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Abstract

In contrast to the mammalian retina, the zebrafish retina exhibits the potential for lifelong ret-

inal neurogenesis and regeneration even after severe damage. Previous studies have

shown that the transforming growth factor beta (TGFβ) signaling pathway is activated during

the regeneration of different tissues in the zebrafish and is needed for regeneration in the

heart and the fin. In this study, we have investigated the role of the TGFβ pathway in the N-

methyl-N-nitrosourea (MNU)-induced chemical model of rod photoreceptor de- and regener-

ation in adult zebrafish. Immunohistochemical staining for phosphorylated Smad3 was ele-

vated during retinal regeneration, and phosphorylated Smad3 co-localized with proliferating

cell nuclear antigen and glutamine synthetase, indicating TGFβ pathway activation in prolif-

erating Müller glia. Inhibiting the TGFβ signaling pathway using a small molecule inhibitor

(SB431542) resulted in accelerated recovery from retinal degeneration. Accordingly, we

observed increased cell proliferation in the outer nuclear layer at days 3 to 8 after MNU treat-

ment. In contrast to the observations in the heart and the fin, the inhibition of the TGFβ sig-

naling pathway resulted in increased proliferation after the induction of retinal degeneration.

A better understanding of the underlying pathways with the possibility to boost retinal regen-

eration in adult zebrafish may potentially help to stimulate such proliferation also in other

species.

Introduction

Zebrafish (Danio rerio) is an important model system in visual research, amongst others, as its

retina shows the typical structure of vertebrates and is rich in cone photoreceptors [1–6]. The

lifelong retinal neurogenesis in zebrafish is particularly interesting [7]. Under physiological

conditions, the ciliary marginal zone (CMZ) and rod progenitors in the outer nuclear layer

(ONL) maintain stable rod photoreceptor density in a continuously growing eye [7–12].

Furthermore, the zebrafish retina regenerates even after severe damage [13–16]. Thereby, pro-

liferating de-differentiated Müller glia exhibit the ability to replace all types of neurons to

reconstitute the damaged retina, forming also rod progenitors that regenerate photoreceptor

cells [7,15,17–20].
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We have recently introduced the N-methyl-N-nitrosourea (MNU)-induced chemical

model of rod photoreceptor degeneration in zebrafish [14,21]. This model is ideal for analyz-

ing the signaling pathways involved in retinal regeneration, as it selectively damages photore-

ceptors [14]. MNU acts similarly in various species [22–24]. Therefore, this model provides a

method to elucidate why regeneration occurs in adult zebrafish but not in mammals.

Previously, the transforming growth factor beta (TGFβ) pathway was identified to play a

crucial role in the regeneration of the heart [25] and the fin [26] in adult zebrafish. TGFβ is

among the most important ligands involved in cell behavior because it modulates cell migra-

tion, proliferation and death during development and tissue repair [27]. TGFβ enhances extra-

cellular matrix production after injury [27–29]. The hyper-activation of the TGFβ pathway

may lead to a fibrotic response [27]. Significantly altered infarct tissue and impaired heart

regeneration were observed after the inhibition of this pathway using the chemical inhibitor

SB431542 [25], which is a potent and specific inhibitor of the TGFβ/activin-dependent

pathway.

TGFβ belongs to the TGFβ superfamily, which also includes the activins. The binding speci-

ficity of this superfamily is achieved via the combination of type I and type II receptors. The

small molecule inhibitor SB431542 blocks the corresponding TGFβ type I receptors of TGFβ
and the activins via the activin receptor-like kinases (ALK) 4, 5 and 7. Blocking ALK 4 and 5

hinders the phosphorylation and, therefore, the activation of Smad2/3 [30]. Therefore, in our

study both TGFβ and activin signaling is blocked. For simplicity, we are referring to this as

"blocking the TGFβ pathway".

A recent study showed that retinal regeneration in adult zebrafish requires the regulation of

TGFβ signaling by the co-repressors TGif1 and Six3b [31]. The functional disruption of these

co-repressors resulted in a significant reduction in photoreceptor regeneration [31]. Their

results indicate that Smad2/3-mediated TGFβ signaling acts to inhibit proliferation of neuro-

nal progenitors following photoreceptor destruction in the adult zebrafish retina [31]. How-

ever, the outcome of TGFβ pathway inhibition remains unclear. To resolve this issue, we

blocked this pathway using the specific inhibitor SB431542 during retinal regeneration after

MNU-induced photoreceptor degeneration.

