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ABSTRACT 

Spongy degeneration with cerebellar ataxia (SDCA) is a severe neurodegenerative 

disease with monogenic autosomal recessive inheritance in Malinois dogs, one of the 

four varieties of the Belgian Shepherd breed. We performed a genetic investigation in 

six families and seven isolated cases of Malinois dogs with signs of cerebellar 

dysfunction. Linkage analysis revealed an unexpected genetic heterogeneity within the 

studied cases. The affected dogs from four families and one isolated case shared a ~1.4 

Mb common homozygous haplotype segment on chromosome 38. Whole genome 

sequence analysis of three affected and 140 control dogs revealed a missense variant in 

the KCNJ10 gene encoding a potassium channel (c.986T>C; p.Leu329Pro). Pathogenic 

variants in KCNJ10 were reported previously in humans, mice, and dogs with 

neurological phenotypes. Therefore, we consider KCNJ10:c.986T>C the most likely 

candidate causative variant for one subtype of SDCA in Malinois dogs, which we 

propose to term spongy degeneration with cerebellar ataxia 1 (SDCA1). However, our 

study also comprised samples from 12 Malinois dogs with cerebellar dysfunction, 

which were not homozygous for this variant, suggesting a different genetic basis in 

these dogs. A retrospective detailed clinical and histopathological analysis revealed 

subtle neuropathological differences with respect to SDCA1 affected dogs. Thus, our 

study highlights the genetic and phenotypic complexity underlying cerebellar 

dysfunction in Malinois dogs and provides the basis for a genetic test to eradicate one 

specific neurodegenerative disease from the breeding population. These dogs represent 

an animal model for the human EAST syndrome. 
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INTRODUCTION 

EAST syndrome in humans is characterized by epilepsy, ataxia, sensorineural deafness, 

and renal salt wasting tubulopathy (Bockenhauer et al. 2009; OMIM#612780). It was 

also termed SeSAME syndrome for seizures, sensorineural deafness, ataxia, mental 

retardation and electrolyte imbalance (Scholl et al. 2009). EAST syndrome is a rare 

disorder with an autosomal recessive mode of inheritance. Until now, it has been 

reported in 26 human patients with a total of 14 different pathogenic variants in the 

KCNJ10 gene (Sala-Rabanal et al. 2010; Williams et al. 2010; Abdelhadi et al. 2016). 

KCNJ10 encodes an inward-rectifying potassium channel (Kir), also known as Kir4.1, 

which is expressed in the central nervous system (CNS), eye, inner ear, and kidney. In 

kidneys this channel is located in the distal nephron’s basolateral tubular epithelia. The 

KCNJ10 channels in the intermediate cells of the stria vascularis of the inner ear 

contribute to the endocochlear potential (Bockenhauer et al. 2009; Abdelhadi et al. 

2016; Palygin et al. 2016). In the eye, KCNJ10 is expressed in Müller glia cells (Sala-

Rabanal et al. 2010; Arai et al. 2015). Brain expression predominates in the cerebral 

and cerebellar cortex as well as in the caudate nucleus and putamen. KCNJ10 channels 

play a major role in modulating neuronal cells’ resting membrane potential through a 

process named potassium spatial buffering. Potassium spatial buffering, ensured by 

glial cells, mainly astrocytes, is a mechanism for the regulation of extracellular 

potassium (Djukic et al. 2007; Bockenhauer et al. 2009; Scholl et al. 2009; Sala-

Rabanal et al. 2010). 

The clinical hallmarks of EAST syndrome are non-progressive neurological and renal 

symptoms. They include infantile-onset seizures, ataxia, tubulopathy, and sensorineural 

deafness (Bockenhauer et al. 2009; Cross et al. 2013; Abdelhadi et al. 2016). In the 

kidneys, KCNJ10 defects result in renal salt wasting and hypokalemic metabolic 
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alkalosis (Bockenhauer et al. 2009; Abdelhadi et al. 2016). Additionally, the failure to 

generate a physiologic endocochlear potential can result in sensorineural deafness. 

Ocular abnormalities in EAST syndrome are only detectable with electroretinogram 

and are characterized by reduced amplitudes of the photopic negative response of light-

adapted retinae (Thompson et al. 2011; Arai et al. 2015). Kcjn10 deficient knockout 

mice show defects in oligodendrocyte development and in vivo myelination (Neusch et 

al. 2001; Djukic et al. 2007). 

