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Summary: 

 

DAXX and or ATRX loss occur in 40% of Pancreatic Neuro-endocrine Tumors (PanNETs). 

PanNETs negative for DAXX or ATRX show an increased risk of relapse. The tumor-associated 

pathways activated upon DAXX or ATRX loss and how this event may induce Chromosomal 

Instability (CIN) and Alternative Lengthening Telomeres (ALT) are still unknown. Both DAXX 

and ATRX are involved in DNA methylation regulation. DNA methylation of heterochromatin 

and of non-coding sequences is extremely important for the maintenance of genomic stability. 

We analysed the association of DAXX and or ATRX loss and CIN with global DNA methylation 

in human PanNET samples and the effect of DAXX knock down on methylation and cell 

proliferation. 

We assessed LINE1 as well as global DNA methylation in 167 PanNETs and we found that 

DAXX and or ATRX negative tumors and tumors with CIN were hypo-methylated. DAXX 

knock-down in PanNET cell lines blocked cells in G1/G0 phase and seemed to increase CIN in 

QGP-1 cells. However, no direct changes in DNA methylation were observed after DAXX knock 

down in vitro.  

In conclusion our data indicate that epigenetic changes are crucial steps in the progression of 

PanNETs loss and suggest that DNA methylation is the mechanism via which CIN is induced, 

allowing clonal expansion and selection.  
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Introduction 1 

The molecular pathways and mechanisms underlying initiation and progression of pancreatic 2 

neuroendocrine tumors (PanNET) are still poorly understood. Mutations in DAXX (Death 3 

Domain Associated Protein) and ATRX (ATR-X) with correspondent loss of protein expression in 4 

the tumor tissue occur in 40% of PanNETs (Jiao, et al. 2011). DAXX and or ATRX loss 5 

correlates with Chromosomal Instability (CIN) and predicts for relapse in low stage patients 6 

(Stage I to III in the absence of distant metastasis) (Marinoni, et al. 2014). DAXX and or ATRX 7 

negative tumors show Alternative Lengthening of Telomeres (ALT), a telomerase independent 8 

mechanism for telomere length maintenance, based on homologous recombination (Heaphy, et al. 9 

2011). The mechanisms and the sequence of events linking DAXX/ATRX mutation, ALT and CIN 10 

are unknown.  11 

In addition to mutations, the importance of epigenetic changes is increasingly recognized for 12 

many cancer types (reviewed in (Das and Singal 2004). DAXX and ATRX participate in 13 

maintaining the epigenetic status of the cells by regulating both DNA methylation and H3.3 14 

deposition at telomeric and peri-centromeric regions. DAXX interacts and recruits DNA methyl-15 

transferase enzyme 1 (DNMT1) to specific promoters including RASSF1 and RELB (Puto and 16 

Reed 2008). ATRX contains the ADD domain as does DNMT3-DNMT3L, important for 17 

establishing and maintaining DNA methylation pattern (Noh, et al. 2016).  18 

Impairment of DNA methylation in PanNETs has been shown in several genes (VHL, cdkn2a 19 

(p16), RASSF1, DAPK1, TIMP3, PAX5, HIC1, CADM1, PYCARD, ESR1, VHL, RARB, WT1 and 20 

MGMT). (House, et al. 2003; Malpeli, et al. 2011; Schmitt, et al. 2014; Schmitt, et al. 2009; 21 

Stefanoli, et al. 2014). Genome wide methylation profiling of PanNET has shown a difference of 22 

methylation pattern between DAXX and ATRX negative tumors, suggesting that mainly DAXX 23 

loss is driving DNA methylation changes in PanNETs (Pipinikas, et al. 2015).  24 
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DNA methylation not only regulates gene expression, but also genomic stability. Indeed hetero-25 

chromatin and silenced regions are usually hyper-methylated resulting in a highly condensed 26 

chromatin structure not accessible to the transcription machinery. Hypo-methylated DNA regions 27 

are usually highly transcribed. Repetitive and mobile elements such LINE1 (Long Interspersed 28 

Element-1) and ALU (Arthrobacter luteus) sequences are preserved from transcription and 29 

activation by DNA hyper-methylation. Once activated, these sequences move within the genome 30 

and thereby generate chromosomal instability. Hypo-methylation of LINE1 and ALU sequences 31 

occurs in several tumors including PanNETs (Choi, et al. 2007; Stefanoli et al. 2014). It is 32 

currently unknown whether LINE1 and ALU hypo-methylation is directly linked to DAXX and or 33 

