The
measured quantity is the “Compton profile” which is a projection of the momentum
distribution onto one-dimension (see Eq. (4.3.2)). The most noticeable effect of bind-
ing of electrons in metals can be seen in the energy distribution of the outgoing photons.
Instead of a monoenergetic Compton peak expected from the scattering of the immobile
electron a distribution of energies can be seen (Fig. {.3.1). The spectrum of the scat-
tering on “free” electrons is substantially broadened in energy reflecting the fact that
electrons are not at rest. Du Mond [23, 24, 25]] was the first to explain that the broaden-
ing in the Compton line results from the momentum distribution of the bound electrons.
The amount of broadening depends on the width of the momentum distribution of the
scatterer, and this width increases as the electrons are more tightly-bound (electron is
confined to a smaller volume). Tightly bound electrons like core electrons make a very
broad profile while a narrower profile is obtained for valence electrons.

In Compton scattering experiment the photon scatters on the electron and the scatter-
ing peak is centered on ¢2/2m, with a clear distinction between the conduction and core
electrons. Here g = |k;—K/| is the transferred momentum during the scattering process,
with K;/ ¢ the initial and final state photon wave-vector. Depending on the experimental
realization (incident photon energies, ionization energy, magnitude of the Fermi en-
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Figure 4.3.1.: The Compton profile of Lithium along the [111] direction. The
core contribution (red-dashed) is represented by the broad
Lorentzian-type line-shape. The conduction electrons form the
narrower component (blue solid).

ergy) the core and conduction electrons contribution can be made distinct. Platzman
and Tzoar [124] discussed the conditions in which elastic scattering from bound elec-
tors would not interfere with the highly inelastic electrons scattering from the valence
band using an argument based on the free-electron model.

There is a large number of experimental as well as theoretical studies on the Compton
profile of systems ranging from relatively simple atomic and molecular systems [125]
to various metals and semiconductors in ordered and disordered phases [126] (see also
the review [127] and references therein). From a theoretical point of view, quantitative
results based on DFT are in a good agreement with the experimental measurements,
but sometimes only qualitative conclusions could be made. The reproduction of the
experimental results and the interpretation of the shape of the Compton profile directly
from the band structure calculations, however, does not necessarily improve the phys-
ical understanding. There are a few cases in which the shape of the Compton profile
can be exactly determined. For instance: the Compton profile for a non-interacting
electron gas is known to be just an inverted parabola for momenta p, < pr, where
pr is the Fermi momentum, and zero otherwise: J(p;) o (p% - pg). For an isolated
atom or the so-called one-bound state scatterer limit [128]] the Compton profile takes
a Lorentzian shape. In all other cases for large momenta, J(p,) develop a tail that de-
termines the non-trivial shape of the Compton profile. In solids the large p behavior of
J(p;) is traced back to the tail developed in n(p) which is being subject of the various
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computational approximations.
In our calculations, we analyze the shape of the Compton profile and propose to
model it with the so-called g-Gaussian distribution [129]:

2

Jg(p2) = exp,( ), (4.3.3)

! _ P
2
V25, 28
where the exponential function is replaced by its g-analog
exp,(x) = (1 + (1 - @)x)/=7 (4.3.4)

and C, is the normalization factor. The distribution J,(p;) (@.3.3)) exhibits an asymp-
totic algebraic tail J,(p;) ~ 1/ pg/ @D for1 < g < 3, and reduces to the usual Gaussian
distribution for ¢ — 1. This family of g-Gaussians comprises all the above discussed
analytical limits. Eq. (4.3.3), for ¢ = 0, reproduces the inverted parabola, and for g = 2
a Lorentzian shape can be obtained. It is obvious that in the electronic structure calcu-
lations these two limits are never met, as the valence electrons are not totally free nor
totally localized, and in the same time are subject to the interaction with the underlying
lattice potential. It is therefore expected that the so-called entropic index (¢) would lie
in the range 0 < ¢ < 2 as it will be also shown in the following subsections

The Compton profile for the core electrons has a universal Lorentzian shape (g = 2)
and material specific properties are mainly encoded in S (g-analog of the standard
deviation), which characterizes the spread of the Compton profile.

Within the realistic electronic structure calculations for free electron-like s-metals we
analyze the valence contribution and conclude that the non-trivial shape of the Compton
profile is completely determined by the valence electrons contribution.

4.3.3. Shape Analysis for the Compton Profile of Valence
Electrons

First Column Elements

There are a considerable number of theoretical and experimental studies of the Compton
profile of the alkali-metals [38, (130, (127, (111} (131}, [132]. In the simple metals the
deviations with respect to the free electron picture arises from the existence of Coulomb
interaction between electrons and the interaction of the electrons with the ion cores in a
given lattice structure. In alkali metals (investigated here) the latter dominates while the
former is less important. These effect can be well studied as all first column elements
have the same bcc structure and the same number of valence electrons, but they do
differ in the strength of the electron-ion interaction.

In Fig. we show the results for the Compton profile computed along the nearest
neighbor direction [111] for the bcc structure as a function of the momenta p,. We
normalized the Compton profiles to the number of valence electrons per unit cell — in
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this case one electron for each element of the first column. The main cusp corresponds
to the Fermi momenta located at p}L,i ~ 0.58a.u., pga ~ 0.45a.u., pf ~ 0.38a.u.,
pR ~ 0.36a.u. and p§* ~ 0.32au.. At the origin JX(0) < JV*(0) < JK(0) <
JR2(0) < JC5(0). A second cusp follows at about 3pr and further little bumps appear
in the tails. The intensity of the Compton profiles becomes almost negligible small at
momenta about p, =~ 10 pr as compared to the value J(p, = 0), for all these elements.
The right column of Fig. 4.3.2 shows the results for the momentum distribution along
the [111]-direction.

For Li the Compton profile and its second derivative were studied in connection to the
anisotropy of the Fermi surface [133]] and they revealed some discrepancies between ex-
periment and LDA calculations, even when the Lam-Platzman correction scheme [134]]
was applied. The experimentally measured Z; for Li using the momentum density data
at pr [L11] contradicts the interacting-electron gas calculations. The discrepancies may
also be attributed to an insufficient treatment of correlations in LDA, or to difficulties
of the accurate processing of the experimental data. A detailed description of the fea-
tures of the Compton profiles was presented previously in [133} [111] and our results
agrees with these data. In Fig.[4.3.3] we show the Compton profiles (left panel) and the
momentum distributions (right panel) of Li computed along the main directions. The
effect of the lattice on the momentum distribution can be already seen along the [110]
and [001] directions. It is strongly anisotropic and goes sharply to zero right after the
first Fermi break. The weight reduction below this break is more significant along [110]
direction, while along [001] it is smallest. The secondary contributions — coming from
Umklapp processes — are seen along both [110] and [001] directions. The most of the
weight, however, is completely contained within the first Brillouin-zone, which is direc-
tion dependent too. The Fermi cusps are clearly visible around 0.58 a.u., but the precise
location varies slightly as a consequence of anisotropy, indicating the distortion with
respect to the spherically symmetric free-electron Fermi surface. In fact, a free particle
system with the same electron density as Li would have r; = 3.25 a.uE] and the cor-
responding Compton profile has the form of an inverted parabola with pr ~ 0.59 a.u..
This also explains the dominantly parabola-like feature of Fig. (left column). The
calculation of J(p;) along a direction p, proceeds according to Eq. (.3.2), and the
two-dimensional integration is performed over the plane perpendicular to p,. There-
fore, the effect of Umklapp processes along the [110] and [001] become apparent in all
Compton profiles: for instance at about p, ~ 0.9 a.u. and the additional bump at about
p; ~ 2.0a.u. along the [111] direction (left column of Fig.[4.3.3). A similar analysis
can be extended for the other elements of the first column (see Fig. [#.3.2)).

3 The Wigner-Seitz radius r is the radius of the sphere whose volume is equal to the volume per

conduction electron.
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Figure 4.3.2.: The Compton profiles (left panel) of the first column elements
Li, Na, K, Rb and Cs. The right panel shows the momentum
distribution, for the nearest neighbor direction [111] in the bcc
structure.



4. Compton Profile Analysis
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Figure 4.3.3.: The Compton profiles (left column) and the strongly anisotropic

momentum distributions (right column) of Lithium along the prin-
cipal directions. Secondary Fermi-surface contributions are vis-
ible along the [001] and [110] directions.
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The generic feature of the Compton profile of the first column elements, is the major
weight below pr followed by cusps at higher momenta. By fitting the shape of the
Compton profile with the g-Gaussian, Eq. (4.3.3), the departure from the parabolic be-
havior at low momenta can be observed. Fig. 4.3.4] shows the g-Gaussian fits to the
shape of the Compton profile. The fitting procedure, which is described below (see Ap-
pendix [A), produces the parameters shown in table Tab. The obtained entropic
parameters g are clearly increasing, while the spread 8 decreases with increasing prin-
cipal quantum number, 2s! — 65s!. Approaching of the value ¢ ~ 2 might indicate that
the valence band electrons for the heavier ions (Cs, 6s') are behaving more like core
electrons (recall that the Compton profile for the core electors is Lorentzian, g = 2) as
compared to the lighter ones (Li, 2s'). But at the same time the spread of the profile for
Cs is twice smaller than for Li.

Copper, Silver and Gold

Experimental investigation on high Z-elements are not so common due to requirement
of high photon energies. Despite the technical difficulties there is still a considerable
number of publications on Cu, Ag, and Au (see Refs. [135] (136, [137, 138, 1139, [140]
and references therein). For higher Z, relativistic effects become important. Relativis-
tic generalizations of the band-structure methods [[141} 142} [143]] are performed either
on the four-component Dirac equation [144] or on a two component formalism [145].
The two component formalism uses the decomposition of the large and small compo-
nents of the Dirac-equation, producing a quasi-relativistic two-component Pauli type
of equation [[145}[142]]. This results to corrections — up to the second order in the fine
structure constant — to the kinetic energy in the form of mass-velocity term, while cor-
rections to the potential term are the so-called Darwin contribution and the spin-orbit
coupling [[145142]]. In general the mass-velocity and the Darwin terms shift the bands
relative to each other, while the spin-orbit coupling splits degenerate states according
to symmetry. Two well know cases are Ag and Au. Extensive theoretical studies con-
necting optical conductivity and Fermi surface properties showed that the relative shifts
of the d-band with respect to the s-p bands is much more pronounced in Au [146] than
in Ag. This was also pointed out as the reason why gold is “yellow” [[147], mainly as a
result of relativistic effects.

The previous studies were focused on the comparison between theory and exper-
iment and as a consequence the published computed spectra were convoluted with
Gaussians. The comparisons were made on the shape and the amplitude of directional
anisotropies. For Cu the discrepancies were discussed in term of missing correlation ef-
fects due to the presence of d-orbitals [[135,1136,1148,1149]. For Ag there is a reasonable
agreement between the experiment and the conventional local density approximation of
DFT. Discrepancies that are found are mainly discussed in connection to the significant
Bremsstrahlung background radiation associated with photo electrons excited in the
sample [138].
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Li Na K Rb Cs
q 1.829 1.834 1.865 1.888 1.936
Bla.u.] 0.2669 0.2322 0.1826 0.1669 0.1337
apla.u.] 6.597 8.003 10.068 10.554 11.605

Table 4.3.2.: The values of the fitted entropic and spread parameters using
g-Gaussian parametrization Eq. {.3.3) following the procedure
described in Appendix [Al The equilibrium lattice parameter ag
are given for comparison.
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Figure 4.3.4.: The log-log plot of the computed Compton profiles (black cir-
cles) and the corresponding best g-Gaussian fit (red solid line)
for the first column elements along the nearest neighbor direc-
tion [111]. The same data as on Fig.[4.3.2]is show. All spectra
are in momentum atomic units. The Compton profiles are renor-
malized to J(p, = 0) = 1.0.
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Figure 4.3.5.: Left panel: the Compton profile of Copper, Silver and Gold along
the nearest neighbor direction in the fcc ([110]) structure. Right
panel: Momentum distributions, the arrows indicate consecutive
Fermi breaks along the [110] direction.
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In Fig. we show the computed Compton profiles and the momentum distribu-
tions for the nearest neighbor direction in the fcc structure of Cu, Ag, and Au. The
Compton profile is normalized to the number of valence electrons, while the momen-
tum distributions are normalized to the corresponding values at zero momenta. Let us
comment here on the similarities and differences between the momentum distributions
of the first column elements and the Copper group elements. In the momentum region
until the Fermi breaks, p < pr, the momentum distribution n(p) follows a relatively flat
behavior. For the alkali-metals just above pr Fig.[d.3.2] n(p) remains zero until the sec-
ondary contributions develops. In particular along the [001]-direction of Li Fig.4.3.3]
the secondary contribution extend to momenta in the range of 1.25a.u. < p < 2.5a.u.
The secondary contribution is clearly seen also for the Copper column elements, along
the [110]-direction, however for momentum regions with a different extension depend-
ing on the magnitude of the lattice parameters. This is expected as the [110]-direction
of the fcc lattice is similar to the [100]-direction of the bct (body-center-tetragonal)
lattice with two atoms unit-cell representation of the fcc structure. A more noticeable
difference in the behavior of n(p) exists in the region between the two consecutive
Fermi breaks at pr and 2pr. In this region the n(p) of the Copper column elements
is non-zero because of the contributions of various bands. This becomes evident if we
re-write Eq. (4.3.1)) in terms of occupation number of the Bloch states Py jn,:

2

B, () = D 1y, (K) ‘ / Pre P, (4.3.5)

k.j

Here, W n, is the wave function of the electron with wave-vector Kk, band index j
and spin m,. The occupation number 7;,, (K) indicates whether the state (K, j,m;) is
full or empty and is responsible for the discontinuities in n(p). For the alkali-metals
the valence band consists of the s-band only, therefore in the region of k for which
the occupation 7, (K) is zero the momentum distribution n(p) is zero. Copper group
elements contain p— partially occupied and d—complete occupied orbitals, therefore
for any value p,, n(p) is finite.

