
Natural supersymmetry from extra dimensions

A. Delgado a, M. Garcia-Pepin b, G. Nardini c, M. Quirós b ,d

aDepartment of Physics, University of Notre Dame
Notre Dame, Indiana 46556, USA

bInstitut de F́ısica d’Altes Energies (IFAE),
The Barcelona Institute of Science and Technology (BIST),

Campus UAB, 08193 Bellaterra (Barcelona) Spain

cAlbert Einstein Center (AEC), Institute for Theoretical Physics (ITP),
University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
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Abstract

We show that natural supersymmetry can be embedded in a five-dimensional theory
with supersymmetry breaking à la Scherk-Schwarz (SS). There is no ‘gluino-sucks’
problem for stops localized in the four-dimensional brane and gluinos propagating
in the full five-dimensional bulk, and sub-TeV stops are easily accommodated. The
µ/Bµ problem is absent as well; the SS breaking generates a Higgsino Dirac mass
and no bilinear Higgs mass parameter in the superpotential is required. Moreover,
for nonmaximal SS twists leading to tanβ ' 1, the Higgs spectrum is naturally split,
in agreement with LHC data. The 125 GeV Higgs mass and radiative electroweak
symmetry breaking can be accommodated by minimally extending the Higgs sector
with Y = 0 SU(2)L triplets.
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1 Introduction

In the past decades the hierarchy problem of the Standard Model (SM) has guided most of
the particle physics community in the search for a UV completion able to describe nature
up to the Planck (or GUT) cutoff scale. In this task, supersymmetry and compositeness
have been, and still are, the most promising lighthouses to follow. Their most appealing
feature is that their Higgs sectors are insensitive to the Planck mass cutoff, and are only
sensitive to the scale of new physics which should, therefore, be close to the electroweak
scale in order to avoid an (unnatural) little hierarchy problem. Despite this expectation,
there is no sign of new physics in the LHC data. The situation is thus threatening: if
the tendency in the data does not change, we might lose our trust in the naturalness
criterion (and the subsequent loss of confidence on any deduction based on dimensional
arguments), which would make our future way up to the Planck scale very hard. In order
to avoid this threat, it is crucial to understand whether, and in case why, naturalness is
hiding in the present LHC data.

In supersymmetry, several experimental observations seem to invoke a tuning in the
electroweak sector. Indeed, if one does not rely on the low-energy corners of the param-
eter space still compatible with the experimental searches, a large gap between the soft-
supersymmetry breaking and electroweak scales is required [1, 2]. The tension between
data and naturalness is however reduced, and may be avoided, if there is a symmetry
imposing some cancellations at both tree level and (at least) one loop.

The naturalness problem is manifest in the minimal supersymmetric extension of the
SM (MSSM). In the MSSM the squared-mass term of the lighter CP-even (and SM-like)
eigenstate h has the magnitude of the lighter eigenvalue in the matrix

M2
H1,H2

=

(
m2

1 m2
3

m2
3 m2

2

)
, (1.1)

where m2
i = (m2

i )
0 + ∆m2

i contains radiative corrections ∆m2
i to the desired order. The

lightest eigenvalue of M2
H1,H2

thus needs to be O(m2
Z) and negative to have agreement

with the experimentally observed electroweak symmetry breaking (EWSB) pattern. The
other Higgses, instead, with a squared mass of the order of the larger eigenvalue ofM2

H1,H2
,

have to be hierarchically larger to avoid any tension with the extra-Higgs searches [3, 4].
Two parameter regions seem promising for fulfilling these features:

• The so-called focus point solution [5–9], based on the fact that, for m2
1 � m2

3, or
equivalently tan β � 1, M2

H1,H2
is essentially diagonal. In this case no tree-level

tuning is required if m2
2 ∼ O(−m2

Z).

• The parameter region m2
1 ' m2

2 ' m2
3 � O(m2

Z) (equivalent to tan β ' 1) which, if
justified by a symmetry, naturally leads to a vanishing eigenvalue in M2

H1,H2
.
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However, several issues jeopardize the naturalness of these two options. In particular
the supersymmetric parameter µ 1 cannot be below the electroweak scale because of the
lightest chargino mass bound, mχ̃± & 105 GeV [10]. Moreover, even if µ is above this
bound, it can be in tension with the general electroweakino searches, depending on the
gaugino mass spectrum [11, 12]. Finally if all these constraints are circumvented, still,
explaining theoretically why the electroweak scale appears naturally in the superpotential
is challenging.

The radiative corrections ∆m2
i should also lift concerns. They should be small in

order not to introduce a tuning at one loop. In this sense, the charged sleptons and
bottom squarks that must be heavy to fulfill the flavor constraints [13], are innocuous
when tan β is not huge. Stop contributions are instead dangerous. Thus, naturalness
requires light stops, which are in agreement with top squark searches and 125 GeV Higgs
mass constraints only in the presence of heavy gluinos and sizable stop mixing [14–16].
Unfortunately, the latter also generate large radiative corrections that need to be tuned,
while the former tend to be inconsistent with light stops in top-down approaches. In
fact, heavy gluinos pull the stop soft masses above the TeV scale along the running from
the scale at which they are generated (if this scale is large enough), to the electroweak
scale [17].

In view of the above issues, an appropriate strategy to resurrect naturalness in the
present LHC data may consist in looking for UV embeddings where:

(i) The tree-level Higgs mass is higher than in the (“vanilla”) MSSM in such a way that
rather light stops with negligible mixing are viable.

(ii) Gluinos are heavy, but the scale at which the soft stop masses are generated, and be-
low which the renormalization-group (RG) evolution applies, is rather low (i.e. stop
masses remain small while running down to the electroweak scale).

(iii) In the superpotential no mass term is required, so that the Dirac mass of the Hig-
gsinos does not have a superpotential origin.

Remarkably, the five-dimensional (5D) N = 1 supersymmetry embeddings of Refs. [18,
19] can fulfill these requirements [20, 21]. When the fifth dimension is compactified on
the circle orbifold S1/Z2 of radius R, the N = 1 chiral superfields propagating in the
bulk receive either soft supersymmetry-breaking scalar masses and/or Dirac fermionic
masses, depending on some global charge assignments technically called Scherk-Schwarz
(SS) twists [22, 23]. It is then possible to arrange the 5D Higgs sector in bulk chiral
superfields in such a way that, below the compactification scale, the four-dimensional
(4D) effective theory is equivalent to the MSSM with either tan β = 1 [with m2

1 = m2
2 =

1This parameter provides a supersymmetric contribution to the tree-level Higgs masses (m2
1,2)0 =

m2
H1,2

+ µ2.
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m2
3 ∼ O(1/R2) exact at tree level] for nonmaximal twists [19–21] or tan β = ∞ for

maximal twists [24, 25]. Crucially, no contribution mimicking a superpotential squared
mass µ2 arises, although the Higgsinos do receive an O(1/R) Dirac mass, as required by
condition (iii) 2.

This supersymmetry breaking mechanism, dubbed the SS mechanism [22], also works
on vector superfields. It naturally leads to a spectrum where all gauge bosons are massless
(prior to EWSB) and all gauginos have O(1/R) Majorana masses. On the other hand, at
tree level, it does not induce any supersymmetry breaking for superfields localized at a
brane of the orbifold. Therefore, by assuming a localized third generation of squarks, the
stop soft squared masses are generated with a suppression of a one-loop factor 3. Moreover,
since the logarithmic ratio between the electroweak scale and the compactification scale
(at which the SS mechanism induces supersymmetry breaking) is small, the stop masses
are not drastically modified by their RG evolution and remain O(0.1/R), as required by
condition (ii). Finally, also the requirement (i) can be fulfilled. In (maximally twisted) SS
scenarios leading to tan β = ∞, 5D nonminimal supersymmetric extensions with either
one singlet on the brane, or two pairs of vectorlike fermions on the brane, or an extra U(1)′

vector superfield in the bulk, boost the tree-level mass of the SM-like Higgs [24,25] 4.