ATRX mutation. Regulation of transcription of the telomeric sequences TERRA (Telomeric 34 

repeat containing RNA) and telomere stability is also dependent on the DNA methylation status. 35 

Dnmt1 deficient mouse embryonic stem cells show elongated telomeres, increased recombination 36 

at telomeric regions and ALT activation (Gonzalo, et al. 2006).  37 

In the present study we aimed to analyse the effect of DAXX and or ATRX loss on global 38 

methylation in ex-vivo human PanNETs samples and in vitro in BON-1 and QGP-1 cell line- 39 

models. In vitro we also assessed genomic instability induction upon DAXX knock down. We 40 

found that DAXX and or ATRX negative PanNETs showed global hypo-methylation but not 41 

LINE1 hypo-methylation compare to positive tumors. Additionally we were able to find a link 42 

between LINE1 hypo-methylation and CIN in PanNETs. DAXX knock down does not induce 43 

methylation changes in BON-1 and QGP-1 cells.  44 

 45 

Material and Methods 46 

Human samples 47 

167 out of 207 resected well differentiated PanNETs (G1-G2) and 11 matching control were used 48 
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in the study based on DNA viability and informative IHC results (Marinoni et al. 2014).  49 

 CIN data obtained by Comparative Genomic Hybridization (CGH) were previously reported 50 

(Marinoni et al. 2014). 51 

CIN were defined as showing a total number of gains and losses of 8 or more in conventional 52 

CGH and of 20 or more in array CGH. The use of patient material was approved by the local 53 

ethics committees (Number 105/2015). The composition of samples is described in table 1 and in 54 

the supplementary figure 1. 55 

Cell line culture conditions and treatments 56 

The pancreatic neuroendocrine cell line BON-1 (pancreatic carcinoid) was provided by E.J. 57 

Speel, Department of Pathology, Maastricht, The Netherlands and metastatic somatostatinoma 58 

derived QGP-1 cell line was obtained from Japanese Health Sciences Foundation, Osaka, Japan. 59 

Both cell lines authentication was performed by STRs analysis (Mycrosynth, Balgach, 60 

Switzerland) upon arrival (2011) and in the present year. QGP-1 cells resulted 100% matching 61 

with the QGP-1 profile (GNE586559, Genentech, Roche, Basel, Switzerland).  BON-1 cells are 62 

not commercially available therefore no comparison is possible, however STRs analysis of these 63 

cells revealed no matching with any data available in the ATCC database, excluding any 64 

contamination with other cell lines. Additionally the expression of the neuro-endocrine markers 65 

Synaptophysin and Chromogranin-A was checked yearly. Both QGP-1 and BON-1 cells express 66 

the two markers. Cells were kept in culture for a maximum of 20-25 passages.  67 

Both cell lines were cultured at 37°C under 5% CO2. BON-1 were cultured in DMEM/Nutrient 68 

Mixture F-12 Ham (D6421, Sigma-Aldrich, Buchs SG, Switzerland) and QGP-1 in RPMI 1640 69 

Dutch modification (R7638, Sigma-Aldrich), both media supplemented with 10% FBS (GIBCO, 70 
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Thermo Fisher Scientific, Paisley, UK), 2nM L-alanyl-L-glutamin (Sigma-Aldrich), 100µg/ml 71 

streptomycin and 100units/ml of penicillin (Sigma-Aldrich).  72 

 73 

Immuno-histo-chemistry (IHC) 74 

Four-micrometer sections were taken from a TMA including 207 pNETs derived from patients 75 

who underwent surgery at the Inselspital Bern, Switzerland previously described (Marinoni et al. 76 

2014) and stained with an anti-5-methylcytidine antibody BI_MECY_0100 (Eurogentec, Kaneka, 77 