To explore the relationship between the Compton profile J(p;) and the momentum p,
in Fig. [4.3.6| we present the log-log plot for the Compton profile (black circles) together
with the best g-Gaussian fits (red lines). Table [4.3.3] contains the results obtained with
g-Gaussian fits. Again the same trend is observed for the elements in Copper column,
despite the fact that now we have fcc instead of bee lattice structure.

4.3.4. Discussion

Power low-tail distributions were recently measured experimentally on cold atoms in
optical lattices [[150]. In these systems changing the experimental parameters such
as the lattice depth generated different non-Gaussian tails in the atomic momentum
distribution [[151),[152]. On the theoretical side it was shown that the atomic momentum
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Figure 4.3.6.: The log-log plot of the computed Compton profiles (black cir-
cles) and corresponding best ¢g-Gaussian fits (red solid line) for
Cu, Ag, and Au along the nearest neighbor direction [110]. The
same data as on Fig. is show. All spectra are in momen-
tum atomic units. The Compton profiles are renormalized to
J(p; =0) =1.0.

distribution takes the form of the so-called Tsallis distribution [[129,|153]], with a power
law tail [[154] 155, [156].

We considered above different s-metals with different lattice spacing and lattice
structures (bcc and fcc). We showed that the shape of the Compton profile can be at best
approximated with the g-Gaussian distribution. This might indicate that the scattering
of photons on valence (mobile) electrons in solids can be described by a stochastic dy-
namics that asymptotically produces the generalized canonical distribution of Tsallis
like in case of cold atoms in the optical lattices [[154} [155, [156]. However one has
to keep in mind that there are few approximation involved in the employed methods
and theories. One of them is the so-called impulse approximation [157, 158]. In the
scattering processes in which the energy and momentum transferred are much larger as
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Cu Ag Au
q 1.424 1711  1.767
Bla.u.] 14317 0.8084 0.5697

Table 4.3.3.: The values of the fitted entropic and spread parameters using
g-Gaussian parametrization Eq. (4.3.3).

compared to the energy and momenta of the ground state, the condition of the impulse
approximation [157, [158] are fulfilled. However this limit also assumes that the single
particle of the systems recoils freely from the collision. In real experiments in which
the momentum and energy transfer are finite and inter-particle interaction is never zero
the impulse approximation is of limited validity. At high momenta and energy trans-
fers, the most important deviations from the impulse approximation are coming from
the final state effects [159]. Essentially these are described by the electron-electron
scattering that is neglected in this analysis, as this requires the proper description of the
band structure beyond the LDA approach. As the scattering is studied using impulse
approximation, which for the X-ray scattering is an approximation to the true micro-
scopic theory, we mainly focused on empirical analysis of the obtained data. In order to
demonstrate the similarity of the obtained Compton profiles on Fig. we show the
rescaled data for the 1st column elements from section4.3.3] Tt is natural to rescale data
in the units where all material specific constants are equal to one. Hence for the quan-
tities in the reciprocal lattice, like p,, which is ~ 1/ag, we substitute p, (given in a.u.)
with p, ap (dimensionless). Furthermore, on Fig. we plot rescaled q—logarith of
the computed Compton profile instead of raw data. The entropic parameters ¢ are taken
from the best ¢g-Gaussian fits to the corresponding Compton profile (see Tab. #.3.3).
Note that the chosen scaling has no influence on the best-fit g-values while 8 gets mul-
tiplied by ag. Indeed the plot reveals the striking similarities in the Compton profiles
for elements with the same crystal structure. The dips corresponding to the material
specific pf now coincide, as well as the shape of the inter-dip arches. It is interesting to
mention that from the tails of the Compton profile a power law is expected, no other a
priori knowledge is available. In such a case data collapse remains a valuable analysis.

4 SeeEq. (A1) in Appendixfor g-logarithm definition.
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4.3.5. Conclusion

In this chapter of the thesis, we analyzed the shape of the Compton profile for several
metallic s-electron systems: the elements of the first column of the periodic table in
addition to Cu, Ag and Au. For light systems the inverse parabola might look like
a possible guess for the shape of the profile (at least below pr), but by fitting to a
g-Gaussian, a significant departure from the inverted parabola is revealed. For the
transition metal elements the g-Gaussian is in all cases a reasonable fit for the shape of
the Compton profile.

Essentially the Compton profile is a classical distribution, in terms of distributions
and underlines geometrical properties of the Fermi surface. The Fermi surface is deter-
mined by the lattice-geometry in real space and the electron filling.

Further on we formulate the question of how to compare Compton spectra of two dif-
ferent materials, and is it possible to compare these measurements? In general terms,
in materials with different lattice parameters and different interactions the scattering
is expected to be different. This is the motivation to look for scaling relations for
the Compton profile when moving from one material to other. We studied a parame-
ter transformation, which allowed for the scaling. The fact that the Compton-profile
data can be collapsed for materials with the same lattice-geometry is remarkable. This
means that there exists a single universal function which can describe those materials.
This apparent “universality” raises the following question: Which features of the Fermi
surface determine the scaling and which are unimportant? Two materials with the same
Compton-profiles up to a material dependent scaling suggest that the only the Fermi
surface geometry is important. This is seen for the metals from the first column.

4.4. EMD Along Bond Axes of Fe and Ni

4.4.1. Introduction

Several studies showed that n(r) and n(p) describe different chemical aspects about the
system [160, [161]. In addition to the different chemical information encoded in n(r)
and n(p), information theory attempts to measure the information content, directly. For
the charge density the corresponding Shannon entropy [162] S, = — [ n(r) In n(r)dr
has been studied also as a measure for the accuracy of basis sets [163, [164], electron
correlations [1635] or geometrical changes [[166]. Information theoretical concepts have
been already used in momentum space. In analogy to the coordinate representation,
the Shannon information entropy in momentum space S, = — f n(p) In n(p)dp was
defined using a formally equivalent equation and replacing n(r) with the probability
density function in momentum space n(p) [163,164]. A generalization of the Heisen-
berg uncertainty relation has been derived by Biatynicki-Birula and Mycielski [167] and
was shown that the sum S, + S, cannot be decreased below a certain limit 3(1 +1n ) in
three dimensions [[167]]. From a informational theoretical point of view this lower bound
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1s just a manifestation of the maximum information density in phase space. This bound
underlines the interdependence between the real and momentum space: the uncertainty
in predicting the momentum of a particle is not independent of the uncertainty to pre-
dict the position of the particle, but bounded by the maximum information content in
phase space. It is worth to mention that here we are not talking about uncertainty in the
usual sense as in Heisenberg uncertainty principle. In contrast to Heisenberg’s uncer-
tainty principle the term “uncertainty” should be understood as the lack of information
in a literal manner [167]. In this formulation the Shannon entropy in momentum space
has also been the subject of many investigations [[163} (164, 165], and its maximum was
connected to a localized distribution in position space.

Motivated by the capability to compute momentum space quantities in the presence
of electronic correlations we analyze the influence of the local Coulomb interaction on
the electronic momentum redistribution along the bond axis in Fe and Ni within the
framework of a combined DFT and Dynamical Mean Field Theory (DMFT) [[113} 1168,
169]. Previously different chemical aspects of bonding in Fe and Ni were addressed
using the computed total and magnetic Compton profiles [[115, [116]. The comparison
with the experimental data lead to the conclusion, that theoretical Magnetic Compton
Profile (MCP) spectra are improved as local correlations are taken into account.

The aim of this chapter is to discuss the effects of strong Coulomb interactions upon
the bonding in Fe and Ni. Contrary to the usual DFT approach, in which bonding is
studied with the help of the charge density in real space, here we perform an analysis
using momentum space quantities. In section section 4.4.2| we formulate the Shannon
information entropy as the uncertainty to measure a certain momentum in Fe and Ni
along different bond directions using the Compton profile that serves as the probability
density. In order to understand the connection between the Compton profile and the
directional entropy in section 4.4.3| we study a g-Gaussian model which allows us to
analyze the behavior of entropy as a function of the Compton profile line shape. In the
subsequent section we analyze the results from the realistic LSDA+DMFT calculations
on the directional Compton profiles and entropies (section4.4.4). We conclude this part
of the thesis in section

4.4.2. Momentum space quantities within LDA+DMFT

Within DFT off-diagonal parts of the one particle density matrix as well as two parti-
cle information (electronic interactions) are only indirectly included in the one particle
density n(r). A complete description of properties of a system may be obtained by
investigating the one particle density matrix I'; (r,r’). Technically such studies can be
performed only on finite systems [[170]. However, within the DFT framework a better
description of electronic interactions leads to an improved description of the ground
state of the many-body system. In the same time DFT is a very natural way to under-
stand the chemical bonding, since bonding effects are significant for the charge density
of valence electrons.
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Since within our approach it is possible to gain insight into the momentum distri-
bution in different lattice directions our aim is to discuss the covalent bonding using
momentum space quantities. The momentum density n(p) is generally defined as the
probability density of finding an electron anywhere in position space with a given mo-
mentum p. Mathematically, it is the spin traced diagonal of the one-particle density
matrix in momentum-space representation I'; (p,p’). To access this quantity we used
the same methodology as in section 4.3]

The many-body effects for d-orbitals are described by means of DMFT [113} 168,
169]]. The relativistic version of the so-called spin-polarized T-matrix fluctuation ex-
change approximation [171} [172] impurity solver was used. In our calculations we
used values for the Coulomb parameter in the range of U = 1.4 to 2.3 eV, the Hund
exchange-interaction J = 0.9 eV and the temperature 7" = 400 K.

The directional Compton profile J(p,) represents a probability density function,
termed also as one-dimensional momentum distribution. In the specific DFT-type
of calculations using LDA or LDA+DMFT, it is defined for a particular direction
in the momentum space p, and is obtained by integrating the momentum density
n,f,sD AG+DMFT) (p) over planes perpendicular to this direction:

JEDAGDMED) () = / Tr [ gy AP0 (p) ] dp.dp, (44.1)

Using the results of the combined density functional and DMFT for the directional
Compton profiles, we propose to use the Shannon information entropy formula with
the directional Compton profiles as probability density along K]|p.:

Sk = - / J(p2) In [J(p2)/m(p2)] dp.. 4.4.2)

with m(p;), the invariant measure [[173]. We call this quantity directional entropy. A
similar formula has been used to obtain approximations to the atomic Compton profiles
given only the first few moments of the Compton profile [174, [163]. We compare
the values of the directional entropies in Eq. (4.4.2)) computed along the [001], [110]
and [111] direction of the fcc and bece - structures of Ni and Fe, respectively. The
directional entropy provides the uncertainty in predicting the momentum in a certain
lattice direction and therefore may provide information about chemical bonding.

4.4.3. Entropy formula for a g-Gaussian model

In order to clarify the connection between the directional Compton profile and the cor-
responding entropy in Eq. (4.4.2)), we discuss a simplified model for the line shape of
the Compton profile. The central question is how the shape of the profile is changing
in the presence of strong electronic interactions and finite temperatures. In the most
general case the line shape is subject to a combined Lorentzian (excitations related)
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and Gaussian (Doppler related) broadening, also known as Voigt line-shape, which is
just a convolution of the Gaussian and Lorentzian profile. In our simplified model we
consider for the Compton profile a much simpler parametrization. We use a generaliza-
tion of the usual Gaussian distribution, called g-Gaussian as presented in section @
This has the advantage of describing many limiting cases of the Compton profile. For
0 < g < 5/3 the variance of the ¢-Gaussian is given by 202/(5 — 3¢). For g-values
larger than 5/3 the variance diverges, and the uncertainty for this kind of probability
distributions cannot be defined based on the moments of the distributions, motivating
the need for a different definition of uncertainty [[167]. Since entropy is a measure of
the total amount of information in a distribution and since uncertainty is just the lack of
information it is very natural to define uncertainty with the use of entropy.

The lack of a general (comprehensive) invariant measures makes difficulties in quan-
titative statements about uncertainty, however it is still possible to make a relative com-
parison between two probability distributions providing the same invariant measure
m(p). The simplest choice is the homogeneous measure m(p) = const which can be
interpreted as a uniform discretization mesh of the probability density, such that the
formula for entropy is written as:

S(g) = - / Jo(p) In [ Jy(p)/m] dp (4.4.3)

The choice of the constant m only affects the additive constant to the total entropy
and is therefore irrelevant in relative comparisons. This is like in phenomenological
thermodynamics where the absolute value of the entropy has no physical meaning. Our
choice of the invariant measure provides us with a definition of directional entropy so
that the integrand in Eq. (¢.4.3)) is always positive.

As one can see in Fig.[4.4.T|the increase in ¢ leads to a shift of weight from the region
of higher probability density to region of lower probability density. The uncertainty in
the prediction of the momentum is therefore increased as a function of ¢, which can
be seen as an increase in entropy S (see inset Fig. B.4.1). The magnitude of entropy
for probability densities depends on the choice of probability measure, therefore the
information content is only defined up to an irrelevant offset.

The analysis of the above model shows that by increasing the g parameter tails spread
out towards higher momenta and the entropy is increasing. Conversely increasing en-
tropy can be understood as weight redistributions that overall flattens the probability
density.