The 5D SS scenarios then contain all the ingredients guaranteeing the SM-like Higgs
squared-mass term to be O(m2

Z), provided by gauge interactions without an unnatural
tuning. The last obstacle is the sign of this term. In fact, in the above SS scenarios
solving the issue (i), EWSB (namely with a negative sign in the Higgs squared mass
term) can be achieved only by means of higher-dimensional operators whose magnitude
and origin are hard to identify. It is then worth proving that there exist SS scenarios
where these operators are not necessary for a successful EWSB, and where, at the same
time, the requirements (i), (ii) and (iii) are fulfilled. We achieve this result by focusing
on minimal extensions of the chiral superfield sector (for a study where the EWSB is
obtained in nonminimal chiral extensions violating condition (iii), see Ref. [26]). We also
restrict ourselves to the orbifold charge assignments corresponding to the tan β = 1 case,
for which the F terms contributions to the Higgs tree-level mass are enhanced.

Our proof of principle is developed in several steps. In Sec. 2 we review how to
embed the MSSM in a 5D SS scenario and why the 125 GeV Higgs mass and the EWSB
are problematic. Since the former problem should be trivially avoidable in a MSSM
5D scenario supplemented by a singlet, we consider in Sec. 3 the case where there is

2Notice that also the chiral superfields associated to the first and second generation of squarks and
sleptons will benefit of the same supersymmetry breaking if these superfields propagate in the bulk. There
exist charge assignments for which their fermions are massless (prior to EWSB) but their superpartners are
at the O(1/R) scale. This makes the SS mechanism naturally compatible with the flavor constraints [13].

3The stop mixing is also suppressed by a loop factor and far away from the maximal mixing value as
discussed in Sec. 2.

4At a quantitative level, the singlet case might be problematic as its F -term contribution to the Higgs
quartic coupling is suppressed at large tanβ.
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an extra singlet chiral superfield localized at the brane. As expected, the Higgs mass
bound can be accommodated, but the radiative corrections to the SM-like squared-mass
term are not sufficient to trigger the EWSB, analogously to the tan β = ∞ case [24, 25].
In addition, and surprisingly previously unnoticed, as the singlet is not protected by
any symmetry of the theory, it develops a large tadpole (prior to the EWSB) inducing a
O(1/R) vacuum expectation value (VEV) to the singlet. This jeopardizes the treatment of
the Higgs Kaluza-Klein (KK) towers and the possibility of achieving Higgs-singlet mixings
compatible with the LHC constraints [27]. This VEV could of course be suppressed by
introducing a (huge) singlet mass term in the superpotential 5. Since this possibility
would violate the criterion (iii), and moving the singlet to the bulk should not circumvent
the problem, in Sec. 4 we pursue the analysis with the Y = 0 SU(2)L-triplet extension of
the MSSM, in which case the gauge symmetry itself forbids the large tadpole. This case,
with the 5D N = 1 triplet superfield being in the bulk triplet charginos would be too light
if the superfield were localized on the brane turns out to be the example of SS scenario
that satisfies all the requests of our proof. Finally, in Sec. 4.5 we discuss some further
phenomenological bounds and the need for localizing on the brane the third family of
the leptonic superfield to overcome the dark matter bound, and in Sec. 5 we present our
conclusions.

2 5D MSSM

We embed the MSSM in a 5D space-time setup where the extra dimension is the orbifold
S1/Z2 with two 4D branes at the fixed points y = 0 and y = πR (R is the radius of
the circle S1). The gauge and Higgs sectors, as well as the first and second generations
of matter (and the right-handed stau 6), propagate in the bulk while the rest of the
third generation matter is localized at the y = 0 brane. The boundary conditions of
the bulk fields are twisted by introducing SS parameters associated with the available
global symmetries we are allowed to break. In this section we present a summary of the
formalism and results in the MSSM (nonminimal extensions are considered in Secs. 3 and
4). The original calculations were performed mainly in Refs. [19–21] to which we will refer
for more details. To simplify the notation, hereby, unless explicitly stated, we use units
where R ≡ 1.

In 5D supersymmetry the Higgs doublets in the bulk belong to the N = 2 hypermul-
tiplets Ha = (Ha, H

c
a,Ψa, Fa, F

c
a) (with a = 1, 2), where Ha and Hc

a are complex SU(2)L
doublets with hypercharge 1/2 and Ψa = (ψa, ψ̄

c
a)
T ≡ (ψaL, ψaR)T are SU(2)L-doublet

Dirac spinors with ψa (ψ̄a) and ψca (ψ̄ca) being undotted (dotted) Weyl spinors. The two

5This term was considered in e.g. Ref. [26] to suppress the effect of the tadpole estimated to be of the
order of the electroweak scale.

6We are considering τ̃R propagating in the bulk in order to avoid bounds on heavy stable charged
particles [28].
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hypermultiplets Ha have the same quantum numbers and can then be arranged to form
a doublet of a global symmetry, SU(2)H , acting on the index a. The doublet of N = 2
hypermultiplets can also be split into Z2 even and odd N = 1 chiral multiplets according
to the Z2 parity assignment

Z2 = σ3|SU(2)H
⊗ γ5 (2.1)

where σ3 acts on the SU(2)H indices and γ5 over Dirac indices. For H1 and H2, we take
(H2, ψ2L, F2) and (H1, ψ1R, F1) to be even and (Hc

2, ψ2R, F
c
2 ) and (Hc

1, ψ1L, F
c
1 ) to be odd.

The gauge sector in the bulk is instead described by N = 2 vector supermultiplets.
For a SU(N) gauge group each of the supermultiplets is given by V = (VM , λ

i
L,Υ),

which contains the vector bosons VM (with M = 1, . . . , 5), the real scalar Υ and the two
bispinors λiL (with i = 1, 2). All these fields are in the adjoint representation of SU(N).
As customary we assume Vµ and λ1

L (V5,Υ and λ2
L) to be even (odd) with respect to the

Z2 symmetry.

The SS twists (qR, qH) associated with the global symmetries SU(2)R×SU(2)H impose
the relation[

H1(x, y) Hc
1(x, y)

Hc
2(x, y) H2(x, y)

]
= eiqHσ2y

∞∑
n=0

√
2

π

[
cosny H

(n)
1 (x) sinny H

c(n)
1 (x)

sinny H
c(n)
2 (x) cosny H

(n)
2 (x)

]
e−iqRσ2y ,

(2.2)

where H
(n)
1,2 (x) (with n ≥ 0) and H

c(n)
1,2 (x) (with n ≥ 1) are the KK modes of the cor-

responding doublets (their x dependence is omitted hereafter) and have mass dimension
equal to one. The

√
2/π factor comes from the normalization of the nonzero modes in

the interval [0, π]. The zero modes H
(0)
a are then not canonically normalized as they

are missing a prefactor 1/
√

2. The mass doublet eigenstates h(n) and H(n), with masses
qR − qH + n and qR + qH + n respectively (with n from −∞ to +∞), are computed in
Ref. [19]. They are given by

H
(n)
1 =

(
h(n) + h(−n) +H(n) +H(−n)

)
/2 ,

H
(n)
2 =

(
h(n) + h(−n) −H(n) −H(−n)

)
/2 ,

H
c(n)
1 =

(
h(−n) − h(n) +H(−n) −H(n)

)
/2 ,

H
c(n)
2 =

(
h(n) − h(−n) +H(−n) −H(n)

)
/2 , (2.3)

for n ≥ 1, and by

H
(0)
1 =

(
h(0) +H(0)

)
/2 ,

H
(0)
2 =

(
h(0) −H(0)

)
/2 , (2.4)

for n = 0. Notice that although H
(0)
a are noncanonically normalized, the zero modes h(0)

andH(0) are canonically normalized, which has enforced the introduction of an extra factor

7



of 1/
√

2 in Eq. (2.4). In this way, even though the zero modes are differently normalized
than the nonzero ones, it is straightforward to reconstruct full KK towers (with n from
−∞ to +∞) of fields when coupled to the brane. As for the Higgsino components in Ha,
the mass eigenstates are (for n > 0)

H̃(−n) =
1√
2

(
ψ

(n)
2 − γ5ψ

(n)
1

)
, with mass (qH − n) ,

H̃(+n) =
1√
2

(
γ5ψ

(n)
2 + ψ

(n)
1

)
, with mass (qH + n) ,

H̃(0) =
(
ψ

(0)
2L , ψ

(0)
1R

)T
, with mass (qH) . (2.5)

The SU(2)R twist also acts on all bulk gauginos, which are embedded in Vj. The KK
tower of these fields have Majorana masses n+qR. Moreover, any field in the bulk coupled
to these charginos is sensitive to the twist qR. All bulk matter fields have, in fact, a KK
tower with tree-level masses n + qR for scalars and n for fermions. Bulk fields that are
SU(2)R singlets (e.g. the gauge vector bosons and scalars of Vj), or fields in the brane,
are instead insensitive to qR and their spectrum is not affected by the SS mechanism 7.