Materials and Methods

Animals

Wild-type zebrafish (Danio rerio) of the AB (Oregon) strain aged from 9 to 12 months were

used. The fish were maintained under standard conditions [32,33] in water at a temperature of

approximately 26.5˚Celsius and were raised in a 14-hour light/10-hour dark cycle. The experi-

mental research on animals was approved by the Cantonal Veterinary Office of Fribourg

(Switzerland) and adhered to the Association for Research in Vision and Ophthalmology

(ARVO) Statement for the Use of Animals in Ophthalmic and Vision Research.

MNU treatment and inhibition protocol

The fish were randomly assigned to either the uninhibited or the inhibited group. In the latter

group, the TGFβ/activin pathway was blocked using the small molecule inhibitor SB431542

(Tocris, Bristol, UK). The inhibitor was dissolved in dimethyl sulfoxide (DMSO) and added to

the water of the fish tank, beginning one day prior to the induction of retinal degeneration,

and was refreshed every third day. The final concentration in the water of the fish tank was

20 μM SB431542 and 0.1% DMSO. The uninhibited fish were held in water with 0.1% DMSO.

Retinal degeneration was induced in both groups by placing the zebrafish in water containing
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150 mg/l N-methyl-N-nitrosourea (MNU, Sigma, St. Louis, MO, USA) for one hour as previ-

ously described by our group [14].

Histology and cell quantification

Histology was performed before (day 0; uninjured) or at 1, 3, 5, 8, 15 or 30 days after MNU

treatment. To verify that the cell count was higher in the inhibited group than in the uninhib-

ited group (see results), the experiment was repeated twice for day 8. After euthanasia with tri-

caine methanesulfonate 0.3 mg/ml (Sigma-Aldrich, Buchs, Switzerland), the eyes were

enucleated, fixed using 4% paraformaldehyde, and embedded in paraffin. Then, 5-μm sections

were sliced as previously described [14]. The sections were stained with hematoxylin and eosin

(H&E). Images were captured with a Nikon Eclipse 80i microscope and were globally adjusted

for white balance and brightness with Adobe Photoshop. Sagittally oriented central sections at

the level of the optic nerve head were used for the measurements. The number of cells in the

inner nuclear layer (INL) and the outer nuclear layer (ONL) was manually determined at the

same position in the mid-periphery on both sides of the eye (the size of the counted area corre-

sponded to a retinal section of 100 μm in length).

TUNEL staining and immunohistochemistry

Paraffinized tissue sections were also used for TUNEL staining (In Situ Cell Detection Kit,

Fluorescein; Roche Applied Science, Rotkreuz, Switzerland) and immunohistochemistry [14].

The following primary antibodies were used: mouse anti-proliferating cell nuclear antigen

(PCNA) to detect cell proliferation (1:200 dilution; Abcam, Cambridge, UK), mouse anti-

glutamine synthetase (GS) to detect Müller glia (1:200; Millipore, Billerica, MA, USA) and rab-

bit anti-phosphorylated Smad3 (P-Smad3) to assess TGFβ pathway activity (1:50; ab52903,

Abcam, Cambridge, UK). Goat anti-rabbit and anti-mouse secondary antibodies conjugated

to Alexa 488 nm or 594 nm, respectively (1:500; Life Technologies, Paisley, UK), were utilized.

Immunohistochemistry for P-Smad3 was performed for all time-points (0, 1, 3, 5, 8, 15 or

30 days after MNU treatment). Double-staining was performed for P-Smad3 and PCNA or GS

using the above antibodies. Apoptosis (TUNEL-positive cells) and cell proliferation (PCNA-

positive cells) were assessed by counting the cells as described above for cell counting in the

H&E-stained sections. The size of the counted area corresponded to a retinal length of 500 μm

(TUNEL-positive cells) or 180 μm (PCNA-positive cells).

In situ hybridization

After deparaffinization, in situ hybridizations were performed as described by Chablais and

Jazwinska at days 0, 1, 5, and 30 after the induction of retinal degeneration [34]. The primers

are listed in the supplementary (S1 Table).

