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1
Introduction

Within the healthcare sector there is a tremendous increase of available data. Firstly,
all data about the patient which is documented in some electronic health record.
This encompasses all data about the health status of a particular patient such as
finding descriptions and reports or images, demographic information, medica-
tions etc. This data is referred to as clinical data. Secondly, there is an increase of
scientifically proved medical knowledge, i.e. knowledge about the structure and
functioning of the human organism in general. For example knowledge about
diseases and their manifestations in symptoms and clinical findings. The combina-
tion of both data resources, i.e. the clinical data with medical knowledge, bears the
potential better and more effective decision making by clinicians. The assumption
here is simply that the more data one has about some patient, the better is the
understanding of the patient’s health status and thus the better this patient can
be treated. In order to understand why this potential is not already unlocked, a
closer look at clinical data and medical knowledge is needed.

Clinical data is from various clinical domains such as radiology, microbiology,
genetics, pathology or care documentation and of different formats (e.g. free text
reports or images). Already for long time the most fundamental data, i.e. diagnosis
has been stored in structured form. For instance, the classification of diseases
reaches back to the 18th century and resulted in the International Classification of
Diseases (ICD). The initial motivation for this classification system was analysis of
mortality in populations through a common classification and thus understanding
of diseases. Today, classification and coding systems are used to consistently refer
to certain clinical data and thus provide the basis for data interoperability. Using a
common coding system to store lab-values, it becomes possible to easily compare
results from consecutive examinations even when they were not performed by
the same healthcare provider. This fact is underlined by a recent Code of Federal
Regulations published by the US government in the context of the meaningful
use initiative specifying “standard vocabularies and coding systems to represent
electronic health information” such as lab-values, problems, procedures or med-
ications [14b]. In current clinical information systems, classification and coding
systems are to be used for this kind of data. The overwhelming amount of clinical
data however is still unstructured. That is, the challenge here is to get structured
representations for more granular clinical data in order to unlock its full potential
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CHAPTER 1. INTRODUCTION

for higher quality and more efficiency in healthcare.

Additionally to the increase in clinical data, medical knowledge is growing simi-
larly. Most of it is contained in literature such as scientific publications about
clinical studies or reference books. However there is also basic medical knowledge
formalized in so called ontologies which define entities and relations between
them. More generally, an ontology is “an explicit specification of a conceptualization”
[Gru93]. Most ontologies within the biomedical domain cover exactly one partic-
ular domain. For instance, the Foundational Model of Anatomy (FMA) covers
the human anatomy and defines more than 80,000 entities which are connected
by 185 different relations. Similar to classification systems mentioned above, on-
tologies provide a controlled terminology that can be used as a standard reference
for coding clinical data. But additionally the relations between entities can be
specified and thus different kinds of medical knowledge can be represented in
ontologies. At the time of writing, the BioPortal [14h] contains more than 400
different biomedical ontologies.

The increase in available clinical data and availability of medical knowledge
provides the basis for various applications which aim to increase the quality
and safety of healthcare. Personalized treatment, e.g. the optimal medication
with fewest side effects, less unnecessary examinations and mistreatment can
be realized based on the available data. Today however enhanced quality of
treatment on the one hand and lower cost on the other hand are in conflict: in the
current situation more data means more efforts for the clinicians and thus higher
costs. This is mostly because of three problems: Firstly, clinical data is stored case-
centric and distributed across different systems. It is not longitudinal integrated.
Secondly, only small amount of the data is structured while high percentage of
clinically relevant data is unstructured. Thirdly, existing data is not sufficiently
aligned to medical knowledge and thus not on the appropriate level of detail for
decision support systems. As a result of these problems most of the available data
is simply not used in their full strength and no personalized treatment is applied.
Today healthcare providers do not achieve improvements in quality and efficiency.
A detailed description of the mentioned problems and their underlying challenges
is given in section 1.1.

The thesis has three objectives targeting parts of the aforementioned problems.
The first objective is the creation of a semantic model for clinical information
which is based on established upper ontologies1. In particular, it is focused on
the representation of clinical findings from radiology examinations. The second
objective is to extract structured representations from radiology reports using
formalized medical knowledge. The extracted information is stored in the semantic
model. The third objective is to enrich the data using inference techniques and
formalized medical knowledge to allow realization of different views on the data,

1Upper ontologies define the basic entities and their relations without being specific to one
domain.

4



needed by clinicians for more efficient decision making. In particular, radiology
findings extracted from unstructured reports are classified as normal/abnormal
and finding descriptions are linked to disease information. A longitudinal view
of radiology finding data is realized through a prototype implementation of a
report viewer which relies on medical knowledge about the human anatomy, the
semantic representation of finding descriptions and the meta-data of the original
radiology reports.

The remaining part of this chapter is organized as follows: In section 1.1 the
main problems and challenges are described, which provides the motivation for
this work. Section 1.2 describes the main objectives of this thesis in detail, the
approaches taken as well as corresponding contributions. Finally, the structure of
the thesis is outlined in section 1.4 before a brief overview of publications is given
in section 1.3.
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CHAPTER 1. INTRODUCTION

1.1. Problems and Challenges

Clinical data is diverse, i.e. from different medical domains and different formats.
Further, large parts are unstructured, e.g., free text reports and images. Only a
longitudinally integrated view allows effective usage of this wealth of available
data in clinical decisions. This integration relies mainly on the use of a common
vocabulary and data structure. Initially computer systems were used in the health-
care domain to codify clinical data for statistics such as mortality analysis and
administrative purpose such as billing. In this context coding systems for diseases
and clinical procedures and examinations are widely used. As described in the
introduction, today coding systems are also used to store basic patient informa-
tion such as lab-values and medications. Standard coding systems such as those
defined in the Code of Federal Regulations the US government [14b] provide the
basis for interoperability in healthcare information systems. In current systems
however they are only used for very high level information and large parts of the
data remain unstructured.

Coding systems and ontologies often cover one particular domain. For instance,
the International Classification of Diseases (ICD) covers diseases, Logical Observa-
tion Identifiers Names and Codes (LOINC) covers medical laboratory observations,
the Foundational Model of Anatomy (FMA) covers the human anatomy and Gene
Ontology (GO) genetics. The domains of different ontologies might also over-
lap: For instance Radiology Lexicon (RadLex) covers the radiology domain and
contains anatomical entities as well as diseases and other entities relevant within
the radiology domain. An overview of biomedical ontologies is given in the next
chapter in Section2.2. The most comprehensive clinical healthcare terminology is
Systematized Nomenclature of Medicine – Clinical Terms (SNOMED CT) contain-
ing more than 311,000 entities [Int14]. But even SNOMED CT cannot contain codes
for any clinical information artefact: As explained by [Cor09], in SNOMED CT
for each disease “one of five episodicities, one of six severities and one of seven courses
can be chosen, which would result in over 300 combinations for a single disease” - and
there are several thousand diseases. Similarly, descriptions of clinical finding can
require to use even more combinations. No terminology or ontology can define
entities for all finding descriptions, diseases etc. Instead, the role of the ontology is
to provide the basic entities allow their post-coordination, i.e. the multiple entities
to express information. Or, as argued by [DSM02] “modern terminologies such as
SNOMED CT are compositional, allowing concept expressions to be pre-coordinated
within the terminology or post-coordinated within the medical record”. Here, the role of
the medical record is to define the data structure in which entities from the coding
system are combined. That is, terminologies, coding systems and ontologies are
not enough. Additionally, models, which define the data structure are needed.
This data structure is commonly referred to as the information model. To capture the
content of clinical information in general a combination of an information model
with terminologies is needed [Ben10]. Sometimes these information models are

6



1.1. Problems and Challenges

also referred to as structural information models, since they define the schema
according to which the terminology is used. While the ontology or vocabulary
is the conceptualization of an understanding of the world, “the function of the
information models is to make it possible to specify and test the validity of data structures
so that they can be exchanged and re-used in different information systems” [RQM06].
As motivated in [Ben10] (chapter 7) the information model can be seen as the
grammar that defines the usage of the vocabulary (such as entities from SNOMED
CT). There are however situations, where one can express information more than
one way even when using only one common terminology. Consider the finding
“enlarged lymph node”. It could be represented by using the either the entity
lymphadenopathy or the combination of two entities lymph node and enlarged.
Thus, the data structure has to ensure a consistent representation through logi-
cal bindings to the terminologies. Further, classes and relations need to be well
defined in order to ensure correct usage.

Problem 1: Current Information Models are Case-centric and
Lack Clear Semantic Definitions

As explained above the role of the information model is to provide a clear structure
for the usage of entities from existing reference terminologies. Thus, a semantically
well founded information model is needed. There are two information models
which are well known: the HL7 Reference Information Model v3 (HL7 RIM)
and the OpenEHR. Both models however lack clear semantic definitions and
bindings to terminologies. As described in [SC06] definitions in HL7 Reference
Information Model are even incoherent, which leads to ambiguous and wrong data
representations. OpenEHR, on the other hand, is more focused on the structured
entry of clinical data.

• Challenge 1 - Integrated Semantic Model for Clinical Information: For
integrated clinical data it is essential to have a semantic information model
with precise definitions of its entities and relations. The model has to cover
meta data of the clinical data to enable efficient retrieval of information.
The information model has to facilitate the usage of existing ontologies and
vocabularies. In particular structured representations for detailed descrip-
tions for clinical findings are needed which facilitate their reuse in different
application scenarios.

Problem 2: Most of the Clinically Relevant Data is Unstructured

Having a semantic model for clinical information and a methodology to represent
information in it by using terminologies, data still needs to be mapped to the
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CHAPTER 1. INTRODUCTION

model. The problem however is that large amounts (about 80%) of clinical data
is unstructured [Ter13]. Even though some data can be entered by clinicians in
structured form such as medication, diagnosis, procedures etc., structured report-
ing in general is not widely applied in practice. Especially finding descriptions
and observations are commonly documented in free text clinical reports or in
images. In subsequent decision processes however, clinicians do not have the
time to review all potentially valuable images and reports. To efficiently include
information from unstructured data in clinical decisions one needs to extract
structured representations. In the context of Natural Language Processing (NLP)
information extraction from text involves the following five steps [Cun06]: Named
Entity Recognition (NER), co-reference resolution, template element construction,
template relation construction and template scenario production. The first two
steps extract entities from text. Biomedical ontologys are commonly used within
NER, which is also referred to as semantic annotation. The ontology then allows
the semantic understanding of the extracted entities. For instance from a sentence
“lymph nodes in the mediastinum with a size up to 1.6 cm” the entities lymph
node, mediastinum, mediastinal lymph node as well as the measurement 1.6 cm
is extracted. The problem however is that a set of extracted entities does not
represent the asserted content precisely enough to be useful in further applications.
Thus, the remaining steps resolve the relations between the extracted entities. For
instance that the measurement describes the size of the mediastinal lymph node
(see figure 1.1).

Figure 1.1.: To obtain structured representations from clinical data, relations be-
tween extracted entities need to be resolved.

The resolution of relations between entities from clinical reports is challenging
since the sentences are often very long, they lack proper grammar and much
information is contained only implicitly. This is because the intended audience
of these reports are clinicians who have a good understanding of the domain.
Consequently formalized “domain knowledge is an essential resource in Information
Extraction (IE) from free text” [Ang10].

• Challenge 2 - Integration of Semantic Annotations: Since there are differ-
ent annotators available, annotations need to be integrated into a common
structure. This includes filtering and normalization of annotations.

• Challenge 3 - Extract Structured Representations: Based on annotations,
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structured representations of the content of the annotated data need to be
extracted. The challenge here is that annotations might be incomplete or false.
Extraction of correct representations relies on reasoning and the application
of medical knowledge.

Problem 3: Data is not linked to Clinical Knowledge, not on the
Appropriate Level of Detail for Usage in Clinical Decisions and
not longitudinal integrated

If the content from reports is represented in structured form, one has a description
of the patients health status. The problem however is that only a small part of
the data is relevant in clinical decision making. A clinician is interested only in
certain parts of the data to answer specific questions. That is findings need to
be classified and linked to other resources to allow different views necessary in
clinical decision making. In diagnosis, a clinician is interested in what is currently
abnormal or pathological. In the case of lab-values this information is available: for
instance it is automatically asserted whether results from blood counts are within
or outside of the normal range. For radiology findings such an interpretation is
missing. In a radiology report, the size of the spleen might be simply specified
as “spleen 7 x 13 x 12 cm” without any interpretation. To automatically classify
normality status of anatomical entities, data needs to be linked and combined with
medical knowledge. For instance to infer the spleen measurement above describes
an enlarged and thus abnormal spleen. In treatment evaluation the clinician
might be interested only in the change of findings in comparison to a previous
examination. That is, finding types such as new, changed/unchanged, increase,
decrease needs to be inferred. Since finding data is currently not longitudinally
integrated, automatic inference of the change of the health status over time is not
possible.

• Challenge 4 - Integration of Medical Knowledge with Clinical Data: In
the current situation medical knowledge and clinical data are not integrated.
The main challenge here is to formalize and represent medical knowledge
in a similar way as the clinical data itself, i.e. using entities from existing
medical ontologies in a similar semantic data structure.

• Challenge 5 - Reasoning about Clinical Data Using Medical Knowledge:
Since a clinician is interested only in certain parts of the data to answer spe-
cific questions, clinical findings need to be classified using medical knowl-
edge to allow corresponding selections. These classifications have to be
patient-specific. Further, medical knowledge has to be used to provide dif-
ferent views on the data: for instance access finding information over time
for comparison or interpretation of findings in the context of diseases.

9
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• Challenge 6 - Longitudinal Integration of Findings from Consecutive Ex-
aminations: Since direct references to the related finding from previous
examinations are not always made, longitudinal integration of findings re-
lies mainly on the usage of knowledge from medical ontologies to identify
similar findings. The challenge here is that one needs to link findings which
are described in different levels of detail. Further, it is essential that the
representation of the findings allow direct comparison so that change (what
is new, getting better/worse) can be automatically inferred.
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1.2. Objectives and Approach

Data representation in the healthcare domain is an enormous problem with several
deep challenges. The overall objective of this thesis is to demonstrate how semantic
technologies can be used to resolve specific parts of the problems described in
the previous section. That is, along clinical use-cases, semantic technologies
are used for data representation, integration of unstructured data in order to
enable more efficient clinical decision making. Thus, the main objective of the
thesis is the creation of a semantic information model which can be used in
combination with terminologies to express clinical data, focussing on radiology
findings. Further the model is used to express medical knowledge that is used later
to enrich corresponding finding descriptions. Since most of the clinically relevant
information is currently contained in unstructured data such as images or free text
reports, structured representations need to be extracted from these sources. The
structured representation in a semantic model is the first step towards enhanced
data access. To include data in clinical decisions, it is also necessary to provide the
clinician only the data needed in certain contexts. This requires classification of
finding data using medical knowledge.

Figure 1.2.: Overview of the three objectives of the thesis.

Objective 1: Creation of a Semantic Model for Clinical
Information

The main objective of this thesis is the creation of a semantic Model for Clinical
Information which is used in combination with reference terminologies. The
model has to cover basic patient data, meta data about provided examinations and
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Figure 1.3.: The Model for Clinical Information represents clinical data by using
entities from reference ontologies. Semantic annotations of images and
reports as well as medical knowledge on normal size specifications
and disease manifestations are represented in MCI.

diagnosis as well as a general structure for representation of clinical findings and
their integration over consecutive examinations. Since clinical findings are central
information objects, it is concentrated on them, focusing on the representation of
findings from radiology examinations. Further, the model has to facilitate the rep-
resentation of medical knowledge that is necessary to enrich finding descriptions
automatically.

Approach: The model has to be based on a well founded upper level ontol-
ogy and other existing models should be reused whenever possible. Further,
established semantic modelling approaches are followed and existing reference
terminologies are reused. The coverage of the model is defined by the data of
the use cases and discussions with clinicians in which important user needs are
analysed. The model has to facilitate the linkage to formalized medical knowledge,
so that additional information about findings can be automatically inferred. Tech-
nically, Resource Description Framework (RDF) and the Web Ontology Language
(OWL) are used to express the model and corresponding standard reasoning tech-
niques are employed. Further, rules are implemented by SPARQL Protocol and
RDF Query Language (SPARQL) update queries.

12
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Contribution: The semantic Model for Clinical Information (MCI) consists of the
following components:

• Foundation of the model based on upper- and mid-level ontologies of the
Open Biological and Biomedical Ontologies (OBO) library. Selected ontolo-
gies are integrated and customised. The usage of upper ontologies provides
a solid, semantically well defined basis for the model.

• Additionally to the reused upper ontologies, classes and properties required
for granular representation of the clinical data of the use cases are defined.
In particular, a structure for representation of radiology findings and corre-
sponding image measurements is presented.

• The model defines classes and properties to express medical knowledge:
Firstly, a structure for normal size specifications of anatomical entities and
secondly a model for the interrelations of diseases, their manifestation in
symptoms and clinical findings as well as corresponding examinations. The
created knowledge models are linked to existing reference ontologies and
were discussed with clinical experts to ensure their quality.

• The representation of findings allows application of standard reasoning
techniques to automatically classify findings. This allows more efficient
retrieval of findings in clinical decision making.

• Definition of bindings to terminologies: Bindings to reference ontologies are
created, so that validation of their correct usage is possible.

Objective 2: Mapping Data to MCI and Enriching Semantic
Annotations

Structured and extract facts from unstructured data are mapped to the semantic
Model for Clinical Information. As explained in section 1.1 this requires two main
steps: extraction of entities and extraction of relations between these entities. The
first step is not an objective of this thesis. It is accomplished using available NLP
technologies. That is, starting point for this work is a set of extracted entities
detected in text – so called annotations. These annotations are mainly from an
ontology (i.e. semantic annotations), but information artefacts such as sentence
boundaries, date values, measurements etc. are also provided. These annotations
help to understand what the data is about. However, they do not represent
the content of the data sufficiently since the relations between these annotations
are missing. The extraction of these relations is the main focus of this objective.
In particular the extraction of measurement information (i.e. relations between
measurements and anatomical entities) from radiology reports.
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Approach: Mapping of structure and coded data to MCI which involves reading
or querying the original data and transformation to patterns of MCI. Additionally
unstructured data is annotated by using existing tools and then mapped to MCI.
For resolution of relations between annotations of unstructured texts formalized
medical background knowledge is used. Firstly, medical knowledge from exist-
ing biomedical ontologies is used. Secondly, a knowledge model about normal
specifications of anatomical entities (see first objective) is used. This knowledge-
based approach is taken since clinical reports lack grammatical structure and tend
to be very long. Further, report meta-data is mapped to MCI and define their
representation within the triple store.

Contribution:

• Existing clinical data from the relational database i2b2 and report data is
mapped to the Model for Clinical Information. Further, annotations of
unstructured data are mapped to a common schema. In particular, image
annotations and text annotations of different schema are aligned in MCI.

• Based on annotations of unstructured radiology reports relations between
measurements and associated anatomical entities are resolved. The knowl-
edge model about normal size specifications and knowledge of the RadLex
ontology are used to accomplish the resolution for radiology image findings.

Objective 3: Enrich Clinical Data using Medical Knowledge

To enhance quality and efficiency of healthcare, data on clinical findings needs
to be better integrated into the process of decision making by clinicians. Besides
structured representations of findings, this requires that findings are linked to
medical knowledge and automatically classified, so that clinicians can selectively
retrieve those which relevant for their task. In discussions with clinicians cor-
responding three main user needs were identified that guided the focus of this
objective: Firstly, distinction between normal and abnormal findings. Secondly,
transparency of the change of clinical findings between consecutive examinations.
Thirdly, interpretation of finding information with respect to diseases.

Approach: Different knowledge resources are used to enrich clinical data that
is stored in MCI: In particular, medical knowledge from existing biomedical
ontologies and the knowledge models created in the context of the first objective.
For the classification of findings as normal/abnormal the knowledge model about
normal specification of anatomical entities is used. Additionally, meta-data of
the reports is used for the longitudinal integration of finding data. Retrieval of
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longitudinal data from different clinical perspectives such as anatomical site, type
of findings or diseases is also realized using knowledge from existing ontologies.

Contribution:

• Measurement findings are enriched using formalized medical background
knowledge in order to provide different views on the data, needed by clini-
cians for more efficient decision making. In particular, measurement findings
from radiology reports are classified as normal or abnormal.

• Using the knowledge model of disease and their manifestations in clinical
findings and symptoms, likely diseases of a particular patients based on
finding information are inferred. The developed ranking algorithms takes as
input the status of findings (present, absent, unknown), their type of relation
to particular diseases (leading symptom or not) as well as the incidence of
the disease. Thus, finding data is automatically interpreted with respect
to diseases and help the clinician to make a diagnosis and plan further
examinations.

• It is demonstrated that the structured representations of findings from the
first objective are suitable to provide an integrated view on finding data from
consecutive radiology examinations.

All contributions mentioned in this section are implemented in several demo
applications and evaluated using different data sets.
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1.3. Publications

In this section, the publications related to the thesis are briefly described. Instead
of a chronological order, publications are described along the objectives presented
in section 1.2, before further publications are described. An estimation of the
personal contribution is given in brackets.

Main Publications

In “An OGMS-based Model for Clinical Information (MCI)” [Obe+13] (90%) the
initial version of the integrated semantic model is presented. The reuse of upper
level ontologies from the OBO library is motivated. Further, the functional scope
of the model, how it references entities from existing terminologies and the most
important classes and properties used for representation of basic patient data and
important types of clinical findings are described.

To include information from unstructured clinical data one commonly used se-
mantic annotations with entities from biomedical ontologies. However, successful
semantic annotation highly depends on the vocabulary provided by the respective
ontologies. Working with German texts brings the following challenge: Most of
the existing ontologies have either no or only few German labels which leads to a
very low annotation coverage of German reports. Since translations need expert
review, a full translation of large ontologies is often not feasible. In “Corpus-
based Translation of Ontologies for Improved Multilingual Semantic Annotation”
[Bre+14] (45%) it is proposed to use the corpus to be annotated to identify high
occurrence terms and their translations to extend respective ontology concepts.
Using this approach, the translation of a subset of ontology concepts is sufficient
to significantly enhance annotation coverage. For evaluation, RadLex ontology
concepts were automatically translated from English into German. In RadLex only
about 25% of the entities have German labels. Even very basic entities such as
lesion lack German translations! It is shown, that by adding translations for a
rather small set of entities (here 433 from more than 40,000), which were identified
by corpus analysis, it is possible to enhance the amount of annotated words from
27.36% to 42.65%. The result of this work is an extension to the official RadLex
version which is used for better annotation coverage in later work.

A large percentage of relevant radiologic patient information is currently only
available in unstructured formats such as free text reports. In particular, mea-
surements are important since they are comparable and thus provide insight
into the change of the health status over time, for example in response to some
treatment. In radiology most of the measurements in reports describe the size
of anatomical entities. Even though it is possible to extract measurements and
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anatomical entities from text using standard information extraction techniques, it
is difficult to extract the relation between the measurement and the corresponding
anatomical entity. In “Knowledge-based Extraction of Measurement-Entity Rela-
tions from German Radiology Reports” [Obe+14] (90%, acceptance rate: 30%) a
knowledge-based approach to extract information about size measurements using
a model about typical size descriptions of anatomical entities in combination with
hierarchical knowledge of RadLex is presented. The approach was evaluated on
two data sets of German radiology reports reaching an F1-measure of 0.85 and
0.79 respectively.

In “Semantic Representation of Reported Measurements in Radiology” [Obe+15b]
(80%), the usage of MCI for integrated representation of image findings and medi-
cal knowledge about the normal size of anatomical entities is demonstrated. An
integrated view of radiology findings is provided by a prototype implementation
of a ReportViewer. Further, RECIST (response evaluation criteria in solid tumours)
guidelines are implemented by SPARQL queries on MCI.

Often clinicians are interested only in specific information. For instance in diag-
nosis a clinician would like to retrieve symptom information for certain disease.
In “Interpreting Patient Data using Medical Background Knowledge” [Obe+12a]
(90%) an the initial ontology containing lymphoma-related diseases and symp-
toms as well as their relations is presented. The manually created ontology is
used to infer likely diseases of patients. In this way, symptom information can
be understood in the context of likely diseases and help the clinician to make a
diagnosis.

The algorithm underlying the ranking of likely diseases is described in “Towards
a Ranking of Likely Diseases in Terms of Precision and Recall” [Obe+12b] (90%).
Basically, the patient’s symptom information is matched to typical disease symp-
tomatology. The matching is based on the knowledge model of diseases and their
manifestation in symptoms and clinical findings. The disease symptom model
used in the disease ranking was created manually. In “From Symptoms to Diseases –
Creating the Missing Link” a disease symptom graph is created by automatically
integrating available knowledge from different ontologies [Obe+15a] (40%).

Further Publications

In the paper “Knowledge Engineering Requirements for Generic Diagnostic Sys-
tems” [Mue+12] (20%) a general view on diagnosis is presented by investigating
typical diagnostic examples from the industrial and medical domain and describe
the basic requirements for a generic diagnostic knowledge representation language
(DKRL). DKRL is intended to facilitate the generic representation, handling, and
interchange of diagnostic knowledge required for performing diagnostics without
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regard to specific diagnostic approaches.

In healthcare big data faces several problems. In “Towards a Technology Roadmap
for Big Data Applications in the Healthcare Domain” [Zil+14] (15%) it is argued
that seamless access to the various healthcare data pools is only possible in a very
constrained and limited manner. For enabling the seamless access several technical
requirements, such as data digitalization, semantic annotation, data sharing, data
privacy and security as well as data quality need to be addressed. A detailed
analysis of these technical requirements for Big Data applications in healthcare is
introduced and it is shown how the results of the analysis lead towards a technical
roadmap.

The Linked Open Data (LOD) paradigm is becoming the de-facto standard for
sharing and connecting pieces of data, information and knowledge on the Web.
In “UIMA2LOD: Integrating UIMA Text Annotations into the Linked Open Data
Cloud” [BOZ15] (15%) an approach for conceptual representation of textual an-
notations which distinguishes linguistic from semantic annotations is presented.
It is shown how standard UIMA text annotations need to be adapted in order to
obtain RDF graphs with proper conceptual representations and links to existing
LOD datasets.

In contrast to software development, in the context of ontologies, modular reuse
of existing components is not well formalized. In “Management of Variability
in Modular Ontology Development” [Lan+13] (20%) and “Change and Version
Management in Variability Models for Modular Ontologies” [Lan+14] (20%) it
is evaluated how feature models could be applied to variability and version
management of modular ontologies.

Patents

The following six US patents were created in the context of this thesis: two accepted
patents titled “Method and system for supporting a clinical diagnosis” US13540952
and US13473134 and patents with pending status: “A Method of Composing an
Integrated Ontology” US14029270, “A method for extending concept labels of an on-
tology” US14038927, “System and method for extracting measurement-entity relations”
US14250326 as well as “Method and apparatus for generating a knowledge data model”
201501544.
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1.4. Outline

The thesis is structured in parts I-VI and the chapters are organized as follows:

Part I: Introduction, Basics, Related Work

Chapter 1 � Introduction is this chapter which presented an overview of the
challenges and objectives of this thesis.

Chapter 2 � Basics provides a background of knowledge representation and
current formats. Important biomedical ontologies and their role for annotation of
unstructured data are described.

Chapter 3 � Related Work describes data representation in the healthcare do-
main and in particular the combination of information models with terminologies.
An overview of existing (semantic) data models is given and existing work related
to the application scenarios is discussed.

Part II: The Model for Clinical Information

Chapter 4 � Model Foundation gives an overview of the upper- and mid-level
ontologies from the Open Biological and Biomedical Ontologies library which are
reused by the Model for Clinical Information. For each ontology the general scope
and intended role and reused entities and adaptations are described.

Chapter 5 � The Model for Clinical Information presents all classes and prop-
erties that were defined for the representation of clinical data are described. The
motivation for them and their intended usage are explained along numerous
examples.

Chapter 6 � Knowledge Models describes how medical knowledge that is
necessary to enrich finding descriptions can be formally represented with MCI.
Firstly, the model on normal size specifications is presented and secondly, the
model about diseases and their manifestations in clinical findings.
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Part III: Usage of MCI for Storage, Inference and Integrated Data
Views

Chapter 7 � Architecture provides an overview of the different technical com-
ponents and their interactions.

Chapter 8 � Inference describes different inference techniques and their role
for enriched data representation. It is focused on inference techniques that employ
the knowledge models described in chapter 6. The knowledge model on normal
size specifications is used to classify findings and the diseases model is used for
ranking likely diseases.

Chapter 9 � Integrated Data Views shows how integrated views on the data
can be provided by using the semantic data structure of MCI in combination with
reference ontologies.

Part IV: Case Studies

Chapter 10 � Data Sets describes the data resources employed for evaluation
and prototype implementations.

Chapter 11 � Evaluation provides the evaluation of presented algorithms. In
particular, the relation resolution for measurement entity relations, the normality
classification and the ranking of likely diseases is evaluated.

Part V: Conclusion

Chapter 12 � Conclusion summarizes the contribution of the thesis and pro-
vides directions for future research challenges.

Part VI: Annex

Provides the detailed big picture of MCI and some background information on
human anatomy and notations used in this thesis. Further, the bibliography, a
glossary as well as lists for acronyms, figures and tables are given.
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Notes:

Example sentences from clinical reports are translated from German into English
and partly shortened.
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2
Basics

In this chapter the basics underlying the presented work are described. It is started
with a brief overview of knowledge representation by defining different repre-
sentation systems from simple vocabularies to very expressive ontologies. Then
the underlying logic of ontologies (Description Logic (DL)) and an overview of
the semantic web technology stack are presented. Further, the most important
knowledge modeling initiatives within the biomedical domain namely the Unified
Medical Language System (UMLS) and Open Biological and Biomedical Ontolo-
gies (OBO) are described and we also give insights in how ontologies are used for
semantic annotation of heterogeneous clinical data such as images and free text
reports.
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2.1. Knowledge Representation

Knowledge representation is a main research field within the artificial intelligence
research domain. Its core research challenge is “to figure out how to represent
knowledge in computers and to use it algorithmically to solve problems” [Har+07]. The
field of knowledge representation is very broad and includes satisfiability (SAT)
solvers, DL, constraint programming, conceptual graphs, non-monotonic logics,
answer set logic, techniques for believe revision, qualitative models of continuous
systems, problem solvers as well as representation of uncertainty, temporal and
spacial aspects, agent’s knowledge and beliefs and multi-agent systems, situation
and event calculus, query answering, the semantic web, automated planning and
cognitive robotics [Har+07]. The following description is focused on knowledge
representation within the context of DL and semantic web technologies.

2.1.1. Terminologies, Classification Systems and Ontologies

There exist many different formal systems to represent knowledge. They are
distinguished by expressiveness, i.e. the type of information that can be repre-
sented using the corresponding systems. Figure 2.1 gives an overview of different
knowledge representation systems with increasing expressiveness. The figure
is adapted from the figure of [Wel07] regarding the usage of knowledge repre-
sentation systems within the biomedical domain. The authors of [SS10] define
the following four types of representation systems (mapping to the systems of
figure 2.1 in brackets): lexico-semantic representations (thesauri), representation of
types of entities (taxonomies), representation of background knowledge (ontology)
and representation of individuals (not in the figure 2.1).

Figure 2.1.: Knowledge representation systems ordered by increasing expressive-
ness and formality. Modified from a figure by [Wel07] regarding their
usage within the biomedical domain.

In the following the term entity is used to refer to a concrete class or instance
defined in one ontology, terminology or data set. This abstraction is necessary
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since knowledge representation differs across repositories and domains. The term
concept is used to describe the semantic of an entity (i.e. the abstracted meaning) on
a conceptual level without reference to any concrete implementation, such as some
particular ontology. For example, the two entities radlex:Hodgkin lymphoma
from RadLex and do:Hodgkin’s lymphoma from Human Disease Ontology (DOID)
represent the same concept Hodgkin lymphoma.

Terminologies and Classification Systems

The basic entity of terminologies is a term, which consists of a word or a compound
of words. A vocabulary is a set of terms used in a specific context or domain. A
terminology is a controlled vocabulary, i.e. a fixed set of terms which is issued
by some institution of group. Terminologies often provide textual definitions or
descriptions for the contained terms to explain their semantics. However, since
their definitions are in free text from, the semantic of terms is understandable
only for humans. Terminologies are used to establish a common understand-
ing (semantic) of a set terms. A thesaurus is a terminology where the terms are
additionally grouped by their semantic similarity. For instance, synonym infor-
mation is contained in a thesaurus and bound to the corresponding entity. An
example of a biomedical thesaurus is the National Cancer Institute Thesaurus
(NCIT). A taxonomy is a hierarchically structured terminology. The hierarchical
structure is represented by is-a relations between entities. A classification system is
a hierarchically structured set of classes where sibling classes are disjoint. A very
prominent example of a classification system is the ICD. Regarding a more formal
representation the separation of lexical information (i.e. the term) and the iden-
tifier of an entity are often separated. Almost all terminologies, thesauri within
the biomedical domain provide this separation. Systems, where the usage of the
identifier as a standard reference to codify data is predominant, are sometimes
also called coding systems. An example of a coding system is Logical Observation
Identifiers Names and Codes (LOINC), which defines codes for measurement
results of laboratory examinations such as blood counts etc.

Ontologies

Ontologies allow to express more knowledge about a certain domain, than pure
classification or coding systems. A very popular definition of ontology comes from
[Gru93]: “An ontology is an explicit specification of a conceptualization.” Basically, an
ontology defines a set of entities and their relations. Furthermore, logical axioms
are used to formalize the semantic of entities. Thus, in contrast to terminologies
the semantics of entities are machine-understandable. Furthermore, axioms can
be used to check the consistency of the represented knowledge. As described
in [Wel07] ontologies can be distinguished by their expressiveness. While some

25



CHAPTER 2. BASICS

ontologies make only limited use of axioms, others fully employ first-order logic
constructs. Additionally, different types of ontologies are distinguished by their
role for the representation of knowledge. A so called upper ontology is an ontology
that provides the basic concepts for knowledge representation independent of
any particular domain. Typical entities of an upper level ontology are entity or
process. Furthermore, there are so called domain ontologies, application ontologies
and reference ontologies. Even though their distinction is not sharp, they can be
described roughly as follows: A domain ontology is an ontology which covers the
concepts of a certain domain. The scope of the domain however can be very
different: For example, the Infectious Disease Ontology (IDO) covers the domain
of infectious diseases, while RadLex covers the domain of radiology including
diseases, anatomical instances and other concepts with relevance to the radiology
domain. An application ontology is an ontology with a limited term coverage and
expressiveness in order to be efficiently used in certain applications. Its reuse for
completely different applications is mostly not possible without adaptations. A
reference ontology is often a large ontology which has the purpose to be reused in
many different scenarios for the representation of different types of data. Their
role is more to provide a structured reference terminology. The FMA or the DOID
can also be seen as reference ontologies.

Obviously, not all existing knowledge representation systems can be unambigu-
ously mapped to exactly one of these systems. Thus, there are several fuzzy terms
further describing the usage or type of corresponding systems: e.g. reference
terminology/ontology, application ontology, foundational ontology, domain ontol-
ogy, upper level ontology etc. Many biomedical “ontologies”, which can be found
at the BioPortal [14h], are in fact rather terminologies, taxonomies, thesauri or
classification systems than ontologies. However, as described in [SS10] “what were
formerly referred to as terminology systems or vocabularies are today often vaguely
referred to the name ontology”. Thus, for simplicity the distinctions might be omit-
ted and it is referred to different representation systems as reference ontologies or
simply ontologies.

Ontology Design Patterns

As in software engineering, there are also basic design patterns for the creation
of ontologies. Some important of them are described here – for a comprehensive
overview it is referred to [14k]. A common problem of classification systems is
that they often contain classes representing the unspecified types in one hierarchy
level. For instance the ICD-10 contains a class Other disorder of facial node
as a subclass of Facial nerve disorders. In general this is considered as bad
practice, since the semantic scope of that class is defined by the siblings, not by
the class itself. Thus, change of the siblings changes the scope of the class. This is
especially problematic with respect to the interpretation of legacy data. Another
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important pattern (called “Don’t Repeat Yourself (DRY)”) is to avoid repetition of
class hierarchies. This is especially relevant when entities have many possible
modifications. If for each modifier the class hierarchy is duplicated, this would lead
to an extremely large ontology containing redundant information. For instance,
the intensity of a disease (severe, moderate etc.) is such a modifier. According to
the Don’t Repeat Yourself (DRY) design pattern, an ontology should not define
classes such as severe lymphoma, moderate lymphoma since this would repeat the
information of the ontology. Instead, one should define that a disease can have a
associated severity which is one of a defined set of entities denoting severities.
The specific entity is then created by the user through post-coordination of entities.
A combination of several entities within the original ontology is referred to as
pre-coordination. Even though pre-coordination allows a more direct usage of the
concepts, it leads to an tremendous increase of entities and thus does not scale.
A good description of that problem is given by [Cor09], where it is shown that
in SNOMED for “many disease one of five episodicities, one of six severities and one of
seven courses can be chosen” which leads to 300 possible combinations.

2.1.2. Description Logic and Reasoning

According to [Baa+10], Description Logic (DL) originates from semantic networks
(nodes and links) and frame-based systems. While semantic networks mainly express
IS-A relationships which defines a generalization hierarchy, the semantics of other
relations is not formally defined. In contrast to this, a “characteristic feature of
Description Logics is their ability to represent other kinds of relationships that can hold
between concepts, beyond IS-A relationships” [Baa+10]. For instance, DL classes can be
defined by their relation to other classes by value restrictions, number restrictions
or by equivalence to the intersection of other classes. The role of a DL language is
to define a structure and the type of relations that can be used to describe classes
logically by these kind of restrictions. As for other logic languages, DL terms or
expressions are constructed based on atomic concepts and atomic roles to form
more complex expressions. A basic application of DL reasoning is to infer subclass
relationships (subsumption) and membership of individuals (instances) in classes,
i.e. the finding the different types for instances. Further, reasoners are used to check
the consistency of defined models, i.e. the absence of contradicting expressions
and satisfiability of class expressions. There are different DL languages (such as
DL lite and DL full) distinguished by their expressiveness and corresponding
trade-off regarding reasoning complexity.

With respect to modeling languages of classical databases, a “distinguishing fea-
ture of DL is the open-world assumption” [Baa+10], which basically means that
absence of a fact does not imply that the fact is false, but only that it is unknown.
Thus, inferred conclusions are never falsified when new facts are added. This
interpretation is suitable for representation of clinical findings. Simply because
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a symptom such as fever is not mentioned in a report, does not mean that the
patient does not have fever, but only that the status of fever is unknown.

2.1.3. The Semantic Web Technology Stack

This section describes the basic technologies and W3C standards of the semantic
web. For a more detailed description of the mentioned technologies it is referred
to the respective official W3C websites. The semantic web is an extension not a
replacement of the current web. While the classical web is focused on layout and
the possibility to link web pages, the semantic web is focused on meaning [BHL01]
and data. By [BHL01] the semantic web has the following three components:

1. Expressing Meaning: usage of common vocabulary to represent data

2. Knowledge Representation: reasoning through rules

3. Ontologies: formal definition of relations among terms

Here ontologies are considered to be mainly taxonomies. In the following, entities
are denoted in typewriter font. The IRI of an entity has two parts: the namespace
and the local identifier. Within one document the namespace might be associated
by a shorter prefix. For instance the namespace IRI http://www.w3.org/2002/07/
owl# is commonly associated with the prefix owl: and one can write owl:Class
instead of the full Internationalized Resource Identifier (IRI). According to com-
mon practice entities are denoted by using a prefixed notation, i.e. one writes
owl:Class instead of the full IRI http://www.w3.org/2002/07/owl#Class. A de-
tailed description on the notation is given in appendix A.3. Logical axioms are
given in Manchester syntax [Hor+06; HP12].