A KCNJ10 variant has also been reported in dogs. In several terrier breeds the 

XM_545752.3:c.627C>G variant, predicted to result in p.Ile209Met, leads to hereditary 

ataxia, a disease characterized by lesions in the CNS, mainly in the spinal cord, but not 

in the cerebellum (Wessmann et al. 2004; Rohdin et al. 2010; Gilliam et al. 2014; 

Rohdin et al. 2015). 

In the Belgian Shepherd breed, spongy degeneration with cerebellar ataxia (SDCA) was 

first described in 13 purebred Malinois puppies from five different litters. Clinical signs 

and histological findings were primarily localized to the cerebellum. The pedigree data 

suggested an autosomal recessive mode of inheritance (Kleiter et al. 2011). An earlier 

report of two crossbred Malinois dogs may have described a similar disease (Cachin 

and Vandevelde 1991). However, to date, no causal variant for SDCA was described in 

Malinois dogs or any other of the varieties of the Belgian Shepherd breed. 

The aim of this study was to identify the presumed causative genetic defect of SDCA 

in Malinois dogs using a positional cloning approach in combination with whole 

genome resequencing. The genetic analysis revealed an unexpected genetic 

heterogeneity and our findings strongly suggest that in the Belgian Shepherd breed 

more than one type of cerebellar dysfunction is present.  
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MATERIALS AND METHODS 

Ethics statement 

All animal experiments were performed according to the local regulations. All dogs in 

this study were examined with the consent of their owners. The collection of blood 

samples was approved by the “Cantonal Committee for Animal Experiments” (Canton 

of Bern; permit 23/10). 

 

Breed nomenclature 

The Federation Cynologique Internationale (FCI) describes the Malinois, together with 

the Groenendael, the Laekenois, and the Tervueren, as a variety of the Belgian 

Shepherd dog breed. The American Kennel Club, however, officially recognizes the 

Belgian Malinois, the Belgian Sheepdog (FCI: Groenendael), the Belgian Laekenois, 

and the Belgian Tervuren (FCI: Tervueren) as four distinct breeds. In this paper all 

references to the breed nomenclature correspond to the FCI standards. 

 

Clinical examinations  

In this study, we performed neurological examination including video analysis of 12 

Malinois puppies with clinical signs of cerebellar disease. These dogs belonged to six 

related families (Figure 1). Family 4 in the pedigree was one of the five families 

previously reported with SDCA (Kleiter et al. 2011). 

 

Neurohistopathology examinations 

Necropsy was performed in nine out of the twelve above described Malinois puppies 

with neurological symptoms (MA008, MA094, MA142, MA143, MA145, MA162, 

MA164, MA165, and MA280, Figure 1). We collected brain samples from all nine and 
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spinal cord samples from seven puppies (MA142, MA143, MA145, MA162, MA164, 

MA165, and MA280). All tissues were fixed in 4% buffered formaldehyde solution, 

embedded in paraffin, and sectioned at 2 - 5 µm. Sections were stained with 

hematoxylin and eosin and examined by light microscopy. 

 

Animal selection for the genetic analysis 

For the genetic analysis, we initially applied liberal phenotypic inclusion criteria and 

considered all available Malinois dogs with neurological abnormalities. Specifically, 

we used six Malinois families. Samples were available from the 12 Malinois puppies 

with cerebellar disorder, 20 non-affected full siblings, and 12 non-affected parents 

(Figure 1). We additionally investigated seven Malinois puppies with reported 

cerebellar signs, for which no relatives were available. 

In addition to the individuals belonging to the six families and the seven isolated cases, 

we genotyped 187 other Malinois, 25 Groenendael, two Laekenois, and 34 Tervueren 

dogs whose blood samples were donated to the biobank of the Institute of Genetics at 

the University of Bern (Table 2). Furthermore, we analyzed 486 samples from 89 

genetically diverse dog breeds (Supporting Information, Table S1). 
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Figure 1 Pedigree of Malinois dogs used for genetic mapping of the disease locus. Filled symbols represent animals 

with cerebellar disorder. Numbers indicate dogs from which samples were available and which were genotyped on 

the SNP chip for linkage analysis. Six affected dogs indicated by red contours were selected for homozygosity 

mapping. A common ancestor in both maternal and paternal lineages could be identified in five of the six families. 

