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Abstract

Currently several thousands of objects are being tracked in the MEO and
GEO regions through optical means. The problem faced in this framework
is that of Multiple Target Tracking (MTT). The MTT problem quickly be-
comes an NP-hard combinatorial optimization problem. This means that
the effort required to solve the MTT problem increases exponentially with
the number of tracked objects. In an attempt to find an approximate solu-
tion of sufficient quality, several Population-Based Meta-Heuristic (PBMH)
algorithms are implemented and tested on simulated optical measurements.
These first results show that one of the tested algorithms, namely the Elitist
Genetic Algorithm (EGA), consistently displays the desired behavior of find-
ing good approximate solutions before reaching the optimum. The results
further suggest that the algorithm possesses a polynomial time complexity,
as the computation times are consistent with a polynomial model. With the
advent of improved sensors and a heightened interest in the problem of space
debris, it is expected that the number of tracked objects will grow by an or-
der of magnitude in the near future. This research aims to provide a method
that can treat the association and orbit determination problems simultane-
ously, and is able to efficiently process large data sets with minimal manual
intervention.
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1. Introduction

Cataloging space debris can be put in the more general framework of Mul-
tiple Target Tracking. The MTT problem can be summarized as follows. A
region contains any number of target objects of which the states are unknown.
Starting from a set of S scans, collected by any number of sensors, both the
total number of targets and their states have to be estimated. A scan is
defined as a set of observations that all originate from different targets. For
a mathematical formulation of the MTT problem, the reader is referred to
(Deb et al., 1997). The fields where MTT problems are encountered are nu-
merous, examples are the tracking of targets in a military context (Rakdham,
2009), and the tracking of particles resulting from high energy collisions in
particle physics (Pusztaszeri et al., 1996).

The MTT problem also takes the occurrence of both false alarms (sporadic
measurements) and missed detections into account. The problem consists of
two interrelated parts, namely data association and state estimation. In the
data association part the observations from the different scans have to be
associated to the correct targets. The state estimation part then takes these
associated groups of observations and estimates the target state. This leads
to a search for the permutation that results in the target state estimates that
best approximate the measurements, according to a certain metric (e.g. the
Mean Squared Error). The number of scans S that are used in the problem
correspond to its dimension. For a dimension of S ≥ 3 the number of possi-
ble permutations greatly increases and the problem becomes NP-hard (Poore
and Gadaleta, 2006). For instance, in the case where S = 2 with two observa-
tions per scan, there will be a total of seven possible permutations. However
for the S = 3 case with two observations per scan, there will be 87 of these
permutations (Aristoff et al., 2013). Any problem can be classified as being
either a problem with P or NP complexity. The P stands for Polynomial,
which means that it can be solved in a polynomial time. If we say that the
problem size is denoted by n then the computation time will be e.g. n2 (or
any other order). The NP stands for Nondeterministic Polynomial time. This
means that the computation time is not described by a polynomial but for
instance could be 2n. The computation time of an NP problem will quickly
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become unrealistically large. Despite its challenges, several attempts have
been made to solve the S ≥ 3 MTT problem in an efficient manner. The
Multiple Hypothesis Tracking (MHT) algorithm (Blackman, 2004; Aristoff
et al., 2013) seeks to find the optimum solution to the MTT problem by em-
ploying a branch and bound methodology. In order for this algorithm to have
a realistic computation time the MTT problem has to be greatly simplified.
Another approach to the problem is to seek an approximate solution that
can be obtained in a realistic computation time. An algorithm has a realistic
computation time when it has a Polynomial time complexity. Examples of
algorithms that seek an approximate solution are the Lagrangian relaxation
technique (Deb et al., 1997), and the GRASP algorithm (Robertson, 2001).
The alternative to solving the S ≥ 3 problem is to solve the S = 2 problem.
This problem has the favorable computational complexity of O(n2). Recent
work in this area can be found in (Siminski et al., 2014; Fujimoto et al., 2014;
Schumacher et al., 2013). These methods evaluate pairs of observations, and
take a definitive decision on whether to associate the two observations or
not. This can lead to wrong associations, since no information besides those
two observations are taken into account (an S ≥ 3 MTT approach would
consider more observations, as well as the possibilities of false alarms and
missed detections). The severity of this problem depends on the target den-
sity in the region of interest. So to solve the MTT problem applied to a
densely populated area (e.g. satellite clusters, break-up events) an efficient
way has to be found to search through the possible permutations. The MTT
problem represents a so-called track based approach, where the state of each
object is explicitly resolved. Another possible approach to cataloging space
debris is by using a population based approach. Such an approach aims to
statistically represent the debris population. An example of such a method
is the AEGISS-FISST method (DeMars et al., 2015).

The goal of this paper is to identify an algorithm that can overcome the
pitfalls of an S = 2 algorithm, without possessing an unfavorable computa-
tional complexity. To this end a series of Population-Based Meta-Heuristic
(PBMH) algorithms are proposed. These algorithms are a popular choice
when faced with a (combinatorial) NP-Hard optimization problem (Reeves,
1995; Beasley and Chu, 1995). The Genetic Algorithm (GA) is a popular
PBMH algorithm which was conceived in the 1960s (Goldberg, 1999). Since
then the GA has been successfully applied to many different (combinatorial)
NP-hard problems spread out over many different domains. A part of the
appeal of the GA is its versatility, i.e. its structure does not depend on the
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problem. Since the coming of the GA there have been other developments
in the field of PBMH algorithms. Other algorithms with a high potential
are the Population Based Incremental Learning (PBIL) (Baluja, 1994) and
the Differential Evolution (DE) (Onwubolu, 2009) algorithms. Both of these
algorithms have shown some promise when applied to combinatorial opti-
mization problems.

Only optical sensors are considered in this work, these provide Right As-
cension α and Declination δ values. A few important terms that are used
throughout the paper are defined as follows:

• Observation: a Right Ascension and Declination pair at epoch t: (α, δ)t.

• Tracklet: a series of seven observations at 30 second intervals, already
determined to stem from the same object.