The scenario with charges qR = qH ≡ ω is particularly interesting. The doublet h(0)

is massless while the doublet H(0) has mass 2ω. The corresponding KK modes, h(n) and
H(n), have masses n and 2ω+n, respectively. Higgsinos and charginos have masses ω+n.
The first and second generation sfermions and right-handed staus, which we assume in the
bulk, also have mass eigenstates ω + n, while their supersymmetric partners have masses
n. In the rest of the paper we focus on this scenario and some minimal extensions of it.

The main features of this scenario are the following:

• The Higgsino zero mode has a Dirac mass equal to ω/R, by which there is no need
to introduce a superpotential µ-like term as in the MSSM. The µ-problem is thus
naturally solved by this formalism.

• At tree level the theory predicts a 4D massless Higgs doublet with a flat poten-
tial [19]. The rest of the Higgs sector is heavy. In the MSSM language this amounts
to equations of electroweak minimum with tan β = 1 and invariant under the global
scale change ω/R → λ ω/R. Such an invariance reminds some of the properties of
the focus point solution [5–8].

• States localized in the brane, i.e. third generation of squarks and third generation
of slepton doublet, are naturally light as their tree-level masses are vanishing. Their
one-loop radiative masses from KK modes are finite [21] and can be interpreted as
finite threshold effects after integrating out the heavy modes. Moreover left-handed

7For our twist assignments, each bosonic component V jµ , V
j
5 ,Υ

j of Vj exhibits a KK spectrum with
masses n, and both V5 and Υ have vanishing zero modes.
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and right-handed squarks do not mix much as their mixings are generated only at
one loop as well. The values of the stop mixing At and the one-loop masses of the
fields localized in the brane are displayed in Fig. 1 (their explicit expressions are
given in Ref. [21]).

0.15

0.2

0.25

0.3

0.35

0.05 0.10 0.15 0.20

5

10

15

20

ω

1
/R

(T
eV

)

Figure 1: Contour plots of the most relevant loop-induced parameters. In light blue
the region with gluino mass mg̃ < 1.8 TeV, in tension with LHC bounds (see Sec. 4.5).
Mass labels are in TeV units. Upper left panel: Stop trilinear parameter normalized as
Xt = At/mQ. Upper right panel: Masses of the scalar left-handed tau τ̃L and the scalar
left-handed tau neutrino ν̃τ . Lower left panel: Masses of the lightest states of the stop t̃1
and sbottom b̃1 (red and blue lines respectively). Lower right panel: Masses of the heaviest
states of the stop t̃2 and sbottom b̃2 (red and blue lines respectively).
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• The lightest (n = 0) modes of the fields in the bulk have tree-level masses that
are zero, ω/R, 2ω/R or 1/R. Those with vanishing masses correspond to SM-like
fields. The new-physics spectrum thus exhibits very compressed sectors, with a large
gap between new-physics bulk and brane states. In this way the first and second
generation sfermions, and the right-handed staus as well, are naturally much heavier
than the stops, sbottoms, and left-handed staus and tau sneutrinos, in agreement
with flavor constraints. The explicit values of the lightest new-physics modes are
presented in Fig. 2.

Figure 2: Contour plots of the tree-level masses of the bulk fields sensitive to the SS
mechanism. Labels are in TeV units. Left panel: First and second generation sfermions,
right-handed stau, gauginos and Higgsinos. Right panel: Charged and neutral heavy dou-
blet Higgses. Blue areas are as in Fig. 1.

• The EWSB has to proceed by radiative corrections as discussed here below.

The minimal picture suffers then from two drawbacks:

i) EWSB: In this theory the radiative corrections to the mass terms are known [19–21].
They are finite and can be considered as threshold effects at the compactification
scale O(1/R) at which all heavy bulk fields are integrated out. In particular, at
one loop, there are gauge corrections to the squared mass of the SM Higgs (m2)

and the brane fields Q̃3L, Ũ3R, D̃3R, Ẽ3R, (m2
Q,m

2
U ,m

2
D,m

2
E), which are positive,

thus preventing EWSB. As stops are localized, and massless at tree level, they do
not produce any one-loop correction to the Higgs mass proportional to h2

t which

10



could trigger EWSB as in the 4D MSSM. Of course, when they are integrated out,
they generate a (logarithmic) radiative correction depending on their own (one-loop)
masses: a two-loop effect. In the MS scheme this correction is given by [9]

∆m2 =
6h2

t

32π2

[
G(m2

Q) +G(m2
U)
]

+ 6h2
tA

2
t

G(m2
Q)−G(m2

U)

m2
Q −m2

U

,

G(x) ≡ x2

(
log

x2

Q2
− 1

)
. (2.6)

To leading order in α3 it turns out that mQ(ω) = mU(ω) and Eq. (2.6) becomes

∆m2 = −3h2
t

8π2
m2
Q(ω)

(
log
Q2

m2
Q

+ 1

)
. (2.7)

In Eq. (2.7) we can set the renormalization scale Q at the scale where the boundary
conditions are imposed, i.e. where the theory becomes 4D. In Ref. [19] it was taken
as Q ' ω/R whereas in Ref. [24] it was fixed as Q ' 1/(πR). In both cases the
two loop correction coming from m2

Q, m2
U , and A2

t , which are generated only at
one loop, are too small to drive m2 < 0. On the other hand, the choice of Q in
Eq. (2.7) only concerns the scale dependence in the three loop contribution 8. Since
we are not calculating all consistent two loop effects (e.g. we integrate out the heavy
KK modes only at one loop) our EWSB analysis should not rely on just the few
two loop pieces that are known, and which do not to change either qualitatively
or quantitatively the EWSB picture, as we have checked. Thus, to be consistent,
we consider the EWSB at one loop and hereafter we will then ignore all two-loop
EWSB contributions as the one in Eq. (2.7).

ii) Higgs mass: As both stop soft masses and trilinear stop mixing parameter are one-
loop suppressed, their radiative correction to the Higgs quartic coupling is too small
to reproduce the experimental value mh ' 125 GeV. This problem was already
recognized in the early papers [19–21] and has been more recently revamped [24,25].

In Ref. [24] problem (i) was solved by the introduction of higher dimensional operators,
while problem (ii) was milder; as for the maximal SS breaking case ω = 1/2 the EOM
lead to tan β =∞, and are solved by introducing an extra U(1) factor. In Ref. [26] both
problems were addressed by adding a singlet plus a folded sector (i.e. a copy of the matter
superfields) at the expense of bilinear mass term parameters in the superpotential. In the
present paper we will see that an extended Higgs sector can solve both problems without
violating the requirements (i), (ii) and (iii) of Sec. 1. As an extra singlet is appropriate

8Note that the EWSB could be determined by means of the RG-improved effective potential. In that
case the resulting EWSB condition is independent of Q at a given perturbative order [9]. The choice of
Q is then only aimed to minimize the corrections coming at the next perturbative order.
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to add tree-level corrections (an F -term contribution) to the Higgs mass in the case of
tan β = 1, we will first start considering the case of a localized singlet.