As shown in figure 2.2 the semantic web is built on the usage of unicode and the
usage of Uniform Resource Identifier (URI) as identifiers. A well known subset of
URI is Uniform Resource Locator (URL), which are used to identify web pages.
The semantic web however uses identifiers not only for web pages but more
general for any resource of interest. Extensible Markup Language (XML) is a
markup language to describe structured information. Furthermore, XML Schema
is a language, which can be used to define validity of XML documents, and XML
namespaces are used to qualify element names. Namespaces are identified by
URIs. In the context of the semantic web, entities can be of the following types
[MPP12]: class, object property, data property, annotation property, datatype and
named individual. Each entity is specified by exactly one IRI. Additionally to
entities there are literals (strings, integers etc). The nodes can be IRIs, literals or
blank nodes, however literals must not be used as a subject in a triple. Typed
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2.1. Knowledge Representation

Figure 2.2.: The semantic web technology stack as presented in [06a].

literals have an assigned data type, while plain literals do not have an assigned
data type.

Resource Description Framework

The Resource Description Framework (RDF) is a framework for representing
information in the Web [CWL14]. It provides the basic vocabulary to describe
graph-like data: nodes and relations between nodes are represented as triples
(subject, predicate, object). A triple is also called RDF statement and a set of triples
is called an RDF graph. RDF is the exchange format of the semantic web. For
instance, the relation specifying that an entity is an instance of a class is defined
in RDF by rdf:type. RDF built in vocabulary defines for example Property and
Statement as well as properties to relate an instance of statement to respective
subject, predicate and object resources. One serialization of RDF documents is
RDF/XML. An RDF document serialized in XML is a XML document satisfying a
certain syntax defined by the RDF XML Syntax [GS14]. There are serializations
in other formats such as turtle [PC14], JSON [Spo14], N-Triples [CS14] etc. Since
turtle is most human readable serialization, it is used throughout this document
for example code.

Resource Description Framework Schema

Resource Description Framework Schema (RDFS) is used to define entities which
are commonly used to describe taxonomies. It is based on RDF and defines
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concepts such as Class, Resource, DataType, Literal etc. as well as properties
that are used to specify the domain and range of properties. Further, properties to
hierarchically order classes rdfs:subClassOf and properties rdfs:subPropertyOf
are provided by RDFS.

Web Ontology Language

Then come more expressive languages – namely Web Ontology Language (OWL)
and OWL2 [MPP12]. OWL builds upon RDFS and contains more concepts to
logically define the semantics of classes and properties by logical definition (called
axioms). Axioms are “statements that say what is true in the domain” [MPP12] and
they are used to express logical relations between entities. For instance, the OWL
vocabulary contains a class AllDisjointClasses to allow the specification of a
set of disjoint classes. This is especially useful when one defines a classification
system where an entity can be an instance of only one class out of several sibling
classes. Properties in OWL are distinguished as owl:ObjectProperty (relation
between individuals), owl:DatatypeProperty (relation between individual and
literal) and owl:AnnotationProperty (relation between a class or individual and
class, individual or literal). There are different expressiveness levels specified:
OWL Lite, OWL DL and OWL full. The OWL 2 specification [MPP12] defines the
following types of axioms [MPP12]:

• class axioms: SubClassOf, EquivalentClasses, DisjointClasses and Disjoin-
tUnion

• property axioms: SubObjectPropertyOf, ObjectPropertyDomain, Object-
ProperyRange, SymmetricObjectProperty, InverseObjectProperty etc.

• data property axioms: SubDataPropertyOf, DataPropertyDomain, DataProp-
eryRange, DisjointDataProperties, FunctionalDataProperty etc.

• data type definitions: additionally to the built in data types such as xsd:integer
one can define new data types based on existing ones

• keys: axioms that are used to identify individuals by object and/or data
type property assertions

• facts: assertions, which are axioms about individuals, e.g., the ClassAssertion
is used to express the membership of an individual within some class

Many different types of properties are used by reasoners to verify consistency
and inference. For instance, a functional property define that one entity can be
related by that property to maximal one object. OWL also provides the relation
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owl:imports that can be used to reuse other ontologies by including all its entities
and relations.

There are many different profiles of OWL 2 (also called fragments) which define
“restrictions on the structure of OWL ontologies” [Mot+12]. Within the biomedical
domain, EL++ is an important and widely used lightweight profile, which was
designed for usage of large scale ontologies. The EL++ profile is well suited for
application contexts, because “ontology consistency, class expression subsumption, and
instance checking can be decided in polynomial time”[Mot+12] .

Semantic Web Rule Language

The Semantic Web Rule Language (SWRL) is an extension to OWL abstract syntax
which allows the definition of so called rule axioms. “A rule axiom consists of a
antecedent (body) and a consequent (head) each of which consists of a (possibly empty)
set of atoms” [Hor+04]. That is based on the existence of a set of triples of a graph
pattern specified in the rule body new triples (atoms) are inferred. The atoms of
rules can be class membership assertions, property assertion, an identity assertion
(owl:sameAs) or a distinction assertion (owl:differentFrom) [Hor+04]. In general,
SWRL extension makes OWL DL undecidable [Hor+04].

SPARQL

RDF data is represented in form of triples that can be stored in a file or in so
called triple stores. Some triple stores offer the usage of named graphs [CWL14]
for further grouping of triples, which is essentially a representation as quadruples.
RDF specifies data in graph format and SPARQL [HS] is the query language for
these graphs, i.e. one defines a subset of the data based on graph patterns which
are specified in a SPARQL WHERE clause. In total, SPARQL defines four types of
queries: SELECT queries are used to retrieve specific data based on the variables
defined in the WHERE clause. DESCRIBE queries are used to retrieve triples
related to a certain resource. The scope of the returned triples is determined by
the query processor. The advantage of a DESCRIBE query is that the user does
not have to know the schema of the RDF data set. An ASK query determines
the existence of at least one data set matching the graph pattern defined in the
WHERE clause and accordingly returns true or false. CONSTRUCT queries are
used to create new triples based on the variable binding defined in the WHERE
clause, i.e. an RDF graph is obtained. A good introduction to SPARQL is given by
[DuC11].
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2.2. Biomedical Ontologies

In the biomedical domain ontologies have a long tradition and many well designed,
large and semantically rich ontologies exist. At the time of writing, the BioPortal
[14h], an ontology repository for the biomedical domain, contains 421 ontologies,
where 49 have more than 10,000 entities. Table 2.1 gives an overview of selected
biomedical ontologies, terminologies, coding systems and classification systems
related to this work. For a comprehensive list of ontologies it is referred to the
websites of the NCBO BioPortal [14h].

Table 2.1.: Overview of biomedical ontologies and classification systems ordered
by the number of contained classes.

Name Classes Domain Family Type
SNOMED CT 401,200 health UMLS coding system

MESH 245,871 health UMLS coding system
LOINC 162,368 lab results UMLS coding system

NCIT 107,882 cancer research UMLS thesaurus
FMA 83,283 anatomy OBO ref. ontology

OMIM 76,717 genetics UMLS ref. ontology
RadLex 45,754 radiology - ref. ontology

ICD 12,451 diseases UMLS classific. system
OPS 15,411 procedures - classific. system
HP 10,593 phenotypes OBO ref. ontology

DOID 8,744 diseases OBO ref. ontology
ATC 7,666 medication - classific. system
OBI 2,797 experiments OBO ontology

CMO 2,627 measurements OBO ontology
PATO 1,536 phenotype OBO ontology

BT 390 general - upper ontology
UO 331 units OBO ontology

TMO 301 clinical studies - ontology
IAO 173 information OBO ontology

BSPO 136 spatial OBO ontology
OMRSE 127 social entities OBO ontology

OGMS 125 medicine OBO upper ontology
CARO 50 anatomy OBO upper ontology

BFO-1.1 39 general OBO upper ontology
BFO-2 36 general OBO upper ontology

RO 0 general OBO upper ontology

In the biomedical domain there exist two big families of ontologies: The Unified
Medical Language System (UMLS) and the Open Biological and Biomedical On-
tologies (OBO). The Unified Medical Language System (UMLS) is a set of different
multilingual classification and coding systems, where concepts are aligned by
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the UMLS Metathesaurus. The OBO Library consists of orthogonal ontologies
(without domain overlaps) which are all based on a common set of upper-level
ontologies. Thus, the fundamental distinction between the two approaches is
that while the UMLS aligns existing terminologies and coding systems based on
language (i.e. on concept labels), the OBO Library promotes the “coordinated evo-
lution” based on sound ontological upper ontologies. Both families are described
in the following subsections.

2.2.1. Unified Medical Language System

The UMLS is a collection of terminologies, coding systems and classification
systems. Its purpose is to represent the language used in the clinical to domain in a
structured and integrated form to “promote creation of more effective and interoperable
biomedical information systems and services, including electronic health records” [14u].
The terminologies of the UMLS (also call source vocabularies) cover almost all
clinically relevant domains from patient care, over health statistics and health
service billing to clinical research. One of the most comprehensive ontologies is
the SNOMED CT which contains more than 300,000 entities. The general idea and
conceptualization of the UMLS is described in [Cam+98]. As described in [NLM09]
there are several components forming the UMLS: the UMLS Metathesaurus, the
UMLS Semantic Network as well as the SPECIALIST Lexicon and the Lexical
Tools. The two most important are the following:

• The UMLS Metathesaurus integrates many different terminologies and coding
systems through Concept Unique Identifier (CUI) (often simply called CUIs).
It contains more than 1 million concepts from over 100 source vocabularies
[14u]. Thus, the Metathesaurus serves as a central connection or mapping
point between the different source terminologies.

• The UMLS Semantic Network is a model containing 133 different seman-
tic types which are interlinked by semantic relationships. The semantic
types provide high-level semantic categories for the concepts used in the
Metathesaurus (all concepts of the UMLS Metathesaurus have at least one
semantic type). Examples of the semantic types are Organism (with subtypes
Virus, Animal, Human etc.), Biologic Function (with subtypes Physiologic
Function and Pathologic Function), Finding (with subtypes Laboratory
or Test Result and Sign or Symptom) or Anatomical Structure (with sub-
types Anatomical Abnormality, Cell, Tissue etc.) [NLM09].

The UMLS is not a coding system itself. The meaning of a concept (CUIs) emerges
from the linked concepts of the source terminologies. As described, these links
are established based on language - without an ontologically sound framework.
Thus, “in some cases the CUI’s emergent meaning can differ significantly from
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the original sources’ intended meanings of terms linked by that CUI” [Cam+98].
The main difference of that modeling approach is that hierarchical relationships
between entities of different semantic type are possible (not avoided). For example,
a disease might be a subclass of a symptom which is obviously bad from a pure
ontological perspective. In the following, some of the UMLS terminologies are
described in more detail.

• International Classification of Diseases: The ICD hierarchy contains 12,541
classes representing diseases and other health related problems in a hier-
archy of 5 levels. It is used to record diagnostic information (e.g. main
and secondary diagnosis). The ICD is issued by the WHO, it exists (with
some modifications) in 42 languages and is internationally accepted. The
coded diagnostic information provides the basis statistics about mortality
and morbidity by WHO Member States[14g].

• Systematized Nomenclature of Medicine – Clinical Terms: SNOMED CT
is one of the most comprehensive clinical terminologies. It contains more
than 400,000 classes covering anatomy, clinical findings, pharmaceutical
products, procedures, specimens, social context of patients etc. It is the
“designated standard for use in U.S. Federal Government systems for the electronic
exchange of clinical health information”1.

• Logical Observation Identifiers Names and Codes: LOINC is a standard
coding system for describing laboratory tests measurements and observa-
tions. It covers 162,368 codes organized along the following six dimensions:
Component (Analyte), Property, Time, System (Specimen), Scale and Method
[Reg14].

• Online Mendelian Inheritance in Man: Online Mendelian Inheritance in
Man (OMIM) is a “comprehensive, authoritative compendium of human genes and
genetic phenotypes” [15l].

• National Cancer Institute Thesaurus (NCIT): The National Cancer Institute
Thesaurus (NCIT) is a large reference terminology (biomedical ontology) for
the domain of cancer research which is being actively developed since 2003
[GPS11].

2.2.2. Open Biological and Biomedical Ontologies

In contrast to the UMLS, the Open Biological and Biomedical Ontologies (OBO)
Foundry [14t] follows the idea of a “coordinated evolution” of orthogonal ontologies,

1http://www.nlm.nih.gov/research/umls/Snomed/snomed_main.html
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which are based on a common architecture to support biomedical data integration
[Smi+07]. That is, the OBO ontologies do not need to be mapped, because they
are aligned right from the start. The common architecture that is necessary for
this alignment is given by the usage of the same upper ontology – namely the
Basic Formal Ontology (BFO) which is described below. Additionally, the OBO
Foundry developed naming conventions described in [Sch+07] (and reviewed
in [Sch+09]) that support the coordinated creation of ontologies in a common
framework. Further, a methodology for reusing (parts of) existing ontologies –
called mireoting – was developed and is implemented by the OntoFox web service
[Xia+10]. Search for OBO can be performed by using Ontobee [Xia+11]. In the
following the BFO and some other important OBO ontologies are briefly described.
All ontologies, which were reused for the Model for Clinical Information (MCI),
are described in detail in chapter 4.

Basic Formal Ontology

The Basic Formal Ontology (BFO) is a typical upper-level ontology providing the
basic classes for other ontologies, without containing any domain-specific ones. It
is used by almost all ontologies of the OBO library and thus defines the common
class architecture of them. As shown in figure 2.3, the BFO distinguishes between
continuants (e.g. anatomical entities or qualities) and occurents (e.g. processes).
Both classes are subclass under the root class entity. Continuants are further
distinguished as dependent continuants or independent continuants. For instance, a
material entity is an independent continuant while a role, a function or a quality is
a dependent continuant. The Basic Formal Ontology version 1.1 (BFO-1.1) contains
no properties and is meant to be used with the Relation Ontology described next.

Figure 2.3.: The OBO library as shown in [Smi+07].

Relation Ontology

The Relation Ontology (RO) contains only object properties. The defined properties
are very general and reused by most of the OBO ontologies. For instance, RO
contains the properties has part, has quality, located in and participates
in. Most of the properties defined by RO have corresponding inverse properties.
[Smi+07].
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Basic Formal Ontology version 2

In 2012 a new version of the Basic Formal Ontology, the Basic Formal Ontology
version 2 (BFO-2) was presented. The basic idea of BFO-2 [12c] is to integrate
BFO classes with the properties of the Relation Ontology (RO), so that one can
define e.g. the domain and range of the properties. The fundamental difference
however is that in BFO-2 relations are temporalized, i.e.part_of is replaced by
part of continuant at some time with subproperty part of continuant at
all times. BFO-2 was also adapted to the OBO Foundry naming conventions.
That is, while in BFO-1.1 the class entity had the local name Entity in BFO-2 it is
BFO_0000001. Thus, BFO-2 it is not backward compatible with the BFO-1.1.

Shortcommings Since the two versions of the Basic Formal Ontology, BFO-1.1
and BFO-2, are incompatible, ontologies that are build on different versions are
incompatible too. This is currently one major problem of the OBO library. While
the class hierarchy of both versions is conceptually almost the same, there are two
fundamental distinctions between BFO-1.1 and BFO-2:

• Different URIs: While BFO-2 now uses the OBO namespace, BFO-1.1 did
not. For instance, the class entity has URI http://purl.obolibrary.org/
obo/BFO_0000001 in BFO-2, while http://www.ifomis.org/bfo/1.1#Entity
in BFO-1.1. Thus, BFO-2 is not backward compatible with BFO-1.1.

• Temporalized relations: While BFO-1.1 did not contain any relations at all,
BFO-2 integrates relations formerly defined in a separate Relation Ontology
(RO). Furthermore, in BFO-2 many relations are either defined to hold at
all times or at some time. For example, instead of ro:part of BFO-2 defines
two relations part of continuant at some time and a subproperty part
of continuant at all times. As described in [12a], the main problem of
BFO-1.1 was the inability to “annotate process measurement data (e.g. pulse
rates”.

In the future BFO-2 should be used by all ontologies of the OBO library, however
it is noted that the introduction of temporalized relations by BFO-2 bears several
problems as described in [Mun14] and that only the class hierarchy of BFO-2 can
be considered to be stable and accepted. For those, who want to reuse only the
class hierarchy of BFO-2, an official “class only” file is available [12d] which can be
used in combination with RO. At the time of writing most OBO ontologies have
already switched to BFO-2 (e.g. Ontology for General Medical Science (OGMS),
Ontology for Biomedical Investigations (OBI) and Information Artefact Ontology
(IAO)) using however only the class hierarchy of BFO-2.
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Ontologies of the OBO-Library

The OBO-library consists of many ontologies. Here we briefly mention some of
the well known and those which are important for this thesis:

• Units Ontology: There are different Units Ontology (UO) versions available,
distinguished by the implemented reasoning level and the use of references
to Phenotypic Quality Ontology (PATO) entities. The most comprehensive
used OWL reasoning and references to PATO entities to define what qualities
the units are for. As explained in [GSH12], units such as meter could be
modelled as classes or instances. Both variants are provided by different UO
versions.

• Ontology for Biomedical Investigations: The Ontology for Biomedical In-
vestigations (OBI) is an integrated ontology for the description of life-science
and clinical investigations [14r]. It is actively developed within a cross-
community effort and provides an integrative framework [Bri+10]. It defines
planned process with subclasses such as investigation or freezing. Fur-
thermore, OBI defines various classes under biological process, some of
them taken from the Gene Ontology. It is based on BFO-2.0 classes, however
not using temporalized relations.

• Foundational Model of Anatomy: The Foundational Model of Anatomy
(FMA) is a large ontology (83,281 classes) with the most detailed description
of the human anatomy. Many relations like different part-of relations enrich
the ontology and make the FMA useful for spatial reasoning. Only few
classes have German labels.

• Gene Ontology: The Gene Ontology (GO) [14f] consists of three main parts:
cellular component, biological process and molecular function [Ash+00]. It is
one of the most famous ontologies of the OBO library and used for indexing
of scientific publications.

• Human Disease Ontology: The Human Disease Ontology (DOID) contains
“descriptions of human disease terms, phenotype characteristics and related medical
vocabulary disease concepts” [Sch+12]. The ontology contains many links to
ICD, NCIT, SNOMED CT and thus provides a bridge between the OBO
ontologies and those of the UMLS.

• Human Phenotype Ontology: The Human Phenotype Ontology (HP) is a
large ontology that describes human phenotypes by combining concepts
from anatomy with qualities [Rob+08]. For instance, the class splenomegaly
is defined as pato:increase size (quality) of fma:spleen (anatomical en-
tity). The Human Phenotype Ontology (HP) is used for example in clinical
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diagnosis in human genetics [Köh+09].

• Symptom Ontology: Symptom Ontology (SYMP) contains 840 classes defin-
ing various symptoms distinguished mainly by the affected anatomical
region (e.g. abdominal symptom, digestive system symptom, head and
neck symptom etc.) or body system functioning (e.g. nervous system symp-
tom, neurological and physiological symptom, nutrition, metabolism, and
development symptom).

2.2.3. Other Ontologies, Classification and Coding Systems

The following three ontologies are neither part of the UMLS nor of the OBO library.
They are listed here, because they were used as reference terminologies in this
work.

Radiology Lexicon

The Radiology Lexicon (RadLex) was initially a terminology for the radiology
domain. RadLex contains classes for clinical findings, imaging modalities, imaging
observations, procedures, processes, descriptors and report components. Many
classes however describe anatomical entities which were mostly imported from
the FMA.

Anatomical Therapeutic Chemical classification system

The Anatomical Therapeutic Chemical classification system (ATC) is a WHO inter-
national standard developed to describe drug information. It consist of five levels
describing the (1) anatomical main group, (2) therapeutic main group, (3) thera-
peutic or pharmacological subgroup, (4) chemical, therapeutic or pharmacological
subgroup and (5) chemical substance. The ATC is available in several languages
including German. Since there is no RDF version of ATC available, it was created
by transforming the Excel content to RDF.

German Procedure Classification

The German procedure classification (Operationen- und Prozedurenschlüssel)
(OPS) is “the official classification for the encoding of operations, procedures and general
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medical measures in the inpatient sector and for surgical procedures in the outpatient
sector” [14m].
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2.3. Semantic Annotations

In most general form an annotation is an association between distinct pieces of
information [SCV13]. Thus, annotations can be seen as meta data serving very
different purposes (such as comments or notes) as described in [AF07]. In the
context of NLP, IE is a technique to find important information pieces in unstruc-
tured texts and to extract them as structured information [Mey+08]. For instance,
IE is used to detect semantic entities such as date values, names, measurements,
etc., in texts. Approaches for annotation range from automatic image parsing
[Sei+09] and information extraction from DICOM headers and structured reports
[MRS09] to (aided) manual approaches [Wen+08], [Cha+10] and [Rub+08]. We
refer to semantic annotation, the annotation of unstructured data with concepts
from ontologies. Here the ontological entities are mapped to the corresponding
words in the text, based on the controlled vocabulary of an ontology. This task is
also referred to as NER. Semantic annotation has the advantage, that the meaning
of the annotation is defined through the relations within the ontology. Having an
annotation with the concept fma:Liver one can refer to the FMA and that a liver
is a subclass of fma:Lobular organ or further of fma:Anatomical Structure as
shown in figure 2.4.

Figure 2.4.: A semantic annotation of an unstructured text with the FMA class for
liver.

NCBO Annotator [JSM09] is a publicly available web service 2 which can be used
to annotate text with ontology terms from UMLS and the NCBO BioPortal. In
summary, semantic annotation is a technique to make heterogeneous clinical data
better accessible - e.g. for search or other processes that aim to capture the content
of the unstructured data. Since annotations have different types and context
(provenance information etc.), one commonly needs a data model to store and
structure annotations. Examples are the Open Annotation Data Model [SCV13] or
the MEDICO Annotation Ontology [Sei+10]. The usage of an annotation model
improves precision and recall in information retrieval in comparison to simple
key-word tagging as pointed out in [OPS10]

2http://bioportal.bioontology.org/annotator
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3
Related Work

In the previous chapter, the basics of knowledge representation, semantic web
technologies and biomedical ontologies were described. Here, work related to
the objectives that are listed in the introduction is presented. Mainly, this is the
integrated representation of clinical data and medical knowledge. Since the field
of knowledge and data representation in biomedicine is very broad, the following
description is concentrated on related work that utilizes semantic technologies
and existing reference ontologies for representation of clinical data. Data models
(or information models) with a similar scope as the Model for Clinical Information
(MCI), which is presented in this thesis, are described and differences to MCI are
highlighted. The following models are analyzed with respect to their ability to
express clinical findings: The HL7 Reference Information Model (RIM) version
3, OpenEHR, DICOM Structured Reporting, the OBO-based data models and
ontologies Translational Medicine Ontology (TMO) and Computer-Based Patient
Record ontology (CPR) and further the Quantitative Imaging Biomarker Ontology
(QIBO). After this review of related data models, related work regarding the
inference mechanisms (chapter 8) and corresponding case studies are described:
Firstly, the knowledge-based extraction of measurement entity relations from free
text radiology reports and the subsequent classification of normal findings and,
secondly, the ranking of likely diseases.
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3.1. The Relation between Data Models and
Reference Ontologies

As described in the introduction (chapter 1), the representation of clinical data in
future healthcare systems is realized through a combination of some standardized
information model (that defines the data structure) with standardized controlled
reference terminologies/ontologies (providing the vocabulary). A good descrip-
tion of this approach is given by [Ben10]. The most well known information
models are the HL7 Reference Information Model (RIM) and the OpenEHR Entry
Model (both are seen as standards [MSC08]), while the most well known and com-
prehensive reference ontology within the clinical domain is SNOMED CT which
contains more than 400,000 entities. A combination of an information model with
a reference ontology is needed since no terminology (or ontology) can provide pre-
coordinated concept for every possible information artefact: The author of [Cor09]
shows that in SNOMED for “many disease one of five episodicities, one of six severities
and one of seven courses can be chosen” leading to 300 possible combinations for a
single disease. Thus, the role of the information model is to define relationships
and thus provide the structure for post-coordination of entities from the reference
ontology. A binding of the information model to reference terminology is needed
to ensure consistent and unambiguous usage of terms.

There are two main challenges here: Firstly, a clear definition and separation of
the scope of an information model and reference ontologies. Secondly, a good
approach to define the relation between (or binding of) entities of the information
model with those of the reference ontology to avoid ambiguous usage and obtain
normalized representations. In the following, important research contributions
regarding these two problems are summarized.

In [KBS11] the relationship between information models and reference ontologies
and their characteristic differences are analyzed. It is argued that the main dif-
ference between information models (EHR models) and biomedical (reference)
ontologies is that the first has to express or include “observations, opinions, instruc-
tions, proposals, requests etc.”, while ontologies define biomedical entities and their
relations in a general and “mind-independent” way. Similar to the data model of
OpenEHR, “achetypes” are used to specify constraints on the correct usage of the
reference ontology.

The scope of existing reference terminologies is often too broad and thus hinders
normalized representations: As argued in [Sch+10] existing reference ontologies
such as SNOMED “contain all kind of linguistic expressions and entities which are
not terms in a strict sense”, e.g., the entity “Poor condition at birth without known
asphyxia” can hardly be called a term. These so called “non-terms” of SNOMED
CT are analyzed and remodelled as information artefacts using the structure of
HL7 RIM and alternatively with IAO. This view of placing all meta-data such as
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plans and observations in the realm of the information model is similar to [KBS11]
and helps to clarify the scope and the role of reference ontologies.

The authors of [QKR07] highlight the fact that clear semantics of the data model
(information model) is essential for quality and accuracy of data mapping to
terminology codes. The authors of [QR07] further developed a “semi-automated
mapping system called the Model Standardisation using Terminology (MoST)” that maps
archetypes of the data model to a reference terminology. They demonstrate this
by remodeling the “especially ambiguous” OpenEHR data model and achieve an
increase of accuracy from 64.7 % to 80.55 % for their mapping system. The major
issues with OpenEHR data model were “ambiguous categorisation of top level data
terms” such as process, observation, action etc., “ambiguously named terms”, “similar
or duplicate labeling of terms with inadequate definitions”, “insufficient separation of meta
data information from core clinical recording information” and “using post-coordination
of terms adequately and in the right place”. The results of the analysis of [QKR07],
especially the clear separation of concepts of the data model (for meta data) from
the vocabulary of the reference ontology and clear patterns for post coordination
guided the development of the information model that is presented in this thesis.

The authors of [BH07] emphasize that “information models must satisfy many
requirements when actually implemented including: computational efficiency and
performance; economically viable implementation; maintainability; system scala-
bility and extensibility; and the considerable privacy and security requirements of
the health domain.” Addressing these requirements, the authors present a four
step approach for creation of a successful data model for healthcare information. A
focus is set on the requirement of recording of information during the care process
reflected by the created OpenEHR Entry model (details below in section 3.1.2) for
which the following five types of information created during the care process were
identified: observation, opinion, instruction, action and administrative event.

In [MSC08], the combination of HL7 and OpenEHR with SNOMED CT is com-
pared. In particular the overlaps and gaps of the (structural) information model
with the terminology are analyzed. Different facets of clinical information are
listed and mapped to five categories for intended usage: “terminology model only”
(e.g. general semantic relationships between concepts), “terminology model pre-
ferred”, “gray area” (e.g. for representation of context information), “structural
model preferred” and “structural model only” (e.g. identifiable instances, data types
etc.). As [RQM06], the authors of [MSC08] emphasize the importance of bind-
ings. Ten Practical principles for terminology bindings such as “understandability”,
“reproducibility” and “transformability and normal forms” are presented.

In [RQM06] it is argued that “a key problem for usage of medical ontologies
for electronic health records and messages is to specify validation rules.” The
data model for the EHR or messaging systems are referred to as “information
models”. Addressing this problem, authors present a methodology for the binding
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of information models with ontologies, where the role of the binding is to define
“which codes of the terminology (ontology) are to be used where”. The presented
“Code Binding Interface (CBI)” is implemented with OWL to express type and
cardinality constraints on the allowed classes from the reference ontology. Further,
“place holder classes” are introduced to express more complex bindings. The
usage is demonstrated by binding of HL7 Reference Information Model with
SNOMED CT. The CBI may be stored separately from information model and
reference ontology and thus can be considered as the third major component for
representation of EHR data. In the work of this thesis the definition of “place
holder classes” for the binding to reference ontologies was adapted from the work
of [RQM06].

In the following subsections different data models are analyzed in detail. For
each model the size, its intended role and scope and the difference to MCI are
described.

3.1.1. HL7 Reference Information Model Version 3

The HL7 Reference Information Model was developed to create the structure for
coded clinical data and to provide the basis for all other information models of the
HL7 V3 family. It should form the foundation of all information modeling within
HL7 (in combination with data types and vocabularies) [15f]. HL7 Reference
Information Model is specified in UML, however since 2010 an RDF version has
been available at BioPortal [14h] containing 7501 classes. The RDF version does
not contain any object or data properties and axioms are only used for definition
of subclass relationships. In contrast to the HL7 v2.x standards, which standardize
the exchange of health information (e.g. in defining the document structure) while
offering flexibility regarding the transferred data, the HL7 Reference Informa-
tion Model focusses on standardizing the representation of the data itself. The
motivation for version 3 is to reduce flexibility and thus enforce standardization
“focusing on semantic interoperability” [15f]. The RIM is complemented by a data
type specification and a vocabulary specification.

The classes of the HL7 Reference Information Model are organized under 4 main
classes Entity (person, organization, material, device etc.), Role (patient, em-
ployee, access etc.), Participation and Act (observation, procedure, supply, doc-
ument, account etc.). For instance the ActClass has subclasses act, disciplinary
action, Specimen Collection and 19 times Retired Code! The class hierarchy, as
well as textual definitions, are often irritating. For example, the class ActPriority
has 14 direct subclasses including

• stat: “With highest priority (e.g., emergency).”
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• ASAP: “As soon as possible, next highest priority after stat.”

• emergency: “An unforeseen combination of circumstances or the resulting
state that calls for immediate action.”

• callback for scheduling: “Filler should contact the placer (or target) to
schedule the service. (Was "C" in HL7 version 2.3’s TQ-priority component.)”

Firstly, the difference between emergency and stat is not clear: From the textual
definitions, emergency is a specialization of stat – it is however a sibling of stat.
Further, the order of priorities is unclear: ASAP is second after stat (highest prior-
ity), however emergency is mentioned in the definition of stat. As shown by the
entity callback for scheduling, the textual definitions in HL7 Reference Infor-
mation Model mix several aspects: the semantic definition of the class, intended
action of healthcare staff, and legacy information. To give another example, con-
sider the definition of image (a subclass of ActCode): “Description: A characteristic
representing a single file reference that contains two or more views of the same dosage form
of the product; in most cases this should represent front and back views of the dosage form,
but occasionally additional views might be needed in order to capture all of the important
physical characteristics of the dosage form. Any imprint and/or symbol should be clearly
identifiable, and the viewer should not normally need to rotate the image in order to read it.
Images that are submitted with SPL should be included in the same directory as the SPL
file.” [15g] Probably this class should represent images of medication, but even
then: why is an image an act code? A better separation of meta data from process
data (acts) are needed here. Further, HL7 RIM contains four classes for patient: one
is a subclass of RoleClassRelationshipFormal and defined as “Scoped by a provider”,
a second is a subclass of RoleActCode and defined as “The recipient for the service(s)
and/or product(s) when they are not the covered party.” [15g].

The irritating textual definitions and lack of a clear understandable class hierarchy
make many classes of HL7 RIM very difficult to use and thus semantic interoper-
ability will hardly be achievable in this form. A detailed review of the ontological
issues and lack of consistency of HL7 Reference Information Model is given in
[SC06]. The work of this thesis is an attempt to create an information model on the
basis of well defined established upper-level ontologies with clear semantic inter-
pretation of the high level concepts to overcome the above mentioned ontological
issues. Note that HL7 RIM is 15 times as large as MCI: On the one hand, HL7 RIM
has a much broader coverage than MCI, but on the other hand, many classes such
as the priority codes are better placed in a reference terminology (coding system)
than in an information model and thus were intentionally not defined in MCI.
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Fast Healthcare Interoperability Resources

Recently, a new HL7 initiative called Fast Healthcare Interoperability Resources
(FHIR) [15e] was started, that attempts to create the next generation standards
framework. It should combine the “best features of HL7’s version 2, version 3 and
CDA products”. The work on RDF version of the data model is promising, however
an official HL7 version was still under development at the time of writing.

3.1.2. OpenEHR

OpenEHR consists of a “set of specifications defining a health information reference
model, a language for building ’clinical models’, or archetypes, which are separate from
the software, and a query language” [15m]. The OpenEHR Foundation has utilized
the “European standard for Electronic Health Records (EN13606) for developing
a range of highly-constrained clinical statement and record composition models
(called archetypes and templates)” [MSC08] and in total OpenEHR defines 425
archetypes and 25 templates. Similar to HL7 RIM, the data model of OpenEHR is
to be used in combination with reference terminologies such as SNOMED, LOINC
and ICD10. In contrast to HL7 Reference Information Model, OpenEHR provides
also a model for the electronic health record (EHR) itself [Bea+08].

An ontological analysis of the OpenEHR data model is presented in [BH07]:
the authors argue that a successful model making health information systems
interoperable has to be created by analysing the process of clinical care delivery as
an scientific problem-solving process. Thus, OpenEHR describes clinical data from
the data entry perspective to allow efficient capture of data in a structured form.
The OpenEHR Entry model is based on Clinical Investigation Record ontology
(CIR), which is developed with the main class recorded information and subclass
care information (see figure 3.1). Subclasses of care information are organized
in three branches history, opinion and instruction which represent temporal
categories. Subclasses are distinguished as observation-related categories (e.g.
observation, diagnosis, prognosis) or intervention categories (e.g. proposal,
goal, recommendation, intervention request).

In [Gar+07] the impact of the OpenEHR archetype-based approach on healthcare
professionals and semantic interoperability are analyzed. Archetypes provide the
structure for clinical information and can be bound with a reference terminology
such as SNOMED CT to define a set of allowed values (i.e. SNOMED codes) for
specific attributes for standard clinical care processes. For instance, the patient
position (sitting, lying etc.) during a blood pressure measurement can be specified
by using corresponding SNOMED codes. The authors of [Gar+07] argue that the
OpenEHR archetype approach allows healthcare professionals (that is the domain
experts) to formally define clinical content without technical understanding.
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Figure 3.1.: The Clinical Investigator Record (CIR) ontology presented in [BH07;
Bea+08].

The authors of [AA11; AAS12] revise the ontological structure of OpenEHR and
the role of the data model for representation of clinical data with reference ontolo-
gies that commonly implement a so called realist approach. Large parts of the
OpenEHR data model for representation of uncertain knowledge such as opinions
are not easily expressible with realist ontologies which “require the nodes and
edges in an ontology graph to correspond to entities in reality” [CES07]. For
example, a suspected fever is not a specialization of fever. The authors show how-
ever that large parts of the OpenEHR archetypes can be represented also with a
realist approach which would allow a more consistent combination with existing
reference ontologies.

OpenEHR is focused on the entry, i.e. documentation clinical care delivery – the de-
velopment of MCI focuses on providing a general structure for the representation
of the content of observations and findings. For example, opinions or recommen-
dations are not modelled in MCI. One main disadvantage of OpenEHR is that no
official version in RDF is available. This makes a combination with reference on-
tologies and application of standard reasoning mechanisms more difficult. While
for OpenEHR the entry of data is the focus, MCI has the purpose to allow reasoning
over clinical data based on formalized medical knowledge to provide views on
the data in different clinical decision making processes. In [QKR07] OpenEHR is
taken as an example for a “especially ambiguous data model”.
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3.1.3. DICOM-Structured Reporting

DICOM structured reporting [Clu00; Hus+04] is a supplement to the Digital Imaging
and Communications in Medicine (DICOM) standard [15c] and provides concepts
for describing imaging findings as well as the imaging context such as wavelength
etc. in a structured form by using specific templates [Hus+04]. Even though
the name suggests fully structured reports, DICOM SR also supports free text
radiology reports. While the general DICOM defines a standard for the exchange
of images and the parameters for presentation, DICOM SR is focused on the content
of the information [Hus+04].

According to [Ber+08], DICOM SR distinguishes between anatomy findings, lesion
findings and quality findings. Furthermore, the properties finding site, finding modifier
and certainty of finding can be specified. There are several context specification
as e.g. Anatomic Regions, Anatomic Modifiers, Image Guided Therapeutic Procedures,
Interventional Drug, Nuclear Medicine Projections and others which mostly have
corresponding concepts in RadLex and SNOMED. The data of DICOM SR docu-
ments is serialized in XML and accordingly organized in form of a tree. Detailed
information about DICOM Structured Reporting (DICOM SR), the hierarchical
tree structure and template specifications can be found in [Clu00]. Even though
no official RDF version of DICOM SR is available, the author of [Bru13] developed
a transformation of the DICOM meta-data to an RDF representation. An attempt
to create a unified representation of radiology findings integrating DICOM SR de-
scriptions and UMLS representations are described in [Ber+08]. The authors argue
that a unified representation of findings bears the potential to integrate different
knowledge resources (literature on differential diagnosis) with the diagnostic
process.

This thesis also shows that uniformly described findings (not only in radiology)
are key for integration of clinical data into different decision making processes.
In particular the basic representation of clinical findings in MCI is similar to the
representation described in [Ber+08]. However, MCI uses only the anatomical
entities and some image observations from RadLex, while other entities are taken
from OBO ontologies. For example, the modifier (i.e. the qualities) are taken
from PATO. Further, MCI provides more categories of clinical findings such as
normal/abnormal, increased/decreased, increasing/decreasing etc. which are
relevant for realization of a decision support services.

3.1.4. OBO-based Models

MCI is based on ontologies from the Open Biological and Biomedical Ontologies
(OBO) library and reuses many classes and properties from there. In this subsection
other data models are described which also reuse OBO ontologies and thus share
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a similar foundation (i.e. have common classes and properties) with MCI. OBO
ontologies which are reused by MCI are described later in chapter 4 since they form
an integral part of MCI.

The Computer-Based Patient Record ontology

Computer-Based Patient Record ontology (CPR) [11a] is meant to be used in
clinical research projects and patient registries [Ogb11]. It is based on BFO1.1,
defines 69 classes and contains 136 classes in total. Furthermore, it defines 22
object properties (in total 52) and 5 data properties (14 in total). The ontology
attempts to address the terminology needs for patient record systems and is used
in combination with the FMA, OWLTime [06c], BioTop [12b], the RO [15o] and
SNOMED CT [Int14]. CPR makes use of OWL axioms to formally define its classes.
The main classes are clinical act, clinical artefact (with subclasses such as clinical
finding, clinical diagnosis, laboratory test finding, patient record, patient record of a
symptom etc.), disposition (with subclasses such as disease, syndrome etc.), role and
object (with subclasses such as anatomical structure, medical device, organism, patient,
physician etc.). Most of the classes of CPR contain textual and formal definitions,
however not all of them are fully consistent. For example, clinical act is defined
as “a collection of events, when a medical care professional provides a medical
service to some human or animal patient(s)” [11a]. The logical definition however
does not express the notion of a “collection” of events.

Even though CPR defines a lot of important core terms of a clinical information
model, it was easier for us to base MCI on OGMS due to its clarity and illustrative
descriptions of concepts [SCS09]. In contrast to CPR, which is focused on clinical
research and patient registries, MCI is focused to provide general patterns for
clinical findings and measurements which are integrated with medical knowledge.
The goal of MCI is to enrich finding descriptions in order to better integrate the
data within clinical decision making. Further, the CPR Ontology is still based on
BFO1.1 and seems to be not longer actively developed and maintained.