• Fence: a set of tracklets that all belong to different objects.

In this work also a method of tracklet association is used that is heavily
based on the previous work done by Siminski et al. (2014). It should be
seen as an extension to that method. The paper is organized as follows. In
the next section the Optimized Boundary Value Initial Orbit Determination
(OBVIOD) method is presented. In the third part the basic principles of
each of the PBMH algorithms are discussed. The fourth part covers the
application of the resulting algorithm to three test cases. In the fifth part
attention is given to the computational complexity of the algorithms. Finally
the paper is closed with the conclusions that can be drawn and the outlook
for future research in this area.

2. The Optimized Boundary Value Initial Orbit Determination
(OBVIOD) method

The Boundary Value method developed by (Siminski et al., 2014) is used
as a foundation for this algorithm. The method employs a loss function with
a favorable topography. The association uses the Mahalanobis distance as
a criterion, this is a χ2 distributed statistically significant value. Besides
this, it gives an initial orbit which can be refined further with e.g. the Least
Squares method. The algorithm exclusively uses tracklets. It is assumed
that the tracklets are formed correctly from the individual observations, we
do not concern ourselves with the tracklet formation process such as the one

4



detailed in (Früh and Schildknecht, 2012). Using tracklets instead of individ-
ual observations provides an advantage, which is that now also information
on the angular rates is available. The series of observations can be approxi-
mated with a straight line. By fitting such a line, each tracklet provides us
with an estimate of the topocentric angular velocity of the object. This gives
the attributable (Tommei et al., 2007) at epoch t which is denoted as follows:

θ̄t =
(
α, α̇, δ, δ̇

)T
t

(1)

In this method no ’raw’ observations are used, only those that are derived
from the linear fit. Henceforth the angular rate and position that have been
derived from the line fit to the individual observations are referred to as
the ’attributed’ angular rate and position. The angular rate and position
that follow from a computed orbit are referred to as the ’computed’ values.
The four attributed values are accessible from the observations. However an
orbit has at least six orbital parameters that uniquely define it. Therefore two
additional values are needed. By considering two tracklets, two attributables
(eight values) are available. The two angular positions (four values) together
with the ranges at the epochs of the first and second tracklet give the six
necessary values. The angular rates of the attributables are used to quantify
the quality of the computed orbit. With any range hypothesis p̄ = (ρ1, ρ2)
and two angular positions, two geocentric position vectors can be derived.
These vectors together with the time of flight between the two epochs define
the Lambert problem (Battin, 1999). The Lambert problem can be solved to
provide a Keplerian orbit that intersects these two geocentric positions with
the given time of flight. The Lambert problem has two sets of solutions, a
short way and a long way solution. Here it is assumed that the object travels
in the direction of the short way solution. This is true for the test cases that
are presented in this work. The method seeks to find the optimum range
hypothesis p̄∗ and number of revolutions m∗ that lead to the best fitting
orbit according to the loss function in Equation 2.

LN=2(m, p̄) =
(

˙̄z − ˙̄̂z(m, p̄)
)T

Σ−1
˙̄z

(m, p̄)
(

˙̄z − ˙̄̂z(m, p̄)
)

(2)

Here the ˙̄z =
(
α̇1, δ̇1, α̇2, δ̇2

)
denotes the attributed angular rates, and

˙̄̂z =
(

˙̂α1,
˙̂
δ1, ˙̂α2,

˙̂
δ2

)
denotes the computed values following from the Lam-

bert problem solution. The Σ ˙̄z(m, p̄) denotes the covariance matrix which
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is the summation of two parts. The first part is the C ˙̄z matrix which rep-
resents the covariance on the attributed angular rates. The second part is
the C ˙̄̂z

(m, p̄) which is the covariance of the computed angular rates. This
covariance has to be propagated from the covariance on the individual mea-
surements. The m stands for the number of orbital revolutions between the
first and second epoch. The quantity in Equation 2 is also known as the
Mahalanobis distance. This method can treat two tracklets at a time, and
give an indication of whether they might be associated to each other. Given
the assumptions (Keplerian motion and a Gaussian error), the minimized
Mahalanobis distance LN=2(m∗, p̄∗) is χ2 distributed. By exploiting this fact
a threshold can be set. If the Mahalanobis distance is below that threshold,
those two tracklets are associated to each other. The Mahalanobis distance
is χ2 distributed when the mean of the random variable is zero. Therefore(

˙̄z − ˙̄̂z(m, p̄)
)
∼ N

((
˙̄z − ˙̄̂z(m, p̄)

)
, (µ̄ ˙̄z − µ̄ ˙̄̂z

= 0),Σ ˙̄z

)
should be the case.

HereN (x̄, µ̄x,Σ) is the multivariate normal distribution as given in Equation
3.

N (x̄, µ̄x,Σx̄) =
1√

(2π)n|Σx̄|
e−

1
2

(x̄−µ̄x)T Σ−1
x̄ (x̄−µ̄x) (3)

Where x̄ is the vector containing the random variables, µ̄x is the vector
containing the mean values, Σx̄ is the covariance matrix and n is the dimen-
sion of the vector x̄. As long as the tracked objects follow a Keplerian motion
this is true. When the objects are subject to perturbations then µ̄ ˙̄z− µ̄ ˙̄̂z

6= 0,
and the χ2 distribution will become a non-central χ2 distribution.

The MTT algorithm described in this paper aims to approximately solve
the S ≥ 3 MTT problem. Therefore the previously described method needs
to be generalized such that it can determine the orbit and Mahalanobis dis-
tance for more than two tracklets. The decision to extend the method de-
veloped by (Siminski et al., 2014), in favor of using an existing method such
as the Gauss method for three observations or a Least Squares approach for
more than three observations, is to provide consistency. The final goal is to
be able to compare orbits that differ in the number of tracklets N . In order to
do this, a consistent quantity has to be used, the extension of the (Siminski
et al., 2014) method provides this. Any tracklet has the attributable given
in Equation 1. Any set of N tracklets has a collection of attributables, this

collection is denoted as Θ̄ =
(
θ̄0, θ̄1, θ̄i, . . . , θ̄N

)T
. With this vector, Equation
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2 can be generalized to account for N ≥ 2 tracklets, resulting in Equation 4.