This dog had more than 1,500 descendants in just three generations. Crosses intersecting the connection lines to the 

common ancestor represent the numbers of generations (e.g. MA302 is a great-grandson of the common ancestor). 

Family 4 was previously described (Kleiter et al. 2011). 

 

 

DNA extraction and genotyping 

Genomic DNA was isolated from EDTA blood samples with the Maxwell® RSC 

Whole Blood DNA Kit, which were used with the Maxwell® RSC Instrument 

(Promega). Genotyping was done on Illumina canine_HD chips containing 173’662 

genome-wide SNPs by GeneSeek/Neogen. Genotypes were stored in a BC/Gene 

database version 3.5 (BC/Platforms). 

 

Linkage and homozygosity mapping 

For linkage analysis Illumina canine_HD SNP chip genotypes from 44 dogs in six 

families were used (Figure 1). We analyzed the dataset for parametric linkage under a 
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fully penetrant, recessive model of inheritance with the Merlin software (Abecasis et 

al. 2002). 

PLINK v1.07 (Purcell et al. 2007) was used as described (Wiedmer et al. 2016) to 

search for extended intervals of homozygosity with shared alleles across the affected 

animals. 

 

Reference sequences 

The dog CanFam 3.1 genome assembly was used for all analyses. All references to the 

canine KCNJ10 gene correspond to the accessions XM_545752.5 (mRNA) and 

XP_545752.3 (protein). XP_545752.3 has the same length as the human protein 

(NP_002232.2; 379 amino acids) and 373 out of 379 amino acids (98%) are identical 

between dog and human. 

 

Whole genome resequencing 

PCR-free fragment libraries were prepared from three affected Malinois dogs (MA008, 

MA094, and MA152) with 300 bp (MA008, MA094) and 400 bp (MA152) insert sizes. 

The libraries were sequenced to roughly 16x - 22x coverage on an Illumina HiSeq2000 

(MA008, MA094) or on an Illumina HiSeq3000 (MA152) instrument using 2 x 100 bp 

paired-end reads (MA008, MA094) or 170 + 130 paired-end reads (MA152), 

respectively. 

The reads were mapped to the dog reference genome assembly CanFam3.1 and aligned 

using Burrows-Wheeler Aligner (BWA) version 0.7.5a with default settings (Li and 

Durbin, 2009). The generated SAM file was converted to a BAM file and the reads 

were sorted using samtools (Li, 2011). Picard tools 

(http://sourceforge.net/projects/picard/) was used to mark PCR duplicates. To perform 
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local realignments and to produce a cleaned BAM file, we used the Genome Analysis 

Tool Kit (GATK version 2.4.9, 50; McKenna et al. 2010). GATK was also used for 

base quality recalibration with canine dbsnp data as training set. 

Putative single nucleotide and small indel variants were identified in each sample 

individually using GATK HaplotypeCaller in gVCF mode, and subsequently 

genotyped per-chromosome and genotyped across all samples simultaneously (Van der 

Auwera et al. 2013). Filtering was performed using the variant filtration module of 

GATK. To predict the functional effects of the called variants, SnpEFF software 

together with the ENSEMBL (version 72) annotation CanFam 3.1 was used (Cingolani 

et al. 2012). For variant filtering we used 140 control genomes, which were either 

publicly available (Bai et al. 2015) or produced during other projects of our group. 

 

PCR and Sanger sequencing 

Sanger sequencing was used to confirm the variant identified from whole genome 

sequencing. For these experiments we amplified PCR products from genomic DNA 

using AmpliTaqGold360Mastermix (Life Technologies). The PCR primers used for the 

genotyping of the KCNJ10:c.986T>C variant were AGCTGGTGCTGATCCTCAGT 

(forward primer) and TCCCTTAACGACTCCTCCAA (reverse primer). PCR products 

were directly sequenced on an ABI 3730 capillary sequencer (Life Technologies) after 

treatment with exonuclease I and shrimp alkaline phosphatase. Sanger sequence data 

were analyzed with Sequencher 5.1 (GeneCodes). 

 

Data availability 

File S1 is a video illustrating the clinical phenotype of an affected Malinois dog with 

the KCNJ10:c.986T>C variant at five, seven, and eight weeks of age (MA008). 
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Table S1 contains KCNJ10:c.986T>C genotypes of 486 control dogs from 89 diverse 

dog breeds. Table S2 lists genome regions ≥ 1Mb that showed positive LOD scores in 

the linkage analysis. Table S3 illustrates the homozygous genome regions with shared 

alleles among the six analyzed affected Malinois puppies from families 1-4 that 

exhibited phenotypic homogeneity. Table S4 lists the accession numbers of all whole 

genome sequencing data, which were deposited in the European Nucleotide Archive. 