3 5D MSSM plus a singlet

Our setup in this section will be identical to that of Sec. 2 but with the addition of a
singlet. For simplicity we will first consider the case of a singlet field S localized on the
y = 0 brane.

3.1 Embedding and 4D Lagrangian

A singlet localized on the y = 0 brane admits a superpotential interaction with the (bulk)
Higgs multiplets that can be derived from the brane superpotential

W = λ̂H1 · H2Sδ(y) , (3.1)

where λ̂ is a 5D Yukawa coupling with mass dimension equal to −1. Specifically, only the
even Higgs components couple to the fields on the y = 0 brane, so that the corresponding
N = 1 superfields H1 and H2 are given by [29]

H2 = (H2, ψ2L, F2 − ∂5H
c
2) ,

H1 = (H̃1, ψ̃1R, F̃1 − ∂5H̃
c
1) , (3.2)

where, for a doublet A with hypercharge 1/2, Ã = −iσ2A
? stands for a doublet with

hypercharge −1/2. In particular, the fermionic components of H1,2 interact with the
singlet as a Dirac fermion Ψ defined as (cf. Eq. (2.5))

Ψ =
∞∑
n=0

ψ(n) ≡
∞∑
n=0

(
ψ

(n)
2L

ψ
(n)
1R

)
= H̃(0) +

1√
2

∞∑
n=1

(
H̃(n) + H̃(−n)

)
≡ 1√

2
H̃ . (3.3)

In fact, from Eqs. (3.1) and (3.2) one can determine the 4D Lagrangian. After inte-
grating out the auxiliary fields, its bosonic part reads

L4 =− λ̂S
{
∂5H

c†
1 (0)H2(0) +H†1(0)∂5H

c
2(0) + h.c.

}
− λ̂2

{
|H1(0)†H2(0)|2 + |S|2

(
|H1(0)|2 + |H2(0)|2

)
πδ(0)

}
, (3.4)

with

δ(0) ≡ 1

π

∞∑
n=−∞

1 . (3.5)

12



Moreover, using the notation

h =
∞∑

n=−∞

h(n) , ĥ =
∞∑

n=−∞

(qR − qH + n)h(n) , (3.6)

H =
∞∑

n=−∞

H(n) , Ĥ =
∞∑

n=−∞

(qR + qH + n)H(n) , (3.7)

then

∂5H
c
1(0) =

−1√
2π

(ĥ+ Ĥ), H1(0) =
1√
2π

(h+H) ,

∂5H
c
2(0) =

1√
2π

(ĥ− Ĥ), H2(0) =
1√
2π

(h−H) , (3.8)

and Eq. (3.4) reads

L4 =− λ

2

{
S(h† +H†)(ĥ− Ĥ)− S†(h† −H†)(ĥ+ Ĥ) + h.c.

}
− λ2

{1

4

∣∣|h|2 − |H|2 − h†H +H†h
∣∣2 + |S|2(|h|2 + |H|2)πδ(0)

}
, (3.9)

where λ ≡ λ̂/π is the (dimensionless) 4D Yukawa coupling.

3.2 Quartic and quadratic terms of the lightest Higgs

As we can see from Eq. (3.9), the coupling λ is the tree level source of the h(0) quartic
coupling. The h(0) potential is then given by

VSM = (m2 + ∆hm
2)|h(0)|2 +

(
λ2

4
+ ∆λ

)
|h(0)|4 + . . . . (3.10)

where m2 is the tree-level Higgs squared mass term while ∆hm
2 and ∆λ are the radiative

contributions to the Higgs mass and quartic coupling, respectively.

We determine the total h(0) quartic coupling at leading order in λ and ht. Since the λ
dependence already appears at tree level, ∆λ is the usual MSSM radiative correction [30]

∆λ =
3m4

t

8π2v4

[
log

m2
t̃

m2
t

+
A2
t

m2
t̃

(
1− A2

t

12m2
t̃

)]
, (3.11)

in which v = 174 GeV (i.e. where the observed EWSB is assumed). Notice that as both
m2
t̃
' m2

U ' m2
Q and At are generated at one loop by exchange of KK modes (see

e.g. Ref. [19]), ∆λ is a two loop effect. Moreover, if we assume m2 +∆hm
2 ' −(88 GeV)2,
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Figure 3: Left panel: Contour plot of values of λ leading to the experimental value mh =
125 GeV if the observed EWSB is achieved. Blue area is as in Fig. 1. Right panel: Plot
of 103R2∆gm

2 (red, dotted line), 103R2∆λm
2 (blue, dashed line) and its sum 103R2∆hm

2

(black, solid line), for 1/R = 2 TeV and λ fixed from the plot on the left panel, as a
function of ω.

in agreement with the EWSB observations, Eqs. (3.10) and (3.11) can be used to translate
the constraint on the h(0) scalar mass, mh, into λ. This is quantified in Fig. 3 (left panel)
where the explicit values of λ providing mh = 125 GeV are displayed as a function of 1/R
and ω, with the correction ∆λ being included.

On the other hand, it is not obvious that the EWSB conditionm2+∆hm
2 ' −(88 GeV)2

can be fulfilled. As discussed in Sec. 2, m2 is vanishing. The EWSB then relies only on the
loop-induced quantity ∆hm

2. This can be split as ∆hm
2 = ∆gm

2 + ∆λm
2, where ∆gm

2

and ∆λm
2 are the contributions depending, respectively, on the SU(2)L gauge coupling

g and on the superpotential parameter λ 9. The quantity ∆gm
2 amounts to [19]

∆gm
2 =

g2

64π4
[9 Ω(0) + 3 Ω(2ω)− 12 Ω(ω)] (3.12)

with

Ω(ω) =
1

2

[
Li3(e2iπω) + Li3(e−2iπω)

]
(1/R)2 . (3.13)

9For simplicity we are neglecting here the subleading contribution corresponding to the U(1)Y gauge
interactions.
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Figure 4: Diagrams contributing to the correction ∆λm
2 to the squared-mass term of h(0).

The contribution ∆λm
2 is generated by the diagrams in Fig. 4 and turns out to be

∆λm
2(ω) =

λ2

32π4
[Ω(0) + Ω(2ω)− 2 Ω(ω)] . (3.14)

Plots of ∆gm
2, ∆λm

2 and ∆hm
2 as a function of ω are shown in the right panel of

Fig. 3. In the plots the value of λ is adjusted to reproduce the Higgs mass constraint
(cf. left panel of Fig. 3) assuming that EWSB occurs. A representative value of R is
assumed, namely 1/R = 2 TeV. For this illustrative case it results that ∆λm

2, although
negative for 0 . ω . 0.2, is insufficient to overcome the positive contribution ∆gm

2 and
drive ∆hm

2 to negative values. We check that this negative result is generic.

We conclude that in the 5D MSSM plus a localized singlet, the extra field content helps
in reproducing the experimental value of the Higgs mass but does not seem to improve the
scenario from the EWSB problem. A possible solution is to introduce higher-dimensional
operators as in Ref. [24]. However, a subtlety in the analysis might be exploited to
circumvent the problem: if there is sizable mixing between the singlet and Higgs scalars,
∆hm

2 is not the unique quantity playing a role in the EWSB. We sketch the features of
this possibility in the following section.