Translational Medicine Ontology

The Translational Medicine Ontology (TMO) is a “high-level, patient-centric ontology
that extends existing domain ontologies to integrate data across aspects of drug discovery
and clinical practice” [12e]. It is based on BFO1.1 and IAO and defines 204 classes
(300 classes in total), 5 object properties (in total 34) and 2 data properties (6 in total).
The ontology was created by the W3C Semantic Web for Health Care and Life
Sciences Interest Group (HLSIG) and attempts to address the terminology needs
for patient record systems. It should be used in combination with established
domain ontologies. The core classes of TMO are process (with subclasses clinical
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trial and adverse drug reaction), chemical substance (e.g. pharmaceutical ingredient),
molecular entity (subclasses DNA, protein etc.) and biomedical measure (subclasses
medical measure, drug measure, genetic measure etc.). One highlighted use case
of TMO is the Alzheimer’s Disease since it is influenced by “a range of genetic,
environmental and other factors” [Luc+11].

In contrast to MCI, TMO is more focused on clinical studies and the representation
of molecular and genomic data and lacks classes for a detailed representation of
clinical findings other than laboratory measurements. Due to the available patient
data of the use cases, TMO was not the right ontology to start with. If MCI is
extended to molecular and genomic data an alignment to or reuse of TMO classes
is certainly appropriate.

3.1.5. Quantitative Imaging Biomarker Ontology

The Quantitative Imaging Biomarker Ontology (QIBO) [11b] is not based on any
upper-level ontology. It defines 618 classes, 56 object properties and 72 data
properties to express imaging biomarkers. The term biomarker “refers to a broad
subcategory of medical signs – that is, objective indications of medical state observed from
outside the patient – which can be measured accurately and reproducibly” [ST10]. In
general, structured representation of image measurements allows the analysis of
large patient cohorts. QIBO was created to support the creation of biomarkers
from clinical imaging data with the aim “to represent, integrate, and harmonize
heterogeneous knowledge across the domain of imaging biomarkers” [Buc+11]. This
should improve the access to quantitative imaging data, ease the development
of new biomarkers, support annotation of imaging data and further provide a
“framework for hypothesis testing”. In general, biomarkers are powerful since
they are quantified and thus allow comparison and analysis. Within the imaging
domain the development of biomarkers however relies on standardization and
the integration of data with different contexts. The Radiological Society of North
America (RSNA) created Quantitative Imaging Biomarkers Alliance (QIBA) [15n]
with the aim to “improve the value and practicality of quantitative imaging biomarkers
by reducing variability across devices, patients and time” [Buc+11]. While the approach
of QIBA is to integrate many different stakeholders to standardize biomarkers, the
coverage is limited to “most mature biomarkers” [Buc+13]. QIBO, on the other,
hand was created to support the creation of biomarkers from clinical imaging data
in general and thus support the detection of new biomarkers based on existing data.
QIBO is organized under the following first level classes: Imaging subject, biological
intervention, imaging agent, biological target, acquisition device, imaging technique, post-
processing algorithm, quantitative imaging biomarker, indicated biology and biomarker
use.

Even though QIBO is focused on biomarkers, it has a very similar scope as MCI
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since both models have a strong focus on image findings and measurements.
However, the fact that the ontology is no longer maintained and that many of the
classes of QIBO lack (good) textual definitions makes the ontology hard to reuse.
Further, QIBO is not aligned with other ontologies.

3.1.6. Other Data Models

There are many more data models such as Integrating the Healthcare Enterprise
[15j], Clinical Data Interchanges Standards Consortium (CDISC) [15b] and others
which are developed by different standardization organizations. The scope and
approach of these models are however significantly different to MCI which uses
semantic web technologies and established upper level ontologies. Also classical
data ware house providers developed healthcare specific models. For example, the
Oracle Healthcare Data Model [Cor10], Teradata Healthcare Logical Data Model
[15p] or IBM Unified Data Model for Healthcare [15i]. The underlying motivation
behind these models is to support the management of a healthcare organization by
using of the vendors standard Business Intelligence (BI) and analytics software
solutions. This however is not the goal of MCI, which attempts to support clinicians
in their decision making. In the context of data integration, the i2b2 platform [15h]
has to be mentioned which is essentially a data warehouse (DWH) for clinical data.
With i2b2 heterogeneous clinical data related to a patient can be made available
at one point and structured data can be mapped to standardized coding systems.
The problem however is that the i2b2 data schema is too generic to represent more
complex data such as findings descriptions which are better represented in graph
like structures. In section 7.3, it is described how data can be mapped from i2b2 to
MCI.

51



CHAPTER 3. RELATED WORK

3.2. Related Work Regarding the Case Studies

The Model for Clinical Information is used to express clinical data and medical
knowledge in an integrated manner. The medical knowledge defined in terms of
MCI is applied in three case studies: measurement extraction, finding classification
and disease ranking. Related work regarding these case studies is presented in the
following subsections.

3.2.1. Measurement Extraction and Classification

Extraction of structured measurement information from free text (section 8.2) is a
special case of relation extraction. This in turn is a specific task of general Informa-
tion Extraction (IE) which is a very broad research domain for its own. The work
presented in this thesis builds upon existing IE techniques such as Named Entity
Recognition (NER) and extraction of measurements and provides a knowledge-
based approach to infer the relations between measurements and the measured
entities to obtain structured measurement representations. That is, based on the
output of an existing annotator, which is build on the Unstructured Information
Management Architecture (UIMA) framework, structured representations are
inferred.

In contrast to this very specific task, medical text analytics has been conducted
in the context of various use cases. For example, in the cTAKES project [Sav+10],
which is also based on the UIMA framework, and by the MedLee system [Fri97].
While cTAKES approach to measurement detection is based on finite state ma-
chines, the MedLee system is rule-based. Relations between medical entities like
conditions (e.g. diseases or disorders), symptoms and indicated treatment are
extracted e.g. in [RGH08] or [BZ11]. The vocabulary of medical ontologies such as
those from the Unified Medical Language System is commonly used for the extrac-
tion of medical entities (e.g. in [BZ11]). Existing approaches for relation extraction
mostly use machine learning (ML) techniques in combination with linguistic parse
trees [Sav+10]. Within the i2b2 Relations Challenge in 2010 the supervised ML
system described in [RHR11] showed the best results for the extraction of relations
between medical problems, treatments and tests with an F-measure of 0.74. The
i2b2 Challenge on Temporal Relation extraction showed that ML outperforms
other systems in detection of events, while hybrid approaches were better at clas-
sification of temporal relations [SRU13]. Similarly in [BZ11] a hybrid approach
(combine relation patterns and ML) yields an F-measure of 0.94 for the extraction
of relations between disease and treatment. Since the knowledge-based approach
presented in this thesis has a rather specific focus, it is however difficult to compare
these results to it. No evaluations of the above mentioned approaches for the
extraction of measurement-entity relations could be found. However, in [Ang10]
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the role of domain knowledge for extraction of information from medical texts
in general is emphasized since it “supports supports the decisions about structuring
the extracted text objects into domain statements”. The thesis follows this idea by
using domain knowledge about the normal size of anatomical entities and the
generalization hierarchy of the RadLex ontology to infer structured measurement
representations based on semantic annotations. That is, by using this domain
knowledge, a set of annotations is transferred into a semantic structure. The authors
of [Ang10] refer to these (target) structures as templates.

In a subsequent step to extraction of structured measurement relations, this thesis
provides a knowledge-based approach to classify the extracted measurement
findings as normal or abnormal. As in the case of measurement extraction, there are
numerous NLP techniques with the purpose of classification and semantic labeling
of textual entities. It is noted that the knowledge-based approach presented in
this thesis is different to to pure NLP approaches (such as [BZH13]). On the one
hand, the knowledge-based approach is able to classify findings even when no
interpretation terms such as normal, unremarkable, etc. occur in the report text
(e.g. a sentence like “Spleen 13.8 cm.” can be classified). On the other hand, the
approach is limited to findings where the measurement is explicitly mentioned in
the text. As for the relation extraction, hybrid approaches that take advantage of
different methods bear the greatest potential.

3.2.2. Disease Ranking

Diagnosis Systems have a long tradition in Computer Science and Artificial Intelli-
gence, in-particular within the medical domain. There are a variety of formalisms
and techniques like set-cover, abductive reasoning, logic approaches, Baysian
networks, rule-based systems, case-based reasoning etc. Most of the logical ap-
proaches aim to explain the whole set of observations, i.e. provide a complete
diagnosis. This however often leads to diagnosis consisting of large fault sets and
thus unspecific and redundant diagnosis results, not helping the clinician. Early
attempts to formalization of model-based diagnostic knowledge were made in
[Rei87]. In [Luc98] evidence-functions are used to encode the relation between
defects and findings. Even though these formalisms are more expressive than
the disease-symptom model presented in section 8.6, this comes with high com-
putational cost: most diagnosis-algorithms are exponential with the number of
possible faults. In the medical domain there are many well known implementa-
tions of clinical diagnosis systems (expert systems) from around the 1970th and
later like e.g. MYCIN [Sho76], INTERNIST-1 [MPM82], CASNET [KW82], DX-
plain [Bar+87], CADIAG2[AA89], PATHFINDER [HHN89]. Since Bayes-nets are
theoretically best suited for diagnosis, they are successfully implemented in some
of the mentioned expert-systems. However, statistical approaches like Bayes-nets
require knowledge, which is not broadly available. For example, the a-priori
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probabilities for signs and symptoms P�s� are mostly not known. Thus, it is not
possible to compute the conditional probability for a disease, given the symptom
P�dSs� � P�sSd��P�d�

P�s� with the help of Bayes-Theorem. Note that P�sS d� is normally
not known as well. It is not difficult to see that even though one cannot calculate
P�d1Ss� and P�d2Ss� for two diseases d1 and d2, one is able to compare the values.
Thus, without knowing P�s�, ranking diseases is possible.

In many approaches, as in the one taken by this thesis, a patient is represented
through a set of present (and absent) symptoms. For example, in [BSP03], a quality
measure for a diagnosis is defined. However, the factors influencing the ranking
are different (e.g. they assume to have knowledge about the probability of a
finding being caused by a certain disease). The authors of [Mai+11] propose an
information retrieval inspired approach to rank likely diseases. Similar to the
approach of this thesis, a model represents the disease-symptom relations using
fuzzy labels, however the symptoms themselves are not weighted.

Related is also the set-cover approach: given a set of symptoms S, diseases are
represented as subsets of S. Then one is interested in a minimal set of diseases
covering the whole set of present symptoms of S in the context of a particular
patient. Set-cover has several optimizations under consideration of so called
parsimony criteria like minimal cardinality, irreducibility, relevance, most probable
diagnosis and minimal cost [RNW83]. In other words, these systems deliver a
complete diagnosis explaining all observations or clinical findings under some
optimization constraints. This however leads to diagnosis with big disease-sets
like “Lymphoma and Colorectal Cancer and some Infection and Diverticulitis can
explain the symptoms that were observed at the patient”. Clinicians commonly
clarify the presence of one specific disease and thus are more interested in a single-
fault diagnosis even though a single disease cannot explain all but most of the
symptoms of the patient.

Thus, in contrast to the set cover approaches that aims to cover all symptoms, the
ranking described in this thesis simply provides a ranking that highlights diseases
that are well matching with the patient’s symptoms. Further, in contrast to the
above mentioned approaches, the algorithm of this thesis includes also informa-
tion about the hierarchical relationships between symptoms. This information
is crucial to augment symptom information before starting the disease ranking
algorithm. Firstly, for detection of inconsistencies and secondly for inference of
implicit symptom information. Similar to this approach is the work on the Pheno-
mizer [Köh+09] which aims ranks likely diseases based on phenotype information
which is represented by reference to the Human Phenotype Ontology (HP) and
thus makes use of the hierarchical structure of phenotypes. In the context of
radiology, the Gamuts website [15d] describes a network of diseases and symptom
(or findings) that is linked to the RadLex Ontology. Gamuts is used in [BLK14]
for providing differential diagnosis, similar to the work of this thesis described in
section 8.6.
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4
Model Foundation

The Model for Clinical Information (MCI) is based on selected upper- and mid-
level ontologies from the Open Biological and Biomedical Ontologies (OBO) library
and reuses established schemes like the Dublin Core. The respective ontologies
define the basic classes and properties and provide the foundation of the model.
While a general introduction to the OBO library was given in section 2.2.2, in this
chapter it is motivated why ontologies from the OBO library are reused as the
main foundation for MCI (section 4.1) and the selected ontologies are described
in more detail (section 4.2). For each reused ontology an overview of its size,
the general scope and intended role in MCI is given. Then it is described which
entities were reused and which adaptations needed to be made to obtain a solid
and consistent foundation for MCI. Technically, the reuse of ontologies is realized
through so called imports of ontology modules (i.e. subsets of the classes and
relations of an ontology). section 4.3 describes the creation of these imports by
using the MIREOT Tool.

57



CHAPTER 4. MODEL FOUNDATION

4.1. Requirements of the Model Foundation

As motivated in the introduction, it is desirable to reuse existing models whenever
possible. Existing models were analyzed with respect to the following criteria:

• Open:The models should be freely available and reusable so that one is not
limited in regarding extensions.

• Well defined: The basic classes should be well defined and proved to be well
suited to represent clinical data. The class hierarchy and textual definitions
of classes provide the basis for extensions.

• Coverage: Core information objects such as diagnosis, processes, examina-
tions, reports etc. should be already defined so that one has to extend the
model only with use case specific classes.

• Active Community: The model has to be based on ontologies which are still
maintained so that questions can be addressed. Understanding a model pre-
cisely only through written documentation is difficult and likely to produce
wrong understanding.

• Stable: The foundation of MCI should be as stable as possible. Changes to
the reused model affect the structure of MCI and thus need to be aligned.
Thus, the reused model should not change fundamentally.

• Established: Used as a foundation by other projects in healthcare domain so
that one can benefit from analysis of related work.

• Standard: If possible, the model should be build upon standard solutions.

• Modular reuse: Existing models are sometimes very large. Flexible reuse
of parts of a model are important to avoid inclusion of unnecessary entities
which are not relevant for the use cases.

Obviously there is no ideal framework or model which fulfills all requirements.
As mentioned in chapter 3, the HL7 Reference Information Model, the OpenEHR
and several OBO ontologies are important candidates to provide the foundation of
MCI . Thus, they are compared along the above mentioned criteria (see table 4.1).
HL7 RIM and OpenEHR models can be considered as the most promising models
to become a standard in the future and the coverage of both models is good for
healthcare related entities. However, both models are not based on upper level
ontologies and thus lack a proved well defined ontological basis (for detailed
arguments see chapter 3). In the case of HL7 RIM there are even inconsistencies
(for details see 3.1.1). For instance, HL7 RIM contains four classes for patient. From
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Table 4.1.: Comparison of HL7 RIM, OpenEHR and ontologies of the OBO library.
HL7 RIM OpenEHR OBO library

open + ++ ++
well defined – - ++

coverage ++ ++ ++
active community o + +

stable o + +
established o ++ o

standard + ++ -
modular reuse - o ++

the coverage point of view all models provide a good basis. The ontologies of the
OBO library are broadly used within the biomedical domain (genetics, phenotypes
etc.), however still not established in healthcare.

In summary, OpenEHR and ontologies of the OBO library provide a good basis
for MCI . However, because of the fact that OBO ontologies are well defined and
that modular reuse easily accomplished, it was decided to base the model on
ontologies of the OBO library. Due to the orthogonal development approach taken
by OBO one can easily create and combine modules from different ontologies
- exactly fitting ones modeling needs. Thus, one avoids the creation of a large
model where many unnecessary and duplicate classes and relations are defined.
Further there is an active community working on the different OBO ontologies.
Thus, modeling questions can be discussed and one can get valuable feedback to
extensions to existing ontologies. A disadvantage of OpenEHR is, that the model
is formalized in a specific format called ‘Archetype Definition Language’ ADL),
and that there is no official RDF version which makes it more difficult to use with
standard semantic tools.

Regarding well defined upper level ontologies there are several options: For
example the Basic Formal Ontology [GSG04], BioTop Ontology (BT) [Bei+08],
General Formal Ontology (GFO) [Her10], Descriptive Ontology for Linguistic
and Cognitive Engineering (DOLCE) [06b] or Suggested Upper Merged Ontology
(SUMO) [10b]. For a detailed comparison of these ontologies (except BioTop
Ontology (BT)) it is referred to [Mas+06]. Since BFO is used by ontologies of the
OBO library it can be considered as the most widely used within the biomedical
domain and it was not considered to base the model on one of the other upper
level ontologies.
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4.2. Reused Ontologies

In this section for each ontology imported by MCI a short summary is provided
before the classes and properties that were reused are described. The main im-
ports are the Basic Formal Ontology version 2 (BFO-2), the Ontology for General
Medical Science (OGMS), the Information Artefact Ontology (IAO), the Ontology
for Biomedical Investigations (OBI), the Phenotypic Quality Ontology (PATO)
and the Units Ontology (UO). To give an impression of the size of the described
ontology, the number of classes and if relevant also the number of properties are
listed. Appendix A.3 provides a detailed explanation about how corresponding
numbers are calculated.

4.2.1. Basic Formal Ontology

The Basic Formal Ontology version 2 (BFO-2) [12c] defines 36 classes, 36 object
properties, 0 data properties and 2 annotation properties. It is an upper-level on-
tology which is completely domain independent and provides the basis for almost
all ontologies of the OBO library. There are three main distinctions modelled in
BFO [BS03; BS04; GSG04]:

• continuants vs. occurrents: Continuants exist over time (e.g. objects) while
occurrents come to existence and leave existence (e.g. processes).

• dependent vs. independent: Continuants are further distinguished as in-
dependent and dependent continuants. While independent continuants
can exist for their own (e.g. material and immaterial entities), dependent
continuants exist only in the context of some other entity (e.g. qualities).
For example an anatomical entity is independent while the quality size is
dependent on a bearer (e.g. an anatomical entity or another object).

• classes vs. instances: Classes (or universals) represent the abstract concepts
while instances the particular objects. This is the common approach of
ontologies in OWL.

These distinctions are reflected by the BFO class hierarchy shown in figure 4.1:
Under the root class entity, there are two subclasses continuant and occurrent
and further the distinction of independent and dependent continuants. Indepen-
dent continuants are e.g. material and immaterial entities. Dependent continuants
are distinguished as generically or specifically dependent continuants. The main
distinction between a specifically and a generically dependent, is that specifically
dependent continuants S depend on a some (specific) independent continuant
during the whole course of existence of S while generically dependent continuants
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depend on one or more other entities [12c]. Specifically dependent continuants
are e.g. qualities (such as a color or a size). Examples of generically dependent
continuants are all information artefacts (such as files, documents, measurements
etc.)

Figure 4.1.: The main part of the class hierarchy of the Basic Formal Ontology
version 2 (BFO-2) shows the distinction between continuants and
occurrents and between dependent and independent entities.

Reuse of BFO On the first glance the distinction of dependent and independent
continuants defined by BFO seem to have small relevance for practical applications.
However, since the class hierarchy of the BFO is the backbone of other ontologies
of the OBO library – and thus provides the basis for the integration of different
ontology modules listed below – all classes of BFO-2 are reused. However, as
described in 2.2.2 the temporal relations defined by BFO-2 are still controversially
discussed in the community and cannot be considered to be stable. Further,
they would make the model more complicated and less easy to use. Thus, it
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was decided to follow the OBI approach in using only the BFO-2 classes, but no
temporalized relations. For this purpose, MCI imports only the official “classes
only” OWL file [12d]. Additionally 14 out of 36 object properties from BFO-2 that
are not temoporalised.

4.2.2. Relation Ontology

The Relation Ontology (RO) defines 24 object properties which are very general
and used by most of the OBO ontologies. For instance, RO contains the properties
has part, has quality, located in and participates in. Most of the properties
defined by RO have corresponding inverse properties. [Smi+07]. RO is designed
to be used with BFO and the range of several object properties is specified by BFO
classes.

Reuse of RO: All 24 object properties defined in the RO core version [15o] are
reused.

4.2.3. Phenotypic Quality Ontology

The Phenotypic Quality Ontology (PATO) [14n] defines 1570 classes with the root
class quality as well as 22 object properties and 10 annotation properties. A
phenotype is defined as a “collection of characteristics that arise through the expression
of the genes of an organism, in an environment” [Mun+07] such as color, shape or
size. In other words, a quality is a characteristic of some entity and PATO contains
corresponding classes for these qualities which can be used to describe these
phenotypes. In PATO a quality is defined as “a dependent entity that inheres in a
bearer by virtue of how the bearer is related to other entities” [14n]. PATO is meant
to be used together with reference ontologies such as the FMA, Uber-Anatomy
Ontology (UBERON) or Gene Ontology (GO). As explained in [Was+09], a “descrip-
tion of an individual phenotypic character can be recorded using a bipartite ‘EQ’ (Entity
+ Quality) method, where a bearer entity (such as an anatomical part, cellular process,
etc.) is described by a quality (such as small, increased temperature, round, reduced
length, etc.).” That is, a description of a phenotype is constructed by combining
(anatomical) entities with at least one quality. For instance, the Human Phenotype
Ontology (HP) uses PATO in combination with the UBERON to describe abnormal
anatomical structures for humans such as an hp:enlarged spleen by combining
pato:increased size and uberon:spleen. Since PATO is a cross-species pheno-
typic quality ontology it provides the basis to integrate phenotype information
from different species [Mun+10], which shows the advantage of a clear separa-
tion of qualities and the bearer entities. However, since the qualities defined by
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PATO are very general, they can be used to describe clinical findings as well.
Under the root class quality, PATO distinguishes between qualitative qual-
ity, process quality, physical object quality as well as increased quality
and decreased quality. Subclasses of physical object quality are for exam-
ple morphology (with subclasses shape, size, length etc. ), physical quality
(with subclasses mass, energy, color etc.) and functionality (with subclasses
active, inactive etc.). The qualitative qualities are of special interest since they
can be used to classify clinical findings. For instance normal and abnormal (with
subclass pathological) and logically defined classes for decreased quality and
increased quality provide terms to describe deviation from normal. Other qual-
itative qualities are e.g. count, magnitude or intensity. The class hierarchy of
increased and decreased qualities is inferred by using logical definitions for these
qualities. For instance increased length is a subclass of increased size due to
the fact that length is a subclass of size.

Reuse of PATO: Since the qualities defined by PATO are very general, they
can be used to describe not only phenotypes, but also findings. As shown in
figure 4.3, PATO is used in combination with anatomical entities to describe
clinical findings. Even though many of the qualities defined in PATO could
be relevant in general, the import is kept as small as possible and only those
qualities are included which are actually needed to model the data of the use
cases. So only a small subset of the PATO qualities shown in figure 4.2 was reused.
In particular, physical object qualities for describing morphologies such as size,
mass, color or temperature were reused. These qualities are often used in finding
descriptions. Especially the different size qualities are used in the radiology
and pathology domain. The classes increased quality and decreased quality
and corresponding logical axioms were also reused. In PATO, the subclasses of
increased and decreased qualities repeats almost the entire class hierarchy under
physical object quality and thus violates the DRY principle (see the notes on
ontology design patterns in section 2.1). The object properties used in the logical
definitions of the reused qualities, namelydifferent in magnitude relative to
with sub-properties increased in magnitude relative to and decreased in
magnitude relative to are included. These properties are used in MCI to related
particular findings of one patient to normal specifications, i.e. it provides the
link between patient data and medical knowledge. All other properties are not
imported because they are either not related to the classes that were reused or
similar ones were defined in RO and thus are not specific for PATO. In total 36
classes and 3 properties were reused from PATO as well as the axioms for increased
and decreased qualities.
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Figure 4.2.: Classes imported from PATO.

4.2.4. Units Ontology

The Units Ontology (UO) [14v] defines 331 classes and contains 379 classes in
total. It is a “comprehensive ontology for the standardization of units of measurements
in the biomedical domain”, which was developed in the context of PATO to de-
scribe“qualitative and quantitative observations in biology” [GSH12]. UO defines
classes for units like gram, ampere, micrometer etc. as well as for common unit
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Table 4.2.: Reused entities from the Units Ontology.

Class Instances
concentration unit gram per liter, mass volume percentage, ...

frequency unit hertz
length unit meter, centimeter, millimeter,

micrometer, nanometer, ...
mass unit kilogram, gram, milligram, microgram,

nanogram, picogram
temperature unit degree Celsius, degree Fahrenheit, kelvin

time unit year, month, week, day, hour, minute, second
volume unit cubic decimeter, cubic centimeter

liter, milliliter, microliter, nanoliter, ...
volumetric flow rate unit microliters per minute

prefixes like centi, milli etc. Units have a textual definition, a label and some-
times a synonym or abbreviation. The units are hierarchically structured into unit
categories: For example, the unit gram per mole is a subclass of molar mass unit
which is a category of units and a subclass of mass unit. UO contains exactly one
object property is_unit_of, which is used in logical definitions (object restrictions)
of units by the corresponding PATO qualities they describe. For instance, length
unit has subclasses meter, centimetre, millimetre etc. and is defined as

uo:length unit rdfs:subClassOf (uo:is_unit_of SOME pato:1-D extent)

Reuse of UO: In OWL, object properties relate instances and since measurements
need to be related with corresponding units, these units have to be instances –
not classes. UO entities for size, mass, concentration and ratio are reused. Their
subclasses were transformed to instances so that they can be used for instances
of measurements. That is, centimetre is not a subclass of length unit but an
instance of it. Here the example of developers of the Ontology for Biomedical
Investigations is followed. The logical definitions for classes such as length unit
are preserved, so that one can check that the units are correctly used to describe
PATO qualities. table 4.2 gives an overview of the reused units from UO. In total,
74 classes and 1 object property from UO were reused. Since the OntoFox [14j]
web service was used to create the module based on the standard (class-based)
UO-version, 63 classes needed to be transformed to instances in a post-processing
step. Thus, the unit categories are represented as classes (under the IAO class
measurement unit label) while the units itself are instances of the corresponding
classes.
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4.2.5. Information Artefact Ontology

The Information Artefact Ontology (IAO) [11d] is based on BFO-2, defines 109
classes and contains 180 classes in total. It defines 16 object properties (in total
49), 4 data properties (4 in total) and 19 annotation properties (66 in total). The
IAO models the domain of information entities, i.e. entities that are about other
entities. The most important class of the IAO is the information content entity
which is defined as “an entity that is generically dependent on some artefact and stands
in aboutness to some entity” [11d]. That is, an instance of information content
entity has to be related to some instance of bfo:entity by the iao:is about
relation. For example a report is about some specific patient. The class information
content entity has 102 subclasses beyond which e.g. data item, measurement
datum, document and document part, report etc. Further IAO defines classes
under obi:planned process such as documenting. Three data properties are
defined to describe three dimensional coordinates (has x coordinate value etc.)
and one data property has measurement value is defined to relate measurements
to the respective values.

Ontology-Metadata Besides these classes which are contained in the main IAO
file, annotation properties are defined in a separate Ontology-Metadata file [11c].
Ontology-Metadata defines 6 classes (in total 16), 28 annotation properties (in total
30) and 18 instances. The annotation properties can be used to further describe
ontology resources. For example, the properties definition, definition source
or example of usage are used to provide textual definitions and examples. The
properties are widely used by ontologies of the OBO library.

Reuse of IAO: Since IAO is fully in scope of MCI, it is completely reused -
discarding only obsoleted or deprecated classes. More specifically, the latest IAO
release from March 2015 was reused, which is based on the BFO-2 class hierarchy.
MCI is an information model, i.e. many classes of its extension are about other
entities and thus will be subclasses of information content entity.

4.2.6. Ontology for General Medical Science

The Ontology for General Medical Science (OGMS) [14s] defines 76 classes and
contains 126 classes in total. The latest OGMS version (from June 2014) is based
on the BFO-2 and all object properties are imported from BFO-2. It does not
contain any data properties and all 52 annotation properties contained in OGMS
are imported from other ontologies. OGMS defines classes for basic clinical entities
such as diagnosis defined as “the representation of a conclusion of a diagnostic process”,
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symptom defined as “a quality of a patient that is observed by the patient or a processual
entity experienced by the patient, either of which is hypothesized by the patient to be
a realization of a disease”,sign defined as “a quality of a patient, a material entity
that is part of a patient, or a processual entity that a patient participates in, any one
of which is observed in a physical examination and is deemed by the clinician to be of
clinical significance” and others [14s]. Detailed definitions for basic OGMS concepts
such as disorder and disease can be found in [SCS09]. Note that even though
OGMS is based on BFO-2 the do not make use of the BFO-2 properties in logical
definitions of OGMS classes. OGMS contains seven classes from IAO such as
iao:information content entity and iao:data item. In particular clinical
finding defined as “a representation that is either the output of a clinical history taking
or a physical examination or an image finding, or some combination thereof” is a subclass
of data item.

Reuse of OGMS: Even though there are no logical definitions for the classes
defined by OGMS the class hierarchy and the textual definitions provide a very
useful starting point for MCI . Since OGMS defines many useful classes with high
relevance for the use case data, it was the initial reason to base MCI on OBO
ontologies. OGMS is fully in scope of MCI , so all classes were reused. The general
pattern of clinical findings is shown in figure 4.3.

Figure 4.3.: The basic pattern of the representation of a clinical finding: A clinical
finding is a data item which is about some material entity and describes
some a quality that inheres in that entity.

4.2.7. Ontology for Biomedical Investigations

The Ontology for Biomedical Investigations (OBI) [14l] defines 2216 classes (in
total OBI contains 2739 classes), 23 object properties (in total 88), 2 data prop-
erties (in total 7) and 4 annotation properties (in total 50). It is an integrated
ontology for the description of life-science and clinical investigations [14r]. OBI is
actively developed within “a cross-community effort and provides an integrative
framework” [Bri+10]. It is based on BFO and can be considered as one of the
core ontologies within the OBO library. The main focus of OBI lies on modeling
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investigations as processes: About the half of all classes defined by OBI are sub-
classes of bfo:process – about 630 of them define subclasses of assay which is
defined as “planned process with the objective to produce information about the material
entity”. Further, 620 classes are defined under bfo:material entity, mostly as
subclasses of processed material (e.g. molecular-labeled material or blood
plasma specimen) which allows capturing the different changes of materials along
an investigation process. OBI also defines about 100 roles such as donor, antigen
role or manufacturer role to precisely express the participants of a biomedical in-
vestigation and 70 classes under iao:objective specification. Most important
for us is the definition of value specification described in the next paragraph.

OBI Value Speci�cations The main motivation to introduce the class value
specification is that value-unit pairs appear in very different contexts [Ove13].
For instance “1.6 cm” might denote the following (adapted from [Ove13]):

• The size of a lymph node of some patient at some time.

• The maximal size of some lymph node over time.

• The upper bound used for classifying of inguinal lymph nodes as ‘normal’.

• The predicted measurement of some lymph node in the future.

• The length of a stenosis.

OBI defines value specification as “an information content entity that specifies a
value within a classification scheme or on a quantitative scale” [14l]. This provides
a shared structure for all these different cases listed above. The class value
specification has subclasses scalar value specification which is “a value
specification that consists of two parts: a numeral and a unit label” and a subclass
categorical value specification which is “a value specification that is specifies
one category out of a fixed number of nominal categories” [14l].

Figure 4.4.: The pattern of a scalar measurement datum expressed by a scalar value
specification and a corresponding quality.
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Reuse of OBI: The separation of the value-unit pair from its context and se-
mantics (measurement, average value, upper bound etc.) leads to more precise
modeling and allows easier comparison. The class value specification is used
e.g., to represent measurements. The basic pattern for measurements with value
specification is shown in figure 4.4, but also in a knowledge model where the
typical size of anatomical entities is stored (section 6.1). Even though the represen-
tation of a simple measurement involves one intermediate entity, the benefits of
this separation showed to be useful in implementations.

4.2.8. Foundational Model of Anatomy

The Foundational Model of Anatomy (FMA) is the most comprehensive reference
ontology for anatomy. It contains 83,319 classes (version 3.1, released 03/03/2010)
for material and immaterial anatomical entities and relations between them. For
details on the FMA it is referred to [RJ07].

Figure 4.5.: Imported classes from the Foundational Model of Anatomy (FMA).

Reuse of FMA: Only very few high-level classes are imported to represent
location and orientation of findings within the body. More precisely, the class
Anatomical boundary entity with its subclasses Anatomical plane, Anatomical
line and Anatomical point as shown in figure 4.5 are imported. In total the FMA
contains 8059 subclasses of Anatomical boundary entity. However, only the
high-level classes are needed. For instance there are 79 subclasses of Anatomical
plane, but only the class for anatomical plane and the three main body planes
Transverse plane, Sagittal plane, Coronal plane are needed for specifications
of size measurements. Annotation properties of FMA are mapped to existing
properties if corresponding ones exist already. For example the annotation prop-
erty fma:definition is mapped to iao:definition so that textual definitions a
represented in a uniform way in MCI.
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4.2.9. Ontology of Medically Related Social Entities

The Ontology of Medically Related Social Entities (OMRSE) [13b] is based on BFO-
1.1 and defines 44 classes (in total 94) and one object property (in total 8). OMRSE
does not contain any data properties and does not define own annotation proper-
ties. It is meant to be related with OGMS and defines classes for organizations and
for various clinical roles. For instance an organization is defined as “a continuant
entity which can play roles, has members, and has a set of organization rules . . . ” [13b]
and has subclasses such as governmental organization or sub-national entity. The
main contribution of OMRSE however is the definition of roles: Under the root
class role in human social processes it defines e.g. human healthcare role
as “a role that is realized by health care processes such as seeking or providing treatment
for disease and injury, diagnosing disease and injury, or undergoing diagnosis” [13b].
Subclasses of this role (see figure 4.6) are e.g. health care provider role de-
fined as “role inhering in an organization or human being that is realized by a process
of providing health care services to an organism” and patient role defined as “a role
that inheres in an organism as the recipient of a health care service”.

Figure 4.6.: OMRSE subclasses of human health care role.

Reuse of OMRSE: For the used use case data, the most important classes are
those under role in human social process which is a subclass of bfo:role.
Further OMRSE imports the complete subclass path from National Center for
Biotechnology Information (NCBI) to include ncbi:Homo sapiens. This class is
included by simply making ncbi:Homo sapiens a direct subclass of obi:organism,
skipping all 28 intermediate NCBI classes such as ncbi:Eukaryota, ncbi:Metazoa,
ncbi:Mammalia etc., since they are of no relevance for data of the use cases. In
total, 16 classes and one object property were reused from OMRSE and aligned to
the BFO-2 class hierarchy.
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4.2.10. Other Reused Ontologies

Besides the ontologies listed above, a few single classes from other ontologies of
the OBO library are indirectly reused. Namely from NCBI (homo sapiens, bacteria,
viruses etc.), Vaccine Ontology (vaccine), Gene Ontology (biological process),
Chemical Entities of Biological Interest (molecular entity, nucleic acid etc.) and
Cell Ontology (cell). From RadLex the Hounsfield unit was reused.

Some properties from other established schemes were reused. For example„
Dublin Core (dc-terms [14e]) defines relations to express meta-data of resources.
Protégé-dc [03] is a subset of the dc-terms [14e] and defines the relations of the
/elements/1.1/ namespace [14e] through annotation properties. Thus, one can
express meta-data of any resources in the ontology with dc-terms. Namely by
using the following 15 annotation properties: contributor, coverage, creator,
date, description, format, identifier, language, publisher, relation, rights,
source, subject, title and type. Since Protégé-dc is widely used within the OBO
library, all 15 annotation properties were included. Additionally several classes
from the NLP Interchange Format (NIF) ontology [14i] are reused to represent
textual entities such as a Sentence or Word.

The Open Annotation data model (OA) [13a] is used to represent annotations to
clinical data in a coherent way. Since the annotation pattern of OA is very general,
one can have basically the same schema for text and image annotations. Details
on the role of OA for integration of annotations is given in chapter 7. The basic
pattern of an annotation is shown in figure 4.7.

Figure 4.7.: The basic pattern of annotations using classes and properties from the
Open Annotation data model.

4.2.11. Summary of Reused Ontologies

In the previous sections the main imports of MCI were described. To obtain an
impression of the impact of the different ontologies to the foundation of MCI, the
number of reused classes and properties are listed in table 4.3. Note that for UO
some classes were transformed to individuals as described in section 4.2.4. In
total MCI reuses 447 classes, 83 object properties, 15 data properties, 75 annotation
properties and 124 named individuals from imported ontologies.
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Table 4.3.: The foundation of MCI, analyzed by number of reused classes, proper-
ties and individuals for the main ontology imports.

ontology classes object
properties

data
properties

annotation
properties

individuals

BFO-2 36 (36) 14 (36) 0 (0) 2 (2) 0 (0)
PATO 35 (1570) 2 (22) 0(0) 0 (10) 0 (0)

UO 11 (371) 1 (1) 0(0) 0 (12) 63 (0)
IAO 109 (102) 14 (16) 4(4) 29 (19) 18 (19)

OGMS 76 (76) 0 (0) 0 (0) 0 (0) 0 (0)
OBI 114 (2216) 7 (23) 1 (2) 2 (4) 0 (0)

OMRSE 16 (44) 1 (1) 0 (0) 0 (0) 0 (0)
OA 11 (23) 7 (17) 4 (9) 0 (0) (13) 13

others 39 37 6 42 43

Despite the orthogonality approach of the OBO library classes were defined in
different ontologies. For these classes mappings were used to align these entities.
For instance, the following mappings were defined:
obi:performing a diagnosis = ogms:diagnostic process,
obi:disease = ogms:disease
obi:healthcare provider role = omrse:healthcare provider role
obi:patient role = omrse:patient role
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4.3. MIREOTing

It is often the case that one is only interested in a part of some ontology. For
instance to avoid very large imports, or import only stable parts of ontologies
which are under development. It could also be the case that one agrees only with
a certain subset of some ontology but not with all defined classes or properties.
Further two imported ontologies might be created by different design principles
or based on different upper level ontologies. If these ontologies are not aligned,
importing both might “lead to inconsistencies or unintended inferences”[Cou+09].
Since OWL allows only the import of a complete ontology file, a mechanism to
reuse parts of ontologies is needed. The Minimal Information to Reference an
External Ontology Term (MIREOT) [Cou+09] is a set of guidelines to support reuse
of parts of other ontologies: To consistently include entities from an external
ontology one needs at least the source ontology URI, the source term URI and
the target direct superclass[Cou+09]. OntoFox [Xia+10][14j] is a web-service that
implements the MIREOT guidelines so that one can automatically create ontology
modules. Based on a set of entities and properties one can extract modules of
different scope from the ontology. For instance one can get all subclasses of
some given entity, together with all their annotation properties such as labels,
comments and textual definitions. But one could also recursively include all
axioms mentioning the respective entity. The OntoFox web-service was used to
create imports for all reused ontologies from the OBO library.

Note that the focus of MIREOTing is the reuse of terms. Even though one can
specify to which extent axioms should be included in the module one has to
accept that inference might be not complete when using only the extracted module
instead of the complete ontology. There are other modularization approaches
which guaranty that the same meaning and inferences are obtained using the
module or the complete ontology. For instance [Cue+07] offer an approach to
extract modules with minimal size. In the context of ontologies of the OBO library
however MIREOTing is accepted practice and for us the reuse of terms is most
important.
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5
The Model for Clinical Information

The Model for Clinical Information (MCI) provides the basis for data integration
and knowledge exploration, i.e. the structural concepts for the representation
of clinical data. This is, at first place meta-information about the patient char-
acteristics like diagnoses and findings (e.g. target lesions that were determined
for a cancer patient) as well as provided examinations, procedures and therapies.
MCI defines classes and properties and provides the basis to infer the changes
of the patient’s health status over time (i.e. the change of diagnoses, findings,
observations, symptoms and signs). These changes might then be analyzed in the
context of provided examinations and procedures e.g. in order to measure their
effectiveness. To make this possible MCI integrates various types of information.
The following four dimensions of medical data were identified, that need to be
integrated:

1. Administrative data about clinical processes: treatments, procedures, ex-
aminations etc.

2. Data about the health status: diagnoses, findings, observations, symptoms
and signs, allergies, basic demographic information such as age, gender etc.