Table S5 shows the 23 variants in the critical interval on chromosome 38 that were 

absent from 140 other dog genomes. 

 

 

RESULTS 

Clinical presentation 

The 12 Malinois puppies with cerebellar dysfunction had early onset of clinical signs 

(4.5-8.5 weeks of age). During presentation 10 puppies were bright, alert, and 

responsive. Two puppies were less alert but were responsive. All puppies showed a 

wide-based ataxic gait, which was more obvious in the hind limbs. Exaggerated gait 

movements were observed in 50% of the affected puppies. Less consistent clinical signs 

were stumbling, staggering, intention tremor, bunny hopping, as well as balance loss 

and falling. Decelerated eye ball coordination during fast head motion was noted in 

three puppies. Circling episodes or short episodes of muscle spasms together with 

aggravation of cerebellar symptoms were reported in two puppies after stress or 

exercise (File S1). The four affected Malinois puppies belonging to family 6 were 

reported to have seizures, to run into obstacles, and to show rapid progression of clinical 

signs. Due to the severity of the clinical signs all affected puppies were euthanized by 

the 17th week of age. 
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Neuropathological findings 

Lesions in the cerebellum and brain stem of four Malinois puppies belonging to families 

1-4 were similar to those described in Kleiter et al. 2011. In these puppies, we observed 

mild to marked vacuolation of the cerebellar nuclei and granule cell layer, as well as 

vacuoles and spheroids in the reticular formation. In two of these four puppies the spinal 

cord was examined and showed vacuoles and spheroids in the white matter as well. 

The affected puppies belonging to family 6 had comparable vacuolation of the 

cerebellar nuclei and the reticular formation. However, no vacuoles were detected in 

the cerebellar granule cell layer and no spheroids were seen in the reticular formation. 

In contrast to the Malinois puppies belonging to families 1-4, all affected puppies of 

family 6 additionally showed necrotic neurons and marked gliosis in the spinal cord 

gray matter. 

The neuropathological changes noted in family 5 differed from the other families. The 

two affected puppies in this family showed very few vacuoles in the CNS, but marked 

gliosis in the cerebellar nuclei, in selected medullary nuclei, and in the spinal cord gray 

matter. 

 

Pedigree analysis 

Pedigrees were available from six Malinois families and were consistent with a 

monogenic autosomal recessive mode of inheritance. A common ancestor in both 

maternal and paternal lineages was identified in five of the six studied families within 

a maximum of five generations. In the remaining family (family 6), this common 

ancestor was found on the maternal side, but not on the paternal side (Figure 1). 
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Genetic mapping of the causative variant 

The mapping of the causative locus was performed by investigating six Malinois 

families with a total of 12 Malinois puppies with cerebellar dysfunction, 20 non-

affected offspring, and 12 non-affected parents (Figure 1). 

An initial linkage analysis including all animals did not reveal any linked segments. As 

the histopathological examinations had already suggested subtle phenotypic differences 

between some of the families, we then subsequently performed the linkage analysis 

separately for each of the six families (Table S2). This revealed that families 1-4 shared 

two tentatively linked intervals on chromosomes 8 and 38, both reaching a LOD score 

of 2.449. We assumed that the lack of linkage to chromosome 8 and/or 38 in families 5 

and 6 was due to locus heterogeneity and that the affected puppies in these families had 

possibly genetically distinct diseases. 

Based on the results from the parametric linkage analysis and the pedigree records we 

hypothesized that the six affected puppies from families 1-4 most likely were inbred to 

one single founder animal. Under this scenario the affected individuals were expected 

to be identical by descent for the causative genetic variant and flanking chromosomal 

segments. We used a homozygosity mapping approach to fine-map the region of 

interest and analyzed the six affected Malinois puppies for extended regions of 

homozygosity with simultaneous allele sharing. We identified three genome regions 

with a total of 2.74 Mb that fulfilled our search criteria (Table S3). By intersecting the 

linked segments from families 1-4 and the homozygous intervals from the six cases of 

these families, only one segment on chromosome 38 remained (Figure 2). Therefore, 

the combined linkage and homozygosity analysis defined an exact critical interval of 

1,414,646 bp at Chr38:21,060,597-22,475,242. Upon inspection of the SNP chip 

genotypes of isolated Malinois cases with unknown relationships to our families, we 
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identified one additional puppy, which also carried the disease-associated haplotype in 

homozygous state (MA152). We therefore assumed that this puppy was affected by the 

same genetic disease as the cases in family 1-4. 