3.3 Tadpole and VEV of the singlet

The interaction between the singlet and the fermions of H1,2 allows the Feynman diagram
of Fig. 5 (left panel) to generate the linear term in the Lagrangian proportional to S, as
it is not protected by any symmetry of the theory. Then there exists a tadpole term in
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the localized Lagrangian as

L4 = −ξ(ω, 1/R)(S + S†) + . . . . (3.15)

The coefficient of this interaction is expected to be sizable 10. Indeed, the sum of the
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Figure 5: Left panel: Diagrams contributing to the tadpole of S. Right panel: Contour plot
of the triplet trilinear parameter ξ1/3(ω, 1/R) with λ adjusted to reproduce the observed
Higgs mass. Labels are in TeV units.

contributions of each KK mode ψ(n) yields

ξ(ω, 1/R) =
3i

32π5

[
Li4
(
e−2iπω

)
− Li4

(
e2iπω

)]
(1/R)3 , (3.16)

and its numerical value can be deduced from the right panel of Fig. 5. The size O(0.1/R)
is then expected to be the natural scale of the dimensionful parameters involved in the
singlet potential, so that the VEV that is eventually acquired by the singlet should be
parametrically O(1 TeV) for 1/R ∼ 10 TeV. The fields h(0) and S can thus have a non-
negligible mixing. In principle the mixing could help the implementation of the EWSB at
the expense of some tension with the Higgs signal strengths measured at the LHC [27] 11.

10This contribution has not been noticed in the previous literature. The recent proposals [25,26] might
be affected by this tadpole term.

11Although h(0) and S have positive (one-loop) squared-mass terms, there may be a linear combination
developing a negative quadratic term thanks to the mixing.
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Determining whether these possibilities are not ruled out by the present LHC data would
need a dedicated analysis that goes beyond the scope of the present paper, and in any
case we do not expect the surviving parameter region to be really promising concerning
naturalness. On the other hand, the situation would not radically change by considering
singlets in the bulk, as bulk singlets still acquire a large VEV. We thus focus the rest
of our analysis on the 5D MSSM extended by hyperchargeless SU(2)L triplets for which
tadpoles prior to the EWSB are forbidden by the gauge symmetry.

4 5D MSSM plus bulk triplets

We consider the scenario where the Higgs sector is extended by hyperchargeless SU(2)L
triplets. In the context of 4D supersymmetry the model is somewhat well known (see
e.g. Refs. [31–38]) but its implementation in a 5D framework has not been attempted
yet. In this section we implement it in a SS scenario. As we refrain from introducing
any dimensionful parameter in the 4D superpotential, we do not consider the option of
triplets localized on the brane (in which case the fermionic triplet components would be
too light to overcome the chargino mass bound mχ̃± & 104 GeV [10]). We thus consider
the 5D MSSM extensions with triplets propagating in the bulk.

4.1 Embedding and 4D Lagrangian

Similar to the case of bulk doublets (see Sec. 2), the bulk triplets can be arranged in
Y = 0 SU(2)L-triplet hypermultiplets Tb = (Σb,Σ

c
b,ΨΣb , FΣb , FΣb) with b = 1, 2, which

transform as a doublet under the global bulk group SU(2)Σ acting on the index b. The
fermionic component ΨΣb = (ψΣb , ψ̄

c
Σb

)T is a Dirac spinor while ψΣb (ψ̄Σb) and ψcΣb (ψ̄cΣb) are
undotted (dotted) Weyl spinors. Concerning the Z2 symmetry, we assume the multiplets
(Σ2, ψΣ2 , FΣ2) and (Σ1, ψ̄

c
Σ1
, FΣ1) to be even and (Σc

1, ψΣ1 , F
c
Σ1

) and (Σc
2, ψ̄

c
Σ2
, F c

2 ) to be
odd, according to the orbifold action

Z2 = σ3|SU(2)Σ
⊗ γ5 (4.1)

where σ3 is acting over SU(2)Σ indices and γ5 over Dirac indices. We denote their scalar

KK modes as Σ
(n)
1,2 (n ≥ 0) and Σ

c(n)
1,2 (n ≥ 1).

This allows one to introduce the SS twists (qR, qΣ) that establish the transformation[
Σ1(x, y) Σc

1(x, y)
Σc

2(x, y) Σ2(x, y)

]
= eiqΣσ2y

∞∑
n=0

√
2

π

[
cosnyΣ

(n)
1 (x) sinnyΣ

c(n)
1 (x)

sinnyΣ
c(n)
2 (x) cosnyΣ

(n)
2 (x)

]
e−iqRσ2y ,

(4.2)
whose mode normalization is in analogy with Eq. (2.2). The pattern of the mass eigen-
values and the spectrum of the triplet is also similar to the ones in Eqs. (2.3) and (2.4).
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Indeed, applying the same normalization conventions, it turns out that the mass eigen-
states σ(n) and Σ(n), with mass qR − qΣ + n and qR + qΣ + n respectively, are given by

Σ
(n)
1 =

(
σ(n) + σ(−n) + Σ(n) + Σ(−n)

)
/2 ,

Σ
(n)
2 =

(
σ(n) + σ(−n) − Σ(n) − Σ(−n)

)
/2 ,

Σ
c(n)
1 =

(
σ(−n) − σ(n) + Σ(−n) − Σ(n)

)
/2 ,

Σ
c(n)
2 =

(
σ(n) − σ(−n) + Σ(−n) − Σ(n)

)
/2 , (4.3)

for n ≥ 1, and by

Σ
(0)
1 =

(
σ(0) + Σ(0)

)
/2 ,

Σ
(0)
2 =

(
σ(0) − Σ(0)

)
/2 , (4.4)

for n = 0. The analogy also applies to the fermionic components of the triplet. Their
tree-level mass spectrum is then similar to the one of the Higgsinos.

Only the even multiplets can have interactions on the y = 0 brane, and the N = 1
triplet supermultiplets that have such interactions are

T2 = (Σ2, ψΣ2 , FΣ2 − ∂5Σc
2) ,

T1 = (Σ†1, ψ
c
Σ1
, F †Σ1

− ∂5Σc†
1 ) . (4.5)

The generic brane superpotential involving these fields is

W =
(
λ̂1H1 · T1H2 + λ̂2H1 · T2H2

)
δ(y) , (4.6)

where λ̂b are 5D Yukawa couplings with mass dimension equal to −3/2. In particular, in
the superpotential no triplet tadpole or cubic terms are allowed by the gauge symmetry.

After integrating out the auxiliary fields we obtain the bosonic 4D Lagrangian

L4 =−
{
H†1(0)

(
λ̂1∂5Σc†

1 (0) + λ̂2∂5Σc
2(0)

)
H2(0) + ∂5H

c†
1 (0)

(
λ̂1Σ†1(0) + λ̂2Σ2(0)

)
H2(0)

+H†1(0)
(
λ̂1Σ†1(0) + λ̂2Σ2(0)

)
∂5H

c
2(0) + h.c.

}
−
{1

2
(λ̂2

1 + λ̂2
2)
∑
A

∣∣∣H†1(0)τAH2(0)
∣∣∣2

+
∣∣∣(λ̂1Σ†1(0) + λ̂2Σ2(0)

)
H2(0)

∣∣∣2 +
∣∣∣H†1(0)

(
λ̂1Σ†1(0) + λ̂2Σ2(0)

)∣∣∣2 }πδ(0) ,

(4.7)
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where τA are the Pauli matrices used in the definition Σb ≡ 1√
2
T bAτA. By means of the

notation

σ =
∞∑

n=−∞

σ(n) , σ̂ =
∞∑

n=−∞

(qR − qΣ + n)σ(n) , (4.8)

Σ =
∞∑

n=−∞

Σ(n) , Σ̂ =
∞∑

n=−∞

(qR + qΣ + n)Σ(n) , (4.9)

and the identities of Eq. (3.8) (with obvious replacements h→ σ and H → Σ), Eq. (4.7)
reads

L4 =
{ 1

2
√

2
(λ1 − λ2)

[
h†σ̂h−H†σ̂H + h†Σ̂H −H†Σ̂h

− Ĥ†(σ − σ†)h+ ĥ†(Σ + Σ†)h+ ĥ†(σ − σ†)H − Ĥ†(Σ + Σ†)H
]

+
1

2
√

2
(λ1 + λ2)

[
h†Σ̂h−H†Σ̂H + h†σ̂H −H†σ̂h

+ Ĥ†(σ + σ†)H − ĥ†(Σ− Σ†)H + ĥ†(σ + σ†)h− Ĥ†(Σ− Σ†)h
]

+ h.c.
}

−1

4

[
h†F+h+H†F+H + h†F−H +H†F−h

]
πδ(0)

−λ
2
1 + λ2

2

8

(
|h|4 + |H|4 + 6|h|2|H|2 − 6|h†H|2 − (h†H)2 − (H†h)2

)
πδ(0) , (4.10)

where λb ≡ λ̂b/
√
π3 are the dimensionless 4D Yukawa coupling and F± is given by

F± = λ2
1[σ† + Σ†, σ + Σ]± + λ2

2[σ − Σ, σ† − Σ†]± + λ1λ2

{
[σ − Σ, σ + Σ]± + h.c.