3. Longitudinal integrated data: to evaluate the development of the health
status, data needs to be integrated along the time axis. For instance findings
from consecutive examinations.

4. Medical knowledge: Firstly, knowledge to classify and interpret clinical
data, such as classification of findings as normal or abnormal. Secondly,
diseases information, such as statistics, relation to symptoms and clinical
findings etc. need to be linked.

This chapter presents the Model for Clinical Information, which covers all four
dimensions for the data of the use cases. The knowledge models are described in
detail in chapter 6. In the previous chapter, the foundation of MCI was described.
Many useful classes and properties are thus already defined. The foundation
consists of 447 classes, 83 object properties, 15 data properties, 75 annotation
properties and 124 named individuals. Even though the most basic terms are
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defined by the ontologies forming the foundation of the model, the representation
of clinical data needs more detailed entities. On the one hand, classes need to
be added, to provide more granular types and on the other hand properties for
relating instance data. MCI defines 103 classes, 23 object properties, 18 data
properties, 12 annotation properties and 5 named individuals. Together with the
model foundation MCI contains in total 550 classes, 106 object properties, 33 data
properties, 87 annotation properties and 129 named individuals.

Figure 5.1.: The high level classes of MCI and their relations.

In the following, describe the general modeling decisions of the approach are
described in section 5.1. MCI is an information model, i.e. it provides the classes
and properties to structure clinical data. The vocabulary however is taken from
reference terminologies. In section 5.2, it is described how these reference termi-
nologies are integrated with MCI. Then, the classes, properties and individuals
defined by MCI are presented by listing their label and textual definition. Several
example representations are provided to allow a better understanding of the usage
of the defined classes and properties.
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5.1. General Modelling Decisions

In this subsection the general modeling decisions and principles are described.

5.1.1. Definitions

According to best practices, for each entity at least one human readable label
and textual definition should be given. Textual definitions of classes have an
Aristotelian form “an A is a B that C”, where A is a subclass of B, distinguished
by C. For example a mci:size measurement has the following textual definition:
“A size measurement is a measurement that specifies a size quality”. Logical
definitions are specified if possible. To allow a better understanding, examples
of their usage are additionally given. For properties which relate specific classes,
corresponding domain and range axioms are defined.

5.1.2. Don’t Repeat Yourself Principle

The Don’t Repeat Yourself (DRY) principle commonly found in software engi-
neering is also applicable to semantic modeling. It generally means that one
should avoid duplication of code. In the context of semantic modeling it means
to avoid duplication of class hierarchies RadLex for example contains more than
250 subclasses of lymph node. The finding lymphadenopathy (i.e. enlarged lymph
node) has however only one subclass. That is the subclass hierarchy under lymph
node is not repeated. Sometimes duplication is however convenient regarding
later querying: For example, PATO defines a class hierarchy of qualities such as
weight, size, length, diameter, craniocaudal diameter etc. (see previous figure 4.2).
Measurements specify these qualities and there are classes for measurements
of specific qualities: For instance, IAO defines subclasses of obo:measurement
datum such as obo:length measurement datum or obo:mass measurement datum
– with corresponding logical definitions so that measurements are automatically
classified. To retrieve all length measurements one can thus simply query for

?lmd a ’obo:length measurement datum’ .

insted of

?lmd a ‘obo:measurement datum’;
‘obo:is quality measurement of’/a obo:length .
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This duplication is convenient to allow shorter queries, however one should avoid
the creation of specific measurements for all qualities of PATO. By defining, ad-
ditionally to length measurement, a diameter measurement, craniocaudal diameter
measurement etc. – one would duplicate the entire class hierarchy of PATO.

5.1.3. Focus on Class Hierarchies

In many ontologies the class hierarchies are the most important structure – simply
because the subclass property is used more than any other property. These detailed
class hierarchies allow to precisely define the type of individuals. In OWL it is
further possible to define also hierarchies for properties. That is, one can define sub-
properties of some given property. For instance a property has examination modality
(domain: examination; range: examination modality) could have a sub-property
has imaging modality (domain: radiology examination; range: imaging modality).
Usage of sub-properties allows more specific domain and range definitions for
properties and also more precise representation of relations between particular
entities (see figure 5.2): One can easily retrieve one specific examination modality
by using the subproperty.

Figure 5.2.: Representation variant of examination modalities with sub-properties.

However, many properties and especially property hierarchies make an ontology
more complex, more difficult to modify. For instance, modification of domain
and range for a sub-property has to respect the domain and range specification of
the super-property. Further, as shown in figure 5.2, sub-properties tend to repeat
the class hierarchy – violating the DRY principle described above. Further, many
similar properties can be confusing: A user definitely has problems to select the
right property between part of, constitutional part of, member of, contained in, located
in, part of at all times etc.!

The main difference to a more simple representation – without sub-properties as
shown in figure 5.3 – however concerns querying and required reasoning level:
Retrieval all examination modalities can be done in both cases by the following
query:

SELECT ?examination ?modality
WHERE { ?examination ’mci:has examination modality’ ?modality. }
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Figure 5.3.: Representation variant of examination modalities without sub-
properties.

The difference, is that with sub-properties one needs a running reasoner while for the
simpler representation no reasoner is needed. On the other hand – in case of the
simple representation – retrieval of one specific modality requires one extra triple
in the query that specifies the type of ?modality. Due to the enhanced complexity
of sub-properties, in MCI the focus is set on class hierarchies and the definition of
sub-properties are kept to a minimum.
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5.2. Reference to Terminologies

The representation of heterogeneous clinical data using terminologies has to be
realized through links from instance data (individuals) to terminologies, which
often represented through class hierarchies. These links can be established either
using rdf:type, a data property or an annotation property. Data properties have
the disadvantage that the referenced class is represented by a string for the URI
or the ID. Annotation properties are very convenient, since they can be used to
relate any resources, however they are disregarded during the reasoning process.
Thus, rdf:type is the preferred way, to refer to terminologies if one intends to
run inference for automatic classifications of individuals. If there is a class in the
terminology exactly representing the required type, then one rdf:type relation to
that class is sufficient (see figure 5.4).

Figure 5.4.: Representation of a diagnosis with a reference to the International
Classification of Diseases (ICD).

The code for that data is the following:

:diag rdf:type obo:OGMS_0000073 , icd10:C81 .

In combination with the reference terminology such as ICD reasoning mechanisms
can be easily applied. For instance it could be inferred by a standard RDFS reasoner
that the diagnosis represents a malignant neoplasm:

:diag rdf:type ‘icd10:Malignant neoplasms’.

5.2.1. Post-Coordination

If a statement is more complex it might be the case that there is no single corre-
sponding class in the terminology. Then it is necessary to post-coordinate classes
from the terminology, e.g. for further specification of the intensity, severity or
other qualities of some entity. The main challenge in post-coordination is that the
coordinated entities can be correctly classified in the referenced terminology. For
instance the Human Phenotype Ontology (HP) contains a class hp:Lymph node
hypoplasia with the following definition:
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‘hp:Lymph node hypoplasia’ = ‘obo:has part’ SOME (obo:hypoplastic AND
(‘obo:inheres in’ SOME ‘obo:lymph node’))

hp:Lymph node hypoplasia has no subclasses. Expression of clinical findings
such as “abdominal lymph node hypoplasia” requires to follow the pattern of the
definition above, so that the findings gets correctly classified by HP.

:finding1 a ‘obo:clincal finding’ ;
‘obo:has part’ [

a obo:hypoplastic ;
‘obo:inheres in’/a ‘obo:abdominal lymph node’
].

Since obo:abdominal lymph node is a subclass of obo:lymph node, it is automat-
ically inferred that :finding1 is of type hp:Lymph node hypoplasia and also of
all super-classes such as hp:Abnormality of the lymph nodes. In some cases
one has a coordinated representation even when one single class is available.
For instance HP contains the class hp:Splenomegaly (enlarged spleen) – how-
ever this clinical finding is often represented by referencing the obo:increased
size and obo:spleen. The classification of this finding as a hp:Splenomegaly is
a useful inference one can make when one uses the post-coordination pattern
of HP. In RadLex there is also a corresponding class radlex:enlarged spleen
however without logical axioms. Thus, a finding would not be classified as a
radlex:enlarged spleen directly. Correct classification of post-coordinated enti-
ties depends on the availability of logical definitions in the reference ontology and
the use of the same coordination pattern. Since MCI is based on OBO ontologies
and HP is used to classify findings, the corresponding patterns shown above are
followed.

5.2.2. Bindings to Terminologies

Consistent reuse of reference such as ICD, RadLex, FMA, HP and others needs to
be ensured using ontology bindings. The different binding options below will be
explained along the following example, that a radiology examination has a certain
examination modality like some specific patient position during the examination.
MCI defines a class patient position but no concrete patient positions since these
entities are already available in existing ontologies – and reused. For instance
RadLex defines the class radlex:patient position and more than 40 different
subclasses. As in the above example, the rdf:type property is used to reference
one of these classes (figure 5.5).
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Figure 5.5.: Representation of a specific patient position during an examination by
referencing a corresponding RadLex class.

To ensure that an instance of mci:patient position has a type reference only
to RadLex classes which are subclasses of radlex:patient position (such as
radlex:standing position), but not to other RadLex classes, one has to bind
the MCI classes to the corresponding classes of reference ontologies. That is a
binding of mci:patient position to radlex:patient position is needed. It is
realized by the following oboInOwl:dbxref annotation property. In general the
binding serves two purposes: consistency verification and restriction of selectable
entities in structured reporting. The verification is done by an SPARQL ASK
query that checks for each referenced ontology that the referenced entities are sub-
classes of the binding of the MCI class. For example„ that all references to RadLex
from instances of mci:patient position (such as radlex:standing position) are
subclasses of radlex:patient position. MCI has bindings to ICD, German pro-
cedure classification (Operationen- und Prozedurenschlüssel) (OPS), the FMA and
RadLex. In the case of ICD the class ogms:diagnosis is bound to the root class of
the entire ICD. In summary, MCI is aligned to the different reference ontologies,
but lets them provide the terminology to express clinical information.
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5.3. Classes and Properties

In this section, the classes and properties defined by MCI are described, example
are provided to illustrate their usage and the defined bindings and axioms are
listed (if available). At the beginning, definition of general properties are given,
before roles, diagnoses, examinations and reports are described. Then, more
specific classes and properties are presented to describe images and image regions,
qualities and units, range specifications, measurements as well as clinical findings.
The representation of location information is described towards the end of this
section.

5.3.1. General Properties

The different type of properties available are object properties which are used
to relate individuals, data properties which are used to relate individuals with
literals (such as a string or a date value) and annotation properties which can relate
any resource with other resource or literal. Data properties are mainly used for
representation of temporal information, a reference to identifiers and specification
of numeric values, e.g. in a coordinate system. For instance, has time stamp is
a generic relation that can be used for any entity, the other properties are more
specific (as shown in figure 5.6. All of them have range xsd:dateTime.

mci:has timestamp A relation to timestamp entities.

mci:date of birth A relation between a human and the date time of his or her
birth.

mci:start date time Relates a process with a date time that represents the start
of the process.

mci:end date time Relates a process with a date time that represents the end of
the process.

mci:creation date time The date time when an information content entity was
created.

The following property is used to store a textual representation of some individual.
For instance this property is used to link a report section to the corresponding text
represented as a string.

mci:has textual representation Has textual representation relates some entity
with a human readable string representation.
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Figure 5.6.: Data properties defined by MCI to represent different date values.

Identifiers for specific entities are listed as sub-properties under skos:notation as
shown in figure 5.7. In general it is avoided to define several properties for reports,
images etc. and MCI contains only one such relation for unique identifiers.

Figure 5.7.: Data properties defined by MCI to represent different identifiers.

5.3.2. Roles

OMRSE defines obo:patient role as “A role borne by an organism being as the
recipient of a health care service”, but the foundation has no class for patient! To
retrieve all patients one would need to query for ?patient ‘obo:has role’/a
‘obo:patient role’. To allow more direct access to individuals of type patient a
corresponding class with logical axioms is defined. Then all humans with a patient
role are automatically classified as patients and one can retrieve all patients by
simply querying for all individuals of type patient.

mci:patient A homo sapiens (human) who has a patient role.

mci:patient = ‘obo:Homo sapiens’
AND (‘obo:has role’ SOME ‘obo:patient role’)

OMRSE defines obo:healthcare provider role as “a human health care role inher-
ing in an organization or human being that is realized by a process of providing health care
services to an organism” [13b]. For capturing the administrative role of admission
and discharge of patients, the following subclasses are defined additionally:

mci:admission role An admission role is a healthcare provider role that is
realized by the admission of some patient to an inpatient hospital stay.
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mci:discharge role An admission role is a healthcare provider role that is real-
ized by the discharge of some patient.

mci:age at admission Relation between a patient and the patient’s age at admis-
sion to inpatient stay some healthcare organization.
Range: xsd:integer

The age at admission is unique for each clinical encounter. This is possible since
triples are stored in different named graphs for different clinical encounters as
described in chapter 7.

5.3.3. Diagnosis

OGMS defines the class obo:diagnosis as “the representation of a conclusion of a
diagnostic process” [14s]. To fully capture diagnosis information contained in the
use case data, subclasses main diagnosis, secondary diagnosis and working
diagnosis are required. The distinction between main and secondary diagnosis is
officially defined by the German Coding Guidelines [14d]:

mci:main diagnosis: According to the German Coding Guidelines (“Deutsche
Kodierrichtlinien”) [14d] the diagnosis, which was established after analysis as
that, which is mainly responsible for the inducement of the inpatient hospital stay
is referred to as main diagnosis. The term “after analysis” refers to the evaluation
of findings at the end of an inpatient stay. It has to be reported according to the 10.
revision of the international statistical classification of diseases and related health
problems ICD-10 GM.
Alternative terms: principal diagnosis, primary diagnosis.

mci:secondary diagnosis Diseases or complaints, which either exist from the
beginning with the main diagnosis or develop during the stay in hospital are
referred to as relevant secondary diagnosis (comorbidity and complication). A
requirement for this is a diagnostic measure (operation and/or procedure) or a
therapeutic measure or an increased need for care and/or monitoring.

mci:working diagnosis A working diagnosis is a diagnosis which has not been
confirmed.

The classes main diagnosis, secondary diagnosis and working diagnosis are
pairwise disjoint. An example for the representation of diagnosis information is
given in figure 5.8. Since ICD is used for representation of the different types of
diagnoses, the superclass obo:diagnosis is bound to the root class of the ICD10
class hierarchy.
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Figure 5.8.: A main diagnosis (here: melanoma) is the output of a diagnosis pro-
cess.

5.3.4. Examinations

Examinations are one of the most important processes in healthcare. The model
foundation provides the class obo:process with subclasses obo:clinical history
taking (anamnesis), obo:diagnostic process, obo:physical examination and
obo:laboratory test. To ease the retrieval of examination information the class
examination is defined as an intermediate class and further subclasses for specific
examinations are added (see figure 5.9).

Figure 5.9.: Examination and subclasses.

mci:examination An examination is a healthcare process which has the objective
to gather information about the health status of the patient.

mci:radiology examination A radiology examination is an examination with
an associated radiology imaging modality.

mci:pathological examination A pathological examination is an examination
based on some extracted tissue or body substance from the patient.

Processes – and thus also examinations – have a start and end time For many
examinations however only one timestamp is provided, in which case the start
and end date reference the same value. Even though the temporal sequence of
examinations can be inferred from the above listed properties at query time, an
object property for linking consecutive examinations explicitly is defined:

86



5.3. Classes and Properties

mci:is consecutive examination of Relates an examination to the directly previ-
ous examination of the same type, e.g. the consecutive examinations in a series of
radiology examinations.

The participants of a process and thus also of an examination are described using
the object property obo:has participant which relates the process with continu-
ants that are involved in the process. Participants are for example the healthcare
provider, the patient or some material entity such as specimen or a device.

mci:imaging device An imaging device is a device that can be used to produce
images.
Binding: radlex:imaging device.

Besides participants, examinations might have an associated modality that speci-
fies how an examination was provided. The modalities are important, since they
are needed for correct interpretation of examination outputs.

mci:examination modality An examination modality is a data item that de-
scribes the context of an examination.

mci:imaging modality An imaging modality is an examination modality that
describes the technique of the image acquisition.
Binding: radlex:imaging modality.

mci:patient position A patient position is an examination modality describing
the bodily posture of the patient during the examination.

Examinations are linked to corresponding modalities by the object property has
examination modality. An example of a computed tomography with different
imaging modalities and participants is given in figure 5.10.

mci:has examination modality Relates an examination with and examination
modality that further specifies the examination.

5.3.5. Reports

The foundation provides a class obo:report which is defined as a “document
assembled by an author for the purpose of providing information” and which is “the
output of a documenting process”. The input of a documenting process can be an
image but also other data items. The pattern of the radiology examination and
documentation process is given in figure 5.11.

Since the use case data does not always make distinctions between the process
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Figure 5.10.: A radiology examination with imaging modality computed tomogra-
phy.

Figure 5.11.: The basic pattern of the examination and documentation process with
corresponding inputs and outputs.

of examination and documenting, the clinical report is also related as a direct
output of the corresponding examinations. The point in time when an information
content entity (e.g. a report) was created, is expressed by using the data property
creation date time. Further, classes for specific types of reports are defined:

mci:radiology report A radiology report is an report which is the specified
output of some radiology examination.

mci:pathology report A pathology report is an report which is the specified
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output of some pathological examination.

mci:laboratory report A laboratory report is an report which is the specified
output of some laboratory examination.

mci:medication report A medication report is an report which is the specified
output of some laboratory examination.

The foundation further contains classes for document parts (such as abstract or
footnote) and textual entities (such as document title). Additionally, classes for
specific parts of clinical reports are required:

mci:findings section The findings section is the part of a report where clinical
findings are described.

mci:findings subsection A findings subsection a part of the findings section
which groups clinical statements according to some rational. For example, findings
of radiology reports are often grouped by anatomical regions such as head, neck,
thorax or abdomen.

mci:assessment section An assessment section is the report part where the
clinician gives an interpretation about the findings described in the findings
section.

To group these report parts a corresponding class is defined:

mci:report part A document part that is part of a report.

‘mci:report part’ = ‘obo:document part’
AND (‘obo:part of’ SOME obo:report’)

Report parts can be further split into sentences. The foundation provides the
class nif:Sentence, however in clinical reports one often has specific types of
sentences that compare findings from consecutive examinations. This distinction
is important for later retrieval and linking of finding data.

mci:comparison sentence A sentence containing a comparison of findings from
consecutive examinations.
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Figure 5.12.: A sentence of a finding section of a radiology report describing a
progredient lesion.

5.3.6. Images and Image Regions

The foundation defines obo:image as “an affine projection to a two dimensional surface,
of measurements of some quality of an entity or entities repeated at regular intervals across
a spatial range, where the measurements are represented as color and luminosity on the
projected on surface” [11d]. It has one subclass obo:photograph, but additional
classes to represent the use case data is needed.

mci:3D-image A 3D-image is an information content entity which consists of
voxels.

Note that the definition of image does not include 3D-images and thus 3D-image
is not a subclass of image.

mci:image slice An image slice is an image which is part of a 3D-image and
specified by some plane of that 3D-image.

In the context of DICOM, multiple images are part of an an dicom image series.

mci:dicom image series A dicom image series is part of some dicom study and
consists of one or more images.

Multiple image series are part of a dicom study:

mci:dicom study The output of a radiology examination that consists of one or
more dicom image series.

The analysis and corresponding reporting on images often requires the creation
of image regions to point to some object or to base some calculation (e.g. average
intensity) on a subset of the pixels. The foundation does not provide any classes
for image regions – thus MCI defines:
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Figure 5.13.: Radiology examination and associated radiological image series.

mci:image region An image region is a data item representing a subset of pixels
of some image or a subset of voxels of some 3D-image.

Note that an image region does not necessarily be connected.

mci:region of interest A region of interest (ROI) is an image region identified
for a particular purpose.

In order specify which pixels belong to an image region, imaging tools commonly
provide different geometric shapes such as an ellipse or a rectangle to define the
boundary of an image region. Thus, the following classes are defined:

mci:geometric shape A geometric shape is the geometric information which
remains when location, scale, orientation and reflection are removed from the
description of a geometric object.1

The following geometrical shapes were used in the THESEUS MEDICO project
[Sei+10] and transferred to MCI: rectangle, ellipse, box, landmark, line, curve and
mesh. The geometrical shapes are used as oa:AreaSelector and linked from the
image region by the property oa:hasSelector as shown in figure 5.14.

Figure 5.14.: A region of interest (ROI) with relations to selector and source.

5.3.7. Qualities and Units

Several qualities are imported from PATO, however some extension need to be
made to capture the qualities described by findings and measurements more

1Definition source: en.wikipedia.org/wiki/Geometric_shape
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precisely. For instance, obo:1-D extent (a subclass of obo:size) has subclasses
length, width and height and also diameter. In the description of solid tumors
and lymph nodes however, the size is specified by the longest 1-D extension and
the longest perpendicular 1-D extension within the transverse plane. Thus, MCI
defines:

mci:longest axis The longest axis is a 1-D extent describing the longest straight
line (where all points of the line are within the respective object).

mci:short axis The short axis a 1-D extent describing the longest straight line of
an object in orthogonal direction to the longest axis of that object.

In contrast to these specific 1-D extensions there are qualities describing the ex-
tension in parallel to the main body axes. The foundation provides the class
anterior-posterior diameter (a subclass of diameter) however one addition-
ally need classes for the other two main body axes:

mci:craniocaudal diameter A diameter that is along the craniocaudal axis.

mci:left right diameter A diameter that is along the left-right axis.

To express orthogonality between lines and also between lines and planes MCI
defines the following properties:

mci:orthogonal to The relation between two orthogonal subspaces.

This property is symmetric and can be used between any orthogonal subspaces.
Due to the symmetry domain and range of that property have to be the same.
In a two dimensional space orthogonality is defined between lines. In a three
dimensional space orthogonality can occur between lines and planes or between
two lines. To distinguish between general orthogonality and the orthogonal com-
plement in a three dimensional space the following object property is defined:

mci:orthogonal complement in 3D Relates orthogonal complements in a three
dimensional space.

5.3.8. Anatomical structures

An abnormal anatomical structure might be pathological or non-pathological.
The foundation contains a class pathological structure – a corresponding class non-
pathological structure is required as well. For instance in reports, one finds
assertions like “lymph node not pathologically enlarged”, i.e. the node does not
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bear a pathological process. To capture this information, the following classes are
defined:

mci:anatomical structure A material entity which is a part of the human body.

mci:non-pathological anatomical structure An anatomical structure not bear-
ing any pathological process.

This definition is analogue to the definition of ogms:pathological anatomical
structure [14s].

Figure 5.15.: Pathological and non-pathological anatomical structures.

5.3.9. Scalar Range Specifications

The foundation provides classes which can be used to represent scalar measure-
ments. There are however cases where representation of a value range instead of
a scalar value is needed. Scalar range specifications are intervals, upper bounds,
lower bounds and imprecise values with deviation (as defined below). There
are two distinct cases where such range specifications are required: Firstly, the
measurement values in reports are not precise but described by a range: e.g. by an
upper bound as in “mediastinal and hilar nodes smaller than 1 cm”. Secondly medical
knowledge describes the typical value of qualities such as size in ranges: e.g.
“diameter of ureter normally up 9 mm” or “anterior-posterior diameter of liver normally
10-13 cm”.

mci:scalar range specification A scalar range specification is an information
content entity which specifies a range of some quality.

mci:lower bound specification A lower bound specification is a scalar range
specification which specifies a range of some quality by providing a minimal value
for that quality.

mci:upper bound specification An upper specification is a scalar range specifi-
cation which specifies a range of some quality by providing a maximal value for
that quality.

mci:interval specification An interval specification is a scalar range specifica-
tion which specifies the interval of some quality by a lower and an upper bound
specification of that quality.
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5.3.10. Measurements

In the previous chapter about the model foundation it was shown how measure-
ments are represented using classes and properties from ontologies of the OBO
library (see e.g. figure 4.4). Some extensions are needed to represent measurements
derived from images. There are many different contexts in which measurements
occur. Here, measurements are described, which specify a quality which inheres in
some material entity. This pattern is shown in figure 5.16. In the context of images
there are cases where this simple representation needs to be extended to allow
expression of different size, density and ratio measurements.

Figure 5.16.: The basic pattern of the representation of a clinical finding with a
measurement datum using OBO classes and relations.

Size Measurements

In radiology reports there are mainly measurements specifying the size of anatom-
ical entities in terms of volume, area or length. One commonly finds assertions
such as “splenomegaly with 477.2 cm3”, “unremarkable diameter of ascending
aorta with 3.2 cm” or simply “lymph node 1.3 cm”. The foundation provides
obo:length measurement datum. Additionally needed:

mci:area measurement datum A scalar measurement datum that is the result
of measurement of area quality.

mci:volume measurement datum A scalar measurement datum that is the re-
sult of measurement of volume quality.

Analysis of radiology reports yielded that length measurements are the most
frequent, however they are used in very different contexts. In the simple case it
describes the extension of an anatomical entity or structure into one dimension.
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For instance “mediastinal lymph node with diameter 21 mm”, “wall of gallbladder
12 mm”, “hepatic duct dilated up to 1 cm.”, “craniocaudal diameter of liver
14.0 cm” or “liver with anterior-posterior diameter of 15.5 cm”. The size of an
implanted devices is also mentioned in reports. For example, “placement of a 6 cm
long, 16 mm wide wall stent into left V. brachiocephalica and V. cava superior.” These
size measurements comprise the following three components:

• (Anatomical) entity: lymph node, liver, wall of gall bladder, lesion, stent etc.

• Measured quality: length, width, diameter, anterior-posterior diameter,
height, thickness, volume etc.

• Value specification: 21 mm, 1.1 cm, 477.2 cm3, 6 cm etc.

The measured quality might not be precisely specified in reports. For instance,
in“lymph node 3 cm” the quality would be a obo:length even though it is not
specified, whether 3 cm denotes the long or short axis of the corresponding lymph
node. Two or three length measurements might be grouped together to describe
the extension of a certain entity along orthogonal axes: e.g. “lesion in segment
7/8 with 1.4 x 1.1 cm” or “spleen with 3.8 x 9 x 10.5 cm not enlarged”. These
length measurements refer to the spatial extent along different axes. These types
are referred to as 2D or 3D length measurements. For organs these measurements
are sometimes taken in parallel to the main body axes to specify height, width or
depth. For smaller entities the axes are mostly defined by the form of the entity
itself: For the evaluation of tumors or metastatic lesions in computed tomography
(CT) or magnetic resonance imaging (MRI) the radiologist firstly measures the
longest diameter in the axial slices and then the longest perpendicular extension
[Eis+09].

The actual value specification of a measurement can refer to multiple entities for
which a range or a bound is given: For instance one commonly finds a assertions
like “axillary lymph nodes smaller than 1 cm” or “Nodular densities at head of
pancreas with diameters up to 1 cm”. In all cases 1 cm refers an upper bound of
the size of the corresponding entities. An example representation for these type of
measurements is given in figure 5.17.

Density Measurements

The density of anatomical structures is measured by radiologist in order distin-
guish for example cysts from solid tumors. Each pixel of some radiology image
represents a density measurement for its own. In the context of radiology the
density is given in Houndsfield scale. To analyze the density of a part of the image,
(e.g. an anatomical entity) the radiologist creates a region of interest (ROI). All
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Figure 5.17.: An upper bound used to represent the size of axillary lymph nodes.
In reports assertions like “unspecific axillary lymph nodes smaller
than 1 cm” are commonly found.

pixels within this ROI are the input for the calculation of the minimal, average and
maximal density values for that ROI. As shown in figure 5.18 the ROI is drawn
within the suspicious structure. The average density value of 8 HU is close to the
density value of water (0 HU) which is typical for a cyst.

Ratio Measurements

Ratio measurement are important in the context of laboratory test or pathological
examinations. In the context of cancer, staining is used to measure the amount of
active tumor cells (see figure 5.20). The protein Ki-67 for instance increases in cells
when they prepare to divide. Thus, the percentage of Ki-67 positive tumor cells is
a measure for the aggressiveness of the tumor. For example, in breast cancer, a rate
of 10% Ki-67 positive is considered low while 10-20% intermediate/borderline,
and 20% and more is considered high.

Ratio measurements are expressed in the same way as other measurement, i.e.
with a scalar measurement datum specifying some quality. The quality then is e.g.
the prevalence of Ki67+ cells within a tumor as shown in figure 5.21. This has the
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Figure 5.18.: The density is evaluated based on a circular ROI which is part of the
liver. The image shows a liver cyst.

Figure 5.19.: Representation of a measurement of an average density based on an
image region.

advantage that dimensional and dimensionless ratios can be represented by the
same pattern. In order to be able to compare ratios reasonably the denominator
and numerator of ratios have to be made explicit.
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Figure 5.20.: Ki-67 positive brain tumor cells. Image source: [10a]

Figure 5.21.: Representation of a measurement of the amount of Ki67-positive
tumor cells.

5.3.11. Clinical Findings

Clinical findings are central information objects beyond all patient data, because
they are the main input for clinical decision making, such as stating a diagnosis
or treatment evaluation. OGMS defines clinical finding as “a representation that is
either the output of a clinical history taking or a physical examination or an image finding,
or some combination thereof”. The distinction of clinical findings and symptoms is
defined by the observer: While findings are observed by clinicians, symptoms are
observed by the patient itself. For instance pain is a symptom but not a clinical
finding. Data about clinical findings is important because it forms the basis for
clinical decisions and thus require detailed representations. The model founda-
tion provides subclasses of clinical finding such as clinical history, image finding,
laboratory finding and physical examination finding. These are important classes
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to classify finding data by origin. To allow efficient clinical decision making, ad-
ditional types to enhance retrieval of relevant findings are needed. In practice,
clinical findings are distinguished by clinicians mainly according to two aspects:
Firstly, the main distinction is made between normal and abnormal clinical findings.
Secondly, findings are classified with respect to change, i.e. regarding the temporal
aspect. The complete subclass hierarchy defined under clinical finding is shown
in figure 5.22. The corresponding classes are described in the following subsec-
tions, before measurement findings are discussed. The representation of location
specifications in clinical findings is presented towards the end of this subsection.

Figure 5.22.: The class hierarchy under clinical finding.
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Normal and Abnormal Clinical Findings

In general clinicians look for abnormalities, however normal findings are also im-
portant since they allow excluding certain diseases. For instance, lab values are
tagged as being low, normal or high for some given patient. Similarly, a lymph node
presenting certain characteristics, such as a short axis diameter larger than 1 cm
(or 1.5 cm, depending on its location) is categorized by radiologists as abnormal,
while smaller lymph nodes are classified as normal.

mci:normal finding: An normal finding is a clinical finding describing some
normal quality that inheres in some anatomical structure.

Figure 5.23.: Representation of a normal finding that describes the size of the
spleen.

mci:abnormal finding An abnormal finding is a clinical finding describing some
abnormal quality that inheres in some anatomical structure.

mci:pathological finding A pathological finding is an abnormal clinical finding
which describes some pathological quality which inheres in some anatomical
structure.

Further, normal and abnormal findings that describe qualities that are based on
measurements are distinguished:

mci:normal value finding A normal value finding is a normal finding where
the quality described is specified by some scalar measurement datum.

mci:increased quality finding An increased quality finding is an abnormal
finding describing an increased quality.
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mci:decreased quality finding A decreased quality finding is an abnormal find-
ing describing an decreased quality.

An example of such a finding is given in figure 5.25.

Change of Clinical Findings over Time

Important for evaluation of the health status is the detection and tracking of
changes of findings. For example, lymph nodes might be progressive or regressive
in size, the body temperature might increase or decrease and the synopsis of this
information can be crucial for the physician to come up with the correct diagnosis.
The following definitions make use of the object property has preceding finding
which relates clinical findings from consecutive examinations which describe the
same anatomical entities.

mci:has preceding finding A relation between clinical findings from consecutive
examinations describing the same quality of the same anatomical entity.

For example the sentence “lesion in segment 7/8 with 1.4 cm x 1.1 cm (Ima 19,
pre-investigation 1.4 cm x 1.1 cm)” contains two preceding findings. It is however
often the case that findings from consecutive examinations describe not exactly
the same quality or not exactly the same entity. For instance, two findings from
consecutive examinations, one describing the spleen volume and the other the
craniocaudal diameter of the spleen are related findings.

mci:has related finding A relation between two different clinical findings either
similar qualities of the same entity or the same quality of similar entities.

mci:unchanged finding An unchanged finding is a clinical finding that has a
preceding finding with the same qualitative quality description.

For instance, a clinical finding describing the size of the liver as normal, which
has a preceding finding describing the volume (and thus the size) of the liver as
normal.

mci:changed finding A changed finding is a clinical finding that has a preceding
finding with with different qualitative quality descriptions.

To be classified as a changed finding the corresponding described quality needs
to be different in comparison to the quality description of the preceding finding.
For instance a finding about the size of the spleen as enlarged (i.e. abnormal),
where the preceding finding described the spleen as normal, is a changed finding
(see figure 5.24). Similarly a clinical finding from a follow up examinations with
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measurement datum specifying the longest 1-D extension of an axillary lymph
node, which was measured also in the preceding examination however with
different measurement values, is a changed finding.

Figure 5.24.: Representation of a changed finding that describes a newly appeared
splenomegaly.

mci:new finding: The first occurrence of abnormal findings about some entity
in the context of some clinical encounter.

Obviously, not only the fact of a change but also the tendency of the change
should be qualified if possible. For instance a changed finding with a scalar value
specification can be classified as a decrease finding if the value is falling or as
an increase finding) if the value is getting higher:

mci:decrease finding A decrease finding is a changed finding describing a
quantifiable quality whose value is getting lower.

mci:increase finding An increase finding is a changed finding describing a
quantifiable quality whose value is getting higher.

Note that these classes are different to decreased quality finding or increased
quality finding, which describe the status at some point in time - not the change
as such. As shown in Figure 5.25 a finding can be and decrease finding and at
the same time an increased quality finding.

Increase and decrease can be further specified by the type of quality described by
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Figure 5.25.: Representation of a size finding describing the diameter of some
axillary lymph node. The measured value for the diameter indicated
an increased quality. In comparison to the previous examination
(not shown) the value however decreased. The types of the findings
express this information.

the finding:

mci:regressive finding A regressive finding is a decrease finding describing an
decrease of some size quality or some quality related to size.

mci:progressive finding A progressive finding is an increase finding describing
an increase of some size quality or some quality related to size.

mci:improvement finding An improvement finding is a changed finding which
quality specification changed towards normal homoeostasis.

mci:worsening finding A worsening finding is a changed finding where the
corresponding quality specification gets worse with respect to normal homoeosta-
sis.
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Measurement Findings

The representation of measurements, in particular image measurements was
described above. In the context of images, it is often the case, that two or more
measurements are related to each other and that only together the corresponding
finding is correctly represented. Before corresponding relations are described,
measurement finding and subclasses are defined.

mci:measurement finding A measurement finding is a clinical finding, which
has a measurement datum as a part.

mci:weight finding A weight finding is a clinical finding, which has a mass
measurement datum as a part.

mci:size finding A size finding is a measurement finding which has at least one
measurement datum as a part which specifies some size quality.

For instance the finding shown in figure 5.25 is a size finding.

mci:one directional size finding A one directional size finding is a size finding,
which has a measurement datum as a part, specifying some 1-D extent.

For example, a size finding about the kidney with one measurement datum,
specifying the length of the kidney along the cranio-caudal axis.

mci:Two directional size finding A two directional size finding is a size finding
which has exactly two measurement data items as parts which specify different
1-D extents which stand in relation of orthogonality to each other.

For example, a size finding about the spleen with two measurement data items –
one specifying the width the other the length of the spleen as shown in figure 5.26

Similarly, measurements of lymph nodes and solid tumors according to RECIST
(response evaluation criteria in solid tumours) guidelines are represented as two
directional size findings: in computed tomography (CT) or magnetic resonance
imaging (MRI) the radiologist firstly measures the longest diameter in the axial
slices and then the longest perpendicular extension [Eis+09] as shown in fig-
ure 5.27.

Its representation is shown in figure 5.28. This form of standardized measuring
procedure allows comparing measurements from consecutive examinations.

mci:Three directional size finding A three directional size finding is a size
finding which has exactly three measurement data items as parts which specify
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Figure 5.26.: A transversal slice of a contrast enhanced computed tomography ex-
amination of the upper abdomen. The size of the spleen in transversal
plane is specified by measuring the length and width at the hilum.

different 1-D extents and which stand in relation of orthogonality to each other.

A size finding about the spleen with three different measurement data items -
one specifying the width, one the depth and a third the height of the spleen. For
example, “spleen with 3.8 x 9 x 10.5 cm not enlarged”.

The Context of Findings

Most of the findings mentioned above describe what the clinician observes –
e.g. “an axillary lymph node with a diameter of 2.65 cm”. As shown, MCI
provides the required classes and properties to capture these positive assertions.
There are however also many negative assertion such as “no fever”, “spleen not
enlarged”, “liver without lesions” etc. Most of them can be mapped to positive
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Figure 5.27.: Measurement of a lymph node according to the RECIST guidelines.

assertions “normal body temperature”, “normal spleen size”, “structure of liver
homogeneous” etc. In the context of diagnosis however, clinicians look for specific
signs and symptoms whose status they attempt to clarify. MCI defines four types
of finding contexts:

mci:known absent A finding context specifying that the finding was checked
for and negative evidence was found.

mci:known present A finding context specifying that the finding was checked
for and positive evidence was found.

mci:unknown A finding context specifying that the finding was either still not
checked or no positive or negative evidence could be found.

mci:suspected A finding context specifying that the finding was checked for
and preliminary positive evidence was found.

The relation of finding instance data to the finding context is realized through the
following annotation property:

mci:has qualifier Relates a clinical finding with additional context informa-
tion.
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Figure 5.28.: A two directional size finding with long and short axis according to
the RECIST guidelines.

Figure 5.29.: Representation of the finding context in diagnosis.

Location

Earlier it was described how the orientation of measurements can be specified
by qualities. Here representation of location is described. In the context of size
findings, two types of location information are distinguished: the location of the
described entity and location of the described quality.
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The location of the described entity: For example, “lesion in liver segment II”, “at
terminal ileum on a length of 6 cm thickening of wall up to 1.2 cm.” or “next to
hilum of spleen there is a small hyperdense lesion with diameter 1.0 cm.”. This
location information is represented ro:located in (see figure 5.30.

Figure 5.30.: The location of a lesion in a specific segment of the liver.

Further the location information might be the main content of the finding: For
instance, “5 mm shift relative to central axis” describes a deviation from the normal
location, i.e. a distance. In these case the quality (length) does not inhere in the
(anatomical) entity but describes the distance of the entity to some other entity or
location.

mci:location finding A location finding is a clinical finding that describes the
location of some entity within the body.