Statistical analysis

Statistical analysis was performed using GraphPad software (version 6.0f, GraphPad Software,

La Jolla, CA, USA). Intergroup comparisons were performed via one-way analysis of variance

(ANOVA) followed by the Bonferroni multiple comparison post hoc test. The level of signifi-

cance was set at a P value of 0.05. Cell counts were performed on 3 eyes from 3 zebrafish for

each time point. The experiments were repeated twice for day 0 and day 8 (H&E staining only)

to verify the observed increased cell counts in the inhibited group. For each eye, the cells in

two corresponding areas (opposite sides of the optic nerve) were counted, and the mean values

were calculated.
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Results

After inducing retinal degeneration using 150 mg/l MNU, maximal activation of the TGFβ path-

way occurred between days 3 and 8 as demonstrated by immunohistochemistry for phosphory-

lated Smad3 (P-Smad3) (Fig 1; representative immunohistochemistry for day 5 is shown).

TGFβ pathway activation was primarily observed in the INL and to some degree in the ONL at

the late time points (days 5 and 8). P-Smad3 staining is observed from the central to the periph-

eral retina, often more pronounced in the peripheral retina towards the ciliary marginal zone

(Fig 1). Consistent with the inhibition of the TGFβ receptor by SB431542, partly reduced Smad3

activation was observed in the inhibited group. For both groups, no relevant P-Smad3 was

observed at baseline (day 0; uninjured retina), day 1 and between days 15 and 30 after induction

of retina degeneration (Fig 1, exemplarily, uninjured retina, day 1, 5 and 30 are shown).

Based on immunohistochemistry, double-staining for P-Smad3 and PCNA (a proliferation

marker) or GS (a Müller glial marker) revealed the co-localization of these proteins, suggesting

that the TGFβ pathway is activated in proliferating Müller glia (Fig 2).

In situ hybridization for activin A and B and for TGFβ1a, 2 and 3 showed expression of these

genes as soon as one day after the induction of retinal degeneration. On day 5, the expression

increased further, whereas it nearly returned to baseline on day 30 (Fig 3). The highest staining

intensity was observed for TGFβ3, activin A and activin B, whereas only modest staining was

observed for TGFβ1a and only minimal staining for TGFβ2. At day 5, the expression of these

mRNAs is mainly in the INL, where the pattern corresponds to the distribution and morphology

of Müller glia cells. At day 30, the (weak) expression of activin A and B is mainly in the ONL.

Cell quantification was performed on H&E sections (Figs 4 and 5A). Different changes in

the cell counts in the ONL were observed between the inhibited and uninhibited groups. In

zebrafish in which TGFβ signaling was inhibited, the number of cells in the ONL was slightly

Fig 1. Immunohistological staining for P-Smad3 as an indicator of TGFβ pathway activation. The red channel with P-Smad3 staining is

shown in the figures above, whereas overlay with the green (autofluorescence of photoreceptor outer segments) and blue channel (DAPI) is shown

below. No relevant staining for P-Smad3 (red) was observed in the uninjured retina and one day after induction of retina degeneration with MNU.

Starting at day 3 and until day 8, immunohistochemical staining for P-Smad3 revealed the activation of the TGFβ pathway (exemplarily, day 5 is

shown). At day 15 and thereafter, no relevant activation was observed anymore (exemplarily, day 30 is shown). When the TGFβ pathway was

inhibited (small molecule inhibitor SB431542), reduced staining for P-Smad3 was observed, when compared to the non-inhibited group in 0.1%

dimethyl sulfoxide (DMSO). Lower magnification of retina 3 days after MNU treatment, including the peripheral retina is shown on the right. Cell

nuclei are stained with DAPI (blue). The scale bar indicates 50 μm. GC: ganglion cells; INL: inner nuclear layer; ONL: outer nuclear layer.

doi:10.1371/journal.pone.0167073.g001
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decreased on day 3 but subsequently exhibited a rapid increase to the baseline values on day 5,

peaking on day 8 (p<0.0001 compared to the uninhibited group). In comparison, the cell

count in the ONL of the uninhibited group was lower than in the inhibited group and

approached the baseline values not before day 30. To verify this difference, the experiment was

independently repeated twice for day 8. A similar decrease in the number of cells in the INL

compared to the baseline values was observed for both groups beginning on day 3; this

decrease reached a minimum on day 8 and persisted up to day 30.