 

 

 

 

 

 

 

 

 

Figure 2 Combined linkage and homozygosity mapping. We performed parametric linkage analysis for a recessive 

trait in families 1-4 and homozygosity analysis across six selected cases. Two linked genome segments are indicated 

in orange and three homozygous segments with shared alleles are indicated in red. Only one region on chromosomes 

38 showed both linkage and homozygosity and was considered the critical interval (arrow). Specifically, this 

~1.4 Mb region corresponded to Chr38:21,060,597-22,475,242. 

 

 

Identification of the causative variant 

A total of 30 genes was annotated in the 1.4 Mb critical interval on chromosome 38. To 

obtain a comprehensive overview of all variants in this region we resequenced the 

whole genome of three affected Malinois puppies and called single nucleotide as well 

as indel variants with respect to the reference genome of a presumably non-affected 

Boxer (CanFam 3.1). The genotypes of the affected Malinois puppies were further 

compared with 140 dog genomes from various breeds that had been sequenced in the 

course of other studies (Table S4). We hypothesized that the causative variant should 
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be completely absent from all dog breeds in the sample set except the Belgian Shepherd 

breed. After applying this filter, 23 disease-associated variants including two missense 

variants remained (Table 1; Table S5). 

 

Table 1 Variants detected by whole genome resequencing of three affected Malinois dogs. 

Filtering step Number of variants 

Variants in the whole genomea 938,586 

Variants in the critical 1.4 Mb interval on chromosome 38 3,558 

Variants in the critical interval that were absent from 140 other dog genomes 23 

  

Non-synonymous variants in the whole genomea 6,007 

Non-synonymous variants in the 1.4 Mb critical interval on chromosome 38 48 

Non-synonymous variants in the critical interval, absent from 140 other dog genomes 2 

 

aThe sequences were compared to the reference genome (CanFam 3.1) from a Boxer. Only variants that were 

homozygous in all three affected Malinois puppies (MA008, MA094, and MA152) are reported. Non-synonymous 

variants were classified based on the ENSEMBL annotation (version 72). 

 

 

We genotyped the two missense variants in additional dogs and found the variant allele 

also in healthy control dogs from other breeds. Thus, we considered these variants as 

unlikely candidates and focused on the remaining 21 variants, which had been predicted 

to be non-coding by our automated pipeline. When we double-checked these variants 

with respect to the NCBI annotation, we recognized that one, Chr38:22,140,659T>C, 

is actually a missense variant located within exon 2 of the KCNJ10 gene, which is not 

correctly annotated in ENSEMBL. The variant can therefore also be described as 

KCNJ10:c.986T>C and is predicted to lead to a non-conservative amino acid exchange 

from leucine to proline at codon 329 (p.Leu329Pro). Residue 329 is located in the C-

terminal cytoplasmic domain of KCNJ10. The region of the variant is highly conserved 

across vertebrates (Figure 3). 
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Figure 3 Evolutionary conservation of the leucine residue at position 329 in the KCNJ10 protein. Vertebrates share 

highly conserved acid sequences in the region of the variant. The sequences were derived from the following 

database accessions: C. lupus XP_545752.3, H. sapiens NP_002232.2, B. taurus NP_001075070.1, M. musculus 

NP_001034573.1, G. gallus XP_003643542.1, X. tropicalis NP_001072312.1. 

 

 

 

The presence of this variant in homozygous state was confirmed by Sanger sequencing 

in the six affected Malinois puppies belonging to families 1-4 and in the isolated case 

MA152. We additionally genotyped 231 other Malinois, 25 Groenendael, two 

Laekenois, 34 Tervueren, and 486 dogs of genetically diverse other breeds for this 

variant. The variant was not found outside the Belgian Shepherd population. The 

variant was present in heterozygous state or absent in the remaining six cases from 

families 5 and 6 and the six remaining isolated cases (Table 2, Table S1). 
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Table 2 Association of the KCNJ10:c.986T>C genotypes with cerebellar dysfunction. 