5.3.12. RECIST Target Lesions

The RECIST (response evaluation criteria in solid tumors) guideline allows a
standardized assessment of tumor burden and tumor response during therapy.
Here, a sum of the diameters (short axis for lymph nodes, longest diameter for the
remaining lesions) for all target lesions is calculated and reported as the baseline
for follow-up sum and indicates therapy response/failure. At baseline, tumor
lesions (longest diameter C 10 mm)/lymph nodes (short axis diameter C 15 mm)
can be considered and selected as target lesions. When more than one lesion fulfill
the described criteria, up to a maximum of five lesions (maximally two lesions
per organ) that are representative of all involved organs should be identified
as target lesions and measured. In addition, the selected target lesions should
allow reproducible repeated measurements. The sum of the diameters (short
axis for lymph nodes, longest diameter for the remaining lesions) of all target
lesions is calculated and reported at baseline and during follow-up. The following
criteria are used to determine objective tumor response. Complete Response:
Disappearance of all target lesions (any pathological lymph nodes, whether target
or non-target must have reduction in short axis to @10 mm). Partial Response:
At least a 30% decrease in the sum of diameters of target lesions (reference =
baseline sum diameters). Progressive Disease: At least a 20% increase in the sum
of diameters of target lesions (reference = the smallest sum on study; this includes
the baseline sum if that is the smallest on study). For Progressive Disease, the sum
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must also exhibit an absolute increase of C 5 mm. The appearance of one or more
new lesions is also considered as Progressive Disease. Stable Disease: Neither
sufficient decrease to qualify for Complete/Partial Response nor sufficient increase
to qualify for Progressive Disease. To express this information MCI defines the
following classes:

mci:target lesion A target lesion is a lesion that was selected to be tracked in
order to measure the response to treatment. Depending on the imaging modality
a RECIST defines the minimum size of target lesions.

mci:non-target lesion A non-target lesion is a lesion that was not specifically
selected to be tracked in order to measure the response to treatment.

mci:RECIST sum calculation The RECIST sum calculation takes target lesions
as input and outputs the sum of the length of their short axes (for lymph nodes)
and longest diameter (for all other lesions).

mci:RECIST sum The RECIST sum is the output of a RECIST sum calculation
process.

Figure 5.31.: The RECIST sum is calculated based on a set of target lesions. Adja-
cent items represent by subclass relationships, i.e. the RECIST sum
calculation is a subclass of data transformation.

Annotations

The representation of annotations is based on the OA. The usage of OA classes
and relations to other classes from MCI, text and image annotations are shown in
the following figures.
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Figure 5.32.: The basic pattern of a text annotation. The target is specified by a text
position selector, which defines the position within the correspond-
ing document part (such as a finding section of a report). To ease
later retrieval, the target as well as the annotation are linked to the
sentence.

Figure 5.33.: The basic pattern of an image annotation. Here, the target is repre-
sented by some image region that is specified by some geometrical
shape such as a rectangle or ellipse.
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6
Knowledge Models

In the previous chapter the Model for Clinical Information (MCI) was described
and its usage for representation of clinical data, i.e. data about patients, was shown
along several examples. Another important resource for more efficient decision
making by clinicians is formalized medical knowledge, which can be used to enrich
patient data. For instance, the importance of granular types for representation of
clinical findings and especially for normal and abnormal findings was highlighted
in the previous chapter. MCI provides corresponding classes, however the distinc-
tion is often not explicit in the data. For instance, in a radiology report, the size
of the spleen might be specified as “spleen 5 x 9 x 12 cm”. Formalized medical
knowledge can be used to classify this measurement finding as a splenomegaly, i.e.
an enlarged and thus abnormal spleen. Further, in a diagnostic process, finding data
needs to be interpreted with respect to diseases. For example, a splenomegaly is
an abnormality of the immune system and related to specific types of cancer such
as lymphoma. In this chapter it is shown, how the Model for Clinical Information
can be used to represent medical knowledge about the normal and abnormal size
of anatomical entities commonly described in radiology examinations (section 6.1).
Further, a knowledge model about the relations between diseases, clinical findings
and examinations is presented (section 6.2). Applications of both models are
described in chapter 8.
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6.1. Range Specifications

For quantitative qualities a value range can be specified in many different contexts:
For instance to represent a normal range or typical size of anatomical entities, to
represent the minimum and maximum values of some measured value over a
specific time period etc. In the next subsection, it is described the different types of
normal and abnormal range specifications typically found in the medical literature.
Then, the general representation pattern and a patient-specific representations
are presented before the coverage of the created knowledge model about normal
findings is described.

6.1.1. Range Specifications About Normal and Abnormal
Anatomical Entities

The medical literature contains much information about the normal qualities of
anatomical entities as well as descriptions of typical abnormal or pathological struc-
tures like, e.g., cysts, lesions or enlarged lymph nodes. The main function of these
specifications is to define, which manifestation of a quality of some anatomical
entity is considered to be normal and which not. Clinicians refer to these specifi-
cations from medical literature, when they classify observed findings as normal,
abnormal (i.e. not normal or outside the normal range) or pathological (abnormal
with underlying disease process). For instance, a lymph node with a short axis
of 0.7 cm is considered to be normal (since “normal lymph nodes are B 1 cm in
short axis”) while one with 2.4 cm is classified by clinicians as abnormal. The
motivation of formalizing knowledge about normal and abnormal qualities, is to
automate this kind of classification. The advantages of automatic classification
are twofold: Firstly, adding missing information about the finding type, enriches
descriptions of clinical findings and thus enhances the data quality. Secondly,
automatic classification can be used in combination with automatic segmentation
algorithms and thus point the radiologist to suspicious anatomical entities, which
enhances the reporting work-flow.

In this section, it is demonstrated that normal size specifications can be represented
in MCI. The usage of them for automatic classification of size findings commonly
found in radiology is demonstrated in Chapter 8. Even though the provided
examples describe normal size qualities, it is emphasized that this approach
is suitable to classify any findings describing measurable qualities, i.e qualities
which can be described by a scalar value specification. table 6.1 lists the three
different types of range specifications which are commonly used in the medical
literature to describe size qualities. The table lists the type of range specification
and corresponding examples.
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Table 6.1.: Commonly used range specifications to describe the typical size of
anatomical entities.

Type Examples

Interval Cranio-caudal diameter of kidney normally 8-13 cm

Thickness of wall of gallbladder normally 0.1 -0.3 cm

normal width of ureter 0.4-0.7cm

Upper bound Normal lymph node < 1 cm

Lower bound Normal aorta diameter > 4 cm at root

Enlarged lymph node > 1 cm

The basic form consists of three components: An anatomical entity, a quality
description, and a scalar range specification. This is similar to the pattern of
clinical findings - the main difference is the specification of a range instead of a
single scalar value and that the quality is additionally typed as normal or abnormal.
These specifications are referred to as normal specifications (e.g. “Normal lymph
node B 1 cm” in short axis), as abnormal specifications (e.g. “lymph node with short
axis > 1 cm are considered abnormal”) or sometimes simply as range specifications.
Further, a value x is said to be in the range of some size specification if x is contained
within the respective interval �a, b�. Here, upper bounds (where only value b is
given) are interpreted as the interval �0, b� and lower bounds (where only value a
is given) as the interval �a,ª�. The actual definition of which size of particular
anatomical entities is considered to be normal depends on guidelines. There are
for example different guidelines on how to measure lymph nodes (in short or
long axis) and correspondingly the definition of normal and abnormal is different.
However, it is emphasized, that the model presented here is able to represent the
necessary types of specifications (upper bound, lower bound and interval) and can
be adapted to the guideline preferred by the user.

Representation of Normal Range Specifications

The knowledge model of range specifications is expressed in terms of the Model
for Clinical Information, i.e. by using classes and properties described in the
previous chapter. Anatomical entities and structures are included through links to
reference ontologies like the FMA or RadLex. A normal range specification has
three components as shown in figure 6.1 and figure 6.2: the anatomical entity, the
quality described and a corresponding range specification.

As for measurement findings, RadLex [14p] and the FMA [RJ07] are used to

113



CHAPTER 6. KNOWLEDGE MODELS

Figure 6.1.: Representation of the normal upper bound specification “Lymph
nodes are normally at most 1 cm in short axis” with anatomical entity
lymph node, quality normal short axis and range specification.

Figure 6.2.: The thickness of the wall of the gallbladder is normally in the range of
1-3 mm. Here the anatomical entity is the wall of the gallbladder and the
quality is the normal thickness.

114



6.1. Range Specifications

reference anatomical entities, qualities (such as diameter, length, thickness etc.)
are represented by PATO [14n], and units are taken from UO (see e.g. figure 6.1 or
figure 6.2).

6.1.2. Range Specifications of Clinical Findings

For entities which normally do not exist in the healthy human body, such as lesions
or cysts, the structure of the representation has to be slightly adapted as shown in
figure 6.3. Besides the size of the findings subject (such as a mass) the location is
relevant. In comparison to the previously described normal range specification,
here, the criteria for a finding are expressed: For instance, a mass within the lung
has to be at least 3 cm to be documented as a lung mass (see figure 6.3).

Figure 6.3.: The size specification for a lung mass.

Similarly, the lymph nodes and lesions have to have a minimal size to be selected
as target lesions for treatment evaluation according to RECIST guidelines.

6.1.3. Patient-Specific Range Specifications

Some size specifications depend on patient characteristics such as the body height
and weight or the age and gender. For instance, the size of the pancreas (subdi-
vided into pancreas head, body and tail) are age-dependent [MR98]. To capture the
patient context of a normal or abnormal specification, described above, instances
of reference populations are defined which are then linked to the corresponding
(ab-)normal range specifications as shown in figure 6.5. A reference population is
characterized by at least one quality (such as age), for which a range specification
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Figure 6.4.: The short axis of a lymph node has to be at least 1.5 cm in order to fit
the criteria for RECIST target lesions.

is defined. This is basically the same representation as for normal specifications
with an additional link to the corresponding reference population. Note that the
definition of a reference population for a range specification is optional and that
most of the range specifications are not patient-specific.

6.1.4. Coverage

The semantic structure of range specification was described above and illustrated
along examples. To evaluate the knowledge model, instance data were created
manually using a clinical book about normal findings [MR98] and information
from Radiopedia [14o]. The knowledge model on range specifications contains 50
(size) range specifications about 38 different anatomical entities of clinical interest,
which are typically measured in radiology examinations of the head, thorax and
abdomen area. For instance, the model contains size descriptions for spleen,
kidney, gallbladder, pancreas, lymph nodes, aorta, lesion, bile ducts etc. Using the
Entity-Quality methodology [Was+09], one range specification potentially applies
for many anatomical entities. For instance, the range specification for the normal
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Figure 6.5.: Representation of a patient specific range specification: “The head
head of pancreas is normally not larger than 2.7 cm for people between
40 and 50 years”.

size of lymph nodes applies more than 200 specific lymph nodes defined in FMA
or RadLex. The usage of the model for extraction and classification of size findings
from radiology examinations is described in chapter 8.
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6.2. Disease-Symptom-Examination Ontology

This section is based on the paper “Interpreting patient data using medical background
knowledge” [Obe+12a] – however several adaptations of the model were made
since then. The main purpose of the Model for Clinical Information is to store
patient data, in particular finding descriptions, in a structured and semantic form.
However, in the differential diagnosis process as well as in examination planning,
available finding information needs to be interpreted in the context of diseases and
examinations. For instance, a clinician wants to retrieve all cancer related findings
from all available finding and symptom information about a particular patient. Or,
a clinician wants to get a ranking of likely diseases which is based on documented
observations. To satisfy this information need one has to capture the relations
between diseases and corresponding manifestations in clinical findings and symp-
toms. Currently a clinician has to have a broad knowledge of diseases and their
relation to symptoms and clinical findings. For a better understanding of the
relevance of disease-symptom relations (and symptom examination relations) the
following paragraph provides a short overview of the work flow of a differential
diagnosis:

Di�erential Diagnosis

1. Based on unspecific symptoms, of a patient the clinician has to map those to
most likely diseases which have a strong correlation with these symptoms –
so called leading symptoms.

2. To differentiate between the different diseases, the clinician has to search for
further symptoms of the initial list of diseases which have not been clarified
so far.

3. To obtain this information certain examinations have to be performed. Here,
the clinician needs to decide which examinations could confirm or exclude
diseases. That is, additionally to knowledge about disease symptom relations
the relations between examinations and symptoms is needed.

4. The result of examinations provides a more complete picture of the patient.
Again, the (larger) set of symptoms needs to be matched with the typical
symptoms of diseases and if necessary additional examinations have to be
performed.

In the current situation a clinician has to search for all symptoms and findings
of a certain disease separately. Further, he has to match the obtained clinical
picture to the typical symptoms of many different diseases to state a diagnosis. The
problem however is, that many diseases are rare and a clinician cannot know
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the typical symptoms and clinical findings for all of them. Thus, automatically
matching the patient’s symptoms to diseases can enhance the quality and efficiency
of the diagnostic process. Diseases information relevant within the diagnostic
process can be found in medical literature e.g. in [Her11]. First of all, this is
the relationship between diseases and their manifestations in clinical findings or
symptoms. Further, relations between findings and examinations are needed for
integration of finding information in examination planning.

For that purpose, a Disease-Symptom-Examination ontology (DSE) based on MCI
was created, that links clinical findings and symptoms with diseases and examina-
tions. Even though existing medical ontologies provide a detailed description of
the medical domain this link is not sufficiently represented [Obe+15a]. The main
classes required for the knowledge model are the classes disease, clinical finding,
symptom, sign and examination. The representation of corresponding subclasses is
described in the following subsections. An overview of the relations between these
classes is given in figure 6.6. Since DSE is an ontology – and not an information
model as MCI – a new namespace is used for all classes defined by DSE.

Figure 6.6.: The relation between diseases and their manifestations in signs, symp-
toms and clinical findings and the corresponding examinations that
can be used to check their manifestations.

Within the following subsections, diseases, findings and symptoms, examinations
and their relations are described in detail.

6.2.1. Diseases

Instead of defining new classes for diseases, the classes of the Human Disease
Ontology (DOID) are reused. The root class doid:disease is set as an equivalent
class to ogms:disease that was defined in MCI. The DOID is part of the OBO
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library and contains about 8945 classes for “descriptions of human disease terms,
phenotype characteristics and related medical vocabulary disease concepts” [Sch+12]. Fur-
ther, DOID contains many links to other ontologies such as ICD, NCIT, SNOMED
CT, Medical Subject Headings (MESH) and thus provides a bridge between the
OBO ontologies and UMLS. The OntoFox web service [14j] was used to create a
small ontology module of DOID exactly suited for the usecase. More precisely,
DSE contains five disease classes (diverticulitis, colorectal cancer, lymphadenopa-
thy Hodgkin’s lymphoma and non-Hodgkin lymphoma) and their superclasses as
shown in figure 6.7. All annotation properties defined in DOID are also included
to preserve labels, synonyms, textual definitions as well as cross references to
other ontologies that were defined in DOID.

Figure 6.7.: Imported classes from the Human Disease Ontology.

The risk age for a disease is represented through a range specification (upper
bound, interval, lower bound) as shown in figure 6.8. Since the specification is
references from a class, has associated risk age is defined as an annotation property.

6.2.2. Clinical Findings and Symptoms

For clinical findings and symptoms there is no single ontology that could be
reused like in the case of diseases. Even though there is a Symptom Ontology
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Figure 6.8.: Representation of the disease Hodgkin’s lymphoma.

(SYMP), the Human Phenotype Ontology (HP) and other ontologies, none of them
contains all symptoms and clinical findings required for the use case data. This is
mainly because their description is more complex and involves coordination of
classes from different ontologies. For instance while many ontologies include the
finding “enlarged lymph nodes”, more specific findings such as “enlarged colic
lymph nodes” – strongly related to colorectal cancer – are missing. The purpose of
DSE however is to link diseases with clinical findings and symptoms. Thus, pre-
coordinated classes for corresponding findings and symptoms are required. DSE
defines classes for each symptom, sign and finding (see figure 6.9) and provides a
label, if possible, logical axioms and also cross references to other ontologies.

Clinical findings and symptoms are represented by the same pattern used by HP.
That is, classes are defined with logical definitions and the EQ methodology is
applied: For example, the class enlarged mediastinal lymph node is defined by
the axiom:

‘dse:enlarged mediastinal lymph node’
= ‘obo:clinical finding’

AND (‘obo:is about’ SOME fma:mediastinal lymph node)
AND (‘obo:has part’ SOME (‘obo:size’ AND‘obo:increased quality’))

Since the DSE is to be used for the interpretation of finding descriptions specified
in MCI, it has to follow the patterns of MCI for clinical findings, i.e. represent
findings according to the Entity-Quality methodology [Was+09] that is also used
by HP. The FMA is used to refer to anatomical entities and PATO for qualities.

The logical definitions and cross references have two purposes: Firstly, the subclass
hierarchy of findings is automatically created along the hierarchy of the anatomical
entities . For instance, enlarged colic lymph nodes is a subclass of enlarged
abdominal lymph nodes since colic lymph nodes are a subclass of abdominal
lymph nodes in FMA. Secondly, the findings are automatically aligned with HP
and other referenced ontologies. For instance, from HP one gets that enlarged
spleen is an hp:abnormality of the immune system.
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Figure 6.9.: The hierarchy of clinical findings in DSE.

‘dse:carcinoembryonic antigen raised’ = ‘obo:clinical finding’
AND (‘obo:is about’ SOME ‘loinc:Carcinoembryonic Ag’)
AND (‘obo:has part’ SOME ‘obo:increased quality’)
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Additionally to the creation of a class hierarchy of findings, further information
for single symptom classes useful in the diagnostic process is added. For instance,
findings are not equally relevant or severe: in general blood in stool is more relevant
than a headache, i.e. it is more relevant to clarify the cause blood in stool than
the cause of a headache. Additionally the annotation property has severity is
defined to assign severity (high, moderate, low) to findings and symptoms.

6.2.3. Examinations

Examinations are covered by the Model for Clinical Information, so the classes
were used from there. Additionally, classes for stool guaiac test and colonoscopy
are added. The classes for examinations are shown in figure 6.10. DSE further
provides properties for relating information about the examination such as the
cost, duration or risks to the examination classes.

Figure 6.10.: Examinations defined in DSE.

6.2.4. Relations

The general pattern of the disease symptom relation as well as the examina-
tion symptom relation was shown in figure 6.6. The relation between diseases
and findings/symptoms as well as the relation between examinations and find-
ings/symptoms needs to be represented by an extra RDF node for each relation
to allow assignment of extra information to relations. For instance, the frequency,
that some symptom occurs with in the context of some disease or the precision
of an examination to clarify the status of a certain symptom can be assigned to
corresponding relation nodes. An example of a concrete disease-symptom relation
is given in figure 6.11
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Disease Symptom Relation

Even though DSE distinguishes between clinical findings, symtpoms and signs
only one type of relation to diseases is needed. In differential diagnosis, the clin-
icians commonly refer to them as disease-symptom relations even though not
all of the corresponding disease manifestations are symptoms (e.g. results of a
blood test are not symptoms). Besides the general disease-symptom relation in
differential diagnosis, the notion of leading symptoms is important. Certain symp-
toms are leading indicators for specific diseases. For example, a thickened wall
of the sigmoid colon is a leading symptom for diverticulitis. To express this infor-
mation, a subclass disease-leading-symptom-relation (shown in figure 6.11) of
the general disease-symptom relation is defined. Thus, a leading symptom of
some disease is also a symptom of a disease. Note that the type of a symptom
relation (leading symptom, general symptom) is only defined in the context of
some particular disease.

Figure 6.11.: Example of a relation between a disease and a corresponding leading
symptom.

Disease symptom relations defined by DSE are not to be understood as “disease
always has symptom X” as this is not true in the medical domain. Here, the
semantics of this relation simply means that a disease is correlated with a symptom.
If it is possible, extra information about the concrete probabilities as shown in
figure 6.11 is defined. Using OWL it is difficult to express uncertainty such as that
a disease may be caused by something or that a disease may show up by some
symptom. For a detailed analysis of that problem it is referred to [RSD08].

Symptom Examination Relations

The representation of relations between clinical findings and symptoms and corre-
sponding examinations that are suitable to clarify the symptom status are quite
simple in DSE. However, the same pattern as for disease symptom relations is
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used in order to be able to add additional information to the relation such as the
precision of an examination to clarify the status.
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7
Architecture

This chapter describes the architecture of realized implementations. That is, an
overview of the different technical components and their interaction is provided
to allow a better understanding for the general role of those components. Details
of specific realizations of concrete components, such as the inference component or
data access components, are given in later chapters. The first section of this chapter
provides a schematic overview of the components before they are described in
more detailed in the subsequent sections.
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7.1. Overview

The implementation relies on the following main components (see figure 7.1):

• Source data: The patient data is provided in different formats. Most of
the radiology reports are provided as excel sheets or as structured data in
relational databases. For images only the annotations that were created
manually by clinicians are available in form of RDF triples.

• Annotator: The annotator adds structured information to unstructured data
such as images or free text reports. In this work, the annotator is an NLP
pipeline for automatic annotation of medical texts. Image annotations were
created in a separate manual image annotation tool.

• Mapper: The mapper transforms source data and annotations to the schema
of MCI which is then loaded into the triple store. While unstructured patient
data (i.e. free text reports) is annotated first, structured patient data such as
meta-descriptions of reports or data from relational databases are directly
mapped to MCI.

• Triple store: The triple store is the main storage component. It contains
all mapped patient data as well as an ontology repository which provides
all used reference ontologies. The data in the triple store is contained in
different data sets for the MCI (/mci), patient data (/pdata) and the different
reference ontologies (/radlex etc). The triple store can be accessed by a
SPARQL endpoint through HTTP.

• Inference component: While standard RDFS inference is directly performed
by the reasoner of triple store more complex inference algorithms such as the
measurement-entity resolution, the normality classification of image findings
or the ranking of likely diseases are performed by the inference component.

• Jetty server: The jetty server is responsible for request handling for spe-
cific applications. HTTP requests are translated to corresponding SPARQL
queries and responses are transformed to XML or HTML to be displayed in
a user interface. That is, the Jetty server provides APIs for applications such
as the ReportViewer or the DiseaseAnalyzer.

• Applications: Applications can access the data contained in the triple store
either through the Jetty server or by directly querying the triple store. For
instance, different demo user interfaces realize the visualization of the data
for clinicians.
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Figure 7.1.: Architecture of the MCI implementation.
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7.2. Annotator

Large parts of clinically relevant information is contained in unstructured formats
such as images or free text. To integrate this crucial information in a structured
form an annotator is commonly used which assigns structured information to
unstructured data or specific parts of it. The output data are called (semantic)
annotations and, roughly speaking, they provide a structured representation of
the entities that occur in the corresponding unstructured data. For instance, a
clinician detects some suspicious anatomical structure in one image. Then, he can
annotate the corresponding image region, e.g., with a comment or with entities
from some controlled vocabulary. Similarly, a substring of a free text report such as
“23 mm” can be automatically annotated as a measurement with value “23” and unit
“millimetre”. In general, the capabilities of annotators range from fully automatic
(e.g., image segmentation, NLP) to fully manual. The annotator, i.e. the component
that creates the annotations, is considered as a black-box. The contribution of
this work regarding annotations is to integrate image and text annotations into a
common schema using the Open Annotation data model (OA) which is part of
the model foundation of MCI as described in chapter 4. Annotations created by
NLP pipelines, image segmentation algorithms or manual image annotations are
mapped to this common schema. In the following subsections, the image and text
annotations used in this work are briefly described.

7.2.1. Image Annotation

Using the MEDICO annotation tool, semantic image annotations are created
semi-automatically as described in [Sei+10]: important organs are segmented
automatically and corresponding image regions are annotated with respective
classes from the FMA. The clinician then validates the automatic annotations and
might add additional annotations manually. For instance, the clinician might add
to an organ, e.g., the spleen, a modifier for the size, e.g., enlarged. The clinician can
also view the 3D scan and mark specific regions and selects ontology concepts for
annotation independently of any image segmentation algorithm. The annotations
created by the MEDICO annotation tool are stored in the MEDICO Annotation
Ontology (MANO), which is described in [MRS09; Sei+10; Sei+11]. The MANO
reuses classes from FMA to represent anatomical entities “whereas concepts for the
visual manifestation of an anatomical entity on an image are derived from the modifier
and imaging observation characteristics sub-tree of RadLex” [Sei+10]. Additionally, free
text descriptions might be used to annotate image regions. The basic schema of
the MEDICO annotation is given in Figure 7.2: There are four types of annotations
(spacial, anatomical, describing and measurement) which are linked to a finding.
The finding is part of a study of some patient and, optionally, has additional
references to an image region or some text region.
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Figure 7.2.: Schema of MEDICO Annotation Ontology (MANO) [Sei+11].

7.2.2. Text Annotation

The description of the text annotator is based on [Obe+14]. The component that
takes care of the extraction of relevant information from unstructured clinical
texts is the text annotator. Information Extraction (IE), as a task of NLP, is a
technique to find important pieces of information in unstructured texts and to
extract them as structured information [Mey+08]. For instance, IE is used to
detect semantic entities such as date values, names or measurements in texts.
Furthermore, the annotator can detect entities of a provided dictionary, e.g., the
controlled vocabulary of an ontology. This task is also referred to as Named Entity
Recognition (NER) or semantic annotation. There are freely available annotators
like, e.g., the annotator of the BioPortal [Whe+11], for annotation of text with
concepts from biomedical ontologies. However, a more specific annotator tailored
for German medical texts is needed, so the annotator described in [BOZ15] is
used.

Functional Scope of the Text Annotator

The used annotator extracts two main pieces of information. Firstly, measurements,
date values, abbreviations etc., i.e. predefined information objects. These entities
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are extracted using pattern-based techniques (i.e., through detection of utterances
by using a set of regular expressions that express predefined combinations of
measurement values and units). Secondly, the annotator can detect entities of a
provided ontology. There are three features that the annotator supports regarding
this semantic annotation:

• It detects multi-word terms independently of the ordering of the individual
tokens.

• The annotator respects the sentence boundaries and maps multi-word terms
only when they occur within the same sentence.

• It recognizes inflected forms of ontological concepts in the text such as plural
form or other grammatical inflections based on stemmed forms.

• The annotator is able to split compound terms into their parts. This is
especially useful regarding annotation of German texts since the parts of
compounds would not be recognized otherwise.

The implementation of the annotation pipeline builds on the Unstructured In-
formation Management Architecture (UIMA) framework [14a]. The annotator
itself is an adapted version of the UIMA Concept Mapper, which annotates texts
that are pre-processed by a special medical text pre-processing pipeline including
sentence splitting and tokenisation. The output of the annotator is represented in
RDF which allows easy integration with MCI . Details of the functional scope of
the annotator are described in [BOZ15]. An example of a measurement annotation
of the sentence "Axillary lymph node 56 x 45 mm" is shown in figure 7.3.
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:AnnotationType-1772554695
a oa:Annotation ;
rdfs:label "56 x 45 mm"^^xsd:string ;
:annotationID "AnnotationType-1772554695" ;
oa:hasBody :MeasurementAnnotation-2013480429 ;
oa:hasTarget :Token-1078343793 .

:MeasurementAnnotation-2013480429
rdfs:label "56 x 45 mm"^^xsd:string ;
:annotationID "MeasurementAnnotation-2013480429" ;
:dimensions 2 ;
:measures "45.0"^^xsd:float , "56.0"^^xsd:float ;
:uimaType "de.reports.types.MeasurementAnnotation"^^xsd:string ;
:unit "mm"^^xsd:string .

:Token-1078343793 a nif:Word ;
rdfs:label "56 x 45 mm"^^xsd:string ;
nif:beginIndex 20 ;
nif:endIndex 30 ;
nif:sentence :Sentence-1887026300 ;
nif:stem "56 x 45 mm"^^xsd:string ;
:text "56 x 45 mm"^^xsd:string ;
:uimaType "de.reports.tokenizer.Token"^^xsd:string .

Figure 7.3.: Measurement annotation created by the UIMA text annotator for the
sentence “Axillary lymph node 56 x 45 mm.”
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7.3. Mapper

The mapper transforms all relevant structured data, i.e. annotations as well as
data from relational data bases, to the schema of the MCI. As described above,
the textual annotator takes a string as input and outputs annotations serialized in
RDF. Similarly, the MEDICO image annotations are provided in RDF and stored
in the MEDICO Annotation Ontology. The mapper fulfills the following tasks:

• Integration of annotations from different annotators to the schema of OA.

• Filtering and structuring of annotations since not all annotations are mapped
to MCI.

• Normalization of annotations, e.g., dates, measurements, units from strings
to URIs.

• Representation of the context of the annotations. Since only parts of the
source data are annotated (e.g. the finding or assessment section of a report)
annotations need to be related to corresponding entities in MCI such as the
report section instance.

• Creation of consistent URIs for entities: A string pattern for the creation
of URIs based on identifiers from source data sets is necessary in order to
preserve references between entities.

• Transformation reference codes to URIs of classes from ontologies. For
example an ICD10 code (C00-D48.9) to the corresponding class URI from the
ICD10 ontology.

Annotations which are already in RDF format can be simply transformed by using
SPARQL queries. Structured data from relational databases needs to be queried
with SQL and, based on that, triples need to be generated and loaded to the triple
store.

7.3.1. Mapping of Image and Text Annotations

To map image and text annotations, the corresponding RDF file containing the
annotations is loaded. Then, a set of SPARQL queries is used to retrieve specific
triple patterns which are then transformed to the schema of MCI and uploaded
to the triple store. One important task thereby is to consistently create URIs for
the created entities so that they are correctly referenced by different queries. Fur-
thermore transformation of triple patterns, involves the transformation of entities,
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properties and the creation of additional entities. The concrete transformation of
data and annotations from MANO (image and text annotations) and UIMA (text
annotations) are described along examples in the following subsections.

Mapping of MANO Image and Text Annotations

The MANO defines several different data properties to represent unique IDs, e.g.,
patientUID, findingUID, studyUID, radiologicalReportUID etc. The instances
however are modelled as blank nodes in MEDICO. To be able to consistently refer
to instances, URIs need to be created for the blank nodes. As shown in figure 7.2,
the MEDICO schema contains classes for patient and study which are directly
linked. In MCI, a DICOM study is the output of a radiology examination which
has the patient as a participant. The transformation of this pattern is shown in
figure 7.4. These transformations were created manually.

CONSTRUCT {
?patient a :MCI_0000150 ; # a patient

:MCI_0000090 ?patientUID . # with unique ID
?radExam a :MCI_0000003 ; # a radiology examination

obo:BFO_0000057 ?patient ; # has participant
obo:OBI_0000299 ?dicomStudy .# has specified output

?dicomStudy a :MCI_0000052 ; # a dicom study
:MCI_0000090 ?studyUID . # with unique ID

} WHERE {
?p a mano:Patient ;

mano:patientUID ?patientUID ;
mano:hasStudy/mano:studyUID ?studyUID .

BIND(CONCAT("http://.../mci.owl/patient",?patientUID)) AS ?patient)
BIND(CONCAT("http://.../mci.owl/exam",?studyUID)) AS ?radExam)
BIND(CONCAT("http://.../mci.owl/dicomStudy",?studyUID)) AS ?dicomStudy)

}

Figure 7.4.: SPARQL query to map structured patient information from MANO to
MCI.

The mapping of image annotations is more complicated. In MEDICO, a finding
has 1 - 9 annotations of various types. In MCI, annotations are represented using
classes and properties of OA, where a composite construct is used to bind multiple
annotations as shown in figure 7.5. These annotations are then the basis to create
instance of clinical findings using MCI classes and properties.

Mapping of UIMA Text Annotations

The text annotations produced by the annotator are described in section 7.2. Since
the annotations created by the UIMA text annotator are very detailed and include
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Figure 7.5.: Target representation of an image annotation transformed from the
MEDICO Annotation Ontology (MANO).

all kind of linguistic annotations, the mapper needs to filter and normalize these
annotations for their representation in MCI. For instance, information about the
stemmed form or the UIMA type are filtered out in this step. The measurement
annotation shown in figure 7.3 is directly transformed to a size finding which is
contained in a specific sentence of the corresponding report section. Furthermore,
two instances of length measurements are created which describe length qualities
that are orthogonal to each other. The unit (represented by the annotator with
a string) is mapped to a normalized entity of the Units Ontology (UO). In the
example, the length would be normalized and represented in centimetres. This is
depicted in figure figure 5.28, though the relation to the lymph node is omitted.
The relation between measurements and corresponding anatomical entities is not
provided by the annotator and needs to be inferred in subsequent steps.

7.3.2. Mapping Data from Relational Data Bases

There are different possibilities to integrate data from relational data base (RDB)
into semantic web applications. Firstly, one can transform the data from the RDB
into an RDF representation, which is referred to as triplification. Secondly, one can
rewrite SPARQL queries to SQL queries in order to access an RDB by semantic
queries. In cases where the underlying data is very large or when the RDB is
frequently updated, the latter approach is more appropriate. Since the data from
the RDBs considered in this work is supposed to be rather static and several
manipulations and mappings are necessary for the applications, the triplification
of relational data was chosen.
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i2b2 Transformation

The relational data base i2b2[15h] is a data warehouse, specifically designed to
integrate clinical data from various hospital departments. The main purpose of
i2b2 is to identify patient cohorts based on fundamental patient characteristics
such as the main diagnosis, the gender or the age. To accomplish this, i2b2
integrates different classification systems such as the International Classification of
Diseases (ICD), German procedure classification (OPS), Anatomical Therapeutic
Chemical (ATC) for medication and Logical Observation Identifiers Names and
Codes (LOINC) for lab values.

Structured and coded data elements such as diagnosis information are directly
mapped to MCI. Unstructured data such as finding descriptions from radiology
reports are additionally annotated (via the annotator described above) and then
mapped together with the annotations to MCI. The mapping of annotations is
described below.

Technically, mapping of structured data from i2b2 to MCI is realized through
several SQL queries which retrieve data elements from the relational i2b2 data
base. Then, the data is mapped to MCI using JAVA and uploaded to the triple
store using SPARQL. In the transformation (or triplification) process, consistent
reference to URIs for the different entities is required. Here, the IDs of i2b2 are used
to create new URIs, if necessary by appending existing identifiers. For instance,
while a radiology report has an ID in i2b2, the different sections do not have
predefined IDs. Further, for all entities that are created additionally to entities
defined in i2b2, new URIs need to be created. For a patient with patient_num
1000000006 the following URI is created:

http://www.siemens.com/ontologies/mci.owl/i2b2-patient-1000000006

or short

mci:i2b2-patient-1000000006

The basic patient information is then represented as

mci:i2b2-patient-1000000006 a mci:patient ;
mci:date of birth "1946-01-01T00:00:00"^^xsd:dateTime ;
mci:has patient ID "1000000006"^^xsd:string .
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7.4. Triple Store

The Apache Jena triple store [15a] contains all reference ontologies, the MCI and
the patient data represented in MCI. In general, there are two technical possibilities
to separate data in a triple store. Firstly, it is possible to create different data sets.
For each data set, it can be specified which services (query, update, load etc.) are
provided by the corresponding SPARQL endpoint. Federated queries are used to
query over two or more data sets. Secondly, within each data set, named graphs
can be created that group triples additionally. Technically this is realized by using
quadruples where (in contrast to classical triples) one additional entry specifies
the graph the triple belongs to. The separation in data sets and named graphs
is employed in the triple store as shown in figure 7.6. The main advantage of
this kind of separation is that one can more easily maintain and modify data. For
instance, if a new version of some ontology is available one can simply delete
the old content of one data set and upload the new version. Since data sets are
separated this also leads to better query performance when one queries only one
or two data sets. Additionally, the separation allows us to have different reasoning
levels for the different data sets. MCI is held with OWL-reasoning while the patient
data and the referenced ontologies without any reasoning. Furthermore, named
graphs allow to group patient data triples with respect to the context of clinical
encounters. The separation of triples belonging to different clinical encounters
is necessary since, e.g., some clinical department might realize different roles
within the context of different encounters (e.g., admission or discharge role). For
instance, the patient’s age at admission makes sense only within the context of
some clinical encounter. The triple store does not support any user or transaction
management.
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Figure 7.6.: Triple store with different data sets indicated by ‘/...’ and named
graphs.
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7.5. Inference Component

The role of the inference component is to enrich patient data stored in MCI using
the knowledge models described in the previous chapter. For instance, the rela-
tions between measurements and corresponding anatomical entities is inferred
by this component since this relation is not provided by the annotator. Similarly,
the classification of size findings based on comparison with normal values or the
interlinking of findings from consecutive examinations is done by the inference
component. The implementation of this component is realized as follows (for
details it is referred to chapter 8):

1. All triples necessary for inference are retrieved. For instance, all size find-
ings without a classification as normal or abnormal.

2. Based on these triples, knowledge models are used to infer new relations.
For instance, the measurement values of size findings are compared to
normal size specifications defined in the knowledge model to classify them
as normal or abnormal.

3. New relations are added to the triple store. For example, the resulting
finding type is added to the triple store.

Some inference procedures involve multiple SPARQL queries and a complex
algorithm with several steps, e.g., the measurement entity resolution described
in section 8.2. However, some procedures are realized by single SPARQL update
queries such as the linkage of consecutive examinations.
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This chapter describes different inference techniques and their role for enriched
data representation – beginning with an overview in the first subsection. It is
described how standard RDFS and OWL reasoning is performed and how the
knowledge models presented in chapter 6 are applied technically. Afterwards,
specific inference procedures requiring extended algorithms are described in de-
tail: Based on semantic annotations of radiology reports the knowledge model
on normal size specifications (section 6.1) is used to resolve the relation between
measurements and corresponding anatomical entities. After this resolution, com-
plete structured representations of measurement findings have been extracted
from their previous representations in free text reports. Based on these structured
representations a subsequent inference step is performed to classify these findings
as normal or abnormal. Furthermore, their deviation in comparison to previous
examinations is highlighted. Finally, the Disease-Symptom-Examination ontol-
ogy (DSE) is used to enable a disease-centric access to the finding descriptions:
By matching the patient’s symptoms to the typical symptomatology of different
diseases, a ranked list of likely diseases is inferred and subsequent examinations
are proposed.
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8.1. Overview

There are different possibilities to infer additional information from the patient
data and annotations, i.e., using logical definitions from reference ontologies, MCI
and the knowledge models. The basics of knowledge representation and reasoning
are described in section 2.1. Here, it is focused on the description of how inference
techniques and procedures are used to enhance data of the case studies presented
later in chapter 10. There are several ways to realize inference: Firstly, the reasoner
of the triple store can be used for inference based on logical axioms and definitions
defined in reference ontologies, MCI and the knowledge models. For instance,
RDFS reasoning is used to automatically infer the transitive closure of subclass
relations for reference ontologies such as the RadLex or the ICD. Secondly, more
complex algorithms are commonly realized in external applications. Similarly,
when dealing with higher inference levels such as OWL or OWL2, it is appropriate
to first extract a subset into an in-memory ontology model such as a Jena Inference
Model to perform inference within that model – instead of running the inference
on the whole data set of the triple store. This strategy is also suitable to keep the
inference level of most of large data sets of the triple store low. Thirdly, SPARQL
update queries are used to infer information based on rules. This technique is
mainly used for data normalization and cleaning, however it can be also used to
perform inference that would be difficult or impossible to realize by using DL. For
instance it is not possible to write an axiom such as the following in DL:

hasParent�x, y�, hasParent�x, z�,married�y, z�� C�x�

which defines a “class C of children whose parents are married” [KMK11]. Also,
comparison of data values is better done by using SPARQL than by logical ax-
ioms.