LN≥2(m, p̄) =
(

Θ̄− ˆ̄Θ(m, p̄)
)T

Σ−1
Θ̄

(m, p̄)
(

Θ̄− ˆ̄Θ(m, p̄)
)

(4)

Here ˆ̄Θ denotes the vector of the computed values. The ΣΘ̄(m, p̄) is defined
as ΣΘ̄ = CΘ̄ +C ˆ̄Θ

(m, p̄) where CΘ̄ is the covariance matrix of the attributed
values and C ˆ̄Θ

(m, p̄) is the covariance matrix of the computed values. Now
that N ≥ 3 is possible, there is a choice in which pair of tracklets to use
to define the Lambert problem. From the point of view of the Initial Orbit
Determination (IOD) it is favorable to cover a maximum portion of the arc
in order to improve the accuracy of the solution. Therefore, it is chosen to
always use the (1, N) combination.

An example of the loss function topography is shown in Figure 1. Here,
three tracklets are considered. The individual contributions of the angular
positions and angular rates are shown. The summation of these two parts
would give the total loss function topography. In both cases there is one
minimum point within the search space, and the topography of both parts are
smooth. Therefore a gradient descent algorithm can be used to minimize the
quantity in Equation 4. In this work the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) (Press et al., 2007) algorithm is used for this purpose. Generally,
there is one unique minimum point in the loss function topography. However,
this has not been proven in a rigorous, mathematical way. Therefore caution
is advised when using this method, as the possibility of having multiple local
minima points is not excluded.

The minimized loss function values are χ2 distributed. The Degree of
Freedom f of the χ2 distribution depends on the number of tracklets N that
are used. Each tracklet provides four attributed values, and there are two
values being estimated, namely ρ1 and ρN . Furthermore the angular posi-
tions of the first and last tracklet (α1, δ1, αN , δN), will be exactly intersected
because they are used to define the Lambert problem. Therefore the degree
of freedom for N tracklets is determined by f(N) = 4N − 6.

It can be opted to constrain the (ρ1, ρN) search space. This is done by
applying the so-called Admissible Region (Milani et al., 2004, 2011; Tommei
et al., 2007; Schumacher et al., 2013). This method allows for the restric-
tion of the search space by placing constraints on e.g. the semi-major axis.
The constraints only use relationships that do not require much additional
computation time.
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Figure 1: The individual contribution of the angular rates (l) and the angular positions
(r) to the loss function. Three tracklets are used in this example.

3. Population Based Meta-Heuristic (PBMH) algorithms in Mul-
tiple Target Tracking

As mentioned in the introduction, a few meta-heuristic methods have been
investigated within the framework of MTT (Poore and Gadaleta, 2006). In
this section we define how an ’individual’ is represented, and how such an
individual is evaluated through a so-called ’fitness function’. These are two
important aspects, that are the same for all of the investigated algorithms.

Definition of an individual and the fitness function

A PBMH algorithm works with a population of individuals. Each in-
dividual represents a potential solution and is evaluated to determine its
so-called fitness. The fitness of an individual is a measure of the quality
of that solution. The individual has to be able to accurately represent any
valid solution in the search space. In this work an individual represents the
associations between the tracklets. Equation 5 shows the general notation of
a k-matrix. The k-matrix notation was introduced in the work of (Schneider,
2012), where the most likely k-matrix was sought through the application of
Markov Chain Monte Carlo computations.
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K =


1 0 . . . 0
k2,1 k2,2 . . . 0

. . . . . .
. . . 0

ki,1 ki,2 . . . ki,j

 (5)

In the k-matrix any entry ki,j can only have a value of 1 or 0. If ki,j = 1
it signifies that the tracklet in row i is associated to the object in column
j. The k-matrix is defined in such a way that the first tracklet is always
associated to the first object. Following this logic the k-matrix becomes a
lower triangular matrix. Besides this, each row may only contain one non-
zero element such that Σj=N

j=1 ki,j = 1, i = 1, . . . , N .

The second design element is the fitness function. The fitness function has
to fulfill two requirements.

• The individual with the best fitness value should be the optimal solu-
tion.

• An improvement in a solution should lead to an improvement in fitness
value.

In the fitness function the detection probability Pd and the false alarm
probability Pf have to be taken into account. The Pd describes the prob-
ability to detect the object. This probability depends on e.g. the image
processing software and the brightness of the object. The Pf describes the
probability of having a sporadic measurement due to e.g. measurement noise.
We define the event A as the event where none of the N tracklets are a false
alarm. The event B is the event where all of the N tracklets are detected.
Event C is the event where the object is not detected in the remaining S−N
fences. Event D occurs when the measurements stem from the object that is
represented by the modeled object. The probability of this event is modeled
with a multivariate Normal distribution, since the errors are assumed to be
Gaussian. Note that this probability cannot be evaluated in the N = 1 case,
since the OBVIOD method cannot define an orbit for a single tracklet. The
probabilities of having each of these events occur are given in Equations 6 to
9.

P (A) = (1− Pf )N (6)
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P (B) = PN
d (7)

P (C) = (1− Pd)S−N (8)

P (D) =

{
N
(

Θ̄, ˆ̄Θ(m∗, p̄∗),ΣΘ̄

)
if N ≥ 2

1 if N = 1
(9)

In case of Equation 9 a value of ’1’ is used for the N = 1 case. An empirical
parameter will be introduced that allows the N = 1 fitness to be tuned.

All the events are independent from one another. The conjunction of all
the events is given in Equation 10. It describes the total probability that a
single object exists with the given set of tracklets.

Px =

{
N
(

Θ̄, ˆ̄Θ(m∗, p̄∗),ΣΘ̄(m∗, p̄∗)
)

(1− Pd)S−N PN
d (1− Pf )N if N ≥ 2

(1− Pd)S−1 Pd (1− Pf ) if N = 1

(10)
Here x = 1, 2, .., X where X is the total number of hypothetical objects

that the k-matrix proposes. To obtain the total probability that a k-matrix
is correct, all the probabilities of the individual objects have to be combined
as shown in Equation 11.