Genotype KCNJ10:c.986T>C T/T C/T C/C 

    

Malinois cases (families 1-4, MA152) - - 7 

Malinois cases (families 5 & 6, 6 isolated dogs) 9 3 - 

Malinois controls 176 43 - 

Groenendael controls 25 - - 

Laekenois controls 2 - - 

Tervueren controls 33 1a - 

Control dogs from other breedsb 486 - - 

 

aThis Tervueren dog had Malinois parents. 

bThese dogs were specifically genotyped for the KCNJ10:c.986T>C variant. The genome sequences of 140 

independent control dogs were also homozygous T/T at this variant. Therefore, the number of control dogs totals 

626. 

 

 

DISCUSSION 

In this study, we identified a missense variant of KCNJ10 as a candidate causative 

genetic defect for SDCA in the Belgian Shepherd breed, more specifically in Malinois 

dogs. We propose to call this particular phenotype spongy degeneration with cerebellar 

ataxia, subtype 1 (SDCA1). 

We acknowledge the limitations of our linkage analysis, which did not reach a 

significant LOD score of three in the investigated families. The chosen short read 

resequencing methodology in combination with an incomplete reference genome was 

also not 100% sensitive. However, as we identified a non-synonymous variant in a 

highly plausible functional candidate gene, we think that our mapping and genome 

resequencing data combined with the knowledge on KCNJ10 function in humans, mice, 

and dogs strongly support the causality of KCNJ10:c.986T>C in the Belgian Shepherd 

breed. 
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In dogs, a KCNJ10 variant (XM_545752.3:c.627C>G) has already been reported in 

several terrier breeds (Gilliam et al. 2014; Rohdin et al. 2015). This missense variant 

is predicted to result in p.Ile209Met and leads to hereditary ataxia, also described as 

spinocerebellar ataxia with myokymia, seizures, or both (SAMS, Gilliam et al. 2014). 

Although there are some similarities in the clinical findings of the terrier’s hereditary 

ataxia and the SDCA1 in Belgian Shepherd dogs, substantial neuropathological 

differences in these two distinct diseases are evident. In terriers, the neuropathological 

lesions are characterized by bilateral symmetrical axonopathy with secondary 

demyelination, most prominent in the spinal cord. Lesions in the peripheral nervous 

system and in the brain were also described. However, in contrast to Belgian Shepherd 

dogs with SDCA1, changes in the cerebellum and/or spongy degeneration in the CNS 

were not noted in the terrier breeds. Our findings highlight the phenotypic variability 

caused by different KCNJ10 variants in the dog, which has also been described in 

humans (Cross et al. 2013; Abdelhadi et al. 2016). The two canine variants 

(p.Ile209Met and p.Leu329Pro) are relatively far apart from each other and also 

relatively far away from all known human missense variants (Abdelhadi et al. 2016). 

Therefore, a detailed genotype-phenotype correlation with respect to specific amino 

acid exchanges cannot yet be established. Additional studies are necessary to better 

understand these rare and complex diseases in dogs and humans. 

It remains unclear why seizures were not found in dogs with the KCNJ10:c.986T>C 

variant. However, it is possible that infrequent or subtle (focal) seizures were missed or 

misinterpreted by owners. Furthermore, future assessment of renal, auditory, and ocular 

functions in SDCA1 affected Belgian Shepherd dogs could reveal additional 

similarities to the human EAST syndrome. 
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Our findings strongly suggest that more than one form of cerebellar dysfunction occurs 

in the Belgian Shepherd breed. The KCNJ10:c.986T>C variant was not present in 

homozygous state in any of the dogs with cerebellar dysfunction in families 5 and 6, as 

well as in six isolated Malinois puppies with neurological abnormalities. Moreover, 

after retrospective revision of histopathology, we identified a subtle phenotype 

heterogeneity, which further supports our hypothesis of a different genetic basis in 

closely related litters. However, it also has to be kept in mind that neuropathological 

differences between cases may have been caused by different intervals between onset 

of clinical sings and post mortem examination. 

This study highlights the challenges that dog breeders are confronted with if they do 

not have access to genetic tests. Prior to our study, there was a strong suspicion that the 

common ancestor of our six families, a very popular sire, had been a carrier for one 

recessive neurological defect. Our study demonstrates that the common ancestry of this 

sire was most likely coincidental and and it remains unclear whether this dog was 

indeed a carrier for the KCNJ10 and/or the hypothetical defect(s) underlying the cases 

in families 5 and/or 6. 