8.1.1. Inference with RDFS and OWL

A very important role of inference in the context of description logic is the clas-
sification of instances. The most important knowledge contained in reference
ontologies is the generalization hierarchy of their classes. By specifying an RDFS
reasoner of the triple store for a corresponding data set such as those containing
the FMA, RadLex or ICD, one can easily include this knowledge at query time. For
example, a diagnosis of type icd10:Hodgkin’s disease is also classified as type
icd10:Malignant neoplasms and icd10:Neoplasms due to the subclass hierarchy
of ICD. Further domain and range restrictions of properties are used to classify in-
stances related by corresponding properties. Similarly, logical definition of classes
are commonly used by reference ontologies. Firstly, to allow classifications of
instances as in the above example and secondly to automatically infer the subclass
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hierarchy of the ontology. For instance, the Human Phenotype Ontology (HP)
defines classes of phenotypes by logical axioms such as:

hp:splenomegly = obo:has part SOME (obo:increased size
AND (obo:inheres in SOME obo:spleen))

A clinical finding describing an increased size (quality) which inheres in some
spleen is thus automatically classified as an hp:splenomegaly. By applying the
HP subclass hierarchy, the finding gets further classified as hp:Abnormality of
the spleen and also as hp:Abnormality of the lymphatic system etc. As ex-
plained in section 6.2, the Disease-Symptom-Examination ontology (DSE) follows
this pattern and defines clinical findings such as enlarged lymph nodes, or raised
carcinoembryonic antigen accordingly.

Using the Structure of Reference Ontologies

The relations between different classes or instances defined in existing reference
ontologies are another valuable knowledge resource. For instance, the aggregation
relations such as has part are widely used. Often these aggregation relations are
defined as transitive properties. Inference about transitive properties however
requires OWL reasoning level. Thus, by specifying an OWL reasoner, one can
retrieve all parts of some given entity. However, since OWL reasoning is compu-
tationally expensive, is not feasible as the default reasoning level in the context
of very large ontologies or data sets. An alternative is to use specific SPARQL
constructs to get the transitive closure at query time. For instance, a query such
as

SELECT ?entity ?part
WHERE {
?part fma:part-of+ ?entity

}

can be used to get the transitive closure of all parts for each entity without requiring
a running reasoner.
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8.2. Resolution of Measurement-Entity Relations

A large percentage of clinically relevant radiologic patient information is repre-
sented in unstructured formats such as free text reports. Measurements represent
important information documented in reports. On the one hand clinicians mea-
sure only things of importance, on the other hand measurements are comparable
and thus provide valuable insights into the change of the patient’s health sta-
tus over time. In radiology, there are mainly size measurements describing the
spatial extent of anatomical entities. For instance, radiologists measure the size
of tumors and metastatic lesions (characteristic changes of parenchyma in dif-
ferent organs, enlarged lymph nodes) in consecutive examinations to evaluate
response to treatment. Currently, radiologists and clinicians need to manually
collect measurements from different reports in order to compare the respective
values. Sometimes they even need to go back to the original image and measure
the entities again. Since measurement information is only useful when it is exactly
known what the measurement is about, a mechanism to resolve measurement-entity
relations automatically from annotated texts was developed. The results of the
inference described in this section lead to a complete and structured representa-
tion of measurement findings and thus provides the basis for their classification
and linkage. The overall aim is to facilitate and speed up the comparison of
measurements from consecutive reports. To illustrate the challenge of extracting
measurement-entity relations, consider the example sentence:

Example Sentence: “Enlarged lymph node right paraaortal below the renal pedi-
cle now 23 mm.”1

The resolution algorithm has to extract that 23 mm specifies the size of a lymph node
(or better a paraaortal lymph node), i.e. the relation between the measurement and
the measured anatomical entity. This is especially challenging in long sentences,
where many different entities occur with the measurement and the measurement is
not close to the entity described – in the example sentence above, the entity lymph
node is at the beginning while the measurement is at the end of the sentences. The
annotator (described in section 7.2) is used to detect and extract the measurement
value 23 and unit mm as well as ontology concepts. For the example sentence the
following set of RadLex annotations are obtained: lateral aortic lymph node,
right, lymphadenopathy, enlarged, lymph node, inferior para-aortic lymph
node, renal pedicle, inferior, paraaortic and kidney. The resolution algo-
rithm has to extract the correct measurement-entity relation based on this set of
annotations.

1Original sentence in German “Vergrößerter Lymphknoten rechts paraaortal unterhalb des Nieren-
stiels jetzt 23 mm.”
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8.2.1. Overview of Resolution Algorithm

For each sentence containing at least one measurement, the set of annotations
is analyzed to infer the anatomical entity the measurement is about. The resolu-
tion of measurement-entity relations is based on a combination of three ranking
algorithms (see figure 8.1):

• Knowledge-based Resolution: The knowledge model about normal size
specifications for anatomical entities (see section 6.1) and typical size specifi-
cations for other findings as well as the structure of a reference ontology is
used.

• Statistics-based Resolution: Based on 1000 manually resolved sentences a
statistic about the frequency of commonly measured anatomical entities is
used.

• Distance-based Resolution: The distance within the sentence between the
measurement and annotations is used for the resolution.

Figure 8.1.: Overview of the measurement-entity resolution algorithm that com-
bines a knowledge-based approach with a statistical and a sentence
distance measure.

Most important here is the knowledge-based algorithm described in detail in the
following subsection (see also [Obe+14]). The statistics-based algorithm as well
as a simple distance-based algorithm refine the results and help to avoid false
resolutions of the pure knowledge-based algorithm described in [Obe+14]. The
refinement is realized by an ensemble algorithm that integrates all three rankings
with weights and the best entity is selected in dependence on some threshold crite-
ria. For the example sentence described above the entity inferior para-aortic
lymph node is selected for the resulting relation to the measurement 23 mm. Us-
ing the threshold, selection of wrong entities is avoided in some cases and thus
enhances precision. Not selecting any entity can have two reasons: Either the
knowledge model does not contain information about the annotated entities or all
the set of annotation is of low quality and the correct entity is not annotated.
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8.2.2. Knowledge-based Resolution Algorithm

This subsection is based on the publication [Obe+14]. The knowledge-based
resolution is based on the annotations, the knowledge model and the structure
of RadLex. The idea of the knowledge-based approach is to abstract from the
sentence structure and use a knowledge model containing information about the
typical size of anatomical entities in combination with hierarchical information of
a medical ontology (in this case RadLex). The knowledge-based algorithm relies
on six steps: First, the set of annotations is filtered (1) and extended (2) using the
ontology structure of RadLex. Then, a spanning tree (3) covering the annotations is
created, corresponding size specifications are attached (4) from the knowledge model,
measurement values are compared to them (5) and a ranking of entities (6) is computed.
These steps are explained in detail in the following paragraphs before limitations
are analyzed.

1. Filter Annotations Not all generated annotations are good candidates for
the measurement-entity resolution: For instance, while lymph node is a good can-
didate, inferior is not. In RadLex, good candidates are subclasses of anatomical
entity, imaging observation and clinical finding. Annotations under these
classes are referred to as relevant annotations. All other annotations, e.g. those
under imaging modality, procedure, medical device or Radlex descriptor are
filtered out. This removes right, enlarged, inferior, and paraaortic from the
list of annotations of the example sentence above.

2. Extend Annotations In RadLex, some clinical findings are linked to anatom-
ical entities by the property radlex:Anatomical_Site. For example, the finding
radlex:hepatomegaly is linked to radlex:liver by this property. The initial set of
annotations is extended by using this property. That is, for each initial annotation
RadLex is queried for related anatomical entities which are then added to the set
of annotations. Thus, annotations for anatomical concepts are added, which could
not be detected directly by the annotator.

3. Create Spanning Tree Using the set of relevant annotations, a minimal
spanning tree is created from the RadLex subclass hierarchy. The spanning tree for
the annotations of the example sentence is shown in figure 8.2. The spanning tree
is represented in RDF, like the knowledge model on normal size specifications.

4. Attach Size Speci�cations For all entities of the spanning tree, the knowl-
edge model is checked for size information about the respective entity and at-
tached to the spanning tree. Regarding the example case, size specifications for
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RadLex entity

anatomical entity

...

anatomical structure

cardinal organ part

...

lymph node

...

left parietal
lumbar lymph node

lateral aortic
lymph node

parietal pre-aortic
lymph node

inferior para-aortic
lymph node

anatomical
cluster

...

renal pedicle

organ

...

kidney

clinical finding

...

lymphadenopathy

Figure 8.2.: Minimal spanning tree for RadLex annotations relevant for relation
resolution for the sentence “Enlarged lymph node right paraaortal
below the renal pedicle now 23 mm”. Boxed entities represent annota-
tions of the sentence, arrows a subclass relationship and dots indicate
that a subclass path is omitted.

radlex:kidney and radlex:lymph node are found. Using the hierarchy of the
ontology in form of the spanning tree has two advantages: Firstly, size information
is propagated down to subclasses. Thus, as shown in the next step, each size
assertion in the knowledge model implicitly applies to many concepts. Secondly,
the spanning tree with subclass paths enhances the chance to find a matching
concept in the knowledge model.

5. Compare Size Speci�cations For all entity e of the spanning tree with size
specifications a comparison value is computed which indicates how well the
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measurement value x fits into typical size range �m, M� of e:

compValue�e, x� ��

¢̈
¨̈̈
¦
¨̈̈
¤̈

m�x
x , x @ m.

0 , x > �m, M�.
x�M

M , x A M.
(8.1)

That is, if the measurement value is within the range, a comparison value 0 is
assigned, otherwise a value A 0 is computed. If there are multiple attached size
specifications, the lowest (best) comparison value is saved. Other entities of the
spanning tree then get the comparison value of the closest superclass assigned if
available. For example, lymph node has comparison values 1.3 (“normal lymph
nodes are �0, 1� cm”) and 0 (“enlarged lymph nodes are �1, 5� cm") so the value
0 is assigned. kidney gets comparison value 0.73 (“anterior-posterior diameter
of kidney is normally 4 cm”). Then information is propagated: lateral aortic
lymph node and inferior para-aortic lymph node get comparison value 0 as-
signed since lymph node is their closest superclass with size specification. The
knowledge model does not cover lymphadenopathy and renal pedicle, so these
entities get a default comparison value assigned.

6. Compute Ranking The final ranking value of the knowledge-based algorithm
includes also the position of the entity e within the RadLex class hierarchy:

rankValue�e� �� compValue�e, x��
1

depth�e�
(8.2)

Thus, in case of equal comparison values more special concepts (deeper in the
hierarchy) are preferred. This again shows the advantage of using the ontology
hierarchy.
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8.3. Normality Classification

Normality classification of findings is very important for clinicians. During the
diagnosis and examination process their attention is mainly focused on abnormali-
ties. For blood test results this classification is standard: The measured values are
compared to normal intervals and then flagged as low, normal or high. This kind
of normality classification for image findings however is missing since their finding
descriptions are more complex. Here, the normality classification of size findings,
based on the model about normal size specifications (see section 6.1) is described.
Given some size finding where anatomical entity as well as the measured quality
and the measured value are defined, the most specific size specification is retrieved
from the knowledge model (if available) and the corresponding normal range
is compared to the actual measurement value. Most specific means that there is
no other specification defined in the knowledge model that has a more specific
quality description or which is about a more specific anatomical entity. Since the
classification of measurement findings is based on value comparisons it is not
realized by defining logical axioms. Instead, SPARQL is used to retrieve relevant
data from the triple store. Then findings are classified by comparison of their
measurement values to normal size specifications of the knowledge model. For a
size finding that is about an inguinal lymph node with as measurement of the length
with value specification 1.4 cm, the knowledge model contains two size specifica-
tions: “lymph node, normal short axis, B 1 cm” and “inguinal lymph node, normal
short axis, B 1.5 cm”. Since the second description is more specific, the value
1.4 is compared to it and the finding is consequently classified as a normal size
finding. More precisely, depending on the comparison the quality described by the
size finding is classified as increased size, decreased size (which are both sub-
classes of deviation from normal) or as normal. Then the corresponding finding
is classified as an mci:increased size finding, decreased size finding (both
subclasses of mci:abnormal size finding) or as an mci:normal finding.

In the case of a multidimensional size finding the situation is slightly more com-
plicated: Here it has to be ensured, that all specified values are in the normal
range. For instance, a measurement 8 x 14 mm about a mediastinal lymph node is
classified as normal since not both values are > 1 cm. A measurement “spleen 10
x 4.8 cm” is classified as normal since the values fit into the range specifications of
the knowledge model: “spleen, normal width, [4,6] cm”, “spleen, normal length,
[7,10] cm” and “spleen, normal height, [11,15] cm”. A measurement “spleen 12
x 13 x 5 cm” would be classified as abnormal: Even though for each value one
could find some fitting normal range, the three values have to be mapped to three
different range specifications. Since no value is within the normal range of the
length of the spleen, the finding is classified as abnormal. The evaluation of the
normality classification is given in section 11.2.
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8.3.1. Patient-specific Normality Classification

Additionally to the selection of the most specific size specification from the knowl-
edge model, the patient context is also taken into account. As described in Section
6.1 some normal size specifications are age or gender dependent. For example,
the normal size of the pancreas is age-dependent. During selection of appropri-
ate size specification that are to be used for comparison it is ensured, that only
specifications are retrieved that match the patient context. That is, for a finding
“width of head of pancreas, 2.8 cm” and a patient with age between 51 and 60 a
normal range 21-27 mm is retrieved while for another patient with age between
41 and 50 a normal range 22-29 mm is retrieved. Accordingly the classifications
are different for a measurement value of 2.8 cm for patients with an age in the
different ranges.
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8.4. Linking Findings

Besides classification of findings as normal or abnormal (described in the previous
section), information of the change of findings over time is important as well.
Especially a comparison to the previously performed examination is required in
many clinical processes such as diagnosis, monitoring or treatment evaluation.
For instance, the clinician wants to know which findings are progressive, regres-
sive or new. To allow corresponding classifications, findings describing the same
anatomical entity at different points in time need to be linked. For findings about
anatomical entities which are unique in the human body this can be achieved by
matching their types – for findings about entities that occur multiple times, like
nymph nodes or lesions, this is problematic.

8.4.1. Unique Anatomical Entities

Findings about an anatomical entity which exists only once in the human body
(such as the liver, spleen etc.) can be linked: Here, it is required, that the anatomical
entities match and that there does not exist a more specific type for the anatomical
entity in RadLex. Then an owl:sameAs relation is created between the instances.
For instance, there is no subclass of radlex:spleen and two findings about the
spleen are linked (see figure 8.3). However two findings about radlex:kidney are
not linked since there subclasses radlex:right kidney and radlex:left kidney.
These findings are only linked if both are about the right kidney (or left kidney
respectively). Thus, it is ensured, that the linking is at least as accurate as the
used reference ontology. However, as described in the next subsection this is not
sufficient for lymph nodes and lesions.

In a subsequent step, measurements of linked findings can be directly compared
(as with normal value specifications) and the corresponding type increasing
finding or decreasing finding assigned.

Figure 8.3.: Linking findings from consecutive examinations by anatomical entity.
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8.4.2. Lymph Nodes and Lesions

Linking findings about lymph nodes or lesions from consecutive examinations is
problematic: There are more than 250 different lymph nodes and lesions can occur
in almost all locations in the human body. Often corresponding finding descrip-
tions found in radiology reports are not precise enough to allow automatically
linking these findings (see details below). Thus, these findings are not linked di-
rectly. Instead, a user interface (ReportViewer, see section 9.2) was developed, that
allows to review these findings in a longitudinal fashion. That is, the structured
representation of clinical findings with MCI is used to provide an integrated view
for the clinician.

Lymph Nodes

Since the human body contains many lymph nodes, it is not enough, that two
findings are about some lymph node. Even though RadLex defines a very detailed
class hierarchy for lymph nodes, linking findings about lymph nodes, following
the above approach of “most specific types”, does not guarantee accurate enough
results. For instance, radlex:para-aortic thoracic lymph node has no subclass
– and thus is a most specific type. However, depending on the patient there might be
multiple para-aortic thoracic lymph nodes. Consequently a linkage would not be
accurate enough to justify a value comparison.

Lesions

As mentioned above, lesions can occur in any location of the body. Since RadLex
does not contain a very detailed subclass hierarchy of lesions, the location of lesions
has to be respected when corresponding findings should be linked. One could try
to establish links between lesions, found at the same location, requiring that there
is no more specific location description in RadLex. Then a location specification
“liver” would not be sufficient: At least a specific liver segment would be required.
However, even requiring a “most specific location” would not guarantee, that two
findings indeed describe the same lesion: For example, there are numerous cases
where multiple lesions are found in the same liver segment.
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8.5. Propagation of Finding Information

In the context of some particular patient, each finding and symptom of Disease-
Symptom-Examination ontology (DSE) can be classified into one of the following
three categories:

Present �nding (abnormal �nding) A finding which is observed at a patient.
Present findings are important, since they indicate the presence of some
diseases and require monitoring.

Absent �nding (normal �nding) A finding which was under examination but
did not show up (e.g. “no enlarged lymph nodes in neck area”). Absent
findings are of importance, since they allow to exclude certain diseases.

Unknown �nding A finding for which no information is available for the patient
in the current situation. These findings have not been examined yet and
need to be targeted next.

The status of a finding is meaningful only within the context of some particular
patient at some point in time. Thus, all descriptions below always refer to findings
and symptoms of one patient. After initial mapping of finding information speci-
fied in MCI to the findings and symptoms defined in DSE, a patient-specific finding
tree is created and the consistency of available finding information is checked.

8.5.1. Mapping

For some given finding of DSE, such as dse:splenomegaly the status is determined
by querying the patient data represented in MCI: All clinical findings are retrieved
together with all their types, the corresponding qualities (if specified) and the
date of the corresponding examination. Then each finding is mapped to the most
specific class of DSE, and a status and date is attached. For example:

mci:radFinding123
rdf:type ‘dse:enlarged colic lymph node’ ;
dse:has_status ‘dse:known present’ ;
dc:date "2006-04-07" .

By referencing RadLex the coverage of DSE is extended: Even though DSE does
not contain a finding, dse:enlarged facial lymph node, a corresponding finding
defined in MCI will be captured at least as the finding dse:enlarged lymph node,
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since lymph node is a superclass of facial lymph node in RadLex. However this
is done only for findings that have status known present. That is the absence of
enlarged facial lymph nodes does not map to “enlarged lymph nodes absent”. The
rational behind this is described in more detail below.

8.5.2. Łukasiewicz Three Value Logic

Łukasiewicz logic is used for three truth values (true, unknown, false) – here de-
scribed as present, unknown, absent. The truth-table of Łukasiewicz’s logic is shown
in table 8.1, where the values denote the truth value for the validity of the implica-
tion A � B.

Table 8.1.: Truth table of three-value logic (T - true, U - unknown, F - false) for the
implication relation. Adapted from [Mal07] to the subsumption relation
between findings (finding A is a subclass of finding B) regarding their
status (present, unknown, false).

B

A � B F (absent) U (unknown) T (present)

A

F (absent) T T T

U (unknown) U T T

T (present) F U T

Regarding the class hierarchy of clinical findings defined in DSE, the subclass
relation between two clinical findings can be translated to a logical assertion. That
is, an axiom denoting a subclass relation such as

dse:finding1 rdfs:subClassOf dse:finding2

is interpreted as the logical assertion

dse:finding1 � dse:finding2

since each instance of dse:finding1 is also an instance of dse:finding2. For exam-
ple an instance of dse:enlarged abdominal lymph nodes is also an instance of
dse:enlarged lymph nodes and thus

enlarged abdominal lymph node � enlarged lymph node

Since the subclass axiom is considered to be always true, only finding descriptions
(i.e. status descriptions) are consistent that are marked as “T” (true) in table 8.1. For
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example, it is not consistent when A enlarged abdominal lymph nodes is true (present)
and B enlarged lymph nodes is false (absent) since this violates the implication A � B.
More precisely: if finding1 is true (present) then finding2 must be true (present)
as well; if finding1 is unknown, then finding2 is either unknown or false (absent)
– but it cannot be true (present), since this would contradict the logical assertion
above; if finding1 is false (absent), no assertion about finding2 can be inferred.
Similarly, if finding2 is true (present), no assertion about finding1 can be inferred.
However if finding2 is unknown than finding1 must be unknown as well or true.
If finding2 is false (absent) then finding1 must be false (absent) as well.

Basically, information about present findings propagates to superclasses while
absent findings propagates to subclasses.

De�nition: �nding status tree For one patient at one point in time a finding
status tree is defined as the class hierarchy of findings of DSE, where for each class
at most one status known present or known absent is specified.

De�nition: consistent/inconsistent �nding status tree A finding status tree
is called inconsistent if and only if there exist a pair of classes A and B, connected
by a subclass path from A to B, for which the truth-table is evaluated to F (false) –
otherwise the status tree it is called consistent.

That is, the status tree is inconsistent if and only if A has status known present
and B has status known absent, where A is a subclass of B. For instance, it is not
consistent to state “known present, enlarged abdominal lymph nodes” and at the
same time “known absent, enlarged lymph nodes”.

8.5.3. Getting to a Consistent State of the Patient’s Findings
Status

As mentioned above, a finding status tree might be inconsistent. Two rules are
used to resolve inconsistencies arising from an initial set of findings with status
and date: Firstly, newer findings are more important than older findings. Secondly,
findings with status known present are more important than those with status known
absent.

To obtain a consistent status tree based on an initial set of findings with status and
date the procedure is as follows:

1. Sort clinical findings: clinical findings are sorted descending by date, i.e.
newest at the top of the list, and secondly by status (first: known present;
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then: known absent).

2. Iterate over the sorted list and add a class C to the status tree (ST) if one of
the following conditions are met:

a) C has status present and there is no superclass B of C in ST with status
known absent .

b) C has status absent and there is no subclass A of C in ST with status
known present .

After those steps one has the complete finding status for the patient. For example,
as shown in figure 8.4.

Figure 8.4.: From patient data specified in MCI to a comprehensive overview of the
patient’s current findings. Dashed arrows express inferred information
about the corresponding finding status.
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8.5.4. Determining the Status of Findings

With a consistent finding status tree one can query the status for any finding of
the tree. If the status is explicitly represented, it is directly retrieved. If not, then
the status of a finding class C can be inferred in some cases (examples illustrated
in figure 8.4):

• If there is an entry about a subclass of C with status known present then
this status is inferred also for C. For example since wall of sigmoid colon
thickened is present, the finding wall of intestine thickened is present
as well.

• If there is an entry about a superclass with absent annotation then this finding
is absent as well. For example, since enlarged abdominal lymph node is ab-
sent, the findings enlarged colic lymph nodes and enlarged pararectal
lymph nodes are regarded as absent as well.

Regarding the status tree shown in figure 8.4, one cannot infer any informa-
tion about the status of enlarged deep cervical lymph node or blood in stool.
The inferred information is not materialized in the status tree in order to keep a
distinction between original and inferred information. This is important in the
situation where new information is entered to the status tree as explained in the
next subsection.

8.5.5. Changing the Finding Status

The status of a finding might change over time: Firstly, as a result of a recently
performed examination (status known present or known absent). Secondly, because
some status is not considered valid by a clinician, thus has to be set to unknown. For
example, the presence of a headache from several weeks ago might be removed or
discarded in diagnosis.

If the status of some finding changes, then the finding status tree is adapted to
avoid inconsistency. As before, the newer entry is considered more important than
older entries: For example (again referring to figure 8.4), if the status of enlarged
colic lymph nodes is set to known present, then the status of enlarged abdominal lymph
nodes is set to known absent is in conflict with the new entry and thus need to be
discarded. Since the inference described above (dashed arrows in figure 8.4) is not
materialized, the status of enlarged pararectal lymph nodes is now unknown.

If the status of a finding class C is changed to unknown, then the following adapta-
tions need to be made: Firstly, the status known present of subclasses of C needs
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to be removed. For example, if a clinician considers the finding status of wall of
intestine thickened to be unknown, then status know present of the subclass wall of
sigmoid colon thickened needs to be removed. Secondly, the status known absent of
super-classes of C needs to be removed. For example if a clinician considers the
finding status of enlarged colic lymph nodes to be unknown, then status know absent
of the superclass enlarged abdominal lymph nodes needs to be removed.
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8.6. Ranking Likely Diseases

Given a patient with an initial set of symptoms (explicitly represented within the
patient’s findings status tree described in the previous section, a ranked list of
likely diseases is inferred. A relatively simple disease-centric view on patient data
as shown in figure 8.5 is suitable to assist the clinician during diagnosis.

Figure 8.5.: From annotations to a ranking of likely diseases. Matching the typical
symptomatology of a disease with the patient’s symptom information.

The basic idea is to measure how well the patient’s symptom information matches
the typical symptomatology of some given disease. Weighting the patient’s symp-
toms and then figuring out the best match under the set of diseases is very similar
to the decision-making process of clinicians. So it was decided to base the ranking
of likely diseases on an adapted measure of precision and recall. The purpose of
such a system is to prevent that clinicians miss a disease they are rarely confronted
with and for which they do not know all correlated symptoms. For that purpose,
the clinician is provided with a graphical overview about likely diseases (see next
Chapter).

Factors with Influence on the Ranking

The factors influencing the ranking were identified in interviews with clinicians. In
general, all patient data and all existing medical knowledge is relevant for stating
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the correct diagnosis. Here, it was concentrated on the following three aspects:

• Medical knowledge about diseases, their manifestations in findings and
symptoms distinguishing between leading symptoms other findings and
also risk age of the disease. This knowledge is available in medical literature
(e.g. [Her11]) and modelled in DSE.

• Patient-specific data like status of findings and symptoms (represented in a
finding status tree described above) as well as the patient’s age.

• Clinical knowledge on the relative importance of clinical findings. For in-
stance blood in stool is more important to track than an unspecific headache.

The ranking of likely disease is described in detail in [Obe+12b]. Based on the
finding status tree and the relations to diseases (see figure 8.5), for each disease a
ranking value is calculated. It is measured how well the overall patient’s finding
status (present and absent) matches the symptomatology of a given disease. In
an adapted measure of precision and recall it is calculated which amount of
findings with status known present can be explained by the disease and further how
many findings with status known absent indicate the absence of the corresponding
disease. Additionally an uncertainty factor is competed for each disease, which
measures the relative amount of findings related to the disease for which the status
is unknown. For instance (referring to figure 8.5), the disease colorectal cancer has
two matching findings with status known present, one with status known absent and
one for which the status is unknown. This information is weighted during the
calculation of the ranking factor: In the described example, the absent symptom
weight loss is a leading symptom for colorectal cancer and thus weighted stronger
than other present symptoms such as changes in bowel patterns. Thus, it is less likely
that the patient has colorectal cancer but more likely to have lymphoma.
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Integrated Data Views

The previous chapter explained how knowledge models and reference ontologies
are used to enrich the clinical data represented in MCI. In this chapter they are
used to provide an integrated view on data, i.e. they are used during retrieval and
presentation of the data. The structured and semantic representation of clinical
findings and their examination context allows to formulate integrated queries
that could not be posed to the original data. Two types of views are presented:
Firstly, a disease-centric view is presented which can be obtained by using the
knowledge model about disease-symptom relations presented in section 6.2. This
provides a snapshot-view on the finding data for one patient at a specific point in
time. The role of this view is to assist the clinician in the differential diagnosis
and examination process by highlighting the most likely diseases together with
the status of their typical symptoms. Further the resulting information is used to
point to missing finding information, i.e. it provides directions for the follow-up
examination planning. Secondly, a longitudinal view on patient data is presented.
Here, the different dimensions of clinical findings specified in MCI are used to
realize different perspectives and filters on the data. This eases the comparison
between findings from consecutive examinations. The scenarios are explained
along demo applications.
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9.1. Disease-centric Snapshot View

The process of differential diagnosis was explained in section 6.2. Basically, a clini-
cian starts with a small set of initial symptoms and – based on leading symptom
relations – gets a first list of possible diagnoses. In a subsequent step of differential
diagnosis, examinations are planned to obtain information about symptom that
have not been covered so far. With the additional symptom information the list
of possible diagnoses is refined. In this section it is shown, how data represented
in MCI and the knowledge model about disease-symptom relations are used to
enhance the differential diagnosis process.

9.1.1. Findings-Status for one Disease

A search for findings related to a specific disease is currently not possible since
information about disease and symptom interrelations is not covered by existing
medical ontologies. Thus, a search for cancer-indicating findings is only possible
through a search for specific finding as e.g. enlarged mediastinal lymph nodes or
enlarged spleen assuming that the clinician is informed about likely symptoms
of the disease. However, clinicians are usually experts in one particular domain,
leading to a lack of prior knowledge about the interrelations of symptoms and
diseases – in case certain diseases are no longer in the scope of their expertise. In
other words, there is a clear danger that the information about the relevance of
identified symptoms remains overlooked or misinterpreted, leading to wrong or
not appropriate treatments. The disease-symptom knowledge model described
in section 6.2 is used to query patient data for finding information of a specific
disease as shown in figure 8.5.

9.1.2. Ranking of Likely Diseases

Allowing the clinician to get all finding information for one specific disease is only
the first step. A natural extension is then, to create a ranking of likely diseases.
The prototype presented here, employs disease-symptoms relations defined in
DSE, to make likely diseases of the patient explicit. The corresponding ranking
algorithm is described in section 8.6 and more detailed in [Obe+12b]. Similar to the
cognitive decision process of clinicians, who rely on their experience and expertise,
medical background knowledge is used to automatically interpret the findings
and symptoms for integration in aforementioned clinical processes. Basically, the
patient’s symptoms are matched with the typical symptoms of diseases, where
present symptoms are counted as pro-evidence and absent symptoms as contra-
evidence for the related diseases. This is shown in figure 9.1, where the status
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of symptoms is indicated by color (red: symptom is present, green: symptom is
absent, gray: symptom has not been checked). The better the patient’s symptoms
match with the typical symptoms of a disease, the higher the corresponding
disease is ranked. Further, it is distinguished between leading symptoms (LS)
and other symptoms (S) for each disease. In figure 9.1, one can see that colorectal
cancer has more associated present symptoms than the other diseases. However,
many symptoms have not been checked so far, which is indicated by light gray
bars in the ranking chart. A ranking of likely diseases improves the diagnosis
process significantly as the clinician will not miss any findings and symptoms
of diseases that might be out of his (main) expertise. Knowing likely diseases
makes it easier to plan next examinations. Further, the clinician gets an overview
of what symptoms of certain disease are present without going through all images
and reports. Especially this helps the clinician not to miss any symptoms in the
diagnostic process. Thus, the relevance-based highlighting of information about
clinical observations in the context of likely diseases supports clinicians to improve
their treatment decisions.

Figure 9.1.: Ranking of likely diseases based on information about present and
absent clinical findings and symptoms.

9.1.3. Examination Planning

After the automatic detection of likely diseases based on an initial set of findings,
this information can be used in differential diagnosis, where the clinician intends
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to either exclude or strengthen particular diseases. So the first list of symptoms
and likely diseases in turn indicates to check for further symptoms. For example,
enlarged lymph nodes indicates to check for B-symptomatic i.e. weight loss, fever
and night sweat). Similarly, certain blood tests could be performed. In order to
help the clinician in planning the next examinations, unchecked symptoms and
clinical findings are ranked by relevance, which is defined through the relations to
the diseases of the ranked list of likely diseases. A finding has a higher relevance
to be checked when it is related to (many) top ranked likely diseases, than when
it is related only to (few) less likely diseases. Then the ranking values for partic-
ular findings/symptoms are aggregated on examination level and a ranking of
examinations is proposed (see figure 9.2).

Figure 9.2.: Ranking of proposed examinations that are suitable to efficiently check
further symptoms. In this case anamnesis and blood test are proposed
next examinations.
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9.2. Longitudinal Finding-centric View

A longitudinal view on the data of one patient is important since it allows the clin-
ician to get an impression of the change of the patient’s health status. For instance,
clinicians need to know whether the health status is improving or getting worse.
Besides this high-level information, even more important is the tracking of individ-
ual clinical findings. For instance, clinicians compare the size of lesions over time
to evaluate treatment success. Similarly, findings about specific anatomical entities
such as enlarged lymph nodes or abnormalities of organs are commonly compared
between consecutive examinations. Having structured semantic representations
of patient data, these types of comparisons can be realized through simple queries.
As shown in figure 9.3 a clinical finding has four different dimensions: type,
anatomy, quality and location. These dimensions of finding descriptions are used
to retrieve longitudinal patient data in different views as described in the follow-
ing subsections. Additionally to direct links between findings from consecutive
examinations, reference ontologies are used to get a more comprehensive overview
of corresponding information over time. Findings can always be sorted by their
date and to provide a longitudinal view on the patient.

Figure 9.3.: The main dimensions of a clinical finding: the type of the finding, the
anatomical entity, its quality and location.

9.2.1. Type of Clinical Finding

As presented in chapter 5, MCI provides a detailed class hierarchy for clinical
findings (see e.g. figure 6.9). This classification is now used in the finding-centric
view on the patient data. For instance, to retrieve all abnormal findings or all new
appeared or changed findings for one specific examination. figure 9.4 shows a view
on measurement findings from consecutive examinations. The type of a clinical
finding is not restricted to the class hierarchy in MCI. For instance, the RadLex
or HP contain detailed hierarchies of clinical findings (or phenotypes). These
hierarchies are used again as background knowledge for retrieving certain type of
findings based on text annotations. For instance, one can retrieve all lesions such
as a lung mass or liver lesions using the RadLex class hierarchy. Similarly, one
can retrieve all abnormalities of the immune system using the HP class hierarchy
which returns findings such as splenomegaly or enlarged lymph nodes.
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Figure 9.4.: Measurement findings from consecutive examinations with classifica-
tion as normal and abnormal.

9.2.2. Anatomical Entity

Another important dimension of a finding is the described anatomical entity (or
material entity). The anatomy-centric view retrieves all findings – regardless of
their type – that are about some anatomical entity in questions. Thus, the clinician
is able to track the status of specific entities such as organs over time (see example
for spleen in figure 9.5). Here the reference ontologies are used to retrieve not
only findings about exactly the same entity but also closely related entities. For
instance a finding about the left kidney is related to findings about the right kidney.
Similarly, findings describing lymph nodes are related. Here, the distance within
the subclass hierarchy of the reference ontology is taken into account. Text and
image annotations are additionally used to retrieve further observations.

9.2.3. Quality

It is also possible to retrieve only findings describing specific qualities such as size,
color, thickness or their modifications such as increased size. Some of these
qualities are also reflected in the class hierarchy of clinical findings, however the
hierarchy of qualities contains even more classes.
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Figure 9.5.: Findings from consecutive examinations about the spleen: while in
2003 lesions were found in the spleen, since 2004 the spleen is unspe-
cific.

9.2.4. Location

The location is another important dimension of a clinical finding. Not only in the
context of lesions, one might want to retrieve all (abnormal) findings describing
entities that are contained in a specific region such as the thorax (see figure 9.6).
Here, the partonomy of the reference ontology is employed. That is, all findings
that are about an anatomical entity that is part of a certain region are retrieved.
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Figure 9.6.: Clinical findings from consecutive examinations within a specific
anatomical region of interest – in this case the thorax.

170



Part IV.

CASE STUDIES

171





10
Data Sets

The three data sets described in this chapter were used during the development
of the semantic Model for Clinical Information (MCI) and for the evaluation of
the inference algorithms of chapter 8. Detailed descriptions and example data for
all three data sets are provided within the three sections of this chapter. Firstly,
the base line data set that contains data of 6 melanoma patients with complete infor-
mation for a period of three years. This data set contains structured information
about the demographic background of the patients, diagnoses, procedures, drug
administration and laboratory values as well as unstructured German reports
from radiology and pathology. Secondly, the data set of free text radiology reports that
consists of three corpora: (1) A corpus of about 2700 German radiology reports
for 377 lymphoma patients with different imaging modalities such as computed
tomography (CT), magnetic resonance imaging (MRI) and ultrasound (US). Since
this data set contains many reports from consecutive radiology examinations for
each patient, it is well suited for the longitudinal analysis of corresponding clinical
findings. (2) A corpus of 6007 German radiology reports from CT examinations of
internistic patients with diverse disease background. This data set has no patient
identifiers and thus is mainly used for evaluation of the algorithms that extract
and classify measurement findings. (3) A corpus of 3000 English radiology reports
from examinations with diverse imaging modality and patient background (dis-
ease, age, gender etc.). The advantage of this data set is that English texts are better
covered by labels of ontology entities from RadLex, leading to a better overall
annotation coverage. The data set is used for evaluation of the measurement
entity resolution algorithm. Thirdly, the data set of 40 patients with structured finding
information for which the age, an associated main disease (that was assigned by a
clinical expert) and an initial set of 3 - 15 known present findings or symptoms
and up to 5 known absent findings or symptoms are specified. This data set is
used for the evaluation of the ranking of likely diseases and the corresponding
disease-centric data access.

The data sets described below were all handled according to the German privacy
regulations “Datenschutzgesetz”. The data from the university hospital in Erlan-
gen was provided in de-identified form. The de-identification of free text data was
done manually by the clinical partners.
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10.1. Baseline Data Set on Melanoma Patients

In the context of the funded projects with the university hospital Erlangen “Data
Intelligence for Clinical Solutions” and “Klinische Datenintelligenz” [15k] a baseline
data set of melanoma patients was provided. The data set contains the complete and
timestamped data of 6 patients with main diagnosis melanoma for a period of three
years from 2009 up to 2012. Melanoma patients were selected, since they create
data in many different clinical domains (diagnosis, laboratory analysis, pathology,
radiology etc.). Thus, the data set provides a good basis for the development of
the semantic data model. The data was provided in a relational data base called
i2b2 [15h], which has a star schema as typical for data warehouses. The central
table is the OBSERVATION_FACT table with the schema shown in table 10.1.

Table 10.1.: The columns of the i2b2 OBSERVATION_FACT table with correspond-
ing data types.

column data type
ENCOUNTER_NUM NUMBER(38,0)
PATIENT_NUM NUMBER(38,0)
CONCEPT_CD VARCHAR2(50 BYTE)
PROVIDER_ID VARCHAR2(50 BYTE)
START_DATE DATE
MODIFIER_CD VARCHAR2(100 BYTE)
INSTANCE_NUM NUMBER(18,0)
VALTYPE_CD VARCHAR2(50 BYTE)
TVAL_CHAR VARCHAR2(255 BYTE)
NVAL_NUM NUMBER(18,5)
VALUEFLAG_CD VARCHAR2(50 BYTE)
QUANTITY_NUM NUMBER(18,5)
UNITS_CD VARCHAR2(50 BYTE)
END_DATE DATE
LOCATION_CD VARCHAR2(50 BYTE)
OBSERVATION_BLOB CLOB
CONFIDENCE_NUM NUMBER(18,5)
UPDATE_DATE DATE
DOWNLOAD_DATE DATE
IMPORT_DATE DATE
SOURCESYSTEM_CD VARCHAR2(50 BYTE)
UPLOAD_ID NUMBER(38,0)

Further i2b2 contains several dimension tables:

• PATIENT_DIMENSION

• PROVIDER_DIMENSION
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• CONCEPT_DIMENSION

• MODIFIER_DIMENSION

• VISIT_DIMENSION

Every entry of the OBSERVATION_FACT table is timestamped with a start date,
and optionally, an end date. Each entry contains IDs for the clinical encounter (a ref-
erence to VISIT_DIMENSION), patient (a reference to PATIENT_DIMENSION) and
provider (a reference to PROVIDER_DIMENSION). The columns CONCEPT_CD
and MODIFIER_CD specify the type of information represented in the row. For
example, an ICD code (concept) representing a main diagnosis (modifier), or the
findings section (modifier) of a radiology report (concept). The other columns
are used for the actual data values. The column VALUE_FLAG is used to specify
whether lab values are within a normal range, low or high. i2b2 uses ontologies to
code data in the OBSERVATION_FACT table: In particular, the base-line data set
contains codes for diagnosis (ICD), procedures (OPS), medication (ATC), labora-
tory tests (LOINC) and a hierarchy for the provider (ORG-ID). In the following
subsections the provided structured and unstructured data is described in detail.