}
, (4.11)

with [x, y]− and [x, y]+ standing for the commutator and anticommutator operator, re-
spectively. The decomposition

σ ≡
∑
A

tAτA/
√

2 (4.12)

and the identity τAij τ
A
k` = 2δi`δjk − δijδk` have also been used.

4.2 Quartic and quadratic terms of the lightest Higgs

From Eq. (4.10) we can determine the potential of h(0) at low energy. On top of the
contribution πδ(0)(λ2

1 + λ2
2)/8, the low-energy quadratic coupling includes the threshold

correction due to the heavy modes that are integrated out (for a didactic calculation
of threshold effects see e.g. [39, 40]). This relation is provided by the tree-level matching
condition depicted in Fig. 6 where the identity (3.5) has been used pictorially. For qR = qH
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Figure 6: Matching of the low-energy and high-energy h(0) four-point diagrams.

the relation amounts to

lim
p→0

+∞∑
n=−∞

(λ1 + λ2)2

16

[
1 +

(qR + qΣ + n)2

p2 − (qR + qΣ + n)2

]
|h(0)|4

+ lim
p→0

+∞∑
n=−∞

(λ1 − λ2)2

16

[
1 +

(qR − qΣ + n)2

p2 − (qR − qΣ + n)2

]
|h(0)|4

=

[
(λ1 + λ2)2

16
δqR+qΣ,0 +

(λ1 − λ2)2

16
δqR−qΣ,0

]
|h(0)|4 . (4.13)

For nonmaximal (and positive) twists the result is not vanishing only if qR = qΣ and the
whole contribution is due to the n = 0 mode. Therefore, in order to achieve a sizable
boost to the tree-level Higgs mass, we focus on the case qH = qR = qΣ ≡ ω hereafter. The
low-energy potential of h(0) is then given by

VSM = (m2 + ∆hm
2)|h(0)|2 +

(
(λ1 − λ2)2

16
+ ∆λ

)
|h(0)|4 + . . . . (4.14)

We then determine the h(0) quartic coupling at leading order in λ1,2 and ht, as in
previous sections. The contribution depending on λ1,2 appears at tree level while the
latter appears at two loop and is given by Eq. (3.11) (see comments in Sec. 3.2). Once
the observed EWSB is assumed, which in practice is equivalent to impose m2 + ∆hm

2 '
−(88 GeV)2, the experimental measurement of the Higgs mass constrains |λ1−λ2|, R and
ω as shown in Fig. 7 12.

The EWSB is actually achievable in the present scenario. For our choice of twists the
tree-level squared mass m2 is zero (see Sec. 2). The radiative correction ∆hm

2 can be

12As we will discuss in Section 4.4, h(0) mixes very mildly with the scalar triplet. The field h(0) is then
the mass eigenstate that plays the role of the SM-like Higgs. In addition, because of the small mixing,
only the squared-mass term of h(0) is relevant in the EWSB.
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Figure 7: Contour plot of values of |λ1 − λ2| fixing the Higgs mass to its experimental
value mh = 125 GeV. Blue area is as in Fig. 1.

split as
∆hm

2 = ∆gm
2 + ∆λm

2 , (4.15)

with ∆gm
2 provided in Eq. (3.12). The contribution ∆λm

2 comes from the interactions
depending on the superpotential couplings λ1,2. It is produced via the diagrams in Fig. 8
and results in

∆λm
2 =

(λ1 − λ2)2 + (λ1 + λ2)2

2(4π)4
Ω̃(ω) , (4.16)

with

Ω̃(ω) =
{

2ζ(3)− 4 Li3
(
e2iπω

)
+ 4i cot(2πω) Li4

(
e2iπω

)
+ Li3

(
e4iπω

)
− i2 + 3 cos(4πω)

sin(4πω)
Li4
(
e4iπω

)
+ h.c.

}
(1/R)2 . (4.17)

Figure 9 (left panel) displays the values of ∆hm
2 (solid line) and its contributions

∆gm
2 (dotted line) and ∆λm

2 (dashed line) in units of 103R2. The plot highlights the
illustrative case 1/R = 2 TeV. It assumes |λ1 − λ2| fixed to reproduce the observed Higgs
mass (cf. Fig. 7) and λ1 + λ2 set to zero to conservatively minimize the effect of ∆λm

2

(see Eq. (4.16)). We see that ∆gm
2 is positive for all values of ω whereas ∆λm

2 can
be negative and sizable. In particular, at ω . 1/5, ∆hm

2 is negative and the EWSB
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Figure 8: Diagrams contributing to the mass term ∆λm
2.
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Figure 9: Left panel: Plots of ∆gm
2 (red, dotted line), ∆λm

2 (blue, dashed line) and
their sum ∆hm

2 = ∆gm
2 + ∆λm

2 (black, solid line) as functions of ω in units of 103R2

with 1/R = 2 TeV and λ1 + λ2 = 0. Central panel: Contour plot of R2∆hm
2 in the

(ω, |λ1 +λ2|) plane for 1/R = 2 TeV. The correct EWSB with the experimentally observed
125 GeV Higgs mass happens along the dashed red line. Right panel: The parameter space
of the (ω, 1/R) plane (yellow area) where the experimental EWSB with the correct Higgs
mass is successfully achieved. Blue area is as in Fig. 1. In all panels |λ1 − λ2| is fixed as
in Fig. 7.

is achieved. Of course, the larger the value of |λ1 + λ2| the more easily the EWSB is
obtained. This is highlighted in the central panel of Fig. 9 presenting the contour lines
of R2∆hm

2 in the (ω, |λ1 + λ2|) plane with still 1/R = 2 TeV and |λ1 − λ2| fulfilling the
Higgs mass constraint. Along the (red) dotted line the condition ∆hm

2 ≈ −(88 GeV)2
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for the observed EWSB is satisfied. The finding is generalized to any value of R in the
right panel of Fig. 9 where the yellow area highlights the region of (ω, 1/R) providing
∆hm

2 = −(88 GeV)2 with |λ1 + λ2| ≤ 2 (the inner border corresponding to λ1 + λ2 = 0,
the outer to λ1 + λ2 = 2). Also in this panel |λ1 − λ2| is adjusted to reproduce the
experimental Higgs mass.

We conclude that in this 5D embedding the presence of triplets

• Enhances the tree-level Higgs quartic coupling in the effective theory and thus makes
it easy to accommodate the 125 GeV Higgs mass constraint. This is essential for
the naturalness of the model.

• Triggers the EWSB by providing a sizable negative contribution to the squared-mass
term of the SM-like Higgs and, in a somewhat wide parameter region, generates the
observed electroweak scale.

4.3 Triplet trilinear term and Higgs-triplet quartic coupling

Besides the squared mass of the triplet, there are other interactions that are important
for the phenomenology of the model. In this section we focus on the triplet trilinear
parameter and the Higgs-triplet quartic coupling by which we can determine the VEV
and masses of the triplets (see Sec. 4.4).

The trilinear Aλ term
L4 = · · · − Aλh†σh+ h.c. (4.18)

is generated by a loop of Higgsinos and gauginos. It can be evaluated following the method
employed for the stop mixing At in Ref. [21]. The result is given by

Aλ =
3(λ1 + λ2)α2

16
√

2π2
Ch

2

[
iLi2

(
e−2iπω

)
+ h.c.