Liege, Belgium). The Immunohistochemical staining was performed on an automated staining 78 

system (Leica Bond III; Leica Biosystems, Nunningen, Switzerland). Antigen retrieval was 79 

performed by heating citrate buffer at 100° for 30 minutes. The primary antibody was incubated 80 

for 30 minutes at a dilution of 1:200. Visualization was performed using the avidin-biotin 81 

complex method, which yielded a brown staining signal. Normal pancreatic islets show strong 82 

positive staining indicating a certain level of DNA methylation thus we scored as high-83 

methylated samples showing similar or stronger staining than normal islets and low-methylated 84 

samples showing weaker staining. To exclude false-negative samples, only samples with positive 85 

nuclear staining of non-neoplastic cells and negative tumor nuclei were scored as negative (153 86 

of 207 samples remaining informative). 54 Samples with both negative tumor nuclei and non-87 

neoplastic stromal and endothelial cells were scored as non-informative and excluded from 88 

further analysis. 89 

 90 

DNA extraction, bisulfite conversion and global methylation analysis 91 

DNA was extracted from cell pellet of about 6x10
5
 cells or from paraffin embedded human 92 

PanNETs (55 tumor samples with more than 80% tumor content and 11 matching normal 93 

pancreatic tissues, Table 1 and supplementary figure 1) using Nucleo Spin kit by Macherey-94 
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Nagel (Düren, Germany) according to the manufacturer’s instructions. For bisulfite conversion of 95 

gDNA the EZ DNA Methylation-Gold kit by Zymo Research Corporation (Freiburg, Germany) 96 

was used following the manufacturer’s instructions.  97 

Genomic DNA of 10 tumor samples was analyzed by its global methylation status using 98 

EpiSeeker methylated DNA Quantification Kit (ab117128, Abcam, Cambridge, United 99 

Kingdom), according to the supplier’s instructions. Colorimetric measurements were done on an 100 

ELISA reader (Tecan, Männerdorf, Switzerland). Hyper-methylated and hypo-methylated DNAs 101 

(Zymo Research) were used as controls. 102 

PCR and pyrosequencing investigation for LINE-1 for 51 samples (GenBank accession number 103 

X58075) methylation analysis was performed using PyroMark kit (Qiagen, Hilden, Germany). To 104 

analyse sequence methylation of LINE-1, the PyroMark Q24 CpG LINE-1 (4x24) Methylation 105 

detection assay was used (Qiagen). Amplifications were performed with Master Mix PyroMark 106 

PCR Kit (Qiagen) according to supplier’s instructions on a Veriti System gradient apparatus 107 

(Applied Biosystems, Thermo Fisher Scientific). PCR product was bound to Streptavidin 108 

Sepharose HP (Amersham Biosciences, GE Healthcare, Little Chalfont, United Kingdom), 109 

purified, washed, denatured and washed again with the PyroMark Q24 Vacuum Workstation 110 

220V (Qiagen). Pyrosequencing was performed using the Qiagen PyroMark Q24 System with the 111 

pyromark Q24 Cartridge Method 0011 (Qiagen). The assay setups and analysis were performed 112 

with PyroMark Assay Design Software V.1.0.6 (Qiagen).  113 

MGMT (O
-
6-methylguanine-DNA-methyltransferase) promoter methylation was assessed in 25 114 

tumor samples as previously described (Vassella, et al. 2011). Samples with methylation level 115 

higher and equal to 5% were considered hyper-methylated and samples with methylation level 116 

<5% were considered hypo-methylated.  117 
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The MEN1 gene was analysed in 26 tumor samples by semi-conductive sequencing using an Ion 118 

Torrent PGM (Life Technologies). Protein coding exons were amplified by multiplex polymerase 119 

chain reaction using 2 primer pools designed by the Ion AmpliSeq Designer (Life Technologies). 120 

Library construction, emulsion polymerase chain reaction, and sequencing were performed 121 

according to the manufacturer’s recommendations. The Torrent Suite 5.0.3 platform was used for 122 

sequence alignment with the hg19 human genome reference. Variant calling was performed with 123 

the variant caller 5.0.3.5. and the IonReporter 5.0 software (Life Technologies, Grand Island, 124 

NY). The average base coverage depth for most samples was more than 2000 reads. MEN1 125 

mutations found are summarized in table 1 in the Supplementary Material.  126 

DAXX knock down 127 

For virus infection 6x10
5
 cells were seeded in 6 wells plate the day before. pLKO.1 lentiviral 128 

vectors expressing small hairpin (sh) RNAs targeting DAXX (Sh-DAXX_H2410: and Sh-129 

DAXX_2503) or a nontargeting shRNA control (SHCOO2) were purchased from Sigma-Aldrich 130 