4.4.4. Directional entropies for Fe and Ni

Before presenting the results of the directional entropies, let us discuss the Compton
profile differences along the nearest and next nearest neighbor directions. Fig. [4.4.2]
shows the difference between the correlated (LDA+DMFT) and non-correlated (LDA)
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Figure 4.4.1.: g-Gaussian probability distribution taken as a simplified model
Compton profile. Red solid line represents the Compton pro-
files for the non-interacting homogeneous electron gas (inverted
parabola). Two other examples for ¢ = 1.7 (dashed green) and
g = 2.0 (blue dotted) are plotted as function of p. The arrow
indicates the direction of increasing ¢. Inset: Entropy computed
using the Compton profiles as a function of 4.

total Compton profiles:
AJ(PZ) — JLDA+DMFT(pz) _ JLDA(pZ) (444)

along the nearest neighbor directions: [110] for Ni (upper panel) and [111] for Fe (lower
panel) respectively. The Compton profiles are computed according to Eq. (4.4.1)). The
insets represent the LSDA spectra. For Ni the Brillouin zone boundary along the [110]
direction is represented by the symmetry point K = (37/2a,37/2a,0) point and is
marked with the first dashed line and corresponds to the value of kr = 1.001(a.u). The
second dashed line is situated at 2kr and is plotted to facilitate the comparison between
the spectra. Similarly, for Fe the zone boundary along [111] is at the symmetry point
P = (n/a,n/a,n/a) and dashed lines are used to indicate the first three Brillouin zones.
For both Ni and Fe one can clearly recognize that dynamic correlations do not change
the Compton profile dramatically. The maximum of the differences AJ(p;) is in the
range of 0.01 up to 0.02 (a.u.), larger differences corresponding to larger values of
U. For Ni the maximum difference is visible at the center of the first Brillouin zone,
while for Fe the maximum is shifted towards the middle of the first Brillouin zone. The
magnitude of the difference is decreasing for larger values of p,.
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Figure 4.4.2.: The difference between the LDA+DMFT and LDA directional
Compton profiles for Ni/Fe (upper/lower panel) along the near-
est neighbor [110] / [111] directions. Calculations have been
performed for several values of U in the range of 1.4 to 2.3 eV,
fixed J =0.9eV and T = 400 K.

Similarly we present in Fig. 4.4.3| the difference in the total Compton profiles along
the next nearest neighbors. For both, Fe and Ni the next nearest neighbors are located in
the [001] direction. The Brillouin zone boundary intersects with the [001] direction in
the high symmetry point X for the fcc lattice, with the distance 27r/a from the I'-point
while in the bec lattice the intersection happens at the high symmetry point H, with the
same distance from the I'-point. The values of the Fermi vector kr are different only
because of different lattice constants for fcc-Ni (bcc-Fe) having lattice parameters 3.52
(2.86) A. Dashed lines are used to illustrate the Brillouin zone boundaries up to 3kp.
The maximum deviation in the Compton profile AJ(p.) due to U is most pronounced
in the center of the first Brillouin zone for Ni, while for Fe the largest difference is seen
in the second Brillouin zone.

The results shown in Figs.|4.4.2|and 4.4.3|can be compared with the Compton profile
obtained from the g-Gaussian model described in section 4.4.3] Fig. [#.4.1 shows that
decreasing the parameter g, weight is transferred towards low (p,) momenta. This sim-
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Figure 4.4.3.: The difference between the LDA+DMFT and LDA directional
Compton profiles for Ni/Fe (upper/lower panel) along the next
nearest neighbor [001] directions. Calculations have been per-
formed for several values of U in the range of 1.4 to 2.3 eV, fixed
J=0.9eVand T =400K.

ple model can be used to understand the LDA+DMFT data for the Compton profiles
seen in Figs. 4.4.2land 4.4.3] where the amplitude of the difference between the DMFT
and LSDA decrease as the momenta p, increase in values. A somewhat stronger effect

is visible in Fe than in Ni. For larger U values a stronger transfer of the weight can be
seen, and this effect is significant in a momentum range up to the first three Brillouin
zones. This can be used to estimate the range in momentum space in which electronic
correlations may affect the Compton profile: p, < 3kr. The local Coulomb interaction
determines the change in the shape of the Compton profile, similar to the g parameter in
the model described in section d.4.3] Although the analysis of momenta redistribution
as a function of the strength of the Coulomb interaction may be performed directly on
the Compton profiles Fig. and[4.4.3] we decided to condense the weight redistribu-
tion due to interaction also into the directional entropy Sk. This allows us to determine
the change in the momentum uncertainty as an effect of U. The Compton line-shape
is given by the different probabilities to scatter a photon into a given angle. Therefore
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the Compton profile can be understood as the Doppler effect induced by the correlated
electronic system. The Doppler effect can be interpreted as loss in information about
the scattering angle. Where the latter can be translated into the electronic momentum
p.. Therefore the directional entropy can be used to quantify the uncertainty and to
illustrate the weight redistribution in a simple way.

Fig. 4.4.4] shows the directional information entropy of Fe and Ni along the nearest
neighbor and next nearest neighbors for different values of U, Eq. (4.4.2). The LSDA
values represent the results for U = 0 (absence of local Coulomb repulsion). Including
local but dynamic electronic correlations captured by DMFT, we see that the values of
the directional Shannon entropy decrease along all directions. A similar color coding
was used for the nearest (NN - red) and next nearest (NNN - blue) neighbors. Depend-
ing on the geometry of the lattice the NN and NNN bonding is realized along different
directions as seen in the legend of Fig.4.4.4] One can see that shorter bond lengths have
larger entropies, and the U dependence show a larger slope for Fe in comparison to Ni.
The analysis of the entropy data suggests that for increasing U it is less likely to find
electrons with nonzero momentum-component in a specific bond direction. Our find-
ings agree with the calculation of the second moment {p?) of the Compton-profile [116].
We have interpreted the decrease in kinetic energy as a function of U as a shift of the
weight of the momentum distribution towards zero momentum. Therefore the Coulomb
repulsion leads to a decrease in the uncertainty of the electron momentum, which can
be understood also as the slowing down of the electrons.

4.4.5. Discussion and Conclusions

In a simple valence electrons counting picture for bcc-Fe 8 bonds share 7 d-electrons,
while fcc-Ni 12 bonds share 9 electrons. Therefore, Fe bonds are said to be more lo-
cal then Ni bonds. Electrons in open d-shell-systems are believed to interact strongly.
Strong interactions are modeled by a local Coulomb interaction parameter U, acting on
the d-orbitals manifold. Model and realistic electronic structure calculations showed
that for systems with narrow bands the effect of U is to localize the valence electrons
around the atoms, such that metallic conduction is no longer possible, so the system ex-
perience a localization of electrons through correlation effects [[168,169]. In our calcu-
lations for Fe and Ni we take correlation effects into account by means of LDA+DMFT
and study momentum space quantities. Both Fe and Ni have larger valence bandwidth
than the realistic parameter for the average Coulomb interaction, therefore the lower-
and upper-Hubbard bands are not present [175,1176}177]. Although no strong localiza-
tion is expected, the question still remains to what extend the Fe/Ni electrons per bond
localizes because of U and how they compare.

We analyzed electronic properties from the one particle density matrix in momentum
space within the information theoretical framework. In such a framework one defines
a measure of information content or uncertainty. The most commonly used measure
is the Shannon entropy, for which we proposed a formula that includes the directional
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Compton profiles. The directional entropy is a functional of the distribution of the mo-
mentum component in a certain direction K. The Compton profile can be computed
including electronic correlation within DMFT, therefore we are able to consider elec-
tronic interactions consistently beyond the mean-field approximation and study their
effect upon the chemical bonds in Fe and Ni. Our main result is that the probability
of finding electrons with high momenta along bond axes is decreased in favor of low
momenta as a function of U.

A possible consequence of the redistribution are briefly discussed below: Fe and Ni
have a metallic bonding with covalent d-d contribution. The covalent chemical bond is
usually interpreted as electronic charge accumulation between nuclear centers. It is a
dominant electrostatic approach and within DFT this effect is encoded into the diagonal
of the real space density matrix n(r). Dynamical effects are usually neglected within
plain DFT. Our numerical results suggest that the inclusion of local correlations within
DMEFT affects momentum distribution and therefore the covalent bonding.
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Figure 4.4.4.: Directional Entropy for Fe/Ni (upper/lower panel) along the near-

est neighbor (NN-)and next nearest neighbor (NNN -)directions
as a function of U, fixed / =0.9eV and T = 400 K.



5. Electronic Structure of
Palladium

ABSTRACT

Including the on-site electronic interactions described by the multi-orbital Hubbard
model, we study the correlation effect in the electronic structure of bulk palladium. We
use the combined density functional and dynamical mean-field theory, LDA+DMFT,
based on the fluctuation exchange approximation. The agreement between the ex-
perimentally determined and the theoretical lattice constant and bulk modulus is im-
proved when correlation effects are included. It is found that correlations modify the
Fermi surface around the neck at the L-point while the Fermi surface tube structure
show little correlation effects. At the same time we discuss the possibility of satel-
lite formation in the high energy binding region. Spectral functions obtained within
LDA+DMFT and GW methods are compared to discuss non-local correlation effects.
For relatively weakly interaction strength of the local Coulomb and exchange parame-
ters from LDA+DMFT show no major difference in comparison to GW.
This chapter is based on the paper:

e A. Ostlin, W. Appelt, I. Di Marco, W. Sun, M. Radonjié¢, M. Sekania, L. Vitos,
O. Tjernberg, and L. Chioncel, Physical Review B 93, 155152 (2016)
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5. Electronic Structure of Palladium

5.1. Introduction

One group of materials that show strong electron correlations is comprised of 3d tran-
sition metals like iron, nickel and cobalt. The ferromagnetic state of these elements in
their pure state and the Mott insulating state of their oxides are famous examples for
strong correlations [3]]. Iron, nickel and cobalt are in fact the only known ferromagnetic
elemental metals. The 4d transition metal series, however, did not attract as much at-
tention in the field of strongly correlated materials. For these elements the correlation
effects are usually less pronounced. This can be related to the larger bandwidth as com-
pared to the 3d transition metals. The local Coulomb repulsion is small as compared
to the bandwidth, so that these systems favor a paramagnetic state, without long-range
magnetic order.

In the present chapter, the focus lies on one of these 4d metals, namely palladium
(Pd), which is a potentially weakly correlated metal. It has the atomic number 46
and belongs to the noble metals. Its main industrial use is as catalytic converter in
automobiles, but it also finds application for hydrogen storage devices. Pd stands out in
the periodic table through a high density of states at the Fermi level and a large Stoner
enhancement factor [18] in the magnetic susceptibility. This indicates that palladium
is a material that is close to a transition to a magnetic state. There is a LDA based
study [[179] that shows, that Pd turns ferromagnetic when the volume is increased.

In our present study, the LDA approximation is supplemented by local interactions,
included within the combined framework of LDA+DMFT. The results presented here
include the electronic structure, the Fermi surface, nesting vectors of Pd, and the satel-
lite formation in the high energy binding region of the k-integrated spectral function.
Most of our results are obtained within the full potential linearized muffin-tin orbitals
(FPLMTO) method implemented within the RSPt-code [39], which was proven to be
able to accurately determine ground state quantities within LDA+DMFT for 3d tran-
sition metals [[180, 40]]. Self-consistent quasi-particle GW calculations are also per-
formed, which allows us to discuss the effect of non-local interactions and non-local
electronic correlations in Pd [[181}, [182].

This part of the thesis is organized as follows: section [5.1|is an introduction. In sec-
tion [5.2] we will focus on LDA and LDA+DMEFT results, like total energy calculation
for different volumes, spectral properties, and the Fermi surface of Pd. The obtained
data is used to find an estimate for the optimal U and J values by matching the exper-
imental and the calculated equilibrium volume. After presenting some general results
about the band structure and the Fermi surface of Pd in section[5.3|we analyze the effect
of non-local interaction in section[5.4] We close this chapter with a conclusion (section

B.3)
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5.2. Ground State Properties with LDA and
LDA+DMFT

5.2.1. Computational Setup

The LDA+DMFT calculations were done with the FPLMTO code RSPt [39] as a
base for the underlying density functional theory calculations. The RSPt calculations
were based on the local-density approximation with the parametrization of Perdew and
Wang [34] for the exchange-correlation functional. Three kinetic energy tails were
used, with corresponding energies 0.3, —2.3, and —1.5 Ry. palladium is a face-centered-
cubic metal, and the k-mesh grid is 16 x 16 x 16 for the equations of state, 24 x 24 x 24
for the rest of the calculations, and Fermi-Dirac smearing with 7 = 400 K (the same
temperature as was used for the imaginary-frequency Matsubara mesh) was employed
if not stated otherwise. The muffin-tin radius was set to 2.45 a.u. and was kept constant
throughout all unit-cell volumes. For the charge density and the angular decompo-
sition of the potential, inside the muffin-tin spheres, a maximum angular momentum
Imax = 8 was set. The calculations included spin-orbit coupling and scalar-relativistic
terms, within the muffin-tin spheres, unless otherwise noted. The SPTFLEX impurity
solver was implemented in the Matsubara domain, and 2048 imaginary frequencies and
an electronic temperature of 400 K were employed. The analytic continuations of the
self-energy from imaginary frequencies to the real energy axis in the complex plane
were performed by Pade approximants.

5.2.2. Equation of States in LDA

In the following, the ground-state properties of palladium will be analyzed using LDA.
The LDA has proven to be a good starting point for weakly correlated materials, as
it is also expected to be the case for Pd. An alternative to this would be the gen-
eralized gradient approximation (GGA), but GGA overestimates the lattice constant
and leads to a ferromagnetic state as it was pointed out in Ref. [184]. Therefore it is
unsuitable as a starting point for the LDA+DMFT scheme. Also in LDA, the equilib-
rium volume and the bulk-modulus deviate considerably from the experimental values.
The experimental volume is Vexp = 99.3 a.u. [183] and the experimental bulk mod-
ulus is 189 GPa [185]. Our LDA-calculations underestimate the equilibrium volume
by 4% (Vo = 95.94a.u. see Tab. and overestimates the bulk-modulus by 20%
(Byp = 226.6 GPa see Tab.[5.2.2)). This is a general trend in LDA and it is usually re-
ferred to as “over-binding”. In Fig[5.2.1] the equation of state curve is depicted, from
which we obtained the equation of state parameter V) and By. We estimated Vy and B
by fitting our results with the Birch-Murnaghan [[186] model function for the equation
of state curve. The discrepancy in Vp might by caused by the electron-electron repul-
sion, which is not taken into account appropriately in the LDA method. Therefore, the
volume per electron is underestimated. This artificially lowers the equilibrium volume
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Figure 5.2.1.: Equation of state curve in LDA. The experimental volume Veyp =
99.3 a.u has been marked out [183].

of the material in LDA.

5.2.3. Equation of States in LDA+DMFT
Effect of Hubbard U

We will show that the above mentioned discrepancy between experimentally obtained
Vo and By and values calculated within LDA can be partially corrected by applying the
LDA+DMFT method. Later on, in section [6] we will see, that the same method can
be also employed to explain the experimentally observed formation of a satellite in the
photo-emission spectrum of Pd.