] 1

R
, (4.19)

where Ch
2 = 3/4 is the quadratic Casimir of the Higgs doublet.

In order to calculate the quartic coupling between the light Higgs h(0) and the light
triplet σ(0), we follow the procedure used in Sec. 4.2. Specifically, we determine the tree
level matching of the Higgs-triplet interaction between the high-energy theory described
in Eq. (4.10) and the low-energy one where only the (tree level massless) zero modes
exist. As previously stated, we focus on the case ω = qR = qH = qΣ. The nontrivial
contributions are those corresponding to the vertices |h(0)|2|(σ+ σ†)(0)|2, mediated by the

propagation of ĥ, and |h(0)|2|(σ− σ†)(0)|2, mediated by the propagation of Ĥ, depicted in
Fig. 10. They can be evaluated by means of the identities

lim
p→0

∑
n

(λ1 ± λ2)2

16

[
1 +

(qR ∓ qH + n)2

p2 − (qR ∓ qH + n)2

]
=

(λ1 ± λ2)2

16
δqR∓qH ,0 , (4.20)
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Figure 10: High-energy diagrams leading to the low-energy quartic interactions between
h(0) and (σ ± σ†)(0), mediated by the propagation of ĥ or Ĥ, respectively.

and they lead to the following quartic interaction term:

L4D = −(λ1 + λ2)2

16
h(0)†[σ(0) + σ(0)†, σ(0) + σ(0)†]+ h

(0) + . . .

= −(λ1 + λ2)2

8
h(0)†h(0)

∑
A

[(tAR)(0)]2 + . . . , (4.21)

with (tAR)(0) defined as

σ(0) =
(tAR)(0) + i(tAI )(0)

2
τA . (4.22)

4.4 Triplet VEV and mass spectrum

The presence of the triplets has practically no effect on the mass spectrum of the 5D
MSSM-like states but h(0). In fact, all modes of Ha except h(0) have large tree-level
masses due to the SS mechanism, and the remaining MSSM-like fields do not have contact
interaction with the triplets. The mass spectra shown in Figs. 1 and 2 then hold correct
also in the present scenario (although only the (yellow) subregion highlighted in the
right panel of Fig. 9 is consistent with the observed EWSB and 125 GeV h(0) mass for
|λ1 + λ2| ≤ 2). The relevant difference between the spectra of the 5D MSSM and the
triplet extension is then the masses of the additional fields.

With respect to the SS twists, the fermionic components of the triplets behave as the
Higgsinos and they are hence degenerate in mass with such fields. The scalar triplet σ(0)

is instead insensitive to the SS mechanism at tree level (for qR = qH = qΣ), and only
its real part τA(tAR)(0)/2 receives a mass by means of the Higgs EWSB (cf. Eq. (4.21)).
However, this mass tends to be subdominant with respect to the one coming from the
one-loop mass term ∆m2

σ(ω)|σ(0)|2 that is produced by the diagrams in Fig. 4.4. This
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Figure 11: Diagrams contributing to the mass term ∆m2
σ|σ(0)|2.

correction amounts to

∆m2
σ =

3(λ1 + λ2)2

(4π)4
Ω+
σ (ω) +

6(λ1 − λ2)2

(4π)4
Ω−σ (ω) , (4.23)

with

Ω−σ (ω) =
{
− Li3

(
e2iπω

)
+ i cot(2πω)

[
−Li4

(
e2iπω

)
+ Li4

(
e4iπω

)]
+ h.c.

}
(1/R)2 ,

Ω+
σ (ω) =

{
2ζ(3)− 2 Li3

(
e2iπω

)
+ Li3

(
e4iπω

)
+ 2i cot(2πω) Li4

(
e2iπω

)
− i cot(4πω) Li4

(
e4iπω

)
+ h.c.

}
(1/R)2 . (4.24)

Therefore, after the EWSB, the squared masses of the zero modes of the real and imaginary
parts of the complex triplets are respectively given by

(mR
σ )2 =

(λ1 + λ2)2

4
v2 + ∆m2

σ , (4.25)

(mI
σ)2 = ∆m2

σ , (4.26)

The values of these masses as a function of ω and 1/R are displayed in the left panel of
Fig. 12 where in the yellow area λ1 and λ2 are fixed as usual to satisfy the EWSB and
Higgs mass constraints.

We now study the triplet VEV. When the Higgs breaks the electroweak symmetry,
the trilinear interaction in Eq. (4.18) induces a tadpole term ∼ Aλv

2(t3R)(0). This in
turn induces the VEV 〈t3R〉 ≡ 〈(t3R)(0)〉 which breaks custodial symmetry and affects the
electroweak precision observable ρ as [41]

∆ρ =
4〈t3R〉2

v2
, (4.27)

which, using the (1σ) bound ∆ρ . 6 × 10−4, provides the corresponding bound 〈t3R〉 .
3 GeV. Notice also the relation between the observables ∆ρ and T as given by ∆ρ = αT 13.

13A more complete description will require other observables correlated with T , as S and U [42]. They
will also be consistent with our model parameters as we will analyze at the end of Section 4.5.
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Figure 12: Left panel: Contour plot of the real mR
σ (blue curves), and imaginary mI

σ (red
curves) triplet masses. Right panel: Contour plot of the VEV (in GeV) that the triplet
acquires due to the loop-induced trilinear term. In both panels it is assumed |λ1 + λ2| < 2
and the correct EWSB with a 125 GeV Higgs mass is achieved inside the yellow region.
Blue areas are as in Fig. 1.

The size of 〈t3R〉 is now obtained by considering the scalar potential involving the
tadpole term and the squared mass in Eqs. (4.18) and (4.25). Its order of magnitude is
O(Aλv

2/(mR
σ )2) [34] and its precise value is shown in the right panel of Fig. 12 where we

plot 〈t3R〉 as a function of ω and 1/R for λ1 − λ2 fixed by the experimental Higgs mass
(cf. Fig. 7). The finding is displayed only in the (yellow) region where the observed EWSB
can be achieved for |λ1 + λ2| ≤ 2. The measurement of the ρ parameter, which imposes
〈t3R〉 . 2 GeV [34, 41], provides no constraint on the model besides in the corner with
ω & 0.21 and 1/R . 10 TeV. In particular, along the left border of the yellow area, which
corresponds to (λ1 + λ2) = 0, no trilinear term and thus no VEV of (tR3 )(0) is generated.
This border, although fine-tuned, is technically natural as λ1 and λ2 are supersymmetric
parameters.

Finally, as a consistency check, we verify that the mixing between the h(0) and (tR3 )(0)

is tiny. Otherwise our criteria ∆hm
2 ' −(88 GeV)2 and mh = 125 GeV to accomplish the

observed EWSB and Higgs mass constraints would be wrong. The mixing is sourced by
the trilinear term in Eq. (4.18) after the EWSB. The mixing angle γ can be estimated as

tan(2γ) ∼ Aλv

(mR
σ )2 −m2

h

∼ 〈t
R
3 〉
v

, (4.28)
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where in the last step the Higgs squared mass has been neglected in front of (mR
σ )2. The

mixing is therefore fully negligible in the whole area compatible with the electroweak
precision observables for which 〈tR3 〉 . 3 GeV.

mf̃1,2
= mτ̃R = Ma = mH̃ = mΣ̃ mH = mΣ mt̃L

mt̃R
mτ̃L = mν̃τ mR

σ mI
σ

3000 6000 970 900 420 450 440

Table 1: A sample of new-physics masses (in GeV) for 1/R = 14 TeV and ω/R = 3
corresponding to ω ' 0.21. The symbol mf̃1,2

represents the mass of all sfermions of the
first and second generations. The radiative corrections are included only for the masses
of the last five columns.

To conclude, we provide some explicit values for an illustrative parameter scenario. We
consider the benchmark point with ω = 3/14 and 1/R = 14 TeV. In this case the EWSB
and Higgs mass constraints can be overcome with λ1 ' 1.1 and λ2 ' 0.0. The triplet
VEV, which turns out to be 〈tR3 〉 ' 1 GeV, is compatible with the above ρ-parameter
bound. The masses of the lightest modes corresponding to new physics are quoted in
Table 1. Some of them are within the reach of the LHC although they can be elusive to
the standard searches as discussed in the next section.