Lentiviral production and transduction were done as described in (Tschan, et al. 2003).  131 

Transduced cells were selected by puromycin treatment (1.5µg/ml, Invitrogen). For micro-nuclei 132 

counting, cells were seeded in 24-well plates on coverslips coated with FBS, 1x10
4
 cells per well. 133 

Cells were fixed with 4% Paraformaldehyde for 30 min at room temperature. DAPI was used to 134 

stain nuclei. Micronuclei were counted under a fluorescent microscope (Axiophot2, Zeiss).  135 

Viability and apoptosis assays 136 

For MTT assay cells were seeded into 96-well plates at the density of 16’000 cells per well. After 137 

24h medium was replaced by 100ul of medium with 10% MTT (0.5mg/ml final concentration) 138 

(Sigma-Aldrich) and incubate 1h at 37°. After incubation the medium was removed and 200 µl of 139 

DMSO (Sigma-Aldrich) and 25 µl of Sorensen solution (0.1M Glycine, 0.1M NaCl, pH 10.5 in 140 
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water) were added into each well. Absorbance at 570nm was determined on a spectrophotometer 141 

(Tecan). 142 

Cell cycle analysis with FACS 143 

Briefly, cells were seeded 5x10
5
 cells in duplicates or triplicates in 6-well plates. The day after 144 

cells were treated with Nocodazol. After 16h of treatment cells were fixed in ice cold EtOH 145 

overnight. PI staining was performed directly before measurement on BD-FACS LSR SorpII 146 

using BD FACSDiva 6.1 software (BD Bioscience, Heidelberg, Germany). Results were 147 

analyzed using FlowJo v9.8 software (TreeStar, USA). 148 

Protein extraction and Western blot analysis 149 

For western blotting Cells were cultivated in 6-well plates and lysate in Urea buffer. Forty ng 150 

proteins were loaded on 4-20% Mini-PROTEAN® TGX Stain-Free™ Gel (Bio-Rad, Cressier, 151 

Switzerland). Transfer was performed using transfer turbo blot system (Bio-Rad). Primary 152 

monoclonal antibodies rabbit anti DAXX (clone 25C12, 1:1000 in 5% BSA, Cell signaling, 153 

Cambridge, United Kingdom) and mouse anti human α-tubulin (clone B-5-1-2, 1:1000 in 5% 154 

BSA, Sigma), GAPDH (clone 6c5, 1:1000 in 5% skimmed milk, Merk Millpore, Darmstadt, 155 

Germany) were used. As secondary antibodies goat anti-rabbit DyLight® 650 conjugate 156 

(LabForce, Muttenz, Switzerland) and goat anti-mouse DyLight® 550 conjugate (LabForce) both 157 

diluted 1:500 in 5% milk were used. Signal was detected with ChemiDoc MP System (Bio-Rad) 158 

and analyzed in ImageJ (freeware, 1.48v, Bethesda, USA). Protein levels were normalized to α-159 

tubulin, GAPDH or total protein.  160 
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Statistics 161 

Statistical analysis was performed using GraphPAD prism 5 software (La Jolla, CA, USA). 162 

Statistical differences were calculated using unpaired two-tailed Student’s t test. The χ
2
 test or the 163 

Fisher exact test was used to calculate contingency tables. P values less than .05 were considered 164 

statistically significant. 165 

 166 

Results 167 

Ex-vivo analysis of human PanNET samples 168 

DAXX and or ATRX negative PanNET are hypo methylated 169 

In order to first assess whether DAXX/ATRX loss had an impact on the DNA methylation 170 

pattern we evaluated global DNA methylation on 10 PanNET samples. DNA extracted from 5 171 

PanNET samples positive for DAXX/ATRX IHC staining, negative for ALT activation and CIN 172 

negative (DAXX/ATRX+/ALT-/CIN-) and from 5 PanNET samples negative for DAXX/ATRX 173 

staining, positive for ALT activation and CIN positive (DAXX/ATRX-/ALT+/CIN+) were 174 

analyzed for global DNA methylation with the colorimetric EpiSeeker assay (Methylated DNA 175 

Quantification Kit, Abcam). As shown in figure 1-A DAXX/ATRX-/ALT+/CIN+ tumors exhibit 176 

a significantly lower level of DNA methylation compared to DAXX/ATRX+/ALT-/CIN- ones 177 