In conclusion, we identified the KCNJ10:c.986T>C missense variant as most likely 

causative for SDCA1 in the Belgian Shepherd breed. Cerebellar dysfunction in this 

breed is heterogeneous and the reported variant explains only a fraction of clinically 

comparable cases. Further investigations on the other forms of cerebellar dysfunction 

are needed to clarify their precise phenotype and the underlying genetic variants. The 

identified affected dogs may serve as model for the human EAST syndrome. Our 

findings enable genetic testing in Belgian Shepherd dogs, so that the nonintentional 

breeding of affected puppies with this specific disease can be avoided in the future. 
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NOTE ADDED IN PROOF 

During the final production stages of this manuscript, another independent study also 

reported the KCNJ10:c.986T>C variant as being pathogenic for the SeSAME/EAST 

homologue in Malinois dogs (Van Poucke et al. 2016, doi: 10.1038/ejhg.2016.157). 

  



20 

LITERATURE CITED 

Abdelhadi, O., D. Iancu, H. Stanescu, R. Kleta, and D. Bockenhauer, 2016 EAST 

Syndrome: Clinical, Pathophysiological, and Genetic Aspects of Mutations in 

KCNJ10. Rare Dis. 4: e1195043. 

Abecasis, G. R., S. S. Cherny, W. O. Cookson, and L. R. Cardon, 2002 Merlin—rapid 

Analysis of Dense Genetic Maps Using Sparse Gene Flow Trees. Nat. Genet. 

30: 97–101. 

Arai, E., Y. Baba, T. Iwagawa, H. Kuribayashi, Y. Mochizuki et al., 2015 Ablation of 

Kcnj10 Expression in Retinal Explants Revealed Pivotal Roles for Kcnj10 in 

the Proliferation and Development of Müller Glia. Mol. Vis. 21: 148–59. 

Bai, B., W. M. Zhao, B. X. Tang, Y. Q. Wang, L. Wang et al., 2015 DoGSD: the dog 

and wolf genome SNP database. Nucleic Acids Res 43 (Database issue): D777-

783. 

Bockenhauer, D., S. Feather, H. C. Stanescu, S. Bandulik, A. A. Zdebik et al., 2009 

Epilepsy, Ataxia, Sensorineural Deafness, Tubulopathy, and KCNJ10 

Mutations. N. Engl. J. Med. 360: 1960–70. 

Cachin, M., and M. Vandevelde, 1991 Congenital Tremor with Spongy Degeneration 

of the Central Nervous System in Two Puppies. J. Vet. Inter. Med. 5: 87–90. 

Cingolani, P., A. Platts, L. L. Wang, M. Coon, T. Nguyen et al., 2012 A program for 

annotating and predicting the effects of single nucleotide polymorphisms, 

SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; 

iso-3. Fly 6: 80-92. 

Cross, J. H., R. Arora, R. A. Heckemann, R. Gunny, K. Chong et al., 2013 Neurological 

Features of Epilepsy, Ataxia, Sensorineural Deafness, Tubulopathy Syndrome. 

Dev. Med. Child Neurol. 55: 846–56. 



21 

Djukic, B., K. B. Casper, B. D. Philpot, L.-S. Chin, and K. D. McCarthy, 2007 

Conditional Knock-out of Kir4.1 Leads to Glial Membrane Depolarization, 

Inhibition of Potassium and Glutamate Uptake, and Enhanced Short-Term 

Synaptic Potentiation. J. Neurosci. 27: 11354–65. 

Freudenthal, B., D. Kulaveerasingam, L. Lingappa, M. A. Shah, L. Brueton et al., 2011 

KCNJ10 Mutations Disrupt Function in Patients with EAST Syndrome. 

Nephron Physiol. 119: 40-48. 

Gilliam, D., D.P. O’Brien, J.R. Coates, G.S. Johnson, G.C. Johnson et al., 2014 A 

Homozygous KCNJ10 Mutation in Jack Russell Terriers and Related Breeds 

with Spinocerebellar Ataxia with Myokymia, Seizures, or Both. J. Vet. Inter. 

Med. 28: 871–77. 

Kleiter, M., S. Högler, S. Kneissl, A. Url, and M. Leschnik, 2011 Spongy Degeneration 

with Cerebellar Ataxia in Malinois Puppies: A Hereditary Autosomal Recessive 

Disorder? J. Vet. Inter. Med. 25: 490–96. 