Py =
X∏
x=1

Px (11)

Where y = 1, 2, .., Y denotes the k-matrix, and Y denotes the population
size. When we take the negative log-likelihood of Equation 10, and introduce
the tuning parameter γ, we obtain Equation 12.

fx =



LN≥2(m∗, p̄∗)− ln

(
1√

(2π)n|ΣΘ̄(m∗, p̄∗)|

)
+

− (S −N) ln (1− Pd)−N ln(Pd)−N ln(1− Pf )
N ≥ 2

−ln
(

(1− Pd)S−1 Pd (1− Pf )
)

+ γ N = 1

(12)

And Equation 11 becomes Equation 13.

10



fy =
X∑
x=1

fx (13)

Expressions similar to Equation 13 can be found throughout the MTT
literature, examples being (Blackman, 2004) and (Deb et al., 1997). In Figure
2 the possible fitness values that a group of three tracklets can have is shown.
Three tracklets can be arranged as three single tracklets (N=1/N=1/N=1),
a group of two tracklets and a single tracklet (N=2/N=1), and a group of
three tracklets N=3. Note that the (N=1/N=1/N=1) fitness value and the
(N=2/N=1) fitness values can be shifted by changing the γ parameter. For
now a value of γ = 0 is maintained. This value ensures that the fitness value
distributions do not overlap. The γ could be further optimized, but this is
beyond the scope of this paper.

−180 −160 −140 −120 −100 −80 −60 −40 −20 0 20
0

0.2

0.4

0.6

0.8

1

 

 

fitness values, P
d
 = 0.90, P

f
 = 0.01, γ = 0

fitness [−]

P
 [

−
]

N=1/N=1/N=1

N=2/N=1

N=3

Figure 2: Possible fitness values that a group of three tracklets can have. Three tracklets
can be arranged as three single tracklets (N=1/N=1/N=1), a group of two tracklets and
a single tracklet (N=2/N=1) and a group of three tracklets N=3.

4. Algorithms

All the presented algorithms work with a population of individuals and
use the same representation of an individual and the same fitness function.
The goal of each algorithm is to minimize Equation 13, this would lead to
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finding the k-matrix that has the maximum probability of being correct. In
this chapter each algorithm is briefly presented along with several references
that provide more detailed information on the used methods. Each of the
algorithms is based on a heuristic which guides a stochastic process. This
means that it is not possible to derive any meaningful characteristics (e.g.
convergence rate, computational complexity) of the algorithms through an
analytical way (Oliveto et al., 2007). Therefore, the discussion of the algo-
rithms is limited to a qualitative description.

4.1. Genetic Algorithm (GA)

The GA is inspired by natural selection. The fitness function is evaluated
for a generation in order to assign a fitness value to each individual. Some
individuals will have a better fitness than others. These individuals then have
a higher probability to pass on their information to the next generation. In
Figure 4 the flowchart of a GA can be seen. The first step is to create
an initial population, this is done at random in order to attempt to have
a uniform distribution of individuals throughout the search space. In the
second step this random initial population gets evaluated. A new population
is created by applying the two basic GA operators to the individuals. The
first operator is the uniform crossover operator. This operator needs two
individuals as an input. The two individuals that it needs are selected based
on the relative fitness values, as defined in Equation 14.

fyrel =
1

fy

1∑Y
y=1 (1/fy)

(14)

The fyrel values describe a discrete probability density function (pdf), as
shown in Figure 3. The inverse values of fy are used, since we want the
individuals with a low fitness value to be favorable (Equation 13 has to be
minimized).

From the discrete pdf of fyrel two individuals are sampled. The uniform
crossover operator switches a row between the two individuals with a proba-
bility Px = 0.5. Switching a row between k-matrices means that the tracklet
corresponding to that row changes the object to which it is associated.

Crossover is seen as the exploiting operator in the GA. To ensure a certain
extent of exploration, the mutation operator is used. The mutation operator
is applied to every new individual. Each row can be mutated with a user
defined mutation probability. The change is applied by randomly redefining
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Figure 3: An example of a discrete probability density function made by the relative fitness
values in the population.

the column where the ’1’ occurs, effectively assigning the tracklet to another
object.

The two operators are applied until a new population is created. This
population is evaluated by calculating the fitness of each individual. In the
classical GA this new population will replace the entire former population.
Therefore the GA does not necessarily improve its solution from one genera-
tion to the next, it can also discard the best solution so far and only be able
to formulate a solution of worse quality. A simple variation on the standard
GA exists which is called the Elitist Genetic Algorithm (EGA). Here the top
few percent of the population is always copied to the next population, this
ensures that the information contained within the best individuals is never
lost. The process is repeated until a stopping criterion is met. In this case
the stopping criterion is g > max gens where g is the current generation and
max gens the maximum number of generations allowed. Alternative criteria
could be a certain fitness value, or a maximum number of generations where
no improvements were found. For further reading the work of (Goldberg,
1999) is recommended which provides a thorough discussion of GAs. In the
works of (Chen and Hong, 1997) and (Turkmen et al., 2006) the GA is applied
to an MTT problem.

4.2. Population Based Incremental Learning (PBIL)

The PBIL algorithm is a close relative of the GA. However, it uses less
operators and in some cases converges faster than the GA. It aims at learning
a probability distribution from which highly fit individuals can be sampled.
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Figure 4: Flowchart of the Elitist Genetic Algorithm

This goal is achieved by using the information that is present in a given
population of k-matrices. The probability distribution P for k-matrices is
defined by the probability that a given tracklet is associated with a certain
object. In other words, the probability given at a certain position (i, j) in the
matrix gives the probability of the value at that position being ’1’. From this
distribution a new k-matrix can be sampled by sampling an object at random
(according to the probability distribution) for each tracklet. The flowchart
for this algorithm is given in Figure 5. The probability distribution P is
initialized to a uniform distribution. This means that initially Pi,1:i = 1/i for
i = 1, 2, .., N . From this distribution the first population is sampled. These
individuals are all evaluated as usual. In the current implementation of PBIL,
only the very best individual is used to update the probability distribution.
This is done according to the update rule in Equation 15 (Baluja, 1994).