4.5 The low-energy phenomenology

Below the energy scale of the bulk fields with masses O(ω/R), the theory is described by
the SM degrees of freedom plus the scalar triplet σ(0), and the third-generation squarks
and slepton doublets.

In this setup the tau sneutrino (ν̃τ ) is the LSP. The ν̃τ is not a good dark matter
candidate as it would provide the observed relic abundance for a (small) mass range that
is nevertheless ruled out by direct detection experiments [43]. In the remaining mass
region, its relic density has to be somehow reduced. This is possible if the sneutrinos do
not reach thermal equilibrium before their freeze-out, or an entropy injection occurs at
late times (see e.g. [44,45]). Alternatively, decays such as ν̃τ → τ τ̄ can provide the desired
dilution. These could in principle be generated by operators like LLE that introduce a
small R-parity violation.

The collider phenomenology of the left-handed stau (τ̃L) depends on its mass split-
ting with ν̃τ . At tree level these fields are degenerate in mass, and only QED one-loop
corrections break the degeneracy [46]. For the part of the parameter space that we are
interested in, this splitting is at least O(100 MeV) and the lifetime of the stau is O(0.1 ns)
or smaller, for which the ATLAS and CMS constraints on disappearing tracks can be
interpreted as ruling out mτ̃ < 150 GeV [47,48]. This low-mass range is also ruled out by
other constraints, as we now see.
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Even though the gluino is not part of the low-energy theory, the most robust constraint
to the parameter space of the model is provided by the gluino direct searches. From
early 13 TeV data, ATLAS and CMS set the bound mg̃ & 1.8 TeV [14, 15]. Since the
whole spectrum mostly depends on just two parameters, ω and 1/R, and in particular
mg̃ = ω/R, the gluino mass bound constrains the low energy theory. The excluded region
corresponds to the blue areas in Figs. 1, 2, 3, 7, 9 and 12. In particular, as highlighted in
Figs. 1 and 12, the gluino bound forces the mass of the stops and sbottoms to be roughly
above 550 GeV and the scalar triplet, stau and tau sneutrino to be heavier than around
250 GeV. Of course, by excluding heavier gluino masses we will also be able to set stronger
bounds on third-generation squarks, the triplet and the stau doublet. However, the way
in which the tree-level generated gaugino masses scale with 1/R is different from how the
radiatively generated light states do. Even a 3 TeV bound on gluino masses will not be
able to exclude stops at around 1 TeV nor stau and triplet masses around 500 GeV (see
Table 1). Hence it is worth studying also the phenomenology of these particles.

As we are dealing with a heavy LSP with a mass typically above 300 GeV, the LHC
bounds from stop searches are very mild or even absent [49]. In addition, considering
usual bounds is a conservative assumption; in this model the topology of the stop decays
is different from what is expected in MSSM-like scenarios. Because the stop is lighter than
all neutralinos and charginos, it decays to off-shell states such that the final signature is
a multibody decay for which the current stop bounds can be very much softened [50].
Bounds on sbottoms are more severe than those on stops (for LSP masses below 400
GeV, ATLAS and CMS exclude sbottom masses up to 900 GeV [51, 52]) but they suffer
from the same softening mentioned above for stops. In this sense, in the present model the
phenomenology of the third-generation squark is similar to the one analyzed in Ref. [25].

Direct detection of the scalar triplet is challenging. The triplet does not mix with the
Higgs, is fermiophobic and gets a very small VEV; thus, production mechanisms such as
gluon fusion or vector boson fusion are of no use. Multilepton searches can be employed,
but these are able to constrain only the parameter space where the triplet is very light
(. 200 GeV) and acquires a VEV close to the ρ-parameter bound [38]. Alternatively, by
using Drell-Yan double production one can constrain fermiophobic scalars that do not
acquire a sizable VEV and have no other way to be produced [54]. Because of kinematics,
the Drell-Yan process gets weaker for larger triplet masses and to rule out masses above
250 GeV one would need a 100 TeV collider in which the Drell-Yan production cross
section is enhanced.

Finally, modifications to the loop-induced decay rates Γ(g → γγ) and Γ(h → Zγ)
could be generated by the new charged scalars of the triplet or the stau. These can result
in deviations of the Higgs signal strengths; however, they will be very suppressed as very
light masses (. 200 GeV) or large couplings, O(1), are needed to produce a significant
enhancement in the Higgs decay rates. Similarly, the loop level contributions to the S
and T parameters are very small as the gluino bound already forbids the new low-energy
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states to be below 300 GeV, where significant modifications could be generated. We
have explicitly calculated these using the results from Ref. [53] and found no significant
contributions in the parts of the (ω, 1/R) plane which are not already excluded by other
measurements. In particular, we find that T 1−loop < 0.02 and S1−loop < 0.002, well inside
their experimental bounds [41].

5 Conclusions

In the present paper we have explored extra dimensions as a way to minimize the fine-
tuning triggered by the LHC constraints on minimal supersymmetric extensions of the
Standard Model. We have performed our study focusing on five-dimensional supersym-
metric embeddings, with the fifth dimension compactified on an orbifold and N = 1
supersymmetry breaking of the Scherk-Schwarz type.

The Scherk-Schwarz paradigm for SUSY breaking has been extensively explored in
the literature and is able to provide interesting ways out for some of the shortcomings of
conventional scenarios of softly broken supersymmetry. For instance, the µ/Bµ problem
is avoided as a large Higgsino mass arises without any dimensional parameter in the
superpotential. The spectrum exhibits a pattern made of compressed sectors, each one
hierarchically separated in mass from the others by multiples of ω/R or 1/R (with ω and
R being, respectively, the Scherk-Schwarz twist and the size of the extra dimension). In
this way the first- and second-generation sfermions are naturally much heavier than the
third-generation ones, in agreement with flavor constraints. Moreover, due to the absence
of large effects in the renormalization-group evolution of the parameters, the framework
is also free of the ‘gluino-sucks’ problem and sub-TeV third-generation squarks are easily
accommodated. The two main drawbacks of the paradigm come when considering the
electroweak symmetry breaking and the experimentally measured Higgs mass, both not
achievable in minimal realizations of Scherk-Schwarz supersymmetry breaking.

The present paper proves that these two problems are not generic obstacles in Scherk-
Schwarz scenarios. It shows that, for instance, both issues can be solved in an extension
with Y = 0 SU(2)L triplets propagating in the bulk. It turns out that such triplets both
provide radiative corrections triggering the electroweak symmetry breaking and enhance
the tree level Higgs mass, so that the 125 GeV mass is adjusted more naturally.

Because of the mass hierarchy between fields that propagate in the bulk and fields
localized in the brane, most of the new-physics sector is decoupled from electroweak-scale
processes, in agreement with experiments. However some superpartners, tightly linked to
naturalness and/or properties of the Scherk-Schwarz twists, have to be light and populate
the low-energy particle content of the theory, which eventually consists of the Standard
Model degrees of freedom plus a scalar triplet, the third-generation of squarks and the
doublet of sleptons. The presence of the right-handed staus in the light spectrum, that
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we have avoided in the paper, is really optional. Depending on the choice, the LSP can
be the right-handed stau or the tau sneutrino. The latter is preferable to avoid the strong
constraints on charged LSPs.

Since gluino bounds are robust and quite generic, the most stringent constraint to
the model comes from gluino searches. Nevertheless, other experimental signals could be
used to test it. In the short term, searches for disappearing tracks or fermiophobic scalars
are the most promising for probing part of the parameter space. Searches for the third
generation of squarks are also important, but it is challenging to apply their bounds to
the present scenario where squarks have multibody decays [50]. We leave for the future
the reinterpretation of these bounds in terms of the parameter space of the model.
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