In LDA+DMFT the Coulomb interaction U and the Hund’s exchange coupling J
are not known a priory. In the current study these interaction parameters were chosen
in such a way that the equilibrium volume fits best to the experimental value. An
alternative way would be to estimate U and J from experimentally obtained photo-
emission spectra by determining the position of the lower Hubbard band. This turns out
to be a complicated task in palladium, because the satellite appears at relatively high
binding energies and is less pronounced as compared to Ni. One can also obtain the
interaction strength U from ab-initio methods like constrained LDA [79] or constrained
RPA calculations [80]. However, this path will not be pursued here.
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TX) a(A) a(au) Volume (a.u.)

853 3.9184 7.4047 101.50 Ref. [183]]
673  3.9088 7.3866 100.76 Ref. [183]
297  3.9049 7.3792 100.45 Ref. [187]
296 3.8904 7.3518 99.34 Ref. [183]

296 3.8902 7.3514 99.32 Ref. [183]
120 3.8830 7.3378 98.77 Ref. [183]
23 3.8907 7.3524 99.36 Ref. [187]
0! 3.881 7.334 98.62 Ref. [188]
0? 3.877  1.326 98.32 Ref. [188]

Table 5.2.1.: Experimental lattice constants a (and equivalent unit cell volume)
of palladium from various sources, as a function of temperature.
!Estimated from room temperature using linear thermal expansion coefficient, see Ref. [188]
2Corrected for zero-point anharmonic expansion, see Ref. [188]

The equation of state curves, for different values of U, are depicted in Fig. As
the value of U is increased, the computed lattice constant approaches the experimen-
tal value from below. The calculations with the interaction parameters of U = 1eV
and J = 0.3eV lead us to the estimated equilibrium volume of Vj = 99.02 a.u. (see
Tab. [5.2.2), which is in relatively good agreement with the experimentally measured
values. Since temperature effects seem to be important in palladium, we compare our
results with those of Ref. [183], which presents an experimental study performed at
room temperature (I = 296 K). Note, that there is a considerable scattering in the
experimentally measured equilibrium volumes in the literature (see Tab.[5.2.1|for com-
parison). At U = 1.1eV and J = 0.3eV, V is overestimated as compared to the
experimental value, while By is underestimated. Increasing U to 1.3eV and 3.0eV
leads to an even larger Vj and a smaller By (see Tab.[5.2.1)). Therefore, we stick with
U = 1.0eV in what follows.

Effect of Hund’s Exchange Coupling J

The effect of the Hund’s exchange parameter J on the equation of state curve can be
observed in Fig.[5.2.3and Fig.[5.2.4] Here, we picked out only two different values of
Hubbard interaction, U = 1eV and U = 1.3 eV. In the case of U = 1.3 eV, increasing
J causes a shift of the equation of state curve to smaller volumes, as it can be seen
in Fig. [5.2.4] No sizeable change is observed for U = 1.0eV (see Fig.[5.2.3). The
effect of the exchange J on the volume is larger for U = 1.3eV than for U = 1.0eV,
but the spread is still within the experimental error bar, estimated from the thermally
observed expansion of the lattice (see Tab.[5.2.1). The calculated Vj and B for different
parameters U and J are summarized in Tab.[5.2.2] All obtained values are closer to the
experimentally measured ones than in the case of LDA.
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Figure 5.2.2.: Equation of state curve of palladium for different values of U.
The experimental volume Veyp = 99.3 a.u is marked out [183].

The effects of the Hund’s rule coupling J are more subtle than the effect of U. In
various materials J induces some kind of magnetic correlation (see Ref. [189] and
references therein). From our calculations, we could not directly conclude upon the
mechanism that would explain the relation between J and the equilibrium volume. For
this, first of all, one would most likely require to analyze the way in which J enters into
the impurity problem in DMFT. Only after that, one could try to draw the connection
between the impurity physics and the total energy of the material in LDA+DMFT. This
non-trivial path is not pursued in this work, but certainly would be of great importance
for further studies. Since the right choice for the value of J cannot be made based only
on the equation of state results, from now on we take J = 0.3eV and U = 1.0eV which
seem to be reasonable values.

5.2.4. Formation of the Satellite Structure

The spectral function of Pd was extensively studied within DFT. The first band-structure
studies were made by Mueller et al. [[190] and O.K. Andersen [191]. They could demon-
strate, that their methods, which are based on a one-electron description of many-body
effects, can describe well the most properties of palladium. Worth to mention, on the
experimental side, are the photo-emission spectroscopy techniques which gave insight
in the understanding of palladium. There exists early work from the 70s [192] and the
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UleV] J[eV] Wla.u.] Byo[GPa]
0 0 95.94 226.6
1.0 0.3 99.02 190.6
0.4 98.92 192.2
0.6 99.03 192.2
0.8 99.05 193.2
1.1 0.3 99.92 181.7
1.3 0.4 101.74 167.7
0.6 101.42 171.9
0.8 101.31 174.7
3.0 0.3 127.91 122.3
0.9 124.07 124.2

Table 5.2.2.: Equilibrium volume V, and bulk moduli By extracted from the
equation-of-state fitting function (Birch-Murnaghan), for different
sets of U and J parameters. The experimental volume 99.3 a.u. is
taken from the room-temperature data of Ref. [183], which differs
from the T = 0K data by < 1%. The experimental bulk modulus
is 189 GPa [185].

relatively recent study on photo-emission spectroscopy [19]. The comparison of exper-
imental spectra with the calculated spectral functions in DFT was proven to be useful
in the past in identifying the origin of certain features in spectral functions. In general
one should distinguish between band effects and many-body effects in the k-integrated
spectral function. The latter can be identified as spectral-weight which cannot be de-
scribed by the one-electron eigen-energies of the Kohn-Sham system or some other
band-structure methods, which are based on an independent electron picture. One ex-
ample is the formation of a satellite in the high energy binding region of photo-emission
spectra. For palladium it was predicted, that there should be a satellite at 8 eV binding
energy relative to the Fermi level [193]. The method employed in Ref. [193]], however,
was semi-empirical based on experimental input data. Liebsch 194, [195] investigated
the satellite formation mechanism in detail using many-body methods, and pointed out
the importance of taking particle-hole and hole-hole scattering into account by ladder-
like diagrams in the 7-matrix formulation. The existence of the satellite was confirmed
experimentally later, see Ref. [196], even though the observed position of the satellite
was at higher binding energies (= 8.5¢V relative to the Fermi level) in comparison
to the theoretical findings [193]. The existence of the satellite in palladium might be
anticipated from its position in the periodic table, since it is iso-electronic to nickel,
that shows a satellite at 6 eV of binding-energy. Nickel is just above Pd in the periodic
table, so that their valence electronic configuration is homologous. Despite this ,the
physical properties of Pd are very different (Ni is for example ferromagnetic at low
temperatures while Pd is paramagnetic), so that a theoretical study including local and
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Figure 5.2.3.: Equation of state curve of palladium for different values of J and
U = 1.0eV. The experimental volume Vexp = 99.3a.u is marked
out [183].

non-local correlation effects is particularly desirable.

The spectral function for palladium, for various values of the Hubbard interaction U
and the exchange interaction J, are shown in Fig.[5.2.5] U and J are chosen, so that
the ratio of J/U is kept at 0.3. The spectral function of palladium shows three main
peaks. One peak is just above the bottom of the valence band, one peak is at the center
of the valence band, and the last, the third, peak is located just below the Fermi level.
Note, that the density of states in LDA exhibits a large value at the Fermi level due
to the proximity to the van-Hove singularity. For larger U and J values the width of
the valence band shrinks slightly and some spectral weight is shifted to higher values
of binding energy producing the lower Hubbard band. There is also a small shift of
spectral weight from the lower two peaks to the Fermi level.

We conclude that by including electronic correlation using LDA+DMFT a satellite
forms in the high energy binding region. From the comparison of Fig[5.2.5] with the
experimentally obtained satellite position of 8.5eV [196], the U value needed to re-
produce the satellite position can be estimated to be between 2 and 3 eV. Hence the
formation of satellites could be confirmed with our study. This is in agreement with
the data on photo-emission spectroscopy for palladium [19]. However, a larger value
of U (U =~ 2-3eV) is required in order to see the formation of the satellite as com-
pared to the estimated interaction strength U = 1.0eV which was necessary to match
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Figure 5.2.4.: Equation of state curve of palladium for different values of J and
U = 1.3eV. The experimental volume Vexp = 99.3a.u is marked
out [183].

the experimentally measured equilibrium volume (see section [5.2.3). We discuss this
discrepancy in more details in the following section [5.4] and elaborate on this in the
conclusion (section [5.5)) at the end of this chapter.

5.3. Spectral Properties: LDA Study

5.3.1. Band Structure

In this section we study general spectral properties of Pd, like band-structure and the
Fermi surface. We employ LDA calculations with a focus on relativistic effects, since
this is the common starting point for the investigated many-body methods in this chap-
ter. In the later section [5.4] we will present LDA+DMFT and QSGW results where we
identify the effects of local and non-local electronic correlations.

One of the interesting aspects of palladium is the importance of spin-orbit coupling
which affects certain eigenvalues in the band-structure quite drastically. This was al-
ready recognized by Mueller ef al. in 1970 [[190]. They showed, for the first time, the
pronounced effect of spin-orbit coupling on the topology of the electron bands and the
Fermi surface. It is therefore important to review once again what happens with the
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Figure 5.2.5.: The k-integrated spectral function as a function of the Coulomb
interaction U. The corresponding quasi-particle weights Z =
(1 -8R [E(E)]/JE|g, )" are given in the left center.

band structure when relativistic effects are included. This can be done in the RSPt-
code which allows both, the relativistic calculation with spin-orbit (SO) coupling and
without spin-orbit coupling, the so-called scalar relativistic (SR) setup. The effect of
spin-orbit coupling can be seen in Fig. where the electron bands are depicted both,
with and without spin-orbit coupling.

The splitting of degeneracies of the bands, due to spin-orbit coupling, can be seen by
comparing Fig. and Fig. We limit the discussion on three high-symmetry
points in the Brillouin zone, namely the I'-point, the X-point, and the L-point. One
can clearly the splitting of the 7,,-band at the I'-point while the e,-band is two-fold
degenerate. Lifting of degeneracy happens also around the X-point with a pronounced
level repulsion. The splitting of the degeneracy at the L-point is less pronounced as
compared to the splitting at the I' and X-point. Particularly interesting is the relatively
flat C;-band in Fig. [5.3.1al which changes considerably due to level repulsion caused
by spin-orbit coupling (see in Fig.[5.3.1b). The level repulsion, which might appear as
a minor change in the band-structure plots at first glance but it will turn out later to be
important for the geometry of the Fermi-surface. In what follows, we will elaborate
on the mentioned band-structure modifications due to spin-orbit coupling. If not stated
otherwise, we will only consider the scalar relativistic case in the following discussion
of the band-structure for simplicity. The space group number of palladium is 225 (fcc)
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Figure 5.3.1.: LDA band structure along certain high symmetry directions of
Pd. (a): Band structure without spin-orbit coupling with band
labels. (b): Band structure with spin-orbit coupling.

and the point group of the crystal is Oj which just describes the set of symmetry op-
erations which leave the cube invariant. Oy, is also the group of wave-vectors Gk with
k =T'. Gy is defined as the set of space group operations which transform Kk into itself
or an equivalent vector k + G

rk =k +G, (5.3.1)

where G is a reciprocal space lattice vector and r is a point group operation. Most of
the groups Gy are trivial in the sense that they contain only the identity element. The
corresponding k-points are called generic k-points. Other k-values are very useful in
order to understand electronic band structures.

The most convenient k-point to analyze first is the I'-point. We call Gr the point
group of the crystal since all point group operation of the crystal transform K into itself.
The band structure around the I'-point can be understood similarly as the energy levels
of a molecule in an cubic environment. The point group of the crystal Gg-r is also the
point group of a molecule in a cubic or octahedral environment. Here we are going
to make use of this analogy to understand the band structure at the I'-point and than
move to more general k-points in the Brillouin zone. The crystal field is the ionic
potential caused by neighboring ions in a lattice which leads to a deviation from the
spherical symmetry. Also neighboring electronic charges are important, which give
rise to covalent bonds. This is what is called the ligand-field and it leads to significant
modification of the absolute band energies. The five-fold degeneracy of the 4d-orbitals
of an isolated palladium atom without spin-orbit coupling is lifted by the crystal- and
ligand-field. The discrete rotational symmetry leads to residual degeneracies in the
presence of the crystal- and ligand-field. For a given [/-shell, in the absence of the
symmetry breaking field, the atomic orbitals serve as irreducible representation I' of
the group of all proper and improper rotation in three dimensions (SO(3)). This gives
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Figure 5.3.2.: (Color line) LDA orbital-resolved spectral function along high
symmetry lines in the Brillouin zone (without spin-orbit cou-
pling). Top: e,-symmetry. Bottom: #,,-symmetry

rise to the (21 + 1)-fold degeneracy of a given [-shell. In the cubic environment the
former irreducible representations become reducible, so that the degeneracy is lifted.
For [ = 2 one finds I'? = eq @ 12, so that the five-fold degeneracy is split into the three
fold degenerate orbitals 75, and the two-fold degenerate orbitals e,.

The bands in Fig. [5.3.1] show the #5, and e, splitting at the I'-point in the scalar-
relativistic case. The triplet #,, is shifted down in energy and the doublet e, is shifted
up in energy. It is also useful to compare with Fig. where the orbital-resolved
spectral function is depicted. The band character are obtained by projection of the
Bloch waves onto atomic-like basis functions, with 75, and e, symmetry.