Pi,j = (Pi,j (1− LR)) +
(
LR · k∗i,j

)
(15)

The matrices P and k∗ are the probability distribution and the best k-
matrix in the population respectively. The parameter LR is the Learning
Rate parameter. It dictates how much impact the current best solution has
on the probability distribution. Different update schemes exist, where also
the worst individual of the population is used. Experimental results showed
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Figure 5: Flowchart of the PBIL algorithm

that the scheme that only uses the best individual in the population performs
best. In PBIL there is also a mutation operator in order to ensure versatility
in the population and to provide a mechanism to escape from local minima.
The mutations can either be performed directly on the individuals (as in
GA) or on the probability distribution itself. Here it was opted to mutate
the distribution. This is done by randomly adding or subtracting a fixed
value from a parameter in the P matrix. This algorithm has shown promise,
since in many cases it outperforms the standard GA (Baluja, 1994). One
pitfall of this algorithm is that it assumes that all the parameters (in this
case tracklet associations) are independent from one another. In the GA these
dependencies are taken into account, because it uses the crossover operator.
The strength of the GA lies with this crossover operator and its capability of
successfully combining ’building blocks’ (thus with strong inter dependencies)
to come up with promising solutions. It can therefore be expected that if
these inter dependencies are very strong (this is a problem dependent issue),
the PBIL algorithm could have poorer performance than the classical GA.
For further reading about the PBIL algorithm the reader is referred to the
work of (Baluja, 1994).

4.3. Differential Evolution (DE)

Differential Evolution was developed to find solutions to problems with
continuous variables. Since then efforts have been made to adapt the original
algorithm so that it can be applied to discrete (combinatorial) problems
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(Onwubolu, 2009; Prado et al., 2010). These efforts have been successful in
some cases, however the applicability of DE to combinatorial optimization
problems remains debatable. In DE the difference between (real valued)
candidate solution vectors is used to guide the search process. The notation
x̄g,i is adopted. Here g denotes the generation number and the i is the number
of the individual. The x̄ means that it is a current member of the population.
From these population members three are selected to construct the so called
mutation vector v̄g,i as shown in Equation 16.

v̄g,i = x̄g,r1 + F (x̄g,r2 − x̄g,r3) (16)

Here r1 6= r2 6= r3. The parameter F is the scaling parameter. It dic-
tates in what measure the difference vector will perturb the other solution.
The mutation vector is combined with the original vector by applying the
crossover operator. This results in a new vector called the trial vector ūg,i.
The final step is to evaluate the new vector ūg,i, if it is better than the cur-
rent solution then it will replace it. Otherwise the original solution is kept
and copied to the next generation without making any changes. Different
schemes exist to create the mutation vector. They differ by the way in which
they select the solution vector to change and the number of vectors that are
used. In the current implementation the scheme in Equation 17 is applied.

v̄g,i = x̄g,best + F (x̄g,r1 − x̄g,r2) (17)

As can been seen in the equation, the difference vector is always applied
to the best solution in the population. Furthermore, the r1 and r2 solutions
are randomly selected according to the relative fitness of each individual. As
mentioned earlier, this method was first conceived for applications on real
valued problems. There are two ways to adapt DE to handle discrete vari-
ables. One way is to adapt the main operator (given in Equation 17). The
other way is to transform the solution vectors from the discrete domain to the
real domain and to leave the differential operator as it is. Different options
are outlined in (Onwubolu, 2009) and (Prado et al., 2010). Here it was opted
to transform the solution vectors to the real domain. Note that a k-matrix is
easily converted to a vector with integers by setting each entry i in the vector
to the value j where ki,j = 1. This choice was made based on the simplicity
of its implementation as well as its good performance on other combinatorial
problems (Onwubolu, 2009). The transformation used is called the forward-
backward transformation. The idea is to first transform the population from
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the discrete to real domain using the forward transformation, then DE can
be applied as usual. After this the new candidate solution vectors are trans-
formed back to the discrete domain with the backward transformation. In
Equation 18 the forward transformation is given.

ˆ̄xg,i = −1 + αx̄g,i (18)

In the above equation α is set to the constant value of α = 1 · 10−3. The
value for α is not very important, it only has to ensure a transformation to
real (non integer) numbers. The backward transformation is the inverse of
the above equation, giving Equation 19.

x̄g,i = round

(
1

α

(
1 + ˆ̄xg,i

))
(19)

It is expected that the DE algorithm will encounter difficulties. This
is because the algorithm works with difference vectors. These difference
vectors have a physical meaning in a continuous problem. However, in a
combinatorial problem there is no physical meaning of the parameter values.
The parameter values are symbolic. A difference vector of these symbolic
parameter values therefore does not necessarily represent a direction toward
an improvement. The vectors will instead point in a more random direction.

5. Comparative study

In this section three cases are presented. All the objects treated in these
test cases are in geosynchronous, near circular orbits. Each case is based
on simulated observations, where the objects stem from the TLE-Catalog
1 and are propagated with a Keplerian motion. At this stage only objects
that follow a Keplerian motion are considered. The exact effects of tracking
objects subject to perturbed motion is a topic of future research. In each
case the observations are collected at three epochs within the same night.
The fences are spaced at two hour intervals in Right Ascension. Further-
more, the observations are made in the topocentric frame associated with
the Zimmerwald observatory (Herzog et al., 2010). No visibility conditions
other than the elevation of the object are considered here. A Gaussian noise
is added to each individual observation with a standard deviation of σ = 1”.