10.1.1. Structured Data

The data set contains structured data about the demographic patient background,
diagnosis, provided examinations, procedures and drug treatment as well as
results of laboratory tests.

Demographics

The basic patient information is provided in the i2b2 dimension table called
PATIENT_DIMENSION. It contains information about the patient’s vital status, the
date of birth and death, the gender and a ZIP code. Columns for specification of the
language, race, martial status, religion and income are not filled (see table 10.2).

Diagnosis

Diagnosis information is contained in the OBSERVATION_FACT table. For each
diagnosis entry the patient ID, the ICD code, the provider, the date as well as
the diagnosis type (main or secondary diagnosis) are specified. An example is
given in table 10.3. In total the data set contains 306 diagnosis entries - 60 of
type main diagnosis and 246 of type secondary diagnosis. The ICD code is a
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Table 10.2.: The main columns of the i2b2 PATIENT_DIMENSION table with ex-
ample data.

column data type example entry
PATIENT_NUM NUMBER(38,0) 1000000001
VITAL_STATUS_CD VARCHAR2(50 BYTE) Y
BIRTH_DATE DATE 01.01.46
DEATH_DATE DATE (null)
SEX_CD VARCHAR2(50 BYTE) M
AGE_IN_YEARS_NUM NUMBER(38,0) 66
LANGUAGE_CD VARCHAR2(50 BYTE) (null)
RACE_CD VARCHAR2(50 BYTE) (null)
MARITAL_STATUS_CD VARCHAR2(50 BYTE) (null)
RELIGION_CD VARCHAR2(50 BYTE) (null)
ZIP_CD VARCHAR2(10 BYTE) 97618
STATECITYZIP_PATH VARCHAR2(700 BYTE) (null)
INCOME_CD VARCHAR2(50 BYTE) (null)
PATIENT_BLOB CLOB (null)
UPDATE_DATE DATE 15.10.12
SOURCESYSTEM_CD VARCHAR2(50 BYTE) ISH

reference to the CONCEPT_DIMENSION table where the concept path (position
in the ICD hierarchy) and a human readable label is specified. For instance,
the code ICD10:K66.0 stands for “Peritoneale Adhäsionen”. In total 77 distinct
ICD10 codes are used within the data set. The provider ID is a reference to the
PROVIDER_DIMENSION table where, for example, ORG:CH_CHOP is listed as
“CH OP Allgem. Chirurgie”.

Table 10.3.: Columns of the OBSERVATION_FACT table relevant for diagnosis
with example data.

column example entry
ENCOUNTER_NUM 158065970
PATIENT_NUM 1000000006
CONCEPT_CD ICD10:K66.0
PROVIDER_ID ORG:CH_CHOP
START_DATE 27.11.09
MODIFIER_CD DIAGNOSEART:ND
INSTANCE_NUM 158065970
END_DATE 27.11.09

Procedures

Information about provided procedures is contained in the OBSERVATION_FACT
table. For each entry the encounter ID, the patient ID, the OPS code (Operationen-
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und Prozedurenschlüssel), the provider and the date are specified. Even though
the table schema (see table 10.1) has columns for start and end date, for each proce-
dure, the corresponding values are identical. An example is given in table 10.4. In
total the data set contains 457 procedure entries with references to 110 distinct OPS
codes. The OPS code is a reference to the CONCEPT_DIMENSION table where
the concept path (position in the OPS hierarchy) and a human readable label are
specified. For instance, the code OPS:8-522.d0 stands for “Hochvoltstrahlentherapie:
Linearbeschleuniger mehr als 6 MeV Photonen oder schnelle Elektronen, 3D-geplante
Bestrahlung: Ohne bildgestützte Einstellung”. Again, the provider ID refers to the
dimension table PROVIDER_DIMENSION where ORG:ST_STLIN is listed as “ST
Linearbeschleuniger (STLIN)” which is part of ORG:ST “ST (Strahlenheilkunde)”.

Table 10.4.: Columns of the OBSERVATION_FACT table relevant for procedures
with example data.

column example entry
ENCOUNTER_NUM 158065988
PATIENT_NUM 1000000006
CONCEPT_CD OPS:8-522.d0
PROVIDER_ID ORG:ST_STLIN
START_DATE 07.11.11
END_DATE 07.11.11

Drug Therapy

Information about therapies with drugs is contained in the OBSERVATION_FACT
table. For each procedure entry the encounter ID, patient ID, the ATC code, the
provider and the date is specified. No information about dosage or frequency is
available in the provided data set. An example is given in table 10.5. In total the
data set contains 47 therapy entries with references to 9 distinct ATC codes. The
CONCEPT_DIMENSION table does not contain entries for ATC codes. Again, the
provider ID refers to the PROVIDER_DIMENSION table where ORG:DO_DE2 is
listed as “DE Station D2 (DE2)” which is part of ORG:DO “DO (Dermatologische
Onkologie)”.

Table 10.5.: Columns of the OBSERVATION_FACT table relevant for drug therapy
with example data.

column example entry
ENCOUNTER_NUM 158065862
PATIENT_NUM 1000000003
CONCEPT_CD THER|ATC:B05BB11
PROVIDER_ID ORG:DO_DE2
START_DATE 02.12.11
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Laboratory Values

Results of laboratory tests are contained in the OBSERVATION_FACT table. For
each entry, a encounter ID, a patient ID, a LOINC code, a provider, a date, a
instance ID, a value type (numeric or qualitative), a value, a unit and a value flag
(normal, low, high) are specified. An example is given in table 10.6. In total the data
set contains 2033 lab entries for distinct 151 laboratory tests. The LOINC code is a
reference to the CONCEPT_DIMENSION table where the concept path (position
in the LOINC hierarchy) and a human readable label is specified. For instance,
the code LAB:6CRP stands for “C-Reaktives Protein ( CRP )”. The provider ID is a
reference to the PROVIDER_DIMENSION table where ORG:PM_PMS1 is listed as
“PM Station 1 (PMS1)” which is part of ORG:PM “PM (Palliativmedizin)”.

Table 10.6.: Columns of the OBSERVATION_FACT table relevant for laboratory
tests with example data.

column example entry
ENCOUNTER_NUM 158065981
PATIENT_NUM 1000000003
CONCEPT_CD LAB:6CRP
PROVIDER_ID ORG:PM_PMS1
START_DATE 10.12.11
INSTANCE_NUM 1546329820111210
VALTYPE_CD N
NVAL_NUM 17
TVAL_CHAR (null)
VALUEFLAG_CD H
UNITS_CD mg/l

10.1.2. Unstructured Data

The baseline data set contains unstructured data in form of free text clinical
reports from radiology and pathology. This data is also contained in the OB-
SERVATION_FACT table. Both types of reports are described in the following
subsections.

Radiology Reports

In total the data set contains 60 free text radiology reports with sections for clin-
ical question (FRA - Fragestellung), title (UNTMET - Untersuchungsmethode),
findings (BEF - Befund), assessment (BEURT - Beurteilung) and optional clinical
information (KA - klinische Angabe). For each of these sections a separate row
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is specified (the section type is defined by the MODIFIER_CD column) and the
text is stored in the OBSERVATION_BLOB column. An example is given in ta-
ble 10.7. The different sections of one report are identified through a common
instance ID. The standard columns for encounter, patient, provider, date etc. are
also provided.

Pathology Reports

In total the data set contains 14 free text pathology reports. Pathology reports
are not split into sections as the radiology reports described above. The standard
columns for encounter, patient, provider, date etc. are provided. An example is
given in table 10.8.
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Table 10.7.: Information for a radiology report of the baseline data set. The data is
stored in i2b2 in multiple rows of the OBSERVATION_FACT table.

field example entry
ENCOUNTER_NUM 158065985
PATIENT_NUM 1000000001
CONCEPT_CD RAD:FREI
PROVIDER_ID ORG:DR_DRFB
START_DATE 18.03.11
INSTANCE_NUM 7932157
UNTMET Hals-, Thorax- und Abdomen-CT mit KM i.v
KA GSK Studie, BRAF+ Patient, Studiennummer: 001487
FRA Staging
BEF Voraufnahmen in Teilen vom 14.01.2011 zum Vergleich Hals:

Halsweichteile annähernd symmetrisch und ohne fokale
Kontrastmittelaufnahme. Zervikale Lymphknoten z.B. ent-
lang der Halsnervengefäßscheide beidseits <1 cm im kurzen
Durchmesser. Schilddrüse homogen kontrastiert, nicht ver-
größert. NNH regelrecht angelegt und frei belüftet. Mas-
toidzellen und Tympanon beidseits pneumatisiert. Halswirbel-
säule mit degenerativen Veränderungen. Thorax: Keine ver-
größerten Lymphknoten in der rechten Axilla. Links axillär
streifig narbige Verdichtungen mit mehreren vergrößerten, teils
inhomogen kontrastierten Lymphknoten entlang der Nervenge-
fäßscheide (Bilder 11-18) der größte = Targetläsion 1 mit 2,5 x
2,2 cm (Bild 16; VU Bild 18; 2,0 x 1,7 cm). Keine vergrößerten
mediastinalen oder hilären Lymphknoten. Kein Perikarderguss.
Kein Pleuraerguss. Zahlreiche Koronarstents. Intrapulmonal
mehrere rundliche Verdichtungen <1 cm und größenkonstant
zur VU z.B. im lateralen rechten Oberlappen (Bild 25) oder im
ventralen Mittellappen (Bild 44). Keine Infiltrate. Abdomen:
Leber normgroß, glatt berandet und mit multiplen größenpro-
gredienten, teilweise neuaufgetretenen flau hypodensen Läsio-
nen. Zielläsion 2 im zentralen S IVa mit 4,4 x 4,4 cm (Bild 62; VU
Bild 65; 1,4 x 1,2 cm) und Zielläsionen 3 im S V mit 3,1 x 2,9 cm
(Bild 67; VU Bild 74; 1,1 x 0,7 cm). Gallenblase gefüllt und mit
Kontrastmittelaufnehmender Wand sowie Flüssigkeit im Gallen-
blasenbett. Keine Erweiterung der intra- und extrahepatischen
Gallengänge. . .

BEURT Bei Melanom Stadium IV größenprogrediente Lymphknoten-
metastasen links axillär und an der Leberpforte. An Zahl und
an Größe deutlich progrediente Lebermetastasen. Diss. ossäre
Filiae, derzeit nicht stabilitätsgefährdend. Größenkonstante in-
trapulmonale Verdichtungen unklarer Dignität. RECIST Summe
10,0 (VU 4,5) .
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Table 10.8.: Example of a pathology report from the baseline data set.
field example entry
ENCOUNTER_NUM 158065842
PATIENT_NUM 1000000002
CONCEPT_CD PATHO:FREITEXT
PROVIDER_ID ORG:DR_DRFB
START_DATE 06.10.10
INSTANCE_NUM 24604
OBSERVATION_BLOB Eingangsnummer: E/10/24604 Makroskopischer Befund:

Klinische Angabe: V.a. Metastasen malignes Melanom beid-
seits. Zusendung: I. Keilresektat rechter Unterlappen: Lun-
genresektat von 3 x 1,5 x 0,9 cm. Auf lamellierenden Schnit-
ten ein grauer Knoten von 0,9 cm im Durchmesser. Abstand
zur Absetzungsfläche 0,2 cm. Kapsel 1 Schnellschnitt, Kapsel
2 Rest. II. Keilresektat rechter Unterlappen: Lungenteilresek-
tat von 3,6 x 1,7 x 1,2 cm. Klammernahtverschlossen auf 2,8
und 2,5 cm. Auf lamellierenden Schnitten durch das Lun-
genparenchym ein weißlicher Herd, unscharf begrenzt, von
maximal 0,3 cm im Durchmesser. Abstand zur Absetzungs-
fläche (blau getuscht) 0,9 cm. Im übrigen Lungenparenchym
kein Herdbefund. Kapsel 1 Lungenparenchym mit Knoten,
Kapsel 2+3 übriges Lungenparenchym. III. Keilresektat
rechter Unterlappen: Lungenresektat von 2,3 x 1,7 x 0,8 cm.
Pleura glatt. Klammernaht auf 2,2 cm. Auf lamellierenden
Schnitten durch das Lungenparenchym ein Knoten von hell-
brauner Schnittfläche, scharf begrenzt, Durchmesser 0,4 cm.
Abstand zur tuschemarkierten Absetzungsfläche 0,2 cm. . .
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10.2. Corpora of Radiology Reports

Three different corpora of radiology reports are described in the following subsec-
tions.

10.2.1. German Radiology Reports on Lymphoma Patients

The lymphoma data set consists of 2584 German radiology reports on 377 lymphoma
patients. The imaging modality is mainly computed tomography (CT), but also
magnetic resonance imaging (MRI) and ultrasound (US). The reports are from
27 different readers and the inspected body regions are mainly abdomen, thorax
and head, but include also various other regions from the whole body. The data
is provided in form of an excel sheet. The data schema and example entries are
shown in table A.1 in appendix A.2. Since the data set contains multiple reports
from consecutive examinations for each patient, it is suitable for longitudinal
analysis of clinical findings. The reports contain many measurements and thus
they are also used during the development of the knowledge model of normal
size specifications. Since the reports are about patients diagnosed with lymphoma
disease, the data set contains many measurements of lymph nodes in various body
regions and also lesions and tumors.

10.2.2. German Radiology Reports on Internistic Patients

The internistic data set consists of 6007 German radiology reports on internistic
patients from 27 different readers, where imaging modality was computed to-
mography (CT). The examined patients have a diverse disease background. The
data set does not contain patient identifiers or date values and thus cannot be
used for longitudinal analysis of clinical findings. However, the advantage of this
data set is that the coverage of patients is diverse and that the data set contains
many measurements (e.g. more than 20 thousand length measurements). Thus,
the data set is used for the evaluation of the measurement entity resolution and
finding classification algorithms. The data schema and example entries are shown
in table A.2 in appendix A.2.

10.2.3. English Radiology Reports

The data set consists of English radiology reports with diverse imaging modality
and patient background (disease, age, gender etc.). The data set does not contain
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patient identifiers or date values and thus cannot be used for longitudinal analysis
of clinical findings. However, the advantage of this data set is that English texts
are better covered by ontologies such as RadLex leading to a better annotation
coverage. Thus, the data set is used for the evaluation of the measurement entity
resolution algorithm.
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10.3. Patients with Structured Finding Information

The data set on patients with structured finding information is provided in form of
excel sheets and covers 40 patients. For these patients, the age, an associated main
disease (that was assigned by a clinical expert) and a set of present and absent find-
ings and symptoms are specified as shown for two patients in table 10.9. For each
patient, 3 - 15 known present and up to 5 known absent findings or symptoms were
specified by a clinical expert. The age of the patients ranges from 50 to 87 years.
For each of the diseases (lymphoma, reactive lymphadenitis, diverticulitis and
colorectal cancer) the data set contains 10 patients with an expert associated main
diagnosis. The set of present and absent findings express typical symptomatology
of the associated main disease with some deviations commonly found within the
diagnosis process. The knowledge model about diseases and their manifestation
in clinical findings and symptoms is described in section 6.2. It is used to infer
the likely diseases for the patients based on the structured finding information.
In total the model contains 5 diseases (Hodgkin lymphoma, non-Hodgkin lym-
phoma, reactive lymphadenitis, colorectal carcinoma and diverticulitis) and 41
clinical findings or symptoms. The main diseases of the patients are covered by
the knowledge model.

Table 10.9.: The initial set of known present (+) and absent (-) findings and symp-
toms for a patient with main disease colorectal cancer and for a patient
with main disease lymphoma.

patient patient 100000ABC patient 100000XYZ
age in years 50 51

main disease colorectal cancer lymphoma
anamnesis feeling powerless (+) b-symptomatic (+)

blood in stool (+) feeling powerless (+)
changes in bowel patterns (+) night sweats (+)
fever (-) weight loss (+)
malaise (+) tendency to infection

laboratory anemia (+) c-reative protein raised (+)
positive stool guaiac test (+) ESR raised (-)
carcinoembryonic
antigen raised (+)

radiology wall of intestine thickened (+) enlarged lymph nodes (+)
enl. pararectal lymph nodes (+) enl. mediastinal lymph nodes (+)
wall of intestine thickened (+) enl. lymph nodes of thorax (+)
diverticular disease of colon (-) enl. abdominal lymph nodes (+)

enl. deep cervical lymph nodes (+)
enlarged spleen (+)

other signs petechiae (+)
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11
Evaluation

This chapter presents the evaluation of the algorithms described in chapter 8 using
the data sets from the previous chapter. Firstly, the knowledge-based extraction of
measurement-entity relations based on annotated radiology reports is evaluated on
all three data sets of radiology reports. For the two corpora of German reports, an
accuracy above 80% and for English reports an accuracy of above 74% is achieved.
The difference is mostly due to the fact, that the English reports are significantly
more diverse and thus less well covered by the knowledge model (cf. section 6.1).
Secondly, the classification of measurement findings is evaluated. Here, an average
accuracy of 90% is achieved with only very few false classifications. Thirdly, the
ranking of likely diseases based on structured finding information is evaluated.
In 35 of 40 cases the most likely disease from the ranking algorithm was also the
main disease associated by a clinical expert. In the remaining 5 cases, the main
disease was ranked at position 2 or 3. The inference of change is not evaluated in
terms of accuracy, since it was realized through the ReportViewer user interface
(cf. section 9.2).
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11.1. Knowledge-based Extraction of
Measurement-Entity Relations

The evaluation of the knowledge-based extraction of measurement entity relations
described in section 8.2 is done on the data sets of German radiology reports
on lymphoma patients and on internistic patients and further on the data set of
English radiology reports. The initial version of the resolution algorithm was
presented in [Obe+14]. The algorithm described in 8.2 is an extension to the initial
version encompassing the following adaptations:

No restriction on speci�c sentences: While the initial version was restricted to
sentences with one or two measurements, the adapted algorithm does not have
any constraints on the number of measurements in a sentence. That is, all report
sentences with measurements are in scope for the evaluation.

Not pure knowledge-based: While the initial approach was purely knowledge-
based, the algorithm described in section 8.2 involves also a statistical component
and the sentence distance.

Radlex adaptation: One result of the evaluation of the initial version of the
resolution algorithm in [Obe+14] was that many false resolutions occurred due
to wrong or missing annotations. In previous work [Bre+14], 539 German labels
were added to 433 distinct RadLex entities by semi-automatic translation process
to enhance annotation coverage regarding the lymphoma data set. For this evalua-
tion RadLex was adapted a second time: In particular, several synonyms of lesion
classes that led to wrong annotations were removed. For instance, within the origi-
nal RadLex version, the entity ‘radlex:breast mass’ has synonyms ‘mass’, ‘nodule’,
‘lesion’, ‘nodular enhancement’ and ‘area of enhancement’. Thus, each time a ‘mass’
or ‘lesion’ is mentioned in a report the annotator assigned ‘radlex:breast mass’
and then the resolution algorithm falsely resolved to ‘breast mass’. By removal of
these synonyms from RadLex less false annotations were obtained. Furthermore,
another 106 German labels were manually added to 35 distinct RadLex entities to
enhance annotation coverage. For instance, German labels were added for renal
cyst, all liver segments, nodule and others entities.

11.1.1. Evaluation Schema

For each data set a list containing all sentences and the resolved entity, if available,
was generated. An example is given below in table 11.1. Evaluation was done

186



11.1. Knowledge-based Extraction of Measurement-Entity Relations

according to the following schema:

• correct: The entity resolved is exactly what the measurement of the sentence
is about. The radiologist cannot find a better entity by reading the sentence.

• (correct): The entity resolved is correct however it could be more specific.
For example, “lymph node in jaw angle with 1 cm" with resolution to ‘lymph
node’. Here, a radiologist can name a better entity.

• unresolvable: The sentence does not allow a resolution (e.g. “The biggest
is now 2.7 cm.") or the measurement does not represent a size description
of an anatomical entity (e.g. “Tracheal tube 4 cm above the carina.") and the
algorithm did not resolve to a false entity.

• false: The resolved entity is false or the entity was not resolved, but the
radiologist can identify the correct entity within the sentence.

Table 11.1.: Example row of the evaluation of the measurement entity resolution.
The example is evaluated as ‘(correct)’, because the expert can name a
better entity (the abdominal aorta) by reading the sentence.

sentence measurement resolved entity evaluation
The maximum sagittal diame-
ter of the aorta is 1.6 cm in the
midabdomen.

1.6 cm aorta (correct)

11.1.2. Summary of Results

For all three corpora the findings and assessment section of the radiology reports
were annotated and taken as the input for the resolution algorithm. Then, for
500 different and randomly selected sentences one resolved measurement-entity
relation was evaluated by a radiologist. If a sentence contained more than one
measurement, one measurement was randomly selected for evaluation. As shown
in table 11.2, the algorithm resolves measurement-entity relations with an accuracy
of above 80% for German reports and above 74% for English reports. The results
for English reports are slightly worse than those for German reports. This overall
result for German reports is similar to the results of the initial pure knowledge-
based approach [Obe+14], however in comparison to the evaluation of the initial
work – where about 8% of the sentences were excluded – now all sentences are in
scope.

As shown in table 11.2, for the German corpora, for about 24% of all resolutions,
the clinical expert cannot name a better entity than the algorithm by reading
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Table 11.2.: Evaluation results for 500 randomly selected sentences for each data
set.
data set lymphoma reports internistic reports english reports

evaluated 500 500 500
correct 135 119 97

(correct) 249 267 179
unresolvable 20 17 96

false (not resolved) 58 56 60
false (incorrect) 38 41 68

accuracy 80.8% 80.6% 74.4%

the sentence. About 50% of the resolutions are only ‘(correct)’, i.e. for these
sentences the clinician can name a better entity. As explained below, most of
these cases are measurements of lesions, where the location aspect is missing in
the resolved entity. Furthermore, the evaluation shows that more than half of all
false resolutions arise because no entity could be resolved at all. Both problems
are mainly due to low annotation quality. Even though the annotator was able
to annotate multi-word terms and recognize inflected forms, the quality of the
resulting annotations strongly depends on the quality of the provided vocabulary
of the ontology (i.e. RadLex). Firstly, only about 25% of all RadLex concepts have
German labels (including the extension). Thus, the correct entity gets not always
annotated. Secondly, there are not always detailed entities in RadLex that could
precisely describe the measured entity. For example, nodule or metastasis do not
have subclasses in RadLex. Consequently, a resolution of measurements of some
metastasis cannot be as precise as a clinical expert. The location aspect can only be
captured by reference to a second annotation. This is described below.

In comparison the algorithm has better results for German reports than for English
reports. Since Radlex has only for about 25% of its entities German labels, one
would expect better results for English reports. However, even though the overall
coverage of the annotations was better, there are two reasons, why this is not
reflected in the results. Firstly, the data set of English reports was significantly
more diverse and contained reports on many different examinations. Secondly,
the annotator is specific for the German language. For example, the annotator had
problems with sentence splitting and also detection of plural forms (e.g., cysts) for
English reports. The annotator creates 0-12 relevant annotations per sentence for
the sentences of the data set of German radiology reports and 0-15 for the data set
of English reports respectively.
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11.1.3. Detailed Evaluation for German Radiology Reports

Since the overall results shown in table 11.2 are similar for both data sets of Ger-
man reports, detailed analysis regarding resolved anatomical entities is done
together. In summary, the algorithm resolves relations to 68 different anatomical
entities. That is, by using the RadLex hierarchy, the coverage of the knowledge
model is extended to more entities than defined by the knowledge model explic-
itly. In the following paragraphs the evaluation results for different anatomical
entities (lymph nodes, lesions and cysts etc.) are presented, before causes for false
resolutions are analyzed.

Lymph Nodes: As shown in table 11.3, good results for resolution of lymph
nodes are achieved, which is due to the fact that RadLex has a very detailed
subclass hierarchy for lymph nodes. In total, the algorithms resolves to 24 different
lymph node entities and in 50% of these resolutions the radiologist cannot name
a better entity than the algorithm. The problem however is, that not all of the
subclasses of ‘lymph node’ have German labels. Thus, in many cases the annotator
detects only ‘lymph node’ even though the sentence contains a more precise
description. Only in 2 of 101 cases the clinical expert could select a better entity
from the set of annotations. Similarly, there are several cases where the resolution
to ‘mediastinal lymph node’ is not precise enough. For example, in “Mulitple lymph
nodes mediastinal slightly regressive, e.g. infracarinal 1.9 x 1.7 cm ...”1, the clinical
expert can name the measured entity more precisely as ‘infracarinal lymph node’.
False resolutions of lymph node entities are mainly due to very long sentences
where multiple measurements and different lymph nodes are mentioned: For
example in “New suspectly enlarged lymph nodes e.g. retrocaval 3.1 x 1.1 cm (image 81)
or right ventral of the musculus psoas with 1.1 x 0.9 cm (image 98) ”2 the resolution
“1.1 x 0.9 cm, retrocaval lymph node” is false.

Lesions and Cysts: The resolution results for lesions and cysts are good, i.e. there
are only few false resolutions. However, the location of lesions and cysts is not
resolved sufficiently by the standard algorithm, which resolves to one entity from
RadLex. Since the RadLex class hierarchy for lesions is not as detailed as for lymph
nodes, the resolution is not precise enough for lesions. For example, “Unchanged
hypodense structure in gallbladder with 0.4 cm (IMA 33).)”3 is resolved to ‘lesion’.
Similarly, resolution to renal cyst is mostly not precise enough since the cyst might
be on the right or left kidney. However, RadLex does not define more classes

1Original in German: Mehrere Lymphknoten mediastinal, gering größenregredient, z.B. infrakari-
nal mit 1,9 x 1,7 cm, VU 2,0 x 1,8 cm (Bild 31, VU 38).

2Neue suspekt vergrößerte Lymphknoten , z.B. retrokaval mit 3, 1 x 1,1 cm (Bild 81) oder rechts
ventral des Musculus psoas mit 1,1 x 0,9 cm (Bild 98).

3Unveränderte hyperdense Struktur in der Gallenblase mit 0,4 cm (IMA 30).
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Table 11.3.: Evaluation results for lymph nodes in German reports.
anatomical entity correct (correct) false

aortopulmonary lymph node 5 0 0
axillary lymph node 30 1 0

bronchopulmonary lymph node 6 0 0
common iliac lymph node 3 4 1

esophageal lymph node 1 0 0
inguinal lymph node 19 2 0
jugulodigastric node 1 0 0

lateral aortic lymph node 15 8 1
left bronchopulmonary lymph node 5 0 0

lymph node 10 101 1
lymph node of abdomen proper 1 0 0

mastoid lymph node 0 1 0
mediastinal lymph node 31 27 1
mesenteric lymph node 13 0 0

paracardiac lymph node 1 1 0
parietal lumbar lymph node 0 0 1

parietal lymph node of abdomen proper 5 1 0
retrocaval lymph node 1 0 1

retrocrural lymph node 3 0 0
right bronchopulmonary lymph node 9 0 0

right paraesophageal lymph node 5 0 1
submandibular lymph node 7 4 1

submental lymph node 3 1 0
supraclavicular lymph node 1 8 0

all lymph nodes 175 167 8

for these specific cysts. Thus, the location information needs to be resolved in
a subsequent resolution step which is described in the next paragraph. Note,
however, that through removal of RadLex synonyms (described above), many
false resolutions were avoided in comparison to the initial version described in
[Obe+14].

Resolution of the Location of Lesions and Cysts: As shown in table 11.4,
resolution of measurements of lesions and cysts is often not precise enough. This
is mainly because of the fact that RadLex does not contain detailed enough entities.
For example, RadLex contains the entity ‘lesion’ but no entities like ‘lesion is liver
segment 1’ etc. Correspondingly, annotations are not precise enough and the
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Table 11.4.: Evaluation results for lesions and cysts in German reports.
anatomical entity correct (correct) false

carcinoma 0 1 0
cyst 0 12 0

enhancement 0 0 8
fluid 0 2 0
focus 0 6 0

lesion 12 165 4
lymphoma 0 8 0

mass 0 61 4
metastasis 1 6 0
neoplasm 1 7 0

nodule 0 48 1
ovarian cyst 2 0 0

portion of tissue 0 1 0
renal cyst 1 7 0

round mass 0 16 0
Total Result 14 309 17

location aspect of lesions and cysts has to be resolved in a subsequent step.

The resolution of the location aspect was performed on a data set of sentences
where the measurement was resolved to one of the entities listed in table 11.4.
The location resolution algorithm is fairly simple and should only demonstrate
that the location aspect can be resolved by a similar approach as for the measured
entity itself. The algorithm simply takes entities from a predefined set of possible
locations and selects from the set of annotations the one that is mostly close to the
measurement and the measured entity. From the data set of German radiology
reports on internistic patients as well as from the data set of German radiology
reports on lymphoma patients 100 sentences were analyzed. In total in 52.5 %
sentences the location could be correctly resolved. In 71.4 % of these cases the
resolution was as precise as manual resolution by the clinical expert. The detailed
results by anatomical entity are shown in table 11.5.

In total the algorithm resolved to the following locations (number of resolutions
in brackets): aorta (1), aortic arch (1), area X (2), breast (1), caudate lobe of liver
(1), caudomedial auditory cortex (1), cerebellum (2), head of pancreas (3), hepa-
tovenous segment II (5), hepatovenous segment III (1), hepatovenous segment IV
(4), hepatovenous segment IVa (5), hepatovenous segment IVb (4), hepatovenous
segment V (8), hepatovenous segment VII (10), hepatovenous segment VIII (2),
kidney (1), L1 vertebral body (1), L4 vertebral body (1), left adrenal gland (4),
left kidney (2), liver (7), lower lobe of left lung (3), lower lobe of right lung (11),
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Table 11.5.: Evaluation results for resolution of the location of lesions and cysts in
German reports.

anatomical entity correct (correct) false
cyst 5 1 1

enhancement 0 3 2
focus 1 0 2

lesion 52 10 36
mass 7 8 20

metastasis 1 2 4
neoplasm 0 1 2

nodule 3 3 22
round mass 6 1 6
Total Result 75 30 95

mediastinum (1), occipital brain region (1), pleura (1), porta Hepatis (1), right
kidney (2), spleen (4), T10 vertebral body (1), upper lobe of left lung (1) and upper
lobe of right lung (1).

The false location resolutions (47.5 %) are mainly due to missing annotations for
the location aspect and thus not resolved locations: 85 of the 95 false resolutions (i.e.
89.5 %) are due to unresolved locations.

Other Entities: As shown in table 11.6 the algorithm correctly resolves to many
more entities than only lymph nodes and lesions. Only for 8 out of these 37 entities
there are false resolutions at all and the false resolutions mainly concern aorta,
gallbladder and liver. In the case of the one of the false resolutions to liver, the
measurement described a very large lesion (18.0 x 10.0 cm), which is as large as a
typical liver.

Analysis of False Resolutions: In total there are 193 cases of false resolution for
both data sets of German reports together. In 114 of those cases the algorithm did
not come up with a resolution and 79 times the resolution was incorrect. For all
false resolutions the clinical expert reviewed the available annotations and tried
to find a suitable resolution. Only in 41 of all 193 false resolutions (i.e. in 21.2%)
the expert could find a correct entity beyond the annotations. In all other cases
(78.8%) the correct entity was simply not annotated and the resolution algorithm
had no chance to pick the right entity.

There are entities, where the algorithm always falsely resolved to, mainly due
to the lack of alternative annotations. Thus, these entities were falsely selected
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Table 11.6.: Evaluation results for other entities in German reports.
anatomical entity correct (correct) false

aorta 0 2 5
ascending aorta 1 0 0

bile duct 1 0 0
colon 0 1 0

common bile duct 1 0 0
dehiscence 0 1 0

gallbladder 1 0 4
head of pancreas 0 1 0

heart 1 0 0
hematoma 1 0 0

hilum 1 0 2
lipoma 0 1 0

liver 4 0 4
osteolysis 0 2 0

pericardial effusion 2 0 0
pleura 0 1 1

pleural effusion 5 0 1
pneumothorax 0 2 0

prostate 6 0 0
pulmonary artery 0 1 1

rib 0 1 0
right adrenal gland 2 1 0

scar 0 1 0
spleen 32 0 0

stenosis 0 1 0
tail of pancreas 0 1 1

thymus 1 0 0
ventricular septal defect 1 0 0

wall of gallbladder 2 0 0

because they were close to the measurement within the sentence. The following
entities had only false evaluation results (frequency given in brackets): abdominal
aorta (1), amyotrophic lateral sclerosis (2), anus (2), aortopulmonary window
(1), area X (1), breast (1), carina (1), chest wall (1), dilation (1), enhancement
(8), grade I chondromalacia (1), gut (2), head (2), hepatovenous segment II (1),
hepatovenous segment IVa (1), ileus (1), infiltrate (3), lower abdomen (1), lungs
(1), pancreatic duct (1), parietal lumbar lymph node (1), porta Hepatis (1), renal
vein (1), retroperitoneum (1), right atrium (1), sacral promontory (1), segmental
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enhancement (1), skull (1), T6 vertebral body (1), tuber (1) and ventral anterior
nucleus (1). By creating a list of a subset of these entities that are commonly not
measured in radiology examinations these false resolutions could be possibly
avoided.

11.1.4. Detailed Evaluation for Data Set of English Reports

The overall results of the relation extraction for the data set of English reports are
shown in table 11.2. In this subsection the results are analyzed in detail in the
same manner as in the previous subsection for German reports. In summary, the
algorithm resolves relations to 90 different anatomical entities. In the following
paragraphs the evaluation results for different anatomical entities (lymph nodes,
lesions and cysts, etc.) are presented, before false resolutions and unresolvable
sentences are analyzed.

Lymph Nodes: As shown in table 11.7, good results for resolution of lymph
nodes are achieved, which is due to the fact that RadLex has a relatively detailed
subclass hierarchy for lymph nodes. In total, the algorithms resolves to 8 different
lymph node entities and in 42% of these resolutions the radiologist cannot name a
better entity. However, in 8 sentences the annotator detects only ‘lymph node’ even
though the sentence contains a more precise description. Thus, in none of these
cases the clinical expert could select a better entity from the set of annotations. For
example, in “A 19 x 13 mm lymph node is seen in Station 2 L anterior to the left mainstem
bronchus.” has only annotation ‘lymph node’, ‘bronchus’, ‘main bronchus’, ‘left
main bronchus’, ‘lung’ etc. however no entity such as ‘bronchial lymph node’. In
comparison to the German corpora, the English reports contain far less lymph
node measurements.

Table 11.7.: Evaluation results for lymph nodes in English reports.
anatomical entity correct (correct) false

aortopulmonary lymph node 1 0 0
axillary lymph node 1 1 0

common iliac lymph node 2 0 0
hepatic lymph node 1 0 0

inguinal lymph node 0 1 0
left bronchopulmonary lymph node 0 0 1

lymph node 1 8 0
subcarinal lymph node 2 0 0

all lymph nodes 8 10 1
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Lesions and Cysts: The resolution results for lesions and cysts are good, i.e.
there are only few false resolutions (cf. table 11.8). However, one important
aspect of lesions and cysts – the location – is not resolved. This is because the
algorithm resolves to one entity. Since the RadLex class hierarchy for lesions is
not as detailed as for lymph nodes, resolution is not precise enough. Thus, the
algorithm often resolves to cyst, lesion, mass or nodule. For example in “A 1 mm
lesion is noted posteriorly in the left acetabular roof.” is resolved to ‘lesion’. Thus,
the location information needs to be resolved in a subsequent resolution step. In
the previous subsection on German reports it was shown that it is possible to
resolve the location aspect in a subsequent processing step.

Table 11.8.: Evaluation results for lesions and cysts in English reports.
anatomical entity correct (correct) false

breast mass 1 2 0
chest mass 0 1 0

cyst 1 29 0
enhancement 0 2 1

fluid 0 8 0
focus 0 2 2

lesion 0 24 0
lobular mass 0 1 0

mass 4 16 5
mass in or on skin 1 0 0

meniscal cyst 1 0 0
neoplasm 0 1 0

nodule 4 45 3
ovarian cyst 0 4 0

parapelvic cyst 0 1 0
renal cyst 1 2 0

round mass 0 1 0
synovial cyst 1 0 0

Total Result 14 139 11

Other Entities: As shown in table 11.9 the algorithm correctly resolves to many
more entities than only lymph nodes and lesions. From these 32 entities there
are false resolutions only for two entities (fragmentation and ovary) while for 14
entities the resolution is always as good as the clinical expert (abdominal aorta, com-
mon bile duct, dilation, intraosseous hemangioma, isthmus of thyroid gland, leiomyoma,
lipoma, liver, nasal septum deviation, right kidney, scar, spermatocele, spleen and wall of
gallbladder).
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Table 11.9.: Evaluation results for other entities in English reports.
anatomical entity correct (correct) false
abdominal aorta 2 0 0

aorta 0 5 0
calcification 0 4 0

cervix of uterus 1 0 0
common bile duct 10 0 0

common duct 5 1 0
compression 0 2 0

consolidation 1 1 0
dilation 1 0 0

fat 0 1 0
fragmentation 0 1 2

ganglion 0 1 0
granuloma 0 2 0

hernia 0 1 0
infiltrate 0 2 0

intraosseous hemangioma 1 0 0
isthmus of thyroid gland 1 0 0

left kidney 14 1 0
leiomyoma 1 0 0

lipoma 1 0 0
liver 5 0 0
lobe 0 2 0

nasal septum deviation 1 0 0
ovary 1 2 2

pleural effusion 1 2 0
right kidney 12 0 0

scar 1 0 0
set of testicles 0 1 0
spermatocele 1 0 0

spleen 14 0 0
tear 0 1 0

wall of gallbladder 1 0 0

Analysis of False Resolutions: In total there are 128 cases of false resolution for
the data set of English reports. In 60 of those cases the algorithm did not come up
with a resolution and 68 times the resolution was incorrect. For all false resolutions
the clinical expert reviewed the available annotations and tried to find a suitable
resolution. In 63 of all 128 false resolutions (i.e. in 49.2%) the expert could find a
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better entity beyond the annotations. In all other cases (50.8%) the correct entity
was not annotated and, consequently, the resolution algorithm had no chance to
pick the right entity.

There are entities, where the algorithm always falsely resolved to, in many cases,
due to the lack of alternative annotations. Thus, these entities were falsely selected
because they were close to the measurement within the sentence. For example,
the algorithm falsely resolved tendon sheath 5 times. In none of these cases there
was an alternative annotation. In the case of endometritis (4 false resolutions) the
correct entity (endometrium) was annotated. This false resolution could be corrected
by excluding diseases and disorders from the set of possible resolutions (which
would exclude endometritis). The following entities had only false evaluation results
(frequency given in brackets): acoustic tubercle (1), adenoma (1), anus (2), apex (1),
area X (6), body (1), carina (1), clavicle (1), dens (1), endometritis (4), gallbladder
(2), greater sac (1), iliacus muscle (1), kidney (1), left bronchopulmonary lymph
node (1), left vertebral artery (2), lower lobe of right lung (2), lumen (1), lungs (2),
origin (1), pelvis (3), pubis (1), right nipple (1), right ureter (1), spine (2), stenosis
(1), submucosa (1), tendon (1), tendon sheath (5), thigh (1), ureter (1), ureteropelvic
junction (1) and vertebra (1). Here, creation of a list of a subset of these entities
that are commonly not measured in radiology examinations could possibly avoid
these false resolutions.