Let us consider other groups of wave vectors G where we follow the notation, for
the small representations from Ref. [T97]] We label bands in Fig[5.3.1a| by irreducible
representations of Gk. The splitting of energy levels with neighboring wave-vectors
follows from the compatibility relations between representations. Irreducible represen-
tations of a given group might become reducible representations in the subgroup. This
leads in general to a lifting of the degeneracy of the energy levels when one goes from
the high symmetry I point to a point of lower symmetry. Let us consider for example
points on the I' — X-direction (A = %’T (£,0,0)). The corresponding group of wave

! The irreducible representations of the group of one given wave vector is called small representation.
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vector is Cy, which is the symmetry group of a square. The representations of 7,¢-states
and that of eg-states becomes reducible as one moves from I' to X. The two-fold de-
generate ey-band splits into two bands Ay, A; and the triplet 7, splits into a two-fold
degenerate band As and a non-degenerate band A, (ignoring spin). This can be seen in
the scalar relativistic band-structure in Fig. The As-bands go up in energy when
one moves from I to X, so that there are two bands close to the Fermi level at the X-
point. Spin-orbit causes the splitting of the degeneracy of the As-band (see Fig.[5.3.1b).
Later we will see that this splitting is the reason for the increase in the number of bands
which intersect the Fermi level by a factor of two in the I' — X-direction when spin-
orbit coupling is included in the calculation.

Let use look what happens if one goes from I" towards another high symmetry point
L (A= %’T (£,€,¢)). The group wave vectors along this line is C3, which describes
three-fold proper and improper rotational symmetry. In the scalar-relativistic case the
trg-orbitals split into a doublet A3 and a singlet Aj. One can show that the e,-levels do
not split as one moves from I" to A, so that there is still a residual two-fold degeneracy.
In total, the compatibility relations of the d-shell is given as:

trg = A & A3
eg—>A3 (532)
lryg = A’z P As

eg—>A169A2

Two of the Az-bands move upwards in energy as one goes along I' towards the L-
point and the band-energy reaches a maximum value just below the Fermi level. This
causes the van-Hove singularity in the density of states just below the Fermi level (see
Fig.[5.2.5). The mathematical relation

1% 1
D(E) = ds 533
(E) (27?)3# | Vel ( )

0Vg

between the density of states D(E) and the surface integral on the right hand side is
used to explain this. Here, 0V is the surface of constant energy (E = €x). According
to Eq/[5.3.3| determine two factors the value of D(E) namely the surface area 9V and
the Fermi velocity |Vkek|. Hence, bands with significant contributions to D(E) are
those with a small Fermi velocity and a larger surface area.

In the following, we are going to demonstrate the geometry of the Fermi surface since
the surface area can be easily visualized in this way. The Fermi surface geometry, as
seen in Fig.[5.3.3] contains the closed electron surface around the I'-point, and a set of
hole ellipsoids at the X-points. The additional open-hole surface consists of cylinders,
extending along the X-W-X path (see Fig. on the right). In Fig. only the
open-hole Fermi surface is depicted in the extended zone scheme. One can clearly see
the three-dimensional network of tubes which form this Fermi surface sheet. The im-
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Figure 5.3.3.: Three dimensional Fermi surface projected on the k.-k,-
plane. The Fermi surface was created with the XCrysden soft-
ware [198]. (a): Fermi surface in the first Brillouin zone. Note
the X hole pockets centered at the square faces (blue,hole side;
yellow, electron side), the L hole pockets centered at the hexag-
onal faces (red, hole side; turquoise, electron side), and the
tube hole structures intersecting at the X points (red, hole side;
turquoise, electron side). The L pockets only exist if spin-orbit
coupling is included in the calculation. A large electron surface
is centered around the I'-point (purple). (b): Open-hole struc-
ture as seen in the extended zone scheme.

portance of the “open-hole surface” was already pointed out in 1981 by Dye et al. [199],
where they determined the Fermi velocities Vieg|x-¢, and the areas of the Fermi sur-
face sheets using dHvA measurements. It was shown that the Fermi velocities of all
hole sheets are low, which would give rise to a large contribution to D(EF) according
to (5.3.3). The dominant contribution to D(Er) comes from the open hole Fermi sur-
face and only a small contribution comes from the X and L pockets due to their small
surface areas. The Kohn anomaly [200], in the slope of the [££0] transverse acoustic
branch of the phonon spectrum of Pd, is attributed to the Fermi surface nesting between
these open hole cylinders (see Ref. [20] and references therein). We also consider this
phenomenon in the later chapter [6]

Let us further analyze the direction from L to X (the C-line), since the open-hole sur-
face shows a comparably small Fermi-velocity along this direction. The compatibility
relation is:

A3—->Cie(C, (5.3.4)

which means that the two-fold degeneracy of the Az-band splits and one of the two
bands intersects the Fermi level (see Fig. [5.3.1a). The C-line is a relatively low-
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symmetric, so that a relatively large weight is attributed to these k-points. This indi-
cates that substantial contributions to the density of states at the Fermi level come from
regions around these points. The C-line is also interesting, since the band-structure
along this direction is considerably modified when spin-orbit coupling is included (see
Fig. [5.3.1b). The lifting of the degeneracy of the A3-bands with spin-orbit coupling
leads to a change in the topology of the Fermi surface namely the appearance of the
L-pocket (see Fig. [5.3.3| on the left). Previous calculations also predicted the exis-
tence of the L-pockets, which were seen only if spin-orbit coupling was taken into
account [190, 191}, 19]. The existence of the L-pockets was confirmed experimentally
by mangetoacoustic experiments [201]]. In the following section we address the pocket
formation in more detail using the two-dimensional (2D) Fermi surface cuts

5.3.2. 2D Fermi Surface

In Fig. and Fig. we present the Fermi surface cuts in the k,-k, plane and
in the I'-X-L plane, employing the RSPt code. For comparison, in Fig. we also
show the two dimensional Fermi surface, which was obtained employing the EMTO
method. In the latter method no linearization procedure is applied to the MTO-basis
functions, so that the full energy dependent basis set is kept. Since in this case the en-
ergy bands are not explicitly calculated, the Fermi surface is defined using the Green’s
function formalism. The high intensity lines of the spectral function at the Fermi level
A(k,w = Ep) will be the Fermi surface in this case. In comparison with the scalar-
relativistic Fermi surface, obtained from FP-LMTO, one finds remarkable good agree-
ment. Unfortunately, the employed implementation of the EMTO method does not
allow the inclusion of spin-orbit coupling, so that a direct comparison of FP-LMTO
and EMTO for the full-relativistic setup could not be performed.

From our knowledge about the band-structure one can easily understand what is hap-
pening on the Fermi surface shown on Fig.[5.3.4] The bands around the X-point give
rise to intersections with the Fermi level and elliptical objects are formed in the two
dimensional Fermi surface cuts (see the X-pockets in Fig.[5.3.4). In the extended zone
picture, the X-pocket is intersected twice by the k,-ky-plane. Apart from the posi-
tion just at the zone boundary, the X-point also appears along the X-direction. The
cylindrical X-pocket however is intersected differently than the X-point within the first
Brillouin zone. As shown on Fig. the region outside the first Brillouin zone cor-
responds to the k,-ky-plane which is shifted by /a in the z-direction (see Fig.[5.3.4d).
This allows us to represent the essential features of the Fermi-surface with a single plot.
Especially, the features near the X-points are captured quite well since two perpendic-
ular cuts of the pockets can be visualized in that way. One of the interesting effects of
spin-orbit coupling can also be observed along the I' — X-direction (see Fig. [5.3.5b).
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Figure 5.3.4.: Top row and bottom left: two dimensional Fermi surfaces in the
ky-ky-plane for k, = 0. Bottom right: Positions of the 2D cuts
in the 3D Brillouin zone. (a): 2D Fermi-surface in RSPt without
spin-orbit coupling. (b): 2D Fermi-surface in RSPt with spin-
orbit coupling. (c): 2D Fermi-surface in EMTO without spin-orbit
coupling. (d): Blue-line: two dimensional Fermi surface in the
kx-ky-plane. Green-line: two dimensional Fermi surface in the
I'-K-X-plane. Red-line: Brillouin zone of a neighboring lattice
site in reciprocal space. Black-Line: Brillouin zone centered
around k = (0,0,0).
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Here, we recognize again what we already encountered in the band-structure shown in
Fig.[5.3.1] namely the splitting of the doublet A5 leading to an increase in the number of
bands which intersect the Fermi level along this line. This phenomenon is not observed
in the scalar relativistic case due to the residual degeneracy of the As-bands in this
direction.

This brings us to another interesting feature of the two-dimensional Fermi-surface
namely, the appearance of a network of tubes which enclose the X-point. They are
also known as the open hole surface in the literature [199]. The open hole surface
in Fig. [5.3.4]is seen as vertical and horizontal lines, extending along the X-W-X path
(compare also with Fig.[5.3.3|on the right panel). A single nesting-vector q in the [110]
direction can be identified, which is able to connect almost all k-points of this sheet.
The nesting condition is fulfilled to more extent in the scalar relativistic case than in
the case where spin-orbit coupling is included. In the latter case, the level repulsion of
the As-bands leads to a pronounced curvature around the X-point (see Fig.[5.3.1). The
nesting condition in palladium implies that a macroscopic number of Bloch vectors can
be connected by the same q, which has been shown to lead to an enhancement in the
charge susceptibility [202] and to a Kohn anomaly [20]. The latter will be discussed in
the following chapter [0

Key results of the previously performed electronic structure calculations in the liter-
ature have been confirmed by us employing LDA. One particularly important result is
the L-pocket in palladium which has been shown to be a relativistic effect. It could be
shown explicitly that the L-pocket disappears if one ignores spin-orbit coupling terms
in the numerical calculation. The fact that this feature has been also observed exper-
imentally, leads us to the conclusion that relativistic effects are important in order to
be able to reproduce the experimental findings accurately and to model the electronic
structure more realistically.

5.4. Spectral Properties: Local and Nonlocal
Correlation Effects

In section[5.2.3] by fitting of the equilibrium volume to the experimental values, we ob-
tained relatively small values for U and J (U = 1.0eV and J = 0.3eV) as compared to
the recent constrained RPA calculations of Ref. [203] (U = 1.5 — 4 eV). This might be
an indication for the importance of the non-local interaction in Pd which are not treated
on the same level as the local interaction in the present study. The phenomenon that the
effective local interaction appears small for a system with large non-local interaction is
also discussed by Tim Wehling in chapter 5 in the book “DMFT at 25: Infinite Dimen-
sions: Lecture Notes of the Autumn School on Correlated Electrons 2014”. The author
demonstrates, in a simplified Gedankenexperiment, that the effective on-site interac-
tion is reduced by an amount which is roughly of the order of the non-local Coulomb
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(a) (b)

Figure 5.3.5.: Fermi surfaces in the I'-K-X-plane. (a): FP-LMTO-code without
spin-orbit coupling. (b): FP-LMTO-code with spin-orbit coupling.

interaction strength. In order to shed light on the question about local and non-local ef-
fects, we are going to compare our result to the so called quasi-particle self-consistent
GW (QSGW) methocﬂ This method works best for weakly correlated systems and
allows us to treat the non-local interactions on the same footing as the local interac-
tion [[181} [182]. Only a short overview about GW and the developments which lead
to QSGW will be given at this point. The interested reader is redirected to Ref. [181]
and the references therein. The computational setup for the QSGW calculations are not
presented here (see Ref. [178]]).

In recent years, first principle calculations involving the GW approximation [204]
have become more popular. In particular the self-consistent GW formulations are
promising, since they can determine quantities like band gaps more accurately, as com-
pared to “one-shot” GW approaches [181]. In such methods the first step is to compute
the band structure of the solid, usually within LDA. Employing the random phase ap-
proximation (RPA), the density response function is then calculated in order to evaluate
the dielectric function and the screened Coulomb interaction W. The matrix elements
of the self-energy are added as corrections to the LDA eigenvalues, and the effective
potential is updated self-consistently. In spite of the simplified formalism of calcula-
tion, as compared to the full GW scheme, a good agreement with experiment for several
materials was obtained [204]. In this study we employed the quasi-particle GW method
(QSGW) [181}182]. The main object of interest is the self-energy corrected eigenvalue
for the band v and Bloch vector k

Ek,v = €y t Zk,vAzkv, (5.4.1)

2 I acknowledge Wewei Sun for providing the QSGW data for the comparison
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where the operator AXg = (Wi, |Z(r,r'ek,) — Vie(r)|Pky). The self-energy is given
in terms of the Green’s function and the screened Coulomb interaction W: Z(r,r’) =
ﬁ f dw’'G(r,x’,w — ")W(r, r’,w’)e‘5w'. From the slope of the real part of the self-
energy one can obtain the renormalization factor

Zgy =

-1
[1 - M] . (5.4.2)

ow

In a direct comparison with LDA+DMFT results, the GW calculations reveal whether
significant non-local correlation effects occur in Pd.

We will mainly focus on the band-structure, spectral functions, and Fermi surfaces
which where calculated taking the experimental volume [[183]] at room temperature. In
both methods the empirical knowledge about the material volume is used. This allows
us to compare both methods (LDA+DMFT and QSGW) on the same level.

The band structure along high symmetry lines, within the first Brillouin zone, is de-
picted in Fig.[5.4.1|(top left). The solid green lines and the blue dashed lines correspond
to the self-consistent result of LDA in both methods (RSPt and LMSuite). The bands
within LDA from RSPt (green solid lines) and from LMSuite (blue dashed lines) coin-
cide. This serves as a common starting point for both, the LDA+DMFT scheme in the
RSPt framework, and the QSGW scheme in LMSuite. Therefore, the differences which
we will see in the many-body extensions, can be attributed to the correlation effects
beyond LDA.