1https://www.space-track.org/
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Table 1: Settings of the parameters

- GA EGA PBIL DE
pop. size 2N 2N 2N 2N
pmutation 1/N 1/N 1/N 1/N

% copied to next generation 10 - - -
α - - - 1 · 10−3

F - - - 0.8
LR - - 0.5 -

Mutation shift - - 1/i -
max gens 150 150 150 150

The settings of the algorithms are kept constant, they can be found in Table
1. Note that the stopping criterion is the same for each algorithm. This is
deemed to be fair, since all algorithms have a similar computation cost when
evaluating and creating a generation. To reduce the computation time a look
up table is maintained. In this table the resulting Mahalanobis distance of
each IOD is stored, therefore the same orbit is not determined twice. The
first test case involves four objects that are clearly separated, this should be
a relatively easy task. For the second study case one of the ASTRA clusters
is used. These are again four objects but spaced close together (about 0.06
degrees in declination). It is expected that the convergence of the algorithm
will be slower when compared to the first case, since the difference between
the correct and erroneous solutions are smaller. For the last test case the
two previous situations are mixed. This gives a total of eight objects. It is
expected that the algorithm will find the correct associations among the four
’easy’ targets relatively soon, and will need more time to correctly distinguish
the cluster. For each test case the average convergence is presented. As the
algorithms are stochastic it is unrealistic to try to derive any bounds on the
convergence behavior through analytical means. Therefore the average per-
formance over multiple runs is presented. In this work the algorithms are
applied 100 times for each test case. Each time an algorithm is applied it
starts from a different random seed. Also the average k-matrix found at the
last generation is shown and compared to the true k-matrix.

First test case

In Figure 6 the observations for the first test case can be seen. Here it is
seen that all the tracklets are spaced at considerable distances (about three
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degrees in position and 6 · 10−4 [deg/sec] in angular rates) from each other
in all dimensions. Therefore this test case should be an easy one to solve for
the algorithm. The numbers noted in the legend of the figure correspond to
the NORAD ID numbers of the objects.
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Figure 6: The observations used in the first test case. These are Geosynchronous objects
on nearly circular orbit, separated in inclination.

In Figure 7 the average best solution per generation can be found. The
straight line represents the optimum solution.

From these results some clear conclusions can be drawn. First of all,
the results of the standard GA are not to be seen in this plot. This is
because this algorithm is not capable of finding a solution with a fitness
value in the range denoted on the y-axis. Surprisingly the DE algorithm
already performs much better than the GA. This is unexpected since the
DE algorithm is an algorithm that is known to have problems when facing
a combinatorial problem (Onwubolu, 2009). The PBIL algorithm seems to
converge the fastest, but it reaches a plateau early on in the run. This signifies
that the algorithm has found a local minimum and is trapped. The clear
winner among these algorithms is the EGA. Recall that the only difference
between the GA and the EGA is that in the EGA the best individuals are
always copied to the next population. Therefore the computational cost is
the same for both algorithms. Apparently it is of paramount importance
that the information contained in the top individuals is not lost. This also
explains the relative success of DE with respect to the GA, since in DE the
best individuals are always kept as well. These results are also reflected in
the average k-matrix that each algorithm found at the end of the run (at
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Figure 7: The average best fitness individual found per generation. Average value is based
on 100 runs.

generation number 150). The entries of the average k-matrix are given by
k̄i,j =

∑R
r=1 k

r
i,j/R, where r = 1, 2, .., R indicates the number of the run,

R = 100 is the total number of runs, and k̄ is the average matrix. In Figure
8 these k-matrices are compared to each other and to the optimum solution.

Figure 8: The average k-matrix at the end of the run vs. the true k-matrix for the first
test case

The results shown in Figure 7 are in accordance with those shown in Figure
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8. The GA is barely able to distinguish any correct associations, instead
it tends to put all the tracklets on the diagonal of the k-matrix (effectively
assigning each tracklet to a different object). The PBIL algorithm has indeed
found a local minimum which is in part correct. It consistently finds one of
the objects, however it is not able to form the complete 3-tuples of tracklets
of the other objects. Finally the DE algorithm consistently finds correct
associations but is not able to form the complete groups of tracklets either.
The success of the EGA can be accredited to the fact that it takes the
interdependencies among the parameters (tracklets) into account.

Second test case

The second test case concerns a satellite cluster. Satellite clusters form
one of the most challenging situations in space debris tracking because of the
close proximity that the objects have to each other. Therefore it is an inter-
esting test case for the proposed algorithms. In Figure 9 the observations for
this test case are found.
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Figure 9: The observations used in the second test case. These are closely spaced objects
belonging to one of the ASTRA clusters

In Figure 10 the average best solution per generation can be found.
The results show a similar behavior as in the first test case. An interest-

ing observation here is that the GA manages to parallel the performance of
PBIL. This is because a wrong association in this scenario will not necessar-
ily lead to a bad fitness value, due to the tracklets being closely spaced, and
their angular rates being similar to one another. Again the importance of
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Figure 10: The average best fitness individual found per generation. Average value is
based on 100 runs.

keeping the best solutions is shown. The EGA clearly outperforms the other
algorithms. In Figure 11 the average k-matrices at the end of the run can be
found.

Figure 11: The average k-matrix at the end of the run vs. the true k-matrix for the second
test case.

In these results it is again evident that the EGA is the only algorithm
capable of approximating the correct solution in a reliable way. PBIL again
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gets stuck in a local minimum, and DE finds good associations but is unable
to form the complete groups of three tracklets.

Third test case

In the third test case the two previous cases are mixed. The expectation
is that the algorithms are able to quickly find the correct associations for
the easy targets and will focus on the cluster afterwards. In Figure 12 the
observations used in this test case are seen.
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Figure 12: The observations used in the third test case. This test case contains both
objects that are separated in inclination as well as an ASTRA cluster and a single tracklet

In Figure 13 the average best fitness value per generation can be seen.
These results are again in accordance with the results of the previous test
cases. The EGA is clearly the only algorithm capable of finding a reasonable
solution

Figure 14 shows the average k-matrix found at generation 150. The first
four columns of this matrix correspond to the four objects that are in the
cluster. It is clear that the EGA would need more time to distinguish these
objects with certainty. Columns five until seven correspond to the objects
2639, 2717 and 858, which are the relatively easy targets. Although the
EGA is still unsure about the objects in the cluster, it has associated these
three easy targets correctly. This shows that the EGA is able to identify the
objects in the more sparsely populated areas with relative ease, after which
it focuses on the high density regions such as satellite clusters. Also, it has
identified the stand-alone tracklet without any issues.
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Figure 13: The average best fitness individual found per generation. Average value is
based on 100 runs.