No significant difference in cell proliferation in the INL, which peaked between days 3 and

8, was observed between TGFβ inhibition and non-inhibition (p>0.05 at each time point; Fig

5B). However, cell proliferation in the ONL was distinct between the two groups. The maximal

number of proliferating cells in the ONL was observed on days 5 and 8 in the inhibited group

but on day 15 in the uninhibited group (Fig 5B). Furthermore, the total number of PCNA-pos-

itive cells was higher in the inhibited group than in the uninhibited group (p<0.05 at day 8;

Figs 5B and 6).

In zebrafish in which TGFβ signaling was either inhibited or uninhibited, TUNEL staining

indicated a peak of apoptosis on day 3 (p<0.0001 for each), which was primarily detected in

the ONL (Figs 5C and 7). Furthermore, the inhibited group displayed some TUNEL-positive

cells in the ONL on days 8 and 12. This result agrees with the decrease in the cell number

between days 8 and 15.

Discussion

Teleost fish, such as zebrafish, exhibit the potential to regenerate most of their organs

[14,16,25,26]. After injury to the zebrafish retina, Müller glia cells are able to regenerate all

Fig 2. P-Smad3 is activated in proliferating cells. Top: The co-localization of P-Smad3 and proliferating cell nuclear antigen

(PCNA) indicates that Smad3 is activated in proliferating cells. Bottom: P-Smad3-positive cells in the inner nuclear layer (INL) co-

localized with glutamine synthetase (GS), suggesting that these cells are Müller glia. Representative immunohistochemical

staining at day 3 is depicted. Cell nuclei are stained with DAPI (blue). The scale bar indicates 25 μm. GC: ganglion cells, ONL:

outer nuclear layer.

doi:10.1371/journal.pone.0167073.g002
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types of retinal neurons [35–39]. Furthermore, Müller glia replenish the pool of rod photore-

ceptor progenitor cells in the ONL [15,16,18,19,40,41]. In this study we have used a retinal

degeneration model using MNU, as previously described by our group [14]. Compared to our

previous study [14], a lower amount of rod degeneration and an earlier start of proliferation

were observed in the present study. One explanation may be that we now have used younger

zebrafish (age 9–12 months), whereas in the other study fish were older (age 12–24 months).

Especially in the inhibited group, rod photoreceptor cells did not decrease substantially,

although there was a similar increase in TUNEL positive cells as in the non-inhibited group.

Therefore the possibility that the inhibitor protects rods from degeneration is unlikely and the

missing cell loss explained by the stronger proliferation.

Despite significant scientific efforts, the reason why this regeneration occurs in some spe-

cies but not in others remains unclear. In the present study, we aimed to elucidate the role of

the TGFβ signaling pathway during retinal regeneration. Recent studies have shown that the

activation of the TGFβ signaling pathway is necessary for the regeneration of the zebrafish

heart and fin [25,26]. Müller glia express TGFβ receptors, and serve as a source of TGFβ
[31,42–44] and thrombospondin-1 [45], an activator of TGFβ [46]. These findings concur with

our in situ experiments, in which we observed increased expression of TGFβ and the related

activins A and B in the INL during retinal regeneration. In our study we observed that immu-

nohistochemical staining for P-Smad3 co-localized with that for PCNA and GS. This result

Fig 3. In situ hybridization with activin A and B as well as tgfβ1a, 2 and 3 antisense probes in

zebrafish after the induction of retinal degeneration by MNU. Expression of these genes was detected

beginning at day 1 and peaking at day 5. The highest staining intensity was observed for tgfβ3 and activins A

and B, whereas only modest staining was observed for tgfβ1a and 2. These ligands were primarily detected in

the inner nuclear layer (INL). The scale bar indicates 50 μm. GC: ganglion cells, ONL: outer nuclear layer.

doi:10.1371/journal.pone.0167073.g003

Fig 4. H&E staining of zebrafish retinas before (uninjured) and after induction of retina degeneration

with MNU. In the non-inhibited (0.1% dimethyl sulfide, DMSO) and inhibited group (small molecule inhibitor

SB431542), a reduction of rod cells was observed starting at day 3. In the non-inhibited group the reduction of

rod photoreceptors persisted until day 8, whereas in the group with the inhibited TGFβ pathway (small

molecule inhibitor SB431542) a rapid recovery was observed already at day 5. Scale bar indicates 50 μm.