The comparison of LDA bands versus QSGW bands, shown in Fig. [5.4.1] is inter-
esting by itself since this is a direct comparison of two different models for the quasi-
particles in the solid. On the one hand, we have the usual Kohn-Sham quasi-particles
and on the other hand the GW quasi-particles which follow from diagrammatic rules.
The agreement between them is good around the Fermi level, while the deviation are
larger when one looks at bands for larger binding energies (E — Efermi > —2.7¢eV). We
also notice that the overall agreement between the spectral function in LDA+DMFT
and the QSGW-bands is good around the Fermi level. The self-energy in LDA+DMFT
is energy dependent and the imaginary part leads to a finite lifetime which can be dif-
ferent for different energies. In the weakly interacting case, considered here (U = 1eV
and J = 0.3 eV), the lifetime effect is relatively small. The QSGW calculation is based
on a self-consistency cycle where only the real part of the self-energy is kept to build
up an effective Kohn-Sham-like potential, so that the lifetime is infinite by construc-
tion. Around the I'-point, for energies between —6 eV and the Fermi level, the QSGW
bands are shifted towards the Fermi level to a larger extend than the LDA+DMFT spec-
tral function. For binding energies larger than 6 eV, the lowest band is shifted down
in energy to a larger extend than the maximum in the LDA+DMFT spectral function
A(k,w). The overall trend shows a stronger deviation from the Kohn-Sham bands in
QSGW, than the corresponding shift of the spectral weight when one goes from LDA
to LDA+DMEFT. This indicates that the interaction parameters used in LDA+DMFT
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Figure 5.4.1.: Blue color map corresponds to LDA+DMFT, U = 1.0eV and J =
0.3 eV. Top left: Band structure along high symmetry directions
in the Brillouin zone. Top right: QSGW and LDA+DMFT DOS.
Bottom left: Fermi surface cut in the k.-k,-plane. Bottom right:
Fermi surface cut including the L point

(U = 1.0eV J = 0.3eV) are small and hence do not reproduce the correct quasi-
particle positions.

The DOS calculated within QSGW method is plotted (red line) in Fig.[5.4.1] (top right
panel). The DOS corresponding to the initial LDA solution is plotted with blue color. In
Fig. [5.4.1] (top right) we also show the k-integrated spectral function of LDA+DMFT
. Note, that the Fermi-smearing integration method was employed, in order to calcu-
late the k-integrated spectral function in LDA+DMFT, while the so-called tetrahedron
method was employed in LMSuite in both plain LDA and in QSGW. Therefore a direct
comparison is not possible. We have also performed the density of states calculations
employing the tetrahedron method within RSPt and we found an excellent agreement
with the results from LMSuite on the LDA level (not shown). The overall effect is most
easily monitored by looking at the main three peaks in the k-integrated spectral func-
tion. As we go from the LDA starting point to QSGW and LDA+DMFT, similar trends
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can be seen in the three main peaks in both methods. The peak closest to the Fermi
level remains on the same position. The middle peak however is shifted towards lower
higher energies (lower binding energies) and the peak close to the bottom of the band is
shifted to higher energies as well. One key difference, though, is that by including elec-
tronic correlations in the framework of LDA+DMFT the high binding-energy satellite
could be produced. This was not seen in the density of states of the QSGW method.
The latter might be attributed to the 7-matrix ladder diagrams which are present in the
LDA+DMFT self-energy, but not in the QSGW one. Since there exist extensions of
the GW formalism that allow for 7-matrix diagrams as well (see Refs. [205, 206l) it
would be interesting for future investigations to see whether QSGW can reproduce the
satellite formation, also. It is worth to mention that within QSGW one can also keep the
full frequency dependent self-energy just for plotting the k-integrated spectral function
after the self-consistency is reached. This would give rise to a different spectrum as the
one seen in Fig. [5.4.1] (top right panel). But since dynamical parts of the self-energy
do not enter the QSGW self-consistency cycle we decided prior not to include this in
Fig.

We also compared the Fermi surface of palladium for different high symmetry planes.
The Fermi surfaces in the k,-ky-plane obtained from both, the LDA+DMFT and the
QSGW, are shown in Fig. (bottom left). As one sees neither of the two many-
body methods changes the overall Fermi surface significantly. The diameter of the
tube structures are only weakly affected, but the k-space volume enclosed by the sheets
shows some effect of correlations. The Fermi surface nesting vector, believed to be
responsible for the Kohn anomaly in the phonon dispersion of Pd, is estimated to be
q= 27”[0.3,0.3,0], in close agreement with previous studies [20].

A different cut in the Brillouin zone including the L-point is shown on Fig. on
the bottom right panel. Here the L-pocket with relativistic origin can be seen clearly
in all cases. QSGW and LDA+DMEFT display similar trends in the correlation induced
changes of the Fermi surface, mainly the “neck”-formation in the I'-L-direction and
a decreasing of the L-pocket diameter. Note, that there is a difference, already in the
LDA solution, for two different codes (RSPt and LMSuite) as the L-pocket is either
disconnected along the X — L — X direction (RSPt) or there is the formation of
a bridge (LMSuite). We found, that this difference can be attributed to the different
integration schemes used in the two codes. While the tetrahedron method gives rise to
a connected L-pocket in LMSuite the Fermi-smearing method leads to a well isolated
pocket in this high symmetry plane. This can be understood as a rigid shift of the
chemical potential which can either create the connection or can lead to an isolated
pocket.

In conclusion, the non-local effects on the level of QSGW, hardly changes the pic-
ture, we draw from the local many-body theory (LDA+DMFT). This is at least true for
the material properties which can be compared nowadays in both methods (spectral-
functions Fermi-surfaces etc.) which excludes ground state properties like equation of
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state curveﬂ It is also worth to remark, that probably neither of the two methods can
give a full understanding of all material properties, so that a coherent picture cannot be
given at the moment. This has to do with the fact that palladium is a material in which
the itinerant electron picture should give rise to a good description due to the large
bandwidth compared to the presumably small interaction parameter. In the same time
there are indications which show that the material needs to be treated with a method
able to capture strong correlations. Hence, the LDA+DMFT treatment is necessary to
give a complementary view to the weakly correlated GW description and vice-versa.

5.5. Conclusion

Electron correlations are commonly assumed to affect the electronic structure of the 3d
elements to a larger degree than in the 4d elements due to the difference in the d-state
bandwidth and the different distribution of the total hole density among orbitals [[189]].
By electronic structure calculations within a LDA+DMFT framework, we could show
that, even though LDA can provide a reasonable description of the electronic structure
of Pd, correlation effects give important contributions to ground-state and spectral prop-
erties. We could improve the equilibrium lattice constant and bulk modulus from that of
LDA. The calculated spectral functions, obtained with LDA+DMFT, supports the for-
mation of a satellite in the high-energy binding region, while at the same time improv-
ing the band positions in comparison with experimental results. The calculated spectral
function and the Fermi surface showed no major difference between the LDA+DMFT
and QSGW method, and in particular the nesting vector in the [££0]-direction was only
slightly changed from its LDA value.

We found that the different Coulomb interaction parameters are required in order to
reproduce the experimental equilibrium lattice constant on the one hand (U = 1eV and
J = 0.3 eV) and the PES satellite on the other hand (U =~ 2-3eV). The obtained values,
however, almost fall in the range 1.5-4 eV of the recent constraint RPA calculations of
Ref. [203]], where different degrees of screening are considered. A possible origin of the
observed discrepancies might lie in the ignored non-local correlations or the frequency
dependence of U [203,207].

Our presented study confirms the band narrowing and favors the satellite formation
also seen in experiment for Pd. Previously, the difference between the PES and band
structure calculations has been attributed to the surface effects [[208]], but our results
indicate that correlations should be also taken into account, as it was pointed out ear-
lier based on empirical arguments [209, [193]. LDA+DMFT method should be able to
probe the effect of correlation on the PES on an ab initio level, and further studies in
conjunction with bulk and surface sensitive PES should hopefully make it possible to
disentangle surface and correlations effects from each other.

3 see for example Ref. [181]] for a discussion about limits in computing total energies in QSGW
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By performing GW calculations in combination with DMFT, the so-called
GW+DMFT scheme [210], non-local correlations and spin fluctuation can be captured
on an equal footing, which turns out to be the next essential step for the realistic de-
scription of the physical properties of palladium. A closer inspection of the momentum
dependence of other physical properties, than those presented here, could be interesting.
Particularly interesting in this context would be to study momentum-dependent suscep-
tibilities that correctly address paramagnon physics, which were recently observed in
palladium [211].
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ABSTRACT

We employ the frozen phonon method in order to investigate the phonon spectrum
of Pd along certain high symmetry directions in the Brillouin zone. We found that
the phonon frequencies are systematically overestimated in LDA when the equilibrium
lattice constant, also obtained in LDA, is used. The agreement with experimentally
determined phonon frequencies is improved by increasing the equilibrium volume of
the system. The large equilibrium volume can be modeled with the LDA+DMFT ap-
proach by taking into account the Coulomb interaction (U = 1.0eV) and Hund’s rule
coupling (J = 0.3eV). The phonon frequencies for the highest modes of vibrations,
situated at the zone boundary of the first Brillouin zone, are analyzed in detail using
the LDA+DMFT approach. We find, that the correlation effects influence different
phonon modes differently. The major difference is observed between longitudinal and
transversal phonon modes at the L-point, while the phonon frequencies at the X-point
are almost unaffected.

6.1. Phonon Modes of Palladium

Our investigation of the Fermi-surface, presented in chapter [5| motivated us to analyze
the phonon spectrum of Pd. In particular the change in the topology at the L-point
with increasing U and J parameter and the nesting condition along the X-direction are
indications for the importance of the interplay between electronic and ionic degrees of
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freedom. Nesting is possibly connected with the softening of a certain phonon mode
in the phonon spectrum of palladium [20]. It is instructive to discuss a simpler system
first, namely the non-interacting homogeneous electron gas (HEG), before we turn back
to Pd. The HEG is completely isotropic in position and in reciprocal spaces. Not only
the Fermi surface is spherical symmetric, but also the response functions like the -
dependent charge susceptibility. Therefore, instead of four independent parameters
w,qyx,qy,q; one can describe the charge susceptibility only with two parameters w, |q],
giving rise to the particle-hole continuum for free electron systems. The particle-hole
continuum 1is the region in (w,|q|)-space where it is possible to create particle-hole
pairs at T = 0. It was shown by Kohn already in 1959, in his seminal work [200], that
this simplified model can explain certain features in the phonon spectrum of metals. In
metals, for small q-vectors, the electrons are able to screen the excess positive charge
from lattice vibrations by creating particle-hole pairs. This changes drastically, once
the phonon vector q is able to span the Fermi surface diameter equal to 2kr. In this
case the electrons are no longer able to screen the positive excess charge and hence the
acoustic modes undergo a substantial change in their frequency dependence at g = 2kr.
This is the so-called Kohn-anomaly [200]].

The work of Kohn was later extended to different geometries of the Fermi-surface by
Afanas’ev et al. [212]. They showed that the type of the anomaly depends on the cur-
vature of the Fermi surface sheets. The Kohn anomaly can take different forms: small
kink in the phonon dispersion, softening of phonon modes, or even imaginary phonon
frequencies. This mainly depends on the dimensionality and the shape of the Fermi sur-
face. The most pronounced form of the Kohn anomaly can lead to a dimerization which
takes place in one dimensional systems. The later drives a transition from a metallic
state into the band-insulating one. There, one can show, that a one dimensional equally
spaced chain of atoms with one electron per ion is unstable against a dimerization of
the lattice. This is the famous Peierls instability of 1D chains [213] When the system
forms dimers additional Bragg-planes appear in the reciprocal space at k = 7/2a (a is
the lattice constant), the called doubling of the Brillouin zone. The system can lower
the kinetic energy by opening a gap at k = n/2a. The associated gain in the kinetic
energy is larger than the loss in the potential energy.

In the three-dimensional case of bulk palladium, the Fermi-surface has parallel sheets
almost without any curvature (see Fig. [5.3.5a in chapter [5)), and indeed, there exists
experimental evidence that palladium maybe a material which demonstrates a Kohn
anomaly in the phonon dispersion. Experimental studies were done by Miiller et
al. [21, 183]] who measured the phonon spectrum of palladium at 7 = 120K, and
found a candidate for the Kohn anomaly at a g-vector of around [0.35,0.35,0] 27” Later,
Savrasov and Savrasov [214] and Takezawa [215] reported numerical studies without
any signature of phonon anomalies in Pd. In 2008, however, Stewart [20] observed

! In this case all g-points on the Fermi surface can be connected by the nesting vector 2k, the so

called perfect nesting condition.
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a softening in the phonon dispersion at around g = %7”[0.3,0.3,0] using LDA, that
still somewhat underestimates the experimental value of |q|. He showed that the elec-
tronic degrees of freedom are responsible for the softening of the phonon mode. Re-
cently, Zhonh-Li et al. [216]] pointed out that the observed Kohn-anomaly by Stewart
depends very much on the technical details of the simulation. They showed that the
Kohn-anomaly vanishes when a more accurate calculation is performed with a denser
q-mesh. The analysis of the generalized susceptibility by Freeman ef al. [202] showed
a pronounced enhancement of the generalized susceptibility at a q-vector of around
q = 27”[0.325,0.325,()]. One can summarize, that the existence of a Kohn anomaly in
Pd is still debated and more theoretical and experimental studies are required in order
to understand the interplay between electrons and phonons. The numerical studies up
to now did not include correlation effects beyond LDA. We are going to analyze the
effect of electron correlations on certain phonon modes in this chapter.

In 2013, Corso investigated the influence of various exchange correlation function-
als on the phonon spectrum in transition and noble metals [217]. He showed that the
phonon frequencies obtained within LDA and within the generalized gradient approx-
imation (GGA) [218] bracket the experimental phonon frequency for all q-vectors.
While LDA overestimates the phonon frequencies, the GGA underestimates them. The
relative error of the theoretical phonon frequencies in LDA and GGA is about 5 % at
the high symmetry point q = L, as compared to the experimental one. It is worth to
mention however, that in this study the theoretical lattice constant has been corrected
by the zero-point anharmonic expansion (ZPAE), which gives a larger lattice constant
than the one typically obtained within LDA. It has been pointed out earlier that, in order
to improve the LDA results, the theoretical equilibrium lattice constant should be cor-
rected by the ZPAE [219]. Moreover, if the experimental phonon spectrum is measured
at room temperature one should correct the lattice constant by the thermal expansion
coefficient also [219]. The underestimation of phonon frequencies in GGA is worsened
by the ZPAE. According to Ref. [219] the ZPAE correction for Pd adds negligibly small
changes to the theoretical value of the lattice constant, while there is a reduction of the
bulk modulus By by 2 %.