(p<0.01**), which is comparable to the un-methylated control. To confirm our findings in a 178 

larger setting and with an additional method, we stained 2 TMAs, composed as described in the 179 

material and methods section and in (Marinoni et al. 2014) with an anti-5-methylcytidine 180 

antibody (Eurogentec) that specifically recognizes the methylated base and does not cross-react 181 

with the un-methylated one. We obtained results on 153 samples; the characteristic of these 182 

samples is reported in table 1.  183 

Page 10 of 26



11 

 

We observed that strong 5-methylcytidine staining associates with DAXX and ATRX proficient 184 

tumors while weak signal correlates with DAXX/ATRX deficient ones p<0.05* (Figure 1 B-G 185 

and Table 2), suggesting that DAXX/ATRX deficient tumor show global hypo-methylation 186 

compared to the positive ones. Normal islets showed a strong 5-methylcytidine staining (Figure 1 187 

B-C).  188 

To examine the DNA methylation level of non-coding regions we evaluated the (Long 189 

Interspersed Element) LINE1 methylation status as a marker of global DNA methylation in 55 190 

PanNET and 11 non-neoplastic pancreatic specimens, by pyro-sequencing (Qiagen). We 191 

observed that LINE1 is hypo-methylated in PanNETs compared to normal pancreas (p<0.001***) 192 

(Figure 2-A) as previously reported (Choi et al. 2007; Stefanoli et al. 2014). LINE1 hypo-193 

methylation indeed associates with CIN (p<0.05*) (Figure 2-B), as we hypothesized. However, 194 

no differences in LINE1 methylation were observed in either DAXX/ATRX positive and 195 

negative tumors, ALT positive and negative (Figure 2 C-E). In order to assess if MEN1 196 

mutations impact on LINE1 methylation levels we sequenced MEN1 gene in 26 samples. Eleven 197 

samples resulted to be mutated. The mutations found are summarized in Supplementary Material 198 

Table 1. No difference in LINE1 methylation status were observed between mutant and wild type 199 

tumors (Figure 2 F).  Interestingly, LINE1 hypo-methylation predicts for shorter disease free 200 

survival (p<0.05*), (figure 3 supplementary material) in agreement with the results reported by 201 

Stefanoli et al. (Stefanoli et al. 2014); while no differences in survival are detectable in tumors 202 

positive and negative for 5-methylcytidine staining (data not shown).   203 

We performed quantitative methylation specific PCR to assess whether LINE1 hypo-methylation 204 

or DAXX/ATRX loss correlate with hyper-methylation of MGMT promoter, due to its clinical 205 

relevance. We found 8 samples with MGMT promoter hyper-methylated and 17 samples where 206 

MGMT promoter was un-methylated. No correlation between LINE1 hypo-methylation or 207 
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DAXX/ATRX loss and MGMT methylation level was found (Supplementary Figure 4), 208 

suggesting two independent mechanisms for the two events, as previously proposed (Stefanoli et 209 

al. 2014).  210 

 211 

In vitro upon DAXX knock-down 212 

Induction of genomic instability and G1 arrest 213 

In order to assess if DAXX loss is sufficient to induce genomic instability, we knocked down 214 

DAXX in two PanNET cell lines, QGP-1 and BON-1 by Lentiviral transduction of SH-RNAs. 215 

DAXX knock down was evaluated by western blotting 9, 17 and 24 days after lentiviral 216 

infection. Two different DAXX specific vectors (1 and 2) and scramble control were used in both 217 

cell lines. DAXX expression is highly reduced after 9 days from infections in both cell lines 218 

(Figure 3-A and supplementary material Figure 5-A). After 17 days DAXX expression is down-219 

regulated to a lesser extent while both cell lines re-express DAXX after 24 days. Therefore, all 220 

experiments were performed within the first 10 days after infection. Of note, the knock down 221 

efficiency was higher with vector SH-DAXX-1 than SH-DAXX-2; consistently we observed a 222 

stronger phenotype on the cells transduced with the first vector.  223 

Interestingly, we observed that in QGP-1 cells DAXX knock down induced an increased number 224 

of micronuclei formation and anaphase bridges while no micro-nuclei formation was observed in 225 