GC: ganglion cells, INL: inner nuclear layer, ONL: outer nuclear layer, SB: SB431542

doi:10.1371/journal.pone.0167073.g004
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indicated that the TGFβ pathway is activated in dividing Müller glia. Interestingly, at day 30

the remaining expression of activin A and B is relatively higher in the ONL than in the INL.

This is in line with the observation that at that time point more PCNA positive cells are found

in the ONL than in the INL. Furthermore, when the TGFβ pathway is inhibited, there are

more PCNA positive cells in the ONL between day 3 and 8, significantly so at day 8. These two

observations may indicate that the TGFβ pathway is also activated in rod progenitors in the

ONL.

Lenkowski et al. reported that the overall pattern of transcriptional changes in members of

the Smad2/3 signaling pathway suggests that TGFβ signaling initially is upregulated in the

Müller glia after light lesion, but then is quickly suppressed. They concluded that down regula-

tion of Smad2/3 signaling in the Müller glia is particularly important for the proliferative, neu-

rogenic, response of Müller glia to light-induced destruction of photoreceptors in the adult

zebrafish [31]. This is in line with our study, where we have found increased proliferation

Fig 5. Cell quantifications of H&E, PCNA and TUNEL stainings. A. After the induction of retinal

degeneration, cell loss in the outer nuclear layer (ONL) was observed in H&E stained paraffin sections. In

zebrafish in which TGFβ signaling was inhibited (ONL SB431542), the cell count in the ONL was slightly

decreased at day 3 compared to the baseline level (uninjured retina; day 0) but rapidly returned to it thereafter.

Alternatively, in the uninhibited group (ONL DMSO), the cell count remained reduced until day 8. Compared to

the baseline level, the number of cells of the INL of both groups (INL DMSO and INL SB431542) was

significantly reduced beginning at day 3, and this reduction persisted up to day 30. B. After the induction of

retinal degeneration using MNU, a significant increase in PCNA-positive cells, indicating proliferation, was

observed in the INL (INL DMSO and INL SB431542) between days 3 and 8 (peaking at days 3 and 5).

Whereas the maximal increase in PCNA-positive cells in the ONL was observed at days 5 and 8 in the TGFβ-

inhibited group (ONL SB431542), this increase was the highest at day 15 in the uninhibited group (ONL

DMSO). Overall, the inhibited group exhibited significantly more PCNA-positive cells than the uninhibited

group (p<0.05 at day 8). C. The most TUNEL-positive cells, indicating apoptosis, were observed at day 3 in

the ONL and the INL of both the TGFβ-inhibited (SB431542) and uninhibited groups (DMSO). In addition,

some TUNEL-positive cells were observed at days 8 and 12 in the ONL of the TGFβ-inhibited group (ONL

SB431542). The asterisks (*) indicate a significant difference (p<0.05) compared to baseline, and the

asterisks with squared brackets indicate a significant difference (p<0.05) between inhibited and uninhibited

TGFβ signaling.

doi:10.1371/journal.pone.0167073.g005

Fig 6. Cell proliferation in the zebrafish retina exposed to 150 mg/l MNU. Proliferating cell nuclear antigen (PCNA) positive cells (red) indicate

proliferation. Cell proliferation in the inner nuclear layer (INL) was highest at day 3 and 5, with no relevant difference between the non-inhibited (0.1%

dimethyl sulfide, DMSO) and inhibited group (small molecule inhibitor SB431542). In contrast, proliferation in the outer nuclear layer (ONL) was higher in

the inhibited group between 3 and 8. Cell nuclei are stained with DAPI (blue). Scale bar indicates 50 μm. GC: ganglion cells.

doi:10.1371/journal.pone.0167073.g006
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when the TGFβ signaling pathway is inhibited. Furthermore, in our study we observed ele-

vated P-Smad3 levels between day 3 and 8. Taken together the results of the study of Len-

kowski et al. and ours, it may be speculated that the initial inhibition of TGFβ is important for

proliferation, and thereafter TGFβ signaling promotes differentiation.