There exist experimental evidences (see the Ref. [220]) that many-body corrections,
like spin-fluctuations (paramagnons), are important for the lattice vibrations in Pd. In
this scenario, one would expect that, it is not the divergence of the bare charge suscep-
tibility which results in the phonon softening, but the interacting one. Therefore, it is
particularly important to analyze the connection between lattice vibrations and the local
Coulomb interaction in palladium. We saw above (see chapter [5)), that the additional
local interaction leads to corrections of the equilibrium volume and bulk-modulus in
the right direction. This indicates that there is an essential influence of electronic cor-
relations on the stiffness of the system. Recall that, the bulk modulus By is related to a
macroscopic distortion of the system. It can be seen as a modulation of the lattice with
long wave-lengths which are much larger than the lattice constant. The wave vector for
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macroscopic distortions is ¢ — 0. The interplay between electronic correlations and
microscopic distortions, like phonon modes, has not been investigated for this system
so far.

6.1.1. Frozen Phonon Approach

At finite temperature, the ions oscillate around their equilibrium positions. For low
enough temperatures the vibrations correspond to simple harmonic oscillations about
the equilibrium position. These are elementary collective excitations of the lattice,
called phonons. These bosonic degrees of freedom can be included in the first princi-
ple electronic Hamiltonian. In the second quantized formalism one would arrive at a
Hubbard-Holstein-like Hamiltonian which is a complicated many-body problem with
fermionic and bosonic degrees of freedom. One can, however, make use of the fact
that the characteristic velocities of electrons and ions differ by a factor of thousands.
This allows us to apply the adiabatic approximation, which is the same concept as it
was employed in the Born-Oppenheimer approximation (compare with Eq. in
chapter [2)). One arrives at the frozen phonon-approach, which is a way to include the
phonon modes only as parametric dependence in the electronic Hamiltonian. Most of
the derivation below, follow the book by Ashcroft and Mermin on solid state theory [26]
and the book on graphene by M.I.Katsnelson [221]].

Besides the adiabatic approximation, one also usually makes two additional assump-
tions for the frozen phonon method. The first assumption is that the mean equilibrium
position of each ion is a regular lattice site R. The important point here is that, now
the site R is only the mean position of the ion, not its instantaneous one. The second
assumption is that, the typical displacements are small as compared to the inter-atomic
distance |u| < a. A useful way to describe the new position of an ion is:

rr = R+ u(R) (6.1.1)

where rr denotes the position of the ion whose mean position is R and its displacement
is given by u(R). For the following analysis, it is convenient to address the position of
the ions differently, namely by the integer indices, 1 = (/1,l,[3), labeling the unit cells
of the crystal:

R:llal+lza2+lga3+rk =Ry +ry. (6.1.2)

Here {a;,a,,a3} is the set of the primitive translation vectors and each units cell contains
n atoms labeled by k, with positions ry relative to the origin of the unit cell. The ionic
displacements can than be written as u(R) = u(lk).

The displaced ions increase the potential energy of the system. In the harmonic
approximation we consider the expansion of the potential energy up to the second order
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in the displacements u(lk)

1
VaVo+ ) @auek) + 5 > Qopc VK )uausVk’),  (6.1.3)
ke 2 ka kB ’

where a and S label Cartesian coordinates, and ® denotes the matrix of the so called
force constants. The elements of the latter @, z(1k,1'k”) describe the proportionality co-
efficients connecting the displacement with the force acting on the ions. The oscillation
frequency around the equilibrium position is determined by the equation of motion:

Miin, (k) = — Z q)a,ﬂ(lk,l’k')uﬂ(l'k'), (6.1.4)
Ik’

where M} is the mass of the k-th atom in each unit cell. In the case of a solid with
translational symmetry, the solution can be found with the usual plane wave Ansatz

Aak(q) i(a-Ri—

Uq (ks 1) = —2—"¢/@Rimen, (6.1.5)
VM

where A, (q) is the polarization vector, and q is the wave-vector corresponding to the

frequency w(q). This transforms Eq. (6.1.4)) into the following eigenvalue problem:

W@ Avk = ) Daplk, k', ) Ag (@), (6.1.6)
Bk’

where the dynamical matrix D, g(q) is given by

Dap(k, K@) = 3 @y gV K ReR) | (6.1.7)

1
/MkM,i 1y

The solution of are the normal modes of the lattice vibrations with wave-vector
q, the eigenvalues correspond to the phonon frequencies, and the eigenvectors are the
so-called polarizations.

One way to calculate the dynamical matrix is to construct a super-cell of the parent
structure, and to calculate the force constant matrix only within the super-cell. This is
also known as the finite-displacement method. The force constant matrix can be ob-
tained from the total energy differences, when the ionic positions change with respect
to their equilibrium positions. The dynamical matrix is then obtained by Fourier trans-
formation of the force constant matrix. The minimal number of forces, for which one
should solve the Eq. (6.1.6), is just given by the number of independent elements of
the dynamical matrix (6.1.7). Group theoretical methods can be employed in order to
represent the dynamical matrix in a block-diagonal form, so that the number of indepen-
dent elements can be further reduced. We would like to find a similarity transformation
which brings D, 3(k,k’,q) in block-diagonal form with blocks which cannot be further
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reduced. The representations with this property are called irreducible representations
(see Ref. [222,1223]).

In certain cases, one is forced to keep the super-cell size as small as possible, e.g. in
LDA+DMFT, where the numerical calculations are only feasible when the number of
atoms in the unit cell is small enough. We allow the system to break the symmetry in a
second order structural phase transition, where some of the atomic displacements lower
the symmetry of the crystal, from the parent space group Gy to a subgroup G. Whether
the structural phase transition takes place in reality, is determined by the difference
of the total energy between the parent phase and the one with the lowered symmetry.
The total energy expansion can be employed in order to determine the phonon modes
as oscillations about the positions of the ions in the parent structure. This represents
the specific case of the Landau theory of a second order phase transitions namely the
structural transitions [223|].

Group theoretical methods allow us to find the polarization vectors in a systematic
way. It can be implemented on a computer and can be applied for any parent space
group. Stokes and Hatch applied the concept of isotropy subgroups to the problem of
structural phase transition [224]]. In the frozen phonon method we compare the energy
of the system in the symmetry broken phase with the unbroken phase. In practice we
explicitly break the symmetry by distorting the parent structure. The isotropy subgroup
can identified uniquely by following the following steps:

e Specify a g-vector of interest.

e Try all irreducible representations I; of the parent point group Gk and all direc-
tions of the order parameter which give rise to atomic displacements.

The isotropy subgroups can be generated directly by “ISOTROPY Software Suite”
which also directly provide the frozen phonon modes of a given crystal structure [225]].

6.1.2. Frozen Phonon Modes: The LDA Study

Within the frozen-phonon method, we can obtain phonon frequencies only for wave
vectors q with corresponding wavelengths which are commensurate with the lattice.
This is accomplished by considering unit cells with a volume, integer multiple of the
unit-cell volume of the parent structure. The corresponding wave vectors in reciprocal
space are then constrained to integer fractions of the characteristic wave-vector scale
n/a. In the present study, the focus lies on the closer analysis of q-vectors along the
high symmetry lines A, A, and £. With this choice we do not access the full infor-
mation in ¢-space which would allow us to determine g-integrated quantities like the
phonon density of states or the Debye-temperature. The analyzed q-vectors, nonethe-
less, include the phonon-modes at the zone-boundary X = [0,1,0], L = [1/2,1/2,1/2],
K =10.75,0.75,0], and certain q-values between the I'-point and the zone boundary
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X K L
q () 0,1,0 3/43/40 1/2,1/2,1/2
# of atoms per unit cell 2 8 2

Table 6.1.1.: Investigated q-vectors of high symmetry points in the reciprocal
space. The minimal number of atoms per unit cell is also shown.

A Ay 2 A Ay
q (%”) 0,1/4,0 0,1/2,0 3/8,3/8,0 1/8,1/8,1/8 1/4,1/4,1/4
# of atoms per unit cell 8 4 16 8 4

Table 6.1.2.: gq-vectors of high symmetry lines Investigated q-vectors of high
symmetry lines in the reciprocal space. The minimal number of
atoms per unit cell is also shown.

points. In the tables [6.1.1] and [6.1.2] we summarize the investigated q-points and the
corresponding number of atoms in the super-cell.

First, we considered the equilibrium volume from the LDA-calculation. The volume
was taken from the equation of state curve in Fig. [5.2.1] (see chapter [5) employing the
Birch-Murnaghan formula as a model function [186]. Hence, the phonon frequencies
correspond to a state of the material with zero applied pressure if not stated otherwise.

In Fig. we plot the energies as a function of the displacement amplitude for
different phonon modes. The amplitude is just given by the factor M\/M_(kq) from Eq.|6.1.5}
We performed fits to quadratic functions in order do determine the phonon frequencies.
Note, that hereafter the phonon frequencies are given in unit of cm™! (1cm~'=1.24 x

10~*eV). The energy curves exhibit a nice parabolic behavior, as one can also see on
Fig To emphasize this fact, the square root of the energy is also depicted as a
function of the amplitude in Fig[6.1.1b] In the current study the maximum displacement
that was considered is 0.1[a.u.]. In general one has to make a trade off in the magnitude
of the displacements: for small displacements the change of the total energy is smaller
than the error bars of the employed energy calculations; on the other hand, anharmonic
terms in the expansion of the total energy (as a function of the displacement) do appear
in case of larger displacements.

In Fig. we show calculated phonon frequencies for g-points form Tab. [6.1.1]
and Tab. [6.1.2] The experimental phonon frequencies from Miiller et al. [21] are also
shown for comparison. The measured phonon frequencies were obtained at 7 = 296 K
and ambient pressure. The overall agreement with the experimental phonon frequencies
is good, although a systematic overestimation is found. We find the best agreement with
the experimental values for wave vectors close to the I'-point. The longitudinal phonon
frequencies at the zone boundaries are overestimated in comparison to the experimental
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UEV) V(au) Xrem™) X em™) Lyem™) Lpem™

LDA - 95.94 172 247 121 261
LDA - 99.32 161 229 114 242
LDA+DMFT 1.0 99.32 157 231 108 251
LDA+DMFT 1.3 99.32 155 229 103 258
Exp.296 K [21]] 99.32 151 222 105 227

Table 6.1.3.: Phonon frequencies calculated at selected points of the Brillouin
zone for Pd. The calculations where performed employing LDA
and the LDA+DMFT framework. Two different volumes were in-
vestigated, namely the LDA equilibrium volume (95.9a.u.) and
the experimentally obtained equilibrium volume (99.32a.u.). The
experimental phonon frequencies from Ref. [21] are also shown
for comparison.

ones by 11 % and 15% for q = X and q = L, respectively. The comparison of the
transversal phonon frequencies at the zone boundaries with the experimental values
shows a difference of 13 % and 15 % for q = X and q = L, respectively (see Tab.[6.1.3).
The LDA again predicts a system which is stiffer than in reality. Hence, the “over-
binding” tendency of LDA is also confirmed here. This fits to our previous result (see
chapter [5)), namely the overestimated bulk modulus in LDA.

We also repeated the same calculation for the experimentally measured volume
V = 99.32a.u. (results are also plotted in Fig. [6.1.2b). This is equivalent to the ex-
pansion of the system by applying a negative pressure, since the equilibrium volume
obtained in LDA is smaller than the experimental one. With V = 99.32 a.u., we find
a better agreement with the experimental phonon frequencies. The phonon modes be-
come softer when the lattice is expanded. The deviation of our phonon frequencies from
the experimental measurements is now below 10 % for all calculated phonon modes,
while the discrepancy is the largest for the zone boundary phonon modes (X and L).
One can clearly see the softening of the phonon frequencies along the X direction in the
experimentally measured values. Due to the coarse mesh in -space the anomaly in the
phonon spectrum is not visible in our LDA study.

6.1.3. Frozen Phonon Modes: The LDA+DMFT Study

To incorporate the effect of the local Coulomb repulsion (U) and the effect of Hund’s
rule coupling (J), the combined framework of LDA+DMFT was employed. The solu-
tion to the many-body problem is found by solving an impurity problem for each lattice
site, which are all subjected to the DMFT self-consistency condition. If the lattice has
the full translational invariance of the parent structure, the impurity problems are also
equivalent for each lattice site. Hence, the solution of only one impurity problem is nec-
essary to describe the fcc structure of palladium. The number of independent impurity
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problems, however, increases once the translational invariance is broken due to finite
microscopic distortions. For the latter one needs to switch e.g. to the so called real-
space DMFT (RDMFT) scheme. In LDA+DMFT the self-consistent solution of the
distorted lattice is found by solving the Kohn-Sham reference system and the impurity
problems for each atom type. This procedure considerably increases the computational
complexity of a regular LDA calculation, since the non-interacting reference system in
the Kohn-Sham scheme is extended by impurity problems in the correlated sector.
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Figure 6.1.1.: (a): Energy vs the amplitude of the phonon mode for q value
at the zone boundary X and L. (b): Square root of the Energy
vs the amplitude of the phonon mode for q value at the zone
boundary X and L.
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Figure 6.1.2.: Comparison of the frozen-phonon calculations within LDA with

the experimental phonon frequencies from Ref. [21]. (a): Equi-
librium volume from LDA Vipa = 95.94a.u. (b): Experimental
volume Veyp = 99.32a.u.
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Figure 6.1.3.: (a): Energy vs Amplitude of phonon modes for q value at the
zone boundary X and L. (b): Comparison of the frozen-phonon
calculations within LDA and LDA+DMFT with the experimental
phonon frequencies from Ref. [21].
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A full charge self-consistent LDA+DMFT study can still be done if the number of
atoms for a given frozen-phonon mode is small. For example, the number of atoms per
unit cell to describe the X and L is only two. One can show, that these two atoms in
the unit cell are related by a point-group operation, hence in practice, one only needs to
solve a single impurity problem for each DMFT cycle. This considerably reduces the
overall computational complexity and the required computation time becomes compa-
rable to a regular LDA+DMFT calculation (one atom per unit cell).