Figure 14: The average k-matrix at the end of the run vs. the true k-matrix for the third
test case

6. Time complexity study

As mentioned in the introduction, the challenge is to find a good approx-
imate solution in a reasonable computation time. It is clear that the EGA is
capable of finding a good approximate solution, the question that remains is
whether it can do so in a realistic (polynomial) computation time.
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The EGA is a stochastic method. Therefore it is difficult if not impossible to
say anything about its behavior in a deterministic way. In cases where it is
possible to deduce a characteristic, its use is questionable. An example is that
the upper bound on the convergence behavior for a regular GA is the same
as that of an algorithm that generates solutions purely at random (Oliveto
et al., 2007). In the work of (Oliveto et al., 2007) an overview is given of
the recent investigations in the time complexity of Evolutionary Algorithms
(the GA is a type of Evolutionary Algorithm). One of the conclusions is
that the function to be optimized has to be considered when analyzing the
convergence behavior.
With this in mind the following experiment was devised. The EGA is applied
to problems of different sizes. As it is a stochastic algorithm, it is applied
100 times and the average performance is studied. The problem size is said
to change when the number of tracked objects changes. In order to keep the
difficulty of the problem the same when increasing the number of objects
they are spaced at one degree increments in inclination, but are otherwise
in identical orbits. They are geosynchronous objects, a tracklet is observed
every hour for a total of three tracklets per object.
Figure 15 shows the average k-matrix at different stages of the computation
for a problem with five objects. Four matrices are shown, at 80%, 90%, 95%
of the optimum value, and the true k-matrix. The computational burden is
concentrated at the beginning of the run. A look up table is used, therefore
the computation time needed per generation quickly becomes relatively low.
The improvement in the solution from 80% to 95% is therefore relatively
cheap from a computational standpoint.

Figure 15: The average k-matrix found at different stages of the search. Both the per-
centage of the optimum fitness as well as the time at which the solution is found are
given.
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Table 2: Goodness of fit values for both models.
- polynomial exponential

Sum of Squares due to Error (SSE) 4.44 12.52
R-square 0.999 0.998

adjusted R-square 0.999 0.997
RMSE 0.70 1.18

In Figure 16 the absolute computation time in seconds is plotted against
the number of objects that are being tracked. It is the time needed to have
a solution at 90% of the optimum fitness value. These tests were performed
on a machine with a 3.16 GHz CPU. The tests involved 11 tracked objects
at maximum. Because for each number of tracked objects the algorithm has
to be run 100 times, it was chosen to not go further than 11 objects (about
two hours of computation) in order to limit the computation time. Two
lines are fitted to these points, a polynomial and an exponential function.
These models were fitted in a least squares sense with the MATLAB curve
fitting toolbox. The goodness of fit values are given in Table 2, from this
table it becomes apparent that the data is well described by a polynomial
model. The SSE is the sum of squares of the differences between the model
and the actual data points. The R-squared statistic is the square of the
correlation between the predicted and actual response values. When the R-
squared value is corrected for the number of degrees of freedom the adjusted
R-squared value is found. Finally the RMSE is an estimate of the standard
deviation of the data, it can be found by taking the square root of the SSE
divided by the number of degrees of freedom. The determined parameters for
the exponential function are a = 3.00 and b = 0.29 and for the polynomial
they are a = 0.11 and b = 2.69.

The population size and the number of objects per k-matrix scale linearly
with the total number of tracklets (pop.size = 2N , X ∼ N). This means that
the computation time needed to evaluate a generation will scale withN2. The
parameter b of the polynomial fit is greater than two for several reasons. The
first is that the number of generations needed to arrive at a good approximate
solution will increase when more objects are tracked. However, due to the
look-up table it is relatively cheap to compute additional generations after
the initial few generations. Therefore, this has a minor impact on the total
computation time. Also the computation time needed by the crossover and
mutation operators is relatively small, but will still make a contribution.

26



Figure 16: Computation time needed to reach an approximate solution of a certain quality
(90% of optimum) versus the number of tracked objects. Two lines are fitted, a polynomial
and an exponential function. Each point represents the average computation time over
100 runs.

Therefore, it is to be expected that a polynomial trend fits well to the data
points. This polynomial behavior holds true for the range that is shown (two
to 11 tracked objects). Although it is expected that the polynomial trend
continues outside of this range, there is no way to be certain without adding
additional data points.

7. Conclusions

This work aimed to find a method that is able to approximate the solution
to the S ≥ 3 MTT problem in a reasonable computation time. Several algo-
rithms have been tested, namely the GA, EGA, PBIL and DE algorithms.
Three test cases were considered, the results throughout these test cases are
consistent. In each case the EGA was the only algorithm capable of consis-
tently finding the complete groups of tracklets. A study has been performed
to determine the relationship between computation time of the EGA and the
number of tracked objects. The outcome of the study is favorable as it shows
that the computational complexity is well described by a polynomial model
(at least up to 11 tracked objects). A straightforward method to mitigate a
large absolute computation cost is to adapt a parallel architecture. Genetic
Algorithms are particularly well suited for such an architecture and can ben-
efit from a more than linear increase in performance when an Island-Based
structure is used (Calegari et al., 1997).
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Future research will focus on finding an efficient way to reduce the search
space for the EGA. In this way the EGA can focus on more challenging situa-
tions such as satellite clusters and break-ups, effectively reducing the number
of objects that are handled. Once such a method is in place the algorithm
can be applied to data sets of realistic size (500-1000 tracklets). Finally the
goal is to collect real observations through a survey type observation strat-
egy and to test the algorithm on the real observations. To reach that goal
an intermediate step will be taken, where the effects of different dynamics
models in the tracklet simulations are studied.