BON-1 cells. DAXX knock down QGP-1 cells showed an increased number of micronuclei 226 

formation compared to scramble (Figure 3 B-D). This result suggests an increased genomic 227 

instability induced by DAXX loss in QGP-1 cells.  228 

DAXX knock down in both QGP-1 and BON-1 does not induce ALT activation as detected by 229 

telomere FISH in vitro (data not shown), similarly to what has been shown by others in ATRX 230 

knock down cells (Napier, et al. 2015).  231 
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DAXX knock down reduced cell viability, measured by MTT assay (Figure 3-E and 232 

supplementary material Figure 5-B), indicating that DAXX has not a classical tumor suppressor 233 

gene function.   No significant increase in apoptosis was observed in DAXX knock down 234 

samples compared to the scramble control (Supplementary Figure 6). FACS analysis revealed 235 

that DAXX knock down induces G1 arrest in both BON-1 cells and QGP-1 (Figure 3-F and 236 

Supplementary Figure 7).  237 

 238 

Short time DAXX knock down does not affect LINE1 and global methylation.  239 

Since in human samples we observed that DAXX and or ATRX loss correlates with DNA hypo-240 

methylation we wanted to investigate whether DAXX knock down impairs DNA methylation in 241 

vitro as well. No difference in LINE1 methylation as well as global methylation were observed 242 

after 10 days of DAXX knock down in both BON-1 and QGP-1 cells (Supplementary Figure 8 243 

and data not shown). Similarly, no difference in MGMT promoter methylation were observed 244 

upon DAXX knock down (data not shown).  245 

 246 

Discussion 247 

The sequence of the events and the mechanism by which DAXX and or ATRX loss induces ALT 248 

and CIN are still unknown. Here we provide evidence, that epigenetic mechanisms could be 249 

involved in this process. In detail, we showed by immunohistochemistry and biochemical 250 

methods that DAXX and or ATRX negative PanNET are globally hypo-methylated. Hypo-251 

methylation of repeated sequences has been described in several cancers in correlation with 252 

progressive increase of the grade of malignancy (Ehrlich 2002). Long interspersed nuclear 253 

elements (LINE1) are the most abundant mobile DNAs in the human genome and hypo-254 

methylation of these sequences has been shown in different type of cancer including PanNETs 255 
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(Choi et al. 2007; Stefanoli et al. 2014). Indeed, we could confirm that LINE1 is hypo-methylated 256 

in PanNET compared to normal pancreas. Here we additionally showed that PanNETs showing 257 

CIN have a lower level of LINE1 methylation than chromosomally stable PanNET. We 258 

previously showed that DAXX and or ATRX loss in PanNETs correlates with CIN (Marinoni et 259 

al. 2014).  We hypothesize that DAXX and ATRX loss in PanNET cells result in a decreased 260 

DNA methylation thus promoting CIN. Indeed, we found that DAXX/ATRX negative PanNET 261 

show lower level of global methylation assessed by IHC and by a colorimetric assay.  262 

However, we could not find a correlation between DAXX and or ATRX loss, ALT activation and 263 

LINE1 methylation. LINE1 methylation could therefore be mediated by other unknown events. 264 

On the other hand, a multi-step model in which DAXX and ATRX loss progressively impairs 265 

DNA methylation and chromatin structure would also explain this discrepancy. Indeed, our cell 266 

line results could point into this direction: Short time DAXX knock down did not induce any 267 

changes in global or LINE1 DNA methylation. Either DAXX knock down is not sufficient to 268 

induce global hypo-methylation without other events, or it is instead a matter of time and 269 

additional cell cycles are needed.  270 

Impairment of DNA methylation, particularly at telomeres has been described in glioblastoma 271 

with ALT activation as well as in Astrocytoma with low ATRX expression (Cai, et al. 2015; 272 

Sturm, et al. 2012). Recently it has been shown that DAXX deficient PanNET showed higher 273 

methylation variation compared to ATRX negative ones (Pipinikas et al. 2015). However this 274 

report did not focus on global methylation levels, which could largely be influenced by non-275 

coding sequences, such as LINE1 and telomeric regions. 276 

A reduction of methylation in the subtelomeric regions, allowing DNA recombination, might also 277 

promote ALT activation (Gonzalo et al. 2006). Upon DAXX knock-down in PanNET cell lines 278 

we did not observed ALT activation, in keeping with other finding showing that DAXX and 279 
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ATRX loss does not induce ALT activation in vitro in telomerase positive cells (Napier et al. 280 