The points, X and L, are particularly interesting since they can be related to the lat-
tice contribution to the specific heat. Previously, in LDA studies (see section , we
found a considerable overestimation of the phonon frequencies at these points. We ex-
pect that, the local correlations, that are included in LDA+DMFT, might be enough to
correct this. We took the experimental volume from Ref. [21] (see also the discussion
in chapter [5), which is consistent with our previous analysis. Recall that, the experi-
mental volume matches the numerically obtained one for U = 1.0eV and J = 0.3eV.
In Fig. [6.1.3] we show the energy curves as a function of the distortion amplitude for
different values for U and J. Generally speaking, the phonon modes are only slightly
modified as compared to their LDA values, whereas the effect on the X -point is less pro-
nounced than on the L-point. The transversal mode of L-point is getting softer when U
and J is increased and the frequency of the longitudinal mode of the L-point increases.

One should emphasize, that not all q-points are affected equally by U and J. This
is remarkable, since the effect comes solely from a local self-energy. In Figs. |6.1.44)
and we show the modes which are mostly affected by U and J. For the clarity,
we also labeled the A-B-C stacking sequence in the [111]-direction of the fcc crystal.
One can see, that the atoms in the B-layer are displaced in the opposite direction as the
atoms in the A and C-layer. The transversal and longitudinal phonon modes differ in
their displacement directions, which are either inside the (111)-plain or perpendicular
to it. For larger U and J values the energy cost which is connected with the transver-
sal displacement is reduced. For the oscillation in the [111]-direction the energy cost
increases with U and J.

The transversal and longitudinal phonon mode at the L-point show opposite trends
when U and J are increased. Namely, the transversal L mode is considerably softened
while the longitudinal L phonon is hardened. The softening of the transversal mode
indicates that there is a increased tendency for the (111)-planes to glide, at least from
LDA+DMFT point of view. Interruption of the normal stacking sequence of atomic
planes might be more likely for larger U and J values than in LDA. However, this
question cannot be answered at the current stage. Further investigation of phonon
modes with smaller q values or the comparison of ground state energies of the fcc-
and hcp-structure would be of high interest for the future studies.
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Figure 6.1.4.: Unit cells employed for the phonon calculation at the L-point.
The arrows indicate the polarization vector of the phonon mode.
(a): Transversal frozen phonon mode at the L point. (b): Longi-
tudinal frozen phonon mode at the L point.
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6.2. Conclusion

Phonon modes are important for the understanding of the physical properties of the
system, like the melting point or elastic properties. The latter also complements the
results obtained by the bulk modulus studies presented in chapter [5] Note that, the
phonon modes are microscopic distortions with a small wavelength, while the bulk
modulus is a macroscopic distortions with an infinite wavelength. In particular the zone
boundary modes can be linked to the Debye temperature, as being the highest normal
mode of vibration in the simplified Debye theory. In the Debye theory, however, an
isotropic elastic solid is assumed, which has an isotropic phonon dispersion. Even
though, the Debye theory is not applicable to crystalline solids, it can still give a good
approximation for the low temperature heat capacity of insulating crystalline solids,
where electronic contributions to the specific heat are negligible. For metals, however,
contribution from highly mobile conduction electrons are significant for the specific
heat.

We analyzed the interplay between electronic correlations and microscopic ionic dis-
tortions in palladium. By applying the frozen phonon approach, we demonstrated that
there is discrepancy between the theoretical phonon dispersion in LDA and the experi-
mental results . We found that the phonon frequencies are systematically overestimated
in LDA.

The LDA+DMFT approach was exploited previously in order to take into account
the effects of local correlations, like in the case of describing the higher equilibrium
volume as seen in the experimental studies. We could show that a first correction of
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the phonon modes can be already achieved by expanding the lattice to the experimental
value using plain LDA. An additional change of the frequencies was observed as a
direct consequence of U and J. We discovered that not all phonon modes are affected
equally. In particular, the transversal and longitudinal phonon mode at the L-point
show opposite trends when U and J are increased. Namely, the transversal L mode is
considerably softened while the longitudinal L phonon is hardened. This is in contrast
to the observed trend in the LDA-study, where a negative pressure was applied to the
system in order to simulate the larger equilibrium volume. There we found a uniform
softening of phonon modes for all studied q-vectors.

Our calculations were restricted to small values of U and J (U =~ 1eV J =~ 0.3eV)
which were found to predict the correct volume. Strongly correlated physics, with
larger U and J parameter, is anyway not expected to be well described by the applied
impurity solver (SPT-FLEX), which is based on perturbation theory and the infinite
partial summation of diagrams. To investigate the effect of strong correlations more
accurately, one would require an impurity solver, which goes beyond the perturbation
theory, e.g. the continuous-time quantum Monte-Carlo method [226, 227]]. It would be
interesting to do a similar analysis for 3d transition metals, like Ni, which are known to
show clear evidence of strong correlations.
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7. Conclusions and Perspectives

In order to model the electronic structure of transition metal elements realistically, it is
essential to take into account strong electron correlations of its constituent parts. It was
believed, however, that one of the wide band 4d-metal elements, namely palladium, is
well described by density functional theory. We showed in our study explicitly, that the
inclusion of the local Hubbard interaction (U) and the Hund’s exchange coupling (J) in
the framework of LDA+DMFT can reproduce experimentally observed material prop-
erties better than in LDA. The experimentally observed formation of a satellite in the
high energy binding region of photo-emission spectra, the equilibrium volume, and the
bulk modulus could be modeled for the first time employing LDA+DMFT. These prop-
erties were not captured by any band-structure based method up to this point. By in-
cluding local correlations on the level of DMFT, LDA+DMFT quantitatively describes
the available physical properties in very good agreement with the experimental data.

reproduces experimentally observed results quite accurately. The comparison with
the GW method, which captures weak non-local correlations, also confirms the virtues
of LDA+DMFT based methods.

This achievement comes, however, at the expense of introducing the a priori unknown
parameters U and J. For the moment, the values for U and J are determined by match-
ing the computed results to the experimentally measured quantities. We found that two
different interaction parameter sets are needed in order to reproduce one or another
experimental fact (mentioned above) independently. This also reveals the limitations
of the LDA+DMFT method with a frequency independent screened local interaction.
Ignoring this frequency dependence altogether is certainly an approximation and its va-
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lidity needs to be verified for each material separately. Therefore, we think, that the
frequency dependent screened interaction, obtained from first principle methods, will
be useful in order to further improve on the realistic model description of this material.

The Fermi surface geometry of Pd, namely the L- and X-pocket as well as the
open-hole surface, could be reproduced with both, the LDA+DMFT and GW method.
There are subtle differences though. This calls for accurate experimental studies
with Fermi-surface sensitive methods, like de Hass van Alphen or Compton scatter-
ing spectroscopy, which will help to discriminate between the LDA+DMFT and the
GW method. The nesting property in the open-hole surface of Pd is believed to be re-
sponsible for the Kohn anomaly in the phonon spectrum of palladium. This motivated
us to investigate the phonon frequencies employing the frozen phonon approach. Also
in theses studies the inclusion of local interactions (U and J) through the LDA+DMFT
framework improved the computed frequencies with respect to the experimentally mea-
sured ones.

Another part of my studies was focused on the realistic modeling of the Compton
scattering spectroscopy experiments on electrons in solids. Compton scattering spec-
troscopy, in general, allows to probe the ground state properties of metals directly,
namely the electron momentum density. The fact that this represents one of the first
experiments which could demonstrated that electrons in solids obey Fermi-Dirac statis-
tics underlines the importance of this experimental technique for the understanding of
one of the fundamental concepts of many particle physics. We computed Compton
profiles of various metals within the LDA framework. For weakly correlated electrons,
like those in Alkali metals, by fitting the line-shape of the calculated Compton profiles
with g-Gaussians, we discovered the surprising scaling property in the high momentum
region. Since g-Gaussians are known to exhibit algebraic tails, this clearly indicates
that the momentum distribution of the valence electrons in these metals deviate signifi-
cantly from the free-electron ones. We found that the rescaled Compton profiles of all
five Alkali metals do collapse for each main direction. The experimental measurements
reported so far do not extend to the relevant region of large momenta. For our predic-
tions, however, it is of great importance to measure the tails of the Compton profiles of
the alkali metals. Only then it will be possible to verify our predictions! This findings
could be also generalized to other elemental metals and it is of great interest to analyze
this in future studies. It would be particularly intriguing to investigate the momentum
density of the elemental metals: Ni, Fe, and Co, since they are strongly correlated as
well as ferromagnetic. We performed LDA+DMFT studies with a focus on Compton
profiles for iron and nickel. However, at this point, it is to early to make any strong
conclusion and further — more systematic — research is required.
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A. g-Gaussian Distribution
Function

In our analysis we employ a generalization of the Gaussian distribution, the so-called

q-Gaussian:
1 x?
fq(x) = mequ(—z—ﬁz), (A.1.1)
where the exponential function is replaced by its g-analog
exp, (x) = (1 + (1 - g)x)"/"79. (A.1.2)

Here C, is the normalization factor. In essence the family of g-Gaussians reproduce
the Compton profiles of several well known limiting cases: in the case of ¢ = 0 the
g-Gaussian has the inverted parabola shape corresponding to the free non interacting
electron gas [127]. The parabola touches zero exactly at x = pr. For g = 2 the ¢-
Gaussian reduces to Lorentzian which also describes the Compton profile of bound
electron scatterer, like a core electrons in solids [[128]]. In the case of the valence-band
electors it is natural to expect that the entropic parameter g lies in between these limiting
values. Fig.[A.T.T|shows the ¢g-Gaussians Eq. (A.L.T)), for 8 = 1 and different ¢ values
on normal and log-log scales.

In order to accurately fit the computed Compton profiles with g-Gaussian distribu-
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Figure A.1.1.: Shapes of g-Gaussian, shown for different values of g on a nor-
mal scale (Upper Panel) and on a log-log scale (Lower Panel).
Note that ¢ = 0 correspond to inverted parabola, ¢ = 1 resem-
bles normal (Gaussian) distribution, while for ¢ = 2 one obtains
the Lorentzian line shape.

tion, let us first recapitulate what is known about obtained data: The momentum p; is
taken on a linear mesh; The numerical values of the Compton profile corresponding to
the largest p, are expected to decrease in accuracy. Fitting data directly on a normal
scale would weight the values of the Compton profile for small p, values more, since
the intensity of the profile is larger in that range. On the other hand fitting data on a
log-log scale would overemphasize the profile at larger values of p, — the less accurate
tail — like the fitting only the tail with a power law in p,. In essence one has to figure
out a unique way of fitting data that treats the values of the function for low and high
p- on an equal footing. The difficulty in obtaining optimal ¢ and 8 mainly lies in deter-
mining g. We split the problem in two parts. First assuming that the optimal value of
q is already known, one can take the inverse of the g-exponential, namely g-logarithm
defined as

xi-a

l-¢g°

In, x := (A.1.3)
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Figure A.1.2.: Upper panel: The shape of the Compton profile modeled by a
g-Gaussian probability distributions as function of momentum p:
g = 0, red-solid line the non-interacting homogeneous electron
gas (inverted parabola); ¢ = 1, dashed-green Gaussian shape;
q = 1.7, dotted-green intermediate shape with power low tail
and ¢ = 2.0 blue-dot-dashed Lorentzian shape. The arrow in-
dicates the direction of increasing ¢. Lower panel: the model
Compton profiles on a log-log scale. In all plots g = 1.

and apply this function on the obtained data and on the g-Gaussian

2
Ing[£,(0)] = Ing (£,0)) = [1+ (1 = g)Ing £4(0)] (%) . (A.1.4)
By Normalizing the initial data by 1/f,(x = 0) one is left with
fq(x)] ( X )2
1 == . A.15
e [fq(m 2 (A1)

Note that for each chosen g-value the fitting is reduced to the linear regression problem
after taking g-logarithm of the data (In, vs x? fitting). Similar procedure one would
also apply in order to fit the data with Gaussian in case when the whole data range has
to be treated on a equal footage. Since each g-value defines a single linear regression
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problem (A.1.5), the global fitting procedure can be formulated as a one dimensional
optimization problem for the g values. It remains to find out the criterion that allows
to choose between two different values of g. Considering squared deviations from the
fitted line, y2, (which is the typical measure for the fit accuracy in the linear regression
problem) as a natural candidate, will not work. The problem is that y? is scaled down
for larger g values (the data is flattened with growing ¢). Hence the optimization proce-
dure for ¢ which is based on y? would be always biased towards large values of g. An
alternative can be found by examining the Eq. (A.1.5). Once the optimal ¢ is known
plotting g-logarithm of the data vs. x? should give a line through the origin. Hence
the optimal value of ¢ can be defined as the one for which the fitted line crosses the
origin in the (lnq[~],x2) plane. As it turns out there is only one value of ¢ that satisfies
this criterion (at least in g € [1,3] range). Finally the slope a of the least square fit
determines S (g-analog the square deviation of the g-Gaussian distribution)

8= 2 (A.1.6)
a

for the best fitted g-Gaussian.

Stability of the outlined fitting procedure can be easily verified by taking a g-
Gaussian distribution for a given values for ¢ and S and by introducing a random
multiplicative white noise in the argument of the function, x — x + x - unif(=¢,¢).
Refitting the obtained data provides the statistics on the fit reliability. The choice of
this type of noise is motivated by the realistic error-bar envelope produced around the
pure data. Recall that Compton-profile intensity is always non-negative, while its ac-
curacy drops for larger p,. Fig. [A.1.2] shows g-Gaussian with ¢ = 1.8 and g = 1.0
(dash-dotted black curves) as well as a single sample from each data sets generated
from the plotted g-Gaussian by introducing multiplicative white noise with amplitudes
¢ = 0.2 (blue), & = 0.1 (green), and & = 0.05 (red) respectively (20%, 10%, and 5%).
The middle panel also contains the corresponding best g-Gaussian fits for the presented
samples (solid blue, red, and green lines respectively). The histograms on the lowest
panel of Fig. demonstrates the distribution of the best g-Gaussian fits for 250000
random samples for each of the data sets. The average values of these distributions are
about ¢ ~ 1.8. At the same time the standard deviations (data spread) become smaller
for decreasing noise amplitudes. All these validate the stability of the above outlined
fitting procedure.
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