Li, H., R. Durbin, 2009 Fast and accurate short read alignment with Burrows-Wheeler 

transform. Bioinformatics 25: 1754-1760. 

Li, H., 2011 A statistical framework for SNP calling, mutation discovery, association 

mapping and population genetical parameter estimation from sequencing data. 

Bioinformatics 27: 2987-2993. 

McKenna, A., M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis et al., 2010 The 

Genome Analysis Toolkit: a MapReduce framework for analyzing next-

generation DNA sequencing data. Genome Res 20: 1297-1303. 

Neusch, C., N. Rozengurt, R. E. Jacobs, H. A. Lester, and P. Kofuji. 2001 Kir4.1 

Potassium Channel Subunit Is Crucial for Oligodendrocyte Development and in 

Vivo Myelination. J. Neurosci. 21: 5429–38. 



22 

Palygin, O., O. Pochynyuk, and A. Staruschenko, 2016 Role and Mechanisms of 

Regulation of the Basolateral Kir 4.1/Kir 5.1 K(+) Channels in the Distal 

Tubules. Acta Physiol. (Oxf): apha.12703. 

Purcell, S., B. Neale, K. Todd-Brown, L. Thomas, M. A. Ferreira et al., 2007 PLINK: 

A Tool Set for Whole-Genome Association and Population-Based Linkage 

Analyses. Am. J. Hum. Genet. 81: 559–75.Rohdin, C., L. Lüdtke, P. Wohlsein, 

and K. Hultin Jäderlund, 2010 New Aspects of Hereditary Ataxia in Smooth-

Haired Fox Terriers. Vet. Rec. 166 : 557–60. 

Rohdin, C., D. Gilliam, C. A. O’Leary, D. P. O’Brien, J. R. Coates et al., 2015 A 

KCNJ10 Mutation Previously Identified in the Russell Group of Terriers Also 

Occurs in Smooth-Haired Fox Terriers with Hereditary Ataxia and in Related 

Breeds. Acta Vet. Scand. 57: 26. 

Sala-Rabanal, M., L. Y. Kucheryavykh, S. N. Skatchkov, M. J. Eaton, and C. G. 

Nichols, 2010 Molecular Mechanisms of EAST/SeSAME Syndrome Mutations 

in Kir4.1 (KCNJ10). J. Biol. Chem. 285: 36040–48. 

Scholl, U. I., M. Choi, T. Liu, V. T. Ramaekers, M. G. Häusler et al., 2009 Seizures, 

Sensorineural Deafness, Ataxia, Mental Retardation, and Electrolyte Imbalance 

(SeSAME Syndrome) Caused by Mutations in KCNJ10. Proc. Natl. Acad. Sci. 

USA 106: 5842–47. 

Thompson, D. A., S. Feather, H. C. Stanescu, B. Freudenthal, A. A. Zdebik et al., 2011 

Altered Electroretinograms in Patients with KCNJ10 Mutations and EAST 

Syndrome. J. Physiol. 589: 1681–89. 

Van der Auwera, G. A., M. O. Carneiro, C. Hartl, R. Poplin, G. Del Angel et al., 2013 

From FastQ data to high confidence variant calls: the Genome Analysis Toolkit 

best practices pipeline. Curr Protoc Bioinformatics 43:11.0.1-33. 



23 

Wessmann, A., T. Goedde, A. Fischer, P. Wohlsein, H. Hamann et al., 2004 Hereditary 

Ataxia in the Jack Russell Terrier-Clinical and Genetic Investigations. J. Vet. 

Inter. Med. 18: 515–21. 

Wiedmer, M., A. Oevermann, S. E. Borer-Germann, D. Gorgas, G. D. Shelton et al., 

2016 A RAB3GAP1 SINE Insertion in Alaskan Huskies with Polyneuropathy, 

Ocular Abnormalities, and Neuronal Vacuolation (POANV) Resembling 

Human Warburg Micro Syndrome 1 (WARBM1). G3 (Bethesda) 6: 255–62. 

Williams, D. M., C. M. Lopes, A. Rosenhouse-Dantsker, H. L. Connelly, A. Matavel 

et al., 2010 Molecular Basis of Decreased Kir4.1 Function in SeSAME/EAST 

Syndrome. J. Am. Soc. Nephrol. 21: 2117–29. 