Acknowledgments

This study has been performed within the framework of a PhD program
which is co-funded by the CNES, TAS and the AIUB.

28



J. M. Aristoff, J. T. Horwood, N. Singh, et al. Multiple hypothesis tracking
(MHT) for space surveillance: theoretical framework. Technical report,
Numerica Corporation, 2013.

S. Baluja. Population based incremental learning: A method for integrat-
ing genetic search based function optimization and competitive learning.
Technical report, Carnegie Mellon University, 1994.

R. H. Battin. An introduction to the mathematics and methods of astrody-
namics, Revised Edition. Number ISBN-13 978-1563473425. AIAA Edu-
cation Series, 1999.

J. E. Beasley and P. C. Chu. A genetic algorithm for the set covering problem.
Eur. J, Oper. Res., 1995.

S. S. Blackman. Multiple hypothesis tracking for multiple target tracking.
IEEE Aerosp. Electron. Syst. Mag, 2004.

P. Calegari, F. Guidec, P. Kuonen, et al. Parallel island-based genetic al-
gorithm for radio network design. J. Parallel. Distr. Com. , 47:86–90,
1997.

G. Chen and L. Hong. A genetic algorithm based multi-dimensional data as-
sociation algorithm for multi-sensor-multi-target tracking. Math. Comput.
Model., 26, 1997.

S. Deb, M. Yeddanapudi, K. Pattipati, et al. A generalized S-D assign-
ment algorithm for multisensor-multitarget state estimation. IEEE Trans.
Aerosp. Electron. Syst., 33(2), 1997.

K. J. DeMars, I. I. Hussein, C. Früh, et al. Multiple-object space surveillance
tracking using finite-set statistics. J. Guid. Control Dynam., 38(9):1741–
1756, 2015.

C. Früh, T. Schildknecht. Object image linking of earth orbiting object in
the presence of comics. Adv. Space Res., 49:594–602, 2012.

K. Fujimoto, D. J. Scheeres, J. Herzog, et al. Association of optical tracklets
from a geosynchronous belt survey via the direct bayesian admissible region
approach. Adv. Space Res, 53(2), 2014.

29



D. E. Goldberg. Genetic Algorithms in search, optimization and machine
learning. Addison-Wesley, 1999.

J. Herzog, C. Früh, T. Schildknecht. Build-up and maintenance of a catalogue
of geo objects with zim-smart and zimsmart 2. In 61st International As-
tronautical Congress, Prague, Czech Republic. IAC-10 A, volume 6, 2010.

P. Larranaga, R. Etxeberria, J. A . Lozano, et al. Combinatorial optimiza-
tion by learning and simulation of bayesian networks. In Uncertainty in
Artificial Intelligence Proceedings, 2000.

A. Milani, G. F. Gronchi, M. D. M. Vitturi, et al. Orbit determination with
very short arcs. I admissible regions. Celestial Mech. Dyn. Astron., 90(1):
57–85, 2004.

A. Milani, D. Farnocchia, A. Rossi, et al. Orbit determination of space
objects based on sparse optical data. Mon. Not. R. Astron. Soc., 417:
2094–2103, 2011.

P. Oliveto, J. He, X. Yao. Time complexity of evolutionary algorithms for
combinatorial optimization: a decade of results. IJAC, 4(3):281–293, 2007.

G. C. Onwubolu. Differential Evolution: A handbook for global permutation
based combinatorial optimization. Springer, 2009.

A. B. Poore and S. Gadaleta. Some assignment problems arising from mul-
tiple target tracking. Math. Comput. Model., 43, 2006.

R. S. Prado, R. C. P. Silva, F. G. Guimaraes, et al. Using differential evolu-
tion for combinatorial optimization: A general approach. Technical report,
Instituto Federal de Minas Gerais, 2010.

W.H. Press, S.A. Teukolsky, W.T. Vetterling, et al. Numerical recipes: the
art of scientific computing. Cambridge University Press, third edition,
2007.

J. F. Pusztaszeri, P. E. Rensing, T. M. Liebling. Tracking elementary parti-
cles near their primary vertex: A combinatorial approach. J. Global Optim.
, 9:41–46, 1996.

30



B. Rakdham. Efficient multiple hypothesis track processing of boost-phase
ballistic missiles using IMPULSEA-generated threat models. PhD thesis,
Naval Postgraduate School, 2009.

C. R. Reeves. A genetic algorithm for flowshop sequencing. Computers Ops.
Res., 22(1):5–13, 1995.

A. J. Robertson. A set of greedy randomized adaptive local search procedure
(GRASP) implementations for the multidimensional assignment problem.
Comput. Optim. Appl., 19(2):145 – 164, 2001.

M. D. Schneider. Bayesian linking of geosynchronous orbital debris tracks as
seen by the large synoptic survey telescopes. Adv. Space Res., 49(4), 2012.

P. Schumacher, M. Wilkins, C. Roscoe. Parallel algorithm for track initiation
for optical space surveillance. Proc. ’6th European conference on Space
Debris’, 2013.

J.A. Siminski, O. Montenbruck, H. Fiedler, et al. Short-arc tracklet associa-
tion for geostationary objects. Adv. Space Res, 53(8), 2014.

G. Tommei, A. Milani, A. Rossi. Orbit determination of space debris: ad-
missible regions. Celestial Mech. Dyn. Astr., 2007.

I. Turkmen, K. Guney, D. Karaboga. Genetic tracker with neural network
for single and multiple target tracking. Neurocomputing, 69, 2006.

31


	Introduction
	The Optimized Boundary Value Initial Orbit Determination (OBVIOD) method
	Population Based Meta-Heuristic (PBMH) algorithms in Multiple Target Tracking
	Algorithms
	Genetic Algorithm (GA)
	Population Based Incremental Learning (PBIL)
	Differential Evolution (DE)

	Comparative study
	Time complexity study
	Conclusions