Analysis of Unresolvable Sentences: In contrast to the data sets of German
radiology reports, the English sentences were significantly more often classified
by the clinical expert as unresolvable (96 of 500 sentences). This is due to the
higher variability of the English reports, where many measurements are actually
not about the size of some anatomical entity. For instance, some measurements
describe a position: For example, “... the sheath tip was placed 2 cm from the
saphenofemoral junction”. In many cases sentences are unresolvable due to a
wrong annotation of the type of the measurement: For example, there were many
cases such as “Peak systolic velocity in the left ICA is 90 cm/sec and ...”, where the
annotator falsely detected a size measurement (here 90 cm)! Furthermore, some
measurements were about some medical device or another entity. For example,
“The patient swallowed a 13 mm barium tablet without difficulty”. Also, technical
details of the imaging modality were under these measurements. For example,
“Spiral CT imaging through the neck was performed at 3 mm slice ...”. In all of
these cases the measurements are not in scope of the resolution because they do
not represent a size of some anatomical entity. As for German reports, several
measurements are also not resolvable within sentence boundaries. For example,
“Maximum AP diameter is 2.4 cm.” or “Many of these measure 1 to 2 mm in
size.”. For all 96 sentences classified as unresolvable the resolution algorithm did
not resolve to a false entity. Thus, it is not a false resolution.

197



CHAPTER 11. EVALUATION

11.2. Normality Classification

The lymphoma data set and the internistic data set were used for the evaluation
of the normal classification of size findings described in section 8.3. Based on
the extracted and evaluated structured finding representations from the previous
section a test set was created: Firstly, all correctly extracted findings were added to
the test set and, secondly, all findings for which the clinician could find a correct or
more specific anatomical entity within the set of annotations were added. That is
the test set contains the best possible finding representation that can be manually
selected from reports based on the available annotations.

11.2.1. Evaluation Schema

For each data set the clinical expert was provided with an excel sheet where
for each classified finding the sentence, the measurement, the anatomical entity
and the classifier result (normal, abnormal or unclassified) are given. For example,
the sentence “Lymph nodes within aortopulmonary window and pretracheal
unchanged with a size of up to 1.6 x 1.2 cm.”4, the measurement “1.6 x 1.2 cm”,
the anatomical entity “aortopulmonary lymph node” with classification abnormal.
Then the clinical expert evaluated the classified finding as true (i.e. correct) or false.
All unclassified findings are evaluated as false.

11.2.2. Results

In table 11.10 the evaluation of the classification of size findings as normal or
abnormal is shown for the lymphoma data set as well as for the internistic data
set. For both data sets the number of false normal and false abnormal classified
findings is very small. However, both data sets have a significant amount of
unclassified findings which occur when the anatomical entities are not covered
by the knowledge model. For instance, the size findings about “portion of soft
tissue” are never classified due to that reason (6 times for the lymphoma data set
and 9 times for the internistic data set). A portion of soft tissue however is too
unspecific to be classified as normal or abnormal. Similarly, a fluid, a duct or a wall
are too unspecific for a classification by size. Furthermore, there are anatomical
entities which are simply not yet covered by the knowledge model. For instance,
the finding “2.8 x 0.7 cm, rib” is not classified because the knowledge model does
not contain a normal size specification for the rib. Similarly, findings about pleura,
trachea, right ventricle, bulla, infrarenal aorta, mucosa, L2 vertebral body, T10 vertebral

4Original in German: Die LK im aortopulmonalen Fenster und prätracheal größenunverändert
mit einer Größe von bis zu 1,6 x 1,2 cm.
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body, L4 vertebral body, aortic arch, crus of diaphragm and set of biliary ducts were not
classified. The rate of correctly classified findings for the lymphoma data set is
significantly higher than for the internistic data set. This is due to the fact that for
the internistic data set more findings did not get classified (25 out of 209). The
underlying reason for this difference is the coverage of the knowledge model
regarding the findings contained in the data sets. In particular, the lymphoma
data set contains more measurements of lymph nodes.

Table 11.10.: Evaluation results for the classification of size findings as normal or
abnormal.

lymphoma data set internistic data set
total number of findings 250 209

true normal 115 86
true abnormal 120 95

false normal 2 2
false abnormal 2 1

unclassified 11 25
rate of correctly classified 94.0% 86.6%

Analysis of False Classi�cations: Most of the false classifications are spleen
measurements. For instance, the finding “14.8 x 8.5 cm, spleen” was falsely
classified as normal. This is because the classification algorithm mapped 14.8 cm to
the height (normally 11-15 cm) and the length (normally 7-10 cm). However the
size was measured in the transverse plane and thus describes the length and width
(which is normally 4-6 cm). Accordingly, the finding describes a splenomegaly,
i.e. an abnormal spleen. Furthermore, the finding “9 x 3.5 x 6.5 cm, spleen” was
falsely classified as abnormal since the algorithm detected that the value 3.5 cm
is below the normal width of 4-6 cm. However, according to the clinician, this
deviation is not considered to be abnormal. Here, the algorithm needs to be
adapted accordingly. Furthermore, the finding “4 cm, ascending aorta” was falsely
classified as normal. In this case the size was compared to the normal size of
the aorta at the root (normally at least 4 cm). However, the ‘ascending aorta’ is
normally slightly smaller and thus 4 cm should have been classified as abnormal
since it represents an ectasia (i.e., a widening) of the ascending aorta. This type of
fault can be avoided by extension of the knowledge model with more granular
size descriptions.
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11.3. Disease-centric Data Access

The evaluation of the disease-centric data access, described in chapter 9, is done on
the data sets of 40 patients, for which a clinical expert manually created structured
finding information (cf. section 10.3). Firstly, it is evaluated, whether the ranking
of likely diseases described in section 8.6 coincides with the associate main disease
that was assigned by a clinical expert. Secondly, it is described, to which extent
the corresponding prototype implementation, described in chapter 9, helps the
clinician within differential diagnosis. An initial version of the approach and the
ranking was described in [Obe+12a; Obe+12b].

Evaluation of the Ranking: Before the ranking is calculated the set of present
findings or symptoms is augmented as described in section 8.5. For instance, for
patient 100000ABC (cf. section 10.3), the finding ‘enlarged lymph nodes’ is not
explicitly defined. However, since there are ‘enlarged pararectal lymph nodes’, the
following findings are inferred: ‘enlarged abdominal lymph nodes’ and ‘enlarged
lymph nodes’. After this inference step the ranking is calculated. As shown
in table 11.11, for 35 out of 40 patients the inferred most likely disease from
the ranking algorithm corresponds to the main disease associated by a clinical
expert. In the remaining 5 cases the main disease was ranked at position 2 or 3.
In the case of patients with associated main disease lymphoma, non-Hodgkin
lymphoma (a subclass of lymphoma) was always ranked at position one and
Hodgkin lymphoma (also a subclass of lymphoma) was always ranked at position
two. This is due to the fact that non-Hodgkin lymphoma is about 3 times more
frequent in clinical practice than Hodgkin lymphoma. Since the expert associated
main disease lymphoma subsumes both Hodgkin and non-Hodgkin lymphoma,
these cases were considered to be correct. The average ranking position of the
disease that was associated as the main disease by the clinical expert is for all
diseases better than the average position of the other diseases (cf. table 11.11).

For lymphadenopathy, the difference of the average ranking value is close to
those of non-Hodgkin and Hodgkin lymphoma. However, for colorectal cancer
and lymphoma the algorithm clearly identified the main disease in all cases.
This is also shown in table 11.12, where the exact ranking values are listed. For
patient 100000ABC, the gap between ranking values of colorectal cancer and
lymphadenopathy is significant. For patient 100000XYZ, the gap is between the
two lymphoma diseases (Hodgkin and non-Hodgkin lymphoma) and the third
ranked disease lymphadenopathy.

Evaluation of Prototype Implementation: The prototype implementation for
visualization and interaction with the ranking of likely diseases is based on a
stacked bar diagram to show the absolute and relative amount of present and
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Table 11.11.: Ranking results for the disease ranking.
expert diagnosis average rank position of diseases

colorectal cancer 1.0 colorectal cancer
2.7 non-Hodgkin lymphoma
2.8 lymphadenopathy
3.5 Hodgkin lymphoma
4.0 diverticulitis

lymphoma 1.0 non-Hodgkin lymphoma
2.0 Hodgkin lymphoma
3.5 lymphadenopathy
3.7 colorectal cancer
4.8 diverticulitis

lymphadenopathy (LYM) 1.6 lymphadenopathy
2.2 non-Hodgkin lymphoma
2.6 Hodgkin lymphoma
4.0 diverticulitis
4.6 colorectal cancer

diverticulitis (DIV) 1.2 diverticulitis
1.8 lymphadenopathy
3.6 colorectal cancer
3.6 non-Hodgkin lymphoma
4.8 Hodgkin lymphoma

Table 11.12.: Ranking results for the two patients listed in table 10.9. Raking values
from algorithm are given in brackets. Higher values indicate more
likely diseases.

patient patient 100000ABC patient 100000XYZ
expert diag. colorectal cancer lymphoma

rank 1 colorectal cancer (0.706) non-Hodgkin lymphoma (0.700)
rank 2 lymphadenopathy (0.286) Hodgkin lymphoma (0.632)
rank 3 non-Hodgkin lymphoma (0.286) lymphadenopathy (0.267)
rank 4 Hodgkin lymphoma (0.286) colorectal cancer (0.154)
rank 5 diverticulitis (0.154) diverticulitis (0.154)

absent findings or symptoms (see figures in section 9.1). Leading symptoms
(denoted by ‘LS’) are distinguished from other findings or symptoms (denoted
by ‘S’). Information about risk age and adapted incidence proportion is given
additionally. By clicking on the chart the clinician can see lists of the present, open
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and absent symptoms for a selected disease.

In interviews with clinicians a positive feedback was obtained: inferring likely dis-
eases shows the usefulness of annotations for clinical decision support. Through
the bar chart, the mapping of symptom information to likely diseases gets trans-
parent, i.e. the clinician can easily see, why a certain disease is top ranked. Further-
more, the graphical visualization and especially the possibility to get an overview
of open symptoms helps to plan further examinations. By changing the status of
symptoms the clinician can make what-if scenarios. For example, for the patient
100000XYZ from above selection of the finding ‘weight loss’ (a leading symptom
for colorectal cancer) as present results in ‘B-symptomatic’ (a leading symptom
for lymphoma) being present as well, since this the combination of fever, night
sweats and weight loss. Based on the prototype implementation the clinicians
could explain what questions should be addressed next, i.e. which findings should
be checked next. A ranked list of open findings or symptoms by examination
helps the clinician to plan according next examinations.

It would be of high relevance to include information about time-sequences of
symptoms in order to detect their development. This aspect was realized for
radiology findings in the prototype implementation of the ReportViewer described
in section 9.1. Further, the clinicians see a need in representing the intensity of
present symptoms and e.g. the amount of enlarged lymph nodes (1, 2, many).
Additionally, the clinicians pointed out that it would be extremely helpful to create
a connection between medication and symptoms since some findings or symptoms
might represent simply side effects of certain drugs and thus do not represent
manifestations of some underlying disease process. Consequently, there should be
an option to ignore or exclude them during the diagnosis process.
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12
Conclusion

Today the increase in available clinical data means mainly a data overload for clini-
cians. The potential of data for more efficient and better treatment of patients is not
realized mainly due to the following three problems: Firstly, clinical data is stored
case-centric and distributed across different systems. It is also not longitudinal
integrated. Secondly, only small amount of the data is structured while high
percentage of clinically relevant data is unstructured. Thirdly, existing data is not
sufficiently aligned to medical knowledge and thus not on the appropriate level
of detail for decision support systems. As a result of these problems most of the
available data is simply not used in their full strength for better treatment. The
contribution of this thesis is three-fold: Firstly, it demonstrates that the created
semantic Model for Clinical Information (MCI), which is based on established
upper ontologies from the Open Biological and Biomedical Ontologies library, is
suitable to capture important clinical data in a well structured way, overcoming the
case-centric representation. It is also feasible to use the model to formalize medical
knowledge about normal and abnormal clinical findings and their relations to
diseases. Secondly, the thesis demonstrates how this medical knowledge can
be used to extract structured representations of measurement findings from free
text radiology reports. Thirdly, the thesis demonstrates how formalized medical
knowledge can be used to enrich clinical data in a way that allows realization of
different views on the data (disease-centric, longitudinal etc.). Thus, the results of
this thesis allow to provide clinicians with data on the appropriate level of detail,
needed for more efficient decision making. In the following, the strengthens and
limitations of these three contributions are described and afterwards an outlook is
given.
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12.1. Contribution

The first contribution is the creation of a semantic Model for Clinical Information
(MCI). By reusing classes and properties from nine ontologies of the Open Biologi-
cal and Biomedical Ontologies (OBO) library, the work demonstrates that modular
reuse of existing ontologies is feasible in this framework to create a semantic
model for clinical information. MCI is used in combination with reference termi-
nologies and covers basic patient data, meta data about provided examinations
and diagnosis as well as clinical findings and their integration over consecutive
examinations. Since clinical findings are central information objects, the model is
focused on them and provides a general pattern expressing the anatomical entity,
quality, the finding type (static and longitudinal) and also their relation to diseases.
This pattern facilitates the representation of medical knowledge that is necessary
to enrich finding descriptions automatically. The thesis demonstrates that it is
possible to capture this knowledge even in a patient-specific manner. Further, the
structured representation of clinical findings with MCI allows to realize different
views on the original data that could not be realized before. Since the use cases
described in this thesis are mostly from the radiology domain, the limitations
of the model are mainly its coverage. However, by reusing established upper
ontologies, MCI provides a good basis for further extensions to capture data from
other clinical domains at a similar level of detail as demonstrated for the radiology
domain.

In the second contribution, the thesis demonstrates that it is feasible to use a
knowledge-based approach to extract structured representations of size measure-
ments from free text radiology reports. Existing semantic annotation tools can
automatically extract sets of named entities from text or images. The problem
with simple annotation of unstructured reports and images is that a set of annota-
tions does not represent the content in a form that allows effective integration into
clinical decision processes. An additional step is necessary to get a structure for
these annotations that fully represent the content of clinical findings. Without this
step the relations between entities and thus the value of the annotations remains
locked. This work demonstrates that knowledge-based strategies are suitable to
resolve measurement entity relation and thus obtain a full semantic representation
of clinical findings from radiology reports. Even though the use case presented in
this thesis concentrated on structured representations of size measurements from
radiology reports, the approach for extraction and also classification of measure-
ment findings is applicable to other clinical domains such as pathology as well.
For instance, measurements of density, temperature, weight, concentrations etc.
could be extracted and classified using a similar normal quality representation as
for size qualities. For qualities such as color which are commonly not measured
on an absolute scale, this approach however will not work. The limitations of a
pure knowledge-based approach are the following: With respect to other relation
extraction algorithms the approach is very specific and cannot be used to extract
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e.g. relations between medication and dosage or targeted symptoms. Further, the
model is defined for a certain set of anatomical entities of the neck, thorax and
abdomen region and needs to be extended for others. So far the algorithm does
not cover negations, which are however not that often in radiology reports since
measurements express what is present. More commonly there are cases where the
measurement is not explicitly stated but expressed by bounds. For example in
the sentence “No lymph nodes bigger than 1 cm”. Here, the algorithm would
resolve that the lymph node is of size 1 cm. Since 1 cm is exactly the upper bound
for lymph nodes to be considered normal, the subsequent classification as normal
however would be correct! The contribution of the thesis here is also to evaluate
the strengthens and limitations of a knowledge-based approach which can serve
as a good component in a more comprehensive and general approach for relation
extraction.

In the third contribution, the thesis demonstrates how formalized medical knowl-
edge can be used to enrich clinical data in a way that allows realization of different
views on the data (disease-centric, longitudinal, abnormality focused etc.) – needed
by clinicians for more efficient decision making. This is possible since the clinical
data and the medical knowledge are integrated in one semantic model. Firstly, the
classification of normal and abnormal findings from radiology measurements is
demonstrated within this work. The presented algorithm is patient specific and
depends on age and gender. Here, extensions to the patient’s body mass index,
or previous examinations would be interesting contexts which have not been ex-
plored by this thesis. In a subsequent step (after classification) the class hierarchy
of findings is used to infer implicit information on symptoms and finding. Here
the thesis presents an approach that is based on Łukasiewicz’s three-value logic
applied to the three status types of clinical findings (present, open and absent).
The different dimensions of clinical findings are expressed in a well structured
form so that the access to patient data gets possible from different perspectives
such as anatomical entity, quality, body region or the type of the finding. For
example, a longitudinal view of radiology finding data is realized through a proto-
type implementation of a report viewer which relies on medical knowledge about
the human anatomy, the semantic representation of finding descriptions and the
meta-data of the original radiology reports.
Regarding the linkage of findings with diseases the thesis has two contributions:
providing a disease-centric view on available symptom information and further
a subsequent ranking of likely diseases. By matching symptom information to
diseases a disease-centric view can be provided. This view got very positive user
response by clinicians since it allows to efficiently obtain an overview within the
differential diagnosis work flow. The ranking of diseases is new in the sense that
it does not try to give a diagnosis for all occurred symptoms and findings, but
rather ranks disease which are best matching the symptoms of the patient. That
is, the clinician is provided with a better view on the data to come to a diagnosis
more accurately and efficiently. Even though the ranking showed good results, it
was tested on a rather small disease symptom model and thus the strengthens and
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limitations of the ranking algorithm need further exploration. While the disease-
symptom model presented in this thesis was created manually, in recent work a
larger disease-symptom cluster graph was created based on existing ontologies
[Obe+15a].

In contrast to clinical guidelines that define certain rules of how patients should be
treated under different conditions, the work presented in this thesis is focussed on
the semantic representation of the patient data to provide clinicians with the data
they need in their decision making processes. Only the classification of findings as
normal or abnormal can be considered as very low level guidelines since it defines
which findings are paid attention to and consequently treated.
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12.2. Outlook

As argued in [Zil+14] the “healthcare industry faces tremendous productivity chal-
lenges” some of which are potentially addressed by Big Data technologies. Also the
authors of [14c] (page 76) argue that the “availability and use of large data sets is be-
coming ever more important” in research and innovation in the context of university
medicine. While in other industries, successful application of these technologies
has been demonstrated, the healthcare domain still poses several challenges that
need to be overcome to get Big Data ready. Besides data digitalization, semantic
annotation, data privacy and security challenges, the creation of a standardized
(semantic) data model for clinical information that allows structured represen-
tation and automatic processing of clinical findings is a part of the solution. As
argued in [Zil+14] “the highest impact of Big Data applications is expected when data
from various healthcare areas, such as clinical, administrative, financial, or outcome data,
can be integrated.” Structured representation and usage of standardized reference
vocabularies (coding systems) are the first essential requirement to allow integra-
tion of data from different stakeholders and repositories. The developed model
does exactly this for clinical data from the radiology domain. In a subsequent step,
treatment can be comparatively analyzed and also biomarker can be developed
based on large patient cohorts.

The above mentioned problems and requirements hold for data with clinical context,
i.e. data created and stored at hospitals. Recent innovations such as wearables and
tracking applications provide new data sources. Here, people share their personal
health data with the vendors of the corresponding devices or apps with the goal to
optimize their lifestyle (e.g. walking a certain minimal distance each day). Since
data are continuously collected from a large set of people, the obtained data are
big and suitable for various machine learning and data mining algorithms. The
main difference between data from wearables and clinical data is the level of detail
and corresponding complexity of the data. While it is not difficult to measure and
store the walking distance and blood pressure, it is more difficult to store clinical
findings from pathology, radiology etc. in a structured form.

Another important aspect for application of semantic models is Linked Data, which
provides the potential to include many different data resources in clinical decision
making. For example, a clinician could be provided with latest clinical studies that
are related to the problems of the patient. Here, the usage of established reference
terminologies and availability, of ontology mappings is important. Then, Linked
Data can be also used to create application specific knowledge models such as the
disease symptom graph presented in [Obe+15a].
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Glossary

application ontology An application ontology is created to fulfil the need of a
certain application. Its reuse for other applications is mostly not possible
without adaptations. 26

classi�cation system In the biomedical domain a classification system defines
a set of classes where the classes are pairwise disjoint. Often classification
systems are additionally hierarchically structured. In this case sibling classes
are pairwise disjoint. 25, 26

coding system In the biomedical domain a coding system is a set of codes rep-
resented by letters and numbers. The role of coding systems is to define a
common reference for a domain. 25

disease A disposition (i) to undergo pathological processes that (ii) exists in an
organism because of one or more disorders in that organism [SCS09]. 67

disorder A material entity which is clinically abnormal and part of an extended
organism. Disorders are the physical basis of disease [SCS09]. 67

domain ontology A domain ontology (also domain-specific ontology) is an on-
tology which covers the concepts used with a certain subspeciality. For
instance RadLex covers the domain of radiology or the Foundational Model
of Anatomy (FMA) covers the domain of anatomy. 26

Don't Repeat Yourself (DRY) A design pattern commonly used in software
engineering that emphasized to avoid duplication of code. In the context of
semantic modelling this design emphasizes to avoid duplication of (parallel)
class or property hierarchies that are distinguished only by some single
attribute. 27, 77

HL7 Reference Information Model The HL7 RIM version 3 is an information
model that is designed to be used in combination with external health termi-
nologies like SNOMED CT to express clinical data. 7, 44–46

Integrating the Healthcare Enterprise IHE is an initiative by healthcare profes-
sionals and industry to improve the way computer systems in healthcare
share information [15j]. 51
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Glossary

MIREOT Minimal Information to Reference an External Ontology Term (MIREOT)
is a set of guidelines to support reuse of parts of other ontologies [Cou+09].
57, 73

ontology An explicit specification of a conceptualization [Gru93]. 8, 25

OpenEHR The OpenEHR is a set of specifications that define an open standard
for electronic health record information. 7

Protégé-dc A commonly used subset of the Dublin Core Metadata Initiative
(DCMI) Meta data Terms used to specify meta data of ontology resources
such as classes or properties. 71

RECIST Response Evaluation Criteria In Solid Tumors (RECIST) is a set of rules
used to determine “when cancer patients improve (“response”), stay the same
(“stable”) or worsen (“progression”) during treatments” [PAR14]. 104, 106, 107,
115, 238

reference ontology A reference ontology is an ontology whose main purpose is
to serve as a standard reference system which provides a shared vocabulary.
26

taxonomy A hierarchical generalization (is-a or subclass) structure of concepts.
25, 26

terminology A set of (controlled) terms. 25, 26

thesaurus A vocabulary that groups terms by semantic similarity (e.g. synonyms).
25, 26

UMLS Metathesaurus The UMLS Metathesaurus aligns the concepts of differ-
ent UMLS terminologies and coding systems by assigning concept unique
identifiers to them. 33

UMLS Semantic Network The UMLS Semantic Network is a model containing
133 different high level semantic types which are interlinked by semantic
relationships. It is used to label the concepts of the UMLS Metathesaurus. 33

upper ontology An upper ontology (or upper-level ontology; some times also
referred to as foundational ontology) describes the basic classes and relations
of an ontology without being specific to any particular domain. Thus, it
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serves as the backbone for different domain ontologies. Examples are the
BFO, DOLCE and SUMO. 26

vocabulary A set of terms. 25
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Acronyms

ATC Anatomical Therapeutic Chemical classification system. 32, 38, 177

BFO Basic Formal Ontology. 35, 62, 231

BFO-1.1 Basic Formal Ontology version 1.1. 32, 35, 36, 70

BFO-2 Basic Formal Ontology version 2. 32, 36, 60–62, 66, 67, 70, 237

BI Business Intelligence. 51

BSPO Biological Spatial Ontology. 32, 251

BT BioTop Ontology. 32, 59

CARO Common Anatomy Reference Ontology. 32

CDISC Clinical Data Interchanges Standards Consortium. 51

ChEBI Chemical Entities of Biological Interest. 71

CIR Clinical Investigation Record ontology. 46

CL Cell Ontology. 71

CMO Clinical Measurement Ontology. 32

CPR Computer-Based Patient Record ontology. 41, 49

CT computed tomography. 173, 182, 246, 248

CUI Concept Unique Identifier. 33

DCMI Dublin Core Metadata Initiative. 230

DICOM Digital Imaging and Communications in Medicine. 48, 90

DICOM SR DICOM Structured Reporting. 48

DL Description Logic. 23, 24, 27, 144
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Acronyms

DOID Human Disease Ontology. 25, 26, 32, 37, 119, 120, 239

DOLCE Descriptive Ontology for Linguistic and Cognitive Engineering. 59, 231

DSE Disease-Symptom-Examination ontology. 119–124, 143, 145, 155–157, 162,
164, 239

DWH data warehouse. 51

EHR electronic health record. 46

FHIR Fast Healthcare Interoperability Resources. 46

FMA Foundational Model of Anatomy. iv, 4, 6, 26, 32, 37, 38, 40, 49, 62, 69, 81, 82,
113, 117, 132, 144, 229, 237, 251

GFO General Formal Ontology. 59

GO Gene Ontology. 6, 37, 62, 71

HP Human Phenotype Ontology. 32, 37, 54, 62, 80, 81, 121, 145

IAO Information Artefact Ontology. iv, 32, 36, 42, 49, 60, 65–67, 77, 225

ICD International Classification of Diseases. 3, 6, 25, 32, 34, 37, 80–82, 85, 120, 144,
237

IDO Infectious Disease Ontology. 26

IE Information Extraction. 8, 40, 52, 133

IRI Internationalized Resource Identifier. 28, 250

LOINC Logical Observation Identifiers Names and Codes. 6, 25, 32, 34, 178

MANO MEDICO Annotation Ontology. 132, 133, 136–138, 239

MCI Model for Clinical Information. 13, 14, 19, 35, 41, 44, 45, 47, 48, 50–52, 57–60,
62, 63, 66, 67, 71, 72, 75, 76, 81–84, 91, 111, 112, 118, 119, 121, 123, 132, 134,
136, 137, 139, 140, 142, 144, 154, 155, 167, 173, 205, 206, 237–239, 241, 244, 251
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MESH Medical Subject Headings. 32, 120

MRI magnetic resonance imaging. 173, 182, 246

NCBI National Center for Biotechnology Information. 70, 71

NCIT National Cancer Institute Thesaurus. 25, 32, 34, 37, 120

NER Named Entity Recognition. 8, 40, 52, 133

NIF NLP Interchange Format. 71

NLP Natural Language Processing. 8, 13, 40, 53, 71, 130, 132, 133, 235

OA Open Annotation data model. 71, 109, 132, 136, 137, 237

OBI Ontology for Biomedical Investigations. iv, 32, 36, 37, 60, 62, 65, 67, 68, 250

OBO Open Biological and Biomedical Ontologies. iii, 13, 16, 19, 23, 32–36, 48, 57,
59–62, 67, 71, 72, 94, 119, 205, 206, 238, 250

OGMS Ontology for General Medical Science. iv, 32, 36, 49, 60, 66, 67, 85, 98, 250

OMIM Online Mendelian Inheritance in Man. 32, 34

OMRSE Ontology of Medically Related Social Entities. iv, 32, 70, 84

OPS German procedure classification (Operationen- und Prozedurenschlüssel).
32, 38, 82

OWL Web Ontology Language. 12, 30, 37, 44, 62, 65, 73, 144

PATO Phenotypic Quality Ontology. iii, 32, 37, 48, 60, 62–65, 77, 78, 91, 115, 121,
237

QIBA Quantitative Imaging Biomarkers Alliance. 50

QIBO Quantitative Imaging Biomarker Ontology. iii, 41, 50

RadLex Radiology Lexicon. 6, 16, 17, 25, 26, 32, 38, 53, 54, 81, 82, 113, 117, 132,
144, 148, 173, 186, 189, 190, 229, 237
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RDB relational data base. 138

RDF Resource Description Framework. 12, 29, 44, 47, 134, 136

RDFS Resource Description Framework Schema. 29

RO Relation Ontology. iii, 32, 35, 36, 49, 62

ROI region of interest. 95–97, 238

RSNA Radiological Society of North America. 50

SNOMED CT Systematized Nomenclature of Medicine – Clinical Terms. 6, 7,
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SPARQL SPARQL Protocol and RDF Query Language. 12, 31

SUMO Suggested Upper Merged Ontology. 59, 231

SWRL Semantic Web Rule Language. 31

SYMP Symptom Ontology. 38, 120, 121

TMO Translational Medicine Ontology. 32, 41, 49, 50
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UIMA Unstructured Information Management Architecture. 52, 134

UMLS Unified Medical Language System. iii, 23, 32, 33, 40
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APPENDIX A. APPENDIX

A.1. Big Picture of the Model for Clinical Information

The big picture of MCI (see figure at the end of this document) shows the different
models that are used to express clinical data and medical knowledge. Since MCI
contains 550 classes in total, only high level classes and their relations are shown
in the figure. In particular, the class hierarchies under the top-level entities are
omitted: the figure shows, e.g., only one class for clinical finding, without its 29
subclasses.
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A.2. Example Radiology Reports

Three different corpora of radiology reports are described in the following subsec-
tions.

German Radiology Reports on Lymphoma Patients

The lymphoma data set set consists of 2584 German radiology reports on 377 lym-
phoma patients. The imaging modality is mainly computed tomography (CT),
but also magnetic resonance imaging (MRI) and ultrasound (US) and the reports
are from 27 different readers. The inspected body regions were mainly abdomen,
thorax and head, but includes also various other regions from the whole body. The
data is provided in an excel sheet. Since the data set contains multiple reports from
consecutive examinations for each patient it is suitable for longitudinal analysis of
clinical findings.
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Table A.1.: Data fields provided for each report of the data set of German radiology
reports on lymphoma patients.

field example entry
patient ID 1000000XYZ
date of birth 07.01.1978
gender W
pat. num 149311
CIS ID 10000001
date 16.10.2004
time 11:39:00
device CT2C
ref. body M343
title Hals-, Thorax- und Abdomen-CT mit KM i.v
findings Es liegt eine Voruntersuchung vom 11.08.04 zum Vergleich vor. Dem

gegenüber keine neue entstandenen pathologisch vergrößerten Lymph-
knoten zervikal. Unverändert in den Gefäßnervenscheiden kleinere unter
1 cm große Lymphknoten. Der vorbeschriebene vergrößerte Lymphknoten
mit 1,6 cm neben der V. jugularis linksseitig ist mit einem Rückgang auf
1,13 cm größenregredient, jedoch sind noch gruppierte kleinere Lym-
phknoten bds. an der V. jugularis erkennbar. CT Thorax/Abdomen:
Vergrößerte Lymphknoten im vorderen Mediastinum und axillär, vor
allem linksseitig mit einem Referenzlymphknoten der vormals über 3 cm
groß, jetzt mit 2,6 cm zur Darstellung kommt. Auch die übrigen Lymph-
knoten der linken Achsel sind größenregredient. Im Mediastinum finden
sich Lymphome im vorderen Mediastinum, in der Thymusloge sowie im
mittleren Mediastinum paratracheal, die ebenfalls im Verlauf größenregre-
dient sind. Aktuell misst ein eingezeichneter Lymphknoten im vorderen
Mediastinum 2,3 cm und im Azygoswinkel 1,5 cm. Die Weichteilmasse
um die Aorta descendens ist ebenfalls rückläufig. Die Lunge stellt sich un-
verändert frei von suspekten Lungenrundherden, Erguss oder Infiltraten
dar. Die Leber ist vergrößert und reicht mit ihrem linken Leberlappen an
die Milz heran, die selbst unverändert vergrößert zur Darstellung kommt.
Der hypodense Herd in der Milz grenzt sich etwa mit 1,2 cm Durchmesser
gering größenregredient ab. Die Leber ist homogen kontrastiert, suspekte
hypodense Läsionen sind nicht erkennbar. In der Gallenblase sind keine
kalkdichten Konkremente abgrenzbar. Pankreas, Nieren und Nebennieren
kommen unauffällig zur Darstellung. Präaortal infradiaphragmal keine
pathologisch vergrößerten Lymphknoten. Inguinal fidnen sich kleinere
Lymphknoten die nicht als pathologisch vergrößert zu werten sind.

assessment Im Verlauf rückläufige Größe der Lymphome zervikal, axillär und medi-
astinal. Der hypodense Befund in der Milz ist ebenfalls gering größenre-
gredient. Weitere Organmanifestationen sind weiterhin nicht erkennbar.
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German Radiology Reports on Internistic Patients

The internistic data set consists of 6007 German radiology reports on internistic
patients from 27 different readers, where imaging modality was computed tomog-
raphy (CT). The examined patients have a diverse disease background.

Table A.2.: Data fields provided for each report of the data set of German radiology
reports on internistic patients.

field example entry
title Abdomen-CT 2 Phasen mit KM
device CT1N
findings Voraufnahmen vom 23.11.2012 zum Vergleich. Basaler Thorax: Soweit

abgebildet kein Perikarderguss. Kein Pleuraerguss. In den basal
miterfassten Lungenabschnitten regelrechte Lungengefäß- und Lun-
gengerüstzeichnung. Keine suspekten intrapulmonalen Läsionen. Ab-
domen: Neue hypodense Läsion im Lebersegment S8, Durchmesser 1,4
x 1,2 cm (Bild 11). Restl. Leberparenchym homogen KM-aufnehmend,
ohne weitere fokale Läsionen. Normale Weite der intra- und extrahepatis-
chen Gallenwege. Gallenblase gefüllt, zartwandig, ohne röntgendichte
Konkremente. Pancreas fettig lobuliert, ohne Herdbefund. Kein Gangauf-
stau. Milz normgroß, homogen KM-aufnehmend. Nebennieren beidseits
zart. Nieren beidseits orthotop gelegen, zeitgleich und regelrecht kon-
trastiert. Nephrostoma beidseits mit den Spitzen in den Nierenbecken. In
der Spätphase rechts kein pararenales/-ureterales Kontrastmitteldepot
mehr abgrenzbar. Ureteren beidseits regelrecht, nicht erweitert, keine
KM-Aufnahme. Einmündung beider Ureteren im Conduit im rechten
Unterbauch mit Ausleitung über die Bauchdecke. Größenprogredien-
ter inhomogen KM-aufnehmender Tumor der Neoblase an der Einmün-
dungsstelle der Ureteren beidseits mit 3,7 x 3,1 cm (Bild 63, VU 2,9 x 2,5
cm, Bild 59). Kein Harnstau. Keine vergrößerten Lymphknoten paraaortal,
iliakal oder inguinal. Keine freie Flüssigkeit abdominal. Eingeschränkte
Beurteilbarkeit im kleinen Becken bei Metallartefakten durch Hüft-TEP
rechts. Sigma elongatum. Zustand nach medianer Laparotomie. Rek-
tumwand regelrecht. Im Knochenfenster degenerative Veränderungen der
Wirbelsäule. Deckplattenimpression BWK 12, idem. Keine umschriebenen
Osteolysen.

assessment Größenprogredienter Tumor an der Einmündungsstelle der Ureteren an
der Neoblase. CT-morphologisch kein H.a. aktive Blutung aus dem Con-
duit. Dringender V.a. neue Lebermetastase im Segment 8. Nephrostoma
beidseits regelrecht. Kein Harnstau. Keine vergrößerten Lymphknoten
abdominal. Keine freie Flüssigkeit.
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English Radiology Reports

The data set consists of English radiology reports on with diverse imaging modality
and patient background (disease, age, gender etc).

Table A.3.: Data fields provided for each report of the data set of English radiology
reports.

field example entry
proc_desc_longUS ABDOMEN
proc_num 5
date 01.04.2011
result Urinary frequency and decreased renal function. History of lung cancer.

Findings: The liver is heterogeneously hyperechoic but not enlarged. No
focal hepatic lesion is seen. Small echogenic polyps are noted in the
otherwise normal looking gallbladder. There is no pancreatic head mass
or biliary dilation.
Moderate atherosclerotic changes are noted in the abdominal aorta. Maxi-
mum AP diameter is 2.4 cm.
Several cysts arise from each kidney. Largest right renal cyst measures 4.7
x 6.6 cm. Largest left renal cyst measures 2.3 x 2.3 cm. By report, these
have enlarged since 2005. No hydronephrosis is seen. Renal parenchymal
echotexture is mildly increased.
Transabdominal images reveal mild splenomegaly (3.6 x 5.0 x 5.7 cm).

impression 1. Hyperechoic liver consistent with fatty infiltration or hepatocellular
disease.
2. Interval enlargement of renal cysts bilaterally. Mildly echogenic renal
parenchyma consistent with history of decreasing renal function.
3. Prostatomegaly. No evidence of bladder outlet obstruction.
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A.3. Notation

Naming of Entities

The IRI of an entity has two parts: the namespace and the local identifier. E.g.
in the IRI http://www.w3.org/2002/07/owl#Class, has the namespace http:
//www.w3.org/2002/07/owl# and the local identifier Class. Within one document
the namespace might be associated by a shorter prefix. For instance, the namespace
IRI http://www.w3.org/2002/07/owl# is commonly associated with the prefix
owl: and one can write owl:Class instead of the full IRI when the prefix is defined
accordingly in the corresponding document. Within the biomedical domain the
local identifier is often an alphanumeric ID without any semantics [Sch+09] - e.g.
OGMS_0000073. To enhance readability, the (preferred) label from the ontology is
used for the corresponding entity. That is instead of writing obo:OGMS_0000073 the
entity is denoted as obo:diagnosis. If the label contains spaces, the entity may be
surround the by hyphens, e.g. ‘obo:value specification’, to unambiguously
distinguish subsequent entities. If the ontology namespace is clear by the context
the prefix is sometimes omitted (e.g. value specification) when referring to
the corresponding entity. The OBO namespace is used by many ontologies; it is
however often the case that one wants to make transparent by which ontology
exactly, a certain entity is defined. Then an entity is denoted as ogms:diagnosis
instead of obo:diagnosis to make clear that this entity is defined by OGMS.

Size of Reused Models

To give the reader an impression of the size of described ontologies the number of
classes and (if relevant) also the number of properties are listed. Since one ontology
often imports other ontologies and the official release often contains deprecated
classes which are not of relevance for us - and which make the ontology appear
bigger than it actually is - a clear definition for these numbers is necessary: For
instance OBI contains in total 2800 classes, 61 of them are deprecated. From of the
remaining 2739 classes, 2216 classes are defined by OBI (that is they have an ID
starting with OBI_) while the rest (523 classed) is imported from other ontologies.
Thus, it is written, that OBI defines 2216 classes and contains 2739 classes in total.
The same approach is applied when the corresponding numbers for properties are
counted. Note that the numbers might differ from those displayed at BioPortal
[Whe+11], where the number of classes in OBI is given as 2799, i.e. they include
deprecated classes as well as imports in their calculation.
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A.4. The Biological Spatial Ontology

The Biological Spatial Ontology (BSPO) [14q] is a small ontology, specialized
for cross species representation of spatial anatomical entities. BSPO contains 146
classes, defining material and immaterial anatomical such as anatomical bound-
aries, planes and axes. In general the defined classes and relations are very useful.
However, some issues of textual definitions and logical axioms do not fulfil our
expectations regarding the human anatomy: Firstly, in BSPO the orthogonal_to
relation has domain anatomical axis and range anatomical axis. In general
orthogonality is a symmetric property and thus should have the same class as do-
main and range. In defining range and domain orthogonal_to relation in BSPO is
indeed a relation between orthogonal complements within the three dimensional
space. Thus, the orthogonal relation defined by BSPO cannot be used to represent
orthogonality between lines. Secondly, the main human body planes and axes
are the following: the sagittal plane which is orthogonal to the left-right axis, the
coronal plane which is orthogonal to the anterior-posterior axis and the trans-
verse plane which is orthogonal to the craniocaudal axis. The coronal plane and
transverse plane are not defined in this way in BSPO. In BSPO anterior posterior
axis has synonym craniocaudal axis which is not correct for the human anatomy.
In this work the FMA classes for the main body planes were reused instead and
orthogonal to relations as well as the main body axis were defined in MCI itself.
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