2015). In QGP-1 cells we observed a higher number of micronuclei upon DAXX knock down 281 

compared to control which might be a sign of increased genomic instability already at this short 282 

time-point and without ALT phenotype and impairment in DNA methylation. However, the small 283 

percentage, of cells showing micro nuclei formation upon DAXX knock out might not be 284 

sufficient to detect DNA methylation changes when this is assessed in the whole cell population.  285 

The phenotype of DAXX knock down cells has confirmed the non-conventional tumor 286 

suppressor role. DAXX silencing in vitro in BON-1 and QGP-1 cells induced G1/G0 cell cycle 287 

arrest. Similarly, ATRX knock down in other tumor models reduced cell proliferation and 288 

induced genomic instability (Cai et al. 2015; Huh, et al. 2016; Huh, et al. 2012; Lovejoy, et al. 289 

2012). It is important to point out that BON-1 and QGP-1 cells are mainly a model for G3 290 

PanNECs with mutations in genes, which are usually not altered in G1-G2 PanNETs (i.e. TP53) 291 

(Vandamme, et al. 2015). In this context DAXX knock down may impact on the cell cycle 292 

regulation and genomic instability differently than in the slow progressive tumors with a different 293 

mutational spectrum.  Additionally the difference in the mutations background between QGP-1 294 

and BON-1 may explain the different results in the micronuclei formation. Recently it has been 295 

shown that Daxx knock-down in a rat insulinoma cell line increased cell proliferation, suggesting 296 

that this model might be more appropriate for Daxx functional studies (Feng, et al. 2016). 297 

However rodent cells usually show minor and different genomic instability pattern compared to 298 

human cells and they rarely activate ALT mechanism for telomeres lengthening, even in absence 299 

of telomerase (Hermsen, et al. 2015) (Argilla, et al. 2004). This suggests that even this model 300 

harbours some limitation in the study of DAXX loss impact on genomic instability, ALT 301 

activation and DNA methylation which was the main focus of our work.  302 
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Our finding very likely only show a part of a more complex situation as other factors than DAXX 303 

and ATRX mutation can influence the epigenetic status. DAXX and or ATRX loss is frequently 304 

accompanied by MEN1 mutations and this possibly contributes to the epigenetic status. MEN1 is 305 

mutated in almost 44% of sporadic PanNETs (Jiao et al. 2011). MEN1 gene, encodes the 306 

transcription factor menin, which recruits the H3K4me3 histone methyltransferase mixed lineage 307 

leukaemia (MLL1) complex that plays an essential role in chromatin remodelling and gene 308 

expression (Agarwal, et al. 1999; Agarwal and Jothi 2012; Yang, et al. 2013). However MEN1 309 

mutations in PanNETs are not associated with CIN nor with ALT phenotype. In agreement with a 310 

model of epigenetically induced CIN, our results showed no correlation between LINE1 311 

methylation level and MEN1 mutation status. Similarly we did not detect any correlation between 312 

global methylation assessed by IHC and MEN1 mutations (data not shown).  313 

In conclusion our data provide evidence that DAXX and ATRX loss impact on global DNA 314 

methylation of PanNETs cells, which seem to be involved in chromosomal instability. This could 315 

enable PanNET to acquire clonal heterogeneity leading to a selection of more aggressive clones. 316 
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Figure legends:  421 

 422 

Figure 1:  Global methylation in PanNETs. A) Global methylation levels of DNA isolated from 423 

human PanNETs using EpiSeeker methylated DNA Quantification Kit (Abcam). Highly 424 

methylated DNA and unmethylated DNA were used as controls. DAXX/ATRX-/ALT+/CIN+ 425 

tumors showed hypo-methylation compared to DAXX/ATRX+/ALT-/CIN- ones (p<0.01**). B-426 

G) IHC with anti-5-methylcytidine antibody (Millipore) on human tissues. (B-C) Normal 427 

pancreas: (*) pancreatic islets and (**) exocrine pancreas. D-E two PanNETs samples showing 428 

low 5-methlycytidine expression and F-G two PanNET samples showing high 5-methylcytidine 429 

expression. 430 

 431 

Figure 2: LINE-1 methylation in PanNETs. A) PanNET samples showed a significant lower 432 

level of methylation compared to normal surrounding tissues (p<0.001*). B) PanNETs with high 433 