Our study reveals that inhibiting the TGFβ signaling pathways leads to accelerated recovery

from retinal degeneration, including increased cell proliferation in the ONL at days 3 to 8 after

MNU treatment. These findings are remarkable as the TGFβ pathway was shown to be crucial

for regeneration in the fin and the heart [25,26]. However, our findings are in line with the

observations of Lenkowski et al. [31], who described that increased activation of the TGFβ
pathway (via the functional disruption of the co-repressors Tgif1 and Six3b) hampers retinal

regeneration. Interestingly, the inhibition of Smad signaling using the same small molecule

inhibitor (SB431542) leads to the rapid and complete neural conversion of human embryonic

stem cells [47]. In vitro experiments by Close et al. revealed that aged rat Müller glia inhibited

the proliferation of retinal progenitors and Müller glia [48]. As proliferation was restored

when TGFβ signaling was inhibited, the authors hypothesized that TGFβ signaling maintains

mitotic quiescence in the postnatal rat retina [48]. Furthermore, activin A (a member of the

TGFβ superfamily that also signals via P-Smad2/3) has been shown to promote the differentia-

tion of progenitors into photoreceptors in rodent retinal cell cultures [49].

The opposing effects of the TGFβ signaling pathway on different organs (heart and fin vs.

eye) during regeneration in the same species is fascinating. This difference may be explained

by the variety of biological effects of TGFβ and the interaction between the TGFβ pathway and

other signaling pathways, as nicely summarized by Lenkowski et al. for the retina [31]. In zeb-

rafish, TGFβ signaling-induced scarring is crucial for heart regeneration, and TGFβ signaling-

induced extracellular matrix deposition is required for fin regeneration [25,26]. In neuronal

tissue, including the eye, glial scarring is associated with the inhibition of cell proliferation.

Indeed, in mammals, glial scarring after retinal damage (e.g., retinal detachment) is thought to

be disadvantageous [50–53].

Our approach reveals a new way to stimulate retinal regeneration, at least in zebrafish.

Complementary to the findings of Lenkowski et al. [31], who stated that Smad2/3-mediated

TGFβ signaling inhibits proliferation of neuronal progenitors, we observed increased retinal

Fig 7. TUNEL positive cells in the zebrafish retina after exposure to MNU. In uninjured zebrafish retina

there are merely no TUNEL positive cells. Three days after exposure to 150 mg/l MNU, both the non-inhibited

(0.1% dimethyl sulfide, DMSO) and the inhibited group (small molecule inhibitor SB431542) show a

considerable amount of TUNEL positive cells (green) in the outer nuclear layer (ONL) and to a lesser degree

in the inner nuclear layer (INL). Cell nuclei are stained with DAPI (blue). Scale bar indicates 50 μm. GC:

ganglion cells.

doi:10.1371/journal.pone.0167073.g007
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regeneration when the TGFβ pathway was inhibited. Whether such an effect may also be

achieved in mammals is unknown, but previous in vitro studies indicating similar effects of

TGFβ signaling modulation on Müller glia proliferation in mammals are encouraging [47–49].

Retinal injury or degeneration is an important cause of visual impairment or blindness; there-

fore, an improved understanding of mechanisms that enhance retinal regeneration would be

highly desirable. In the long term, this understanding may also provide insight into potential

treatments for degenerative retinal diseases. We hope that our current findings contribute to

such evidence.
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42. Pfeffer BA, Flanders KC, Guérin CJ, Danielpour D, Anderson DH. Transforming growth factor beta 2 is

the predominant isoform in the neural retina, retinal pigment epithelium-choroid and vitreous of the mon-

key eye. Exp Eye Res. 1994; 59: 323–333. doi: 10.1006/exer.1994.1114 PMID: 7821377

43. Behzadian MA, Wang XL, Jiang B, Caldwell RB. Angiostatic role of astrocytes: suppression of vascular

endothelial cell growth by TGF-beta and other inhibitory factor(s). Glia. Wiley Subscription Services,

Inc., A Wiley Company; 1995; 15: 480–490. doi: 10.1002/glia.440150411 PMID: 8926041

44. Ikeda T, Homma Y, Nisida K, Hirase K, Sotozono C, Kinoshita S, et al. Expression of transforming

growth factor-beta s and their receptors by human retinal glial cells. Curr Eye Res. 1998; 17: 546–550.