CIN showed a lower level of LINE1 methylation (p<0.05) compared to tumors with no CIN. C-434 

D) DAXX/ATRX- tumors and ALT+ tumors do not show difference in LINE1 methylation 435 

compared to respectively DAXX/ATRX+ and ALT- tumors. E) Tumors which are both 436 

DAXX/ATRX- and ALT+ did not show difference in LINE1 methylation level compared to 437 

tumors, which are DAXX/ATRX+ and ALT-, F) MEN1 mutated and wild type PanNET do not 438 

show differences in LINE1 methylation levels.  439 
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 440 

Figure 3: DAXX knock-down in QGP-1 cell lines. A) Western blotting showing DAXX knock-441 

down after 9, 17 and 24 days upon infection with two different plasmids SH-DAXX-1 and SH-442 

DAXX-2 in QGP-1. Parental (Par.) cells and cells transduced with scramble vector (Scr.) were 443 

used as controls. DAXX expression comes back to normal level after 24 days from the infection. 444 

Quantification of the knock-down after 9 and 17 days from infection was based on three different 445 

experiments. B) DAPI staining of QGP-1 cells after DAXX knock-down; arrows indicate an 446 

anaphase bridge and micronuclei. C) Fold changes of the number of micronuclei (MN) per cells 447 

compare to scramble. D) Number of anaphase bridges compare to mitosis. SH-DAXX-1 and SH-448 

DAXX-2 cells showed an increased on micronuclei and anaphase bridges compared to controls. 449 

E) Graphic representation of MTT viability assays after 8 days and after 16 days from infection. 450 

DAXX knock-down impairs cell viability. After 16 days when DAXX expression is restored to 451 

normal levels, the cells proliferate as the controls, suggesting a direct effect of DAXX on cell 452 

viability. F) FACS analysis of QGP1 cells after DAXX knock-down. Cells knocked-down for 453 

DAXX showed an increased in the percentage of cells in G1/G0 compared controls. The results 454 

are based on at least three repetitions.  455 

 456 
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Table 1: Characteristics of the human sample collective 

 

Collective  

Total patients (IHC 
plus LINE1 and 

Global 
methylation) IHC 

LINE1 and global 
methylation  

Tot 167 153 55 

Female 82 75 26 

Male 83 76 28 

 2 2 1 

Age average 56,66 56,09 55,21 

G1 119 107 33 

G2 48 46 22 

T1 61 53 13 

T2 46 44 18 

T3-4 45 41 23 

n.a. 15 15 1 

N0 58 54 15 

N1 39 36 24 

n.a. 70 63 16 

M0 95 85 34 

M1 30 30 12 

n.a. 42 38 9 

DAXX/ATRX + 74 67 13 

DAXX/ATRX- 47 44 30 

n.a. 46 42 12 

DAXX- 23 23 3 

DAXX+ 106 97 38 

n.a. 38 33 14 

ATRX- 28 25 13 

ATRX+ 95 88 33 

n.a. 44 40 9 

ALT- 59 53 16 

ALT+ 39 37 20 

n.a. 69 63 19 

CIN-  22  15 11 

CIN+ 30 26 11 

n.a. 115 112 33 

MEN1 wt 15 15 15 

MEN1 mut 11 11 11 

n.a. 141 127 29 

MGMT hyper    8 

MGMT hypo   17 

   30 

RFS (months)     52 (data based on 44 patients) 

TSS (months)     80 (data based on 44 patients) 
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Table legend: G (Grade), T (Tumor Stage), N (lymph node metastasis), M (Distant Metastasis) ALT 

(Alternative Lengthening Telomeres), CIN (Chromosomal Instability), RFS (Relapse free Survival), 

TSS (Tumor Specific Survival).  
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Table 2: Correlation between DAXX/ATRX expression and 5-methylcytidine staining in human PanNET 

tissues. 

 

  Low 5-metyl-cytidine High 5-metyl-cytidine p value 

DAXX/ATRX- 28 15 0.019* 

DAXX/ATRX+ 28 39 

DAXX- 17 6 0.020* 

DAXX+ 44 52 

ATRX- 15 13 0.517 

ATRX+ 40 48 

ALT- 25 28 0.338 

ALT+ 21 15 
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