PMID: 9617551

45. Eichler W, Yafai Y, Wiedemann P, Reichenbach A. Angiogenesis-related factors derived from retinal

glial (Müller) cells in hypoxia. Neuroreport. 2004; 15: 1633–1637. PMID: 15232297

TGFβ Inhibition and Retinal Regeneration

PLOS ONE | DOI:10.1371/journal.pone.0167073 November 23, 2016 13 / 14

http://dx.doi.org/10.1242/dev.078543
http://dx.doi.org/10.1242/dev.078543
http://www.ncbi.nlm.nih.gov/pubmed/22513374
http://dx.doi.org/10.1016/j.cub.2007.07.019
http://www.ncbi.nlm.nih.gov/pubmed/17683938
http://dx.doi.org/10.1038/labinvest.3700375
http://dx.doi.org/10.1038/labinvest.3700375
http://www.ncbi.nlm.nih.gov/pubmed/16341020
http://www.ncbi.nlm.nih.gov/pubmed/3259578
http://dx.doi.org/10.1074/jbc.M010149200
http://www.ncbi.nlm.nih.gov/pubmed/11152469
http://www.ncbi.nlm.nih.gov/pubmed/12065756
http://dx.doi.org/10.1002/glia.22549
http://dx.doi.org/10.1002/glia.22549
http://www.ncbi.nlm.nih.gov/pubmed/23918319
http://dx.doi.org/10.1242/dev.043885
http://dx.doi.org/10.1242/dev.043885
http://www.ncbi.nlm.nih.gov/pubmed/20179093
http://dx.doi.org/10.1002/dneu.20362
http://dx.doi.org/10.1002/dneu.20362
http://www.ncbi.nlm.nih.gov/pubmed/17565703
http://dx.doi.org/10.1242/dev.090738
http://www.ncbi.nlm.nih.gov/pubmed/24154521
http://dx.doi.org/10.1073/pnas.1312009110
http://www.ncbi.nlm.nih.gov/pubmed/24248357
http://dx.doi.org/10.1038/ncb2115
http://www.ncbi.nlm.nih.gov/pubmed/20935637
http://dx.doi.org/10.1002/cne.22448
http://www.ncbi.nlm.nih.gov/pubmed/20878783
http://www.ncbi.nlm.nih.gov/pubmed/7266666
http://dx.doi.org/10.1523/JNEUROSCI.0332-06.2006
http://dx.doi.org/10.1523/JNEUROSCI.0332-06.2006
http://www.ncbi.nlm.nih.gov/pubmed/16763038
http://dx.doi.org/10.1006/exer.1994.1114
http://www.ncbi.nlm.nih.gov/pubmed/7821377
http://dx.doi.org/10.1002/glia.440150411
http://www.ncbi.nlm.nih.gov/pubmed/8926041
http://www.ncbi.nlm.nih.gov/pubmed/9617551
http://www.ncbi.nlm.nih.gov/pubmed/15232297


46. Crawford SE, Stellmach V, Murphy-Ullrich JE, Ribeiro SM, Lawler J, Hynes RO, et al. Thrombospondin-

1 is a major activator of TGF-beta1 in vivo. Cell. 1998; 93: 1159–1170. PMID: 9657149

47. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L. Highly efficient neural

conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol. 2009; 27:

275–280. doi: 10.1038/nbt.1529 PMID: 19252484

48. Close JL, Gumuscu B, Reh TA. Retinal neurons regulate proliferation of postnatal progenitors and

Müller glia in the rat retina via TGF beta signaling. Development. 2005; 132: 3015–3026. doi: 10.1242/

dev.01882 PMID: 15944186

49. Davis AA, Matzuk MM, Reh TA. Activin A promotes progenitor differentiation into photoreceptors in

rodent retina. Mol Cell Neurosci. 2000; 15: 11–21. doi: 10.1006/mcne.1999.0806 PMID: 10662502

50. Garweg JG, Tappeiner C, Halberstadt M. Pathophysiology of proliferative vitreoretinopathy in retinal

detachment. Surv Ophthalmol. 2013; 58: 321–329. doi: 10.1016/j.survophthal.2012.12.004 PMID:

23642514

51. Miller B, Miller H, Patterson R, Ryan SJ. Retinal wound healing. Cellular activity at the vitreoretinal inter-

face. Arch Ophthalmol. 1986; 104: 281–285. PMID: 3947304

52. Fitch MT, Silver J. CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regen-

eration failure. Exp Neurol. 2008; 209: 294–301. doi: 10.1016/j.expneurol.2007.05.014 PMID:

17617407
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