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Abstract

An in-depth study, using simulations and covariance analysis, is performed to
identify the optimal sequence of observations to obtain the most accurate orbit
propagation. The accuracy of the results of an orbit determination/improvement
process depends on: tracklet length, number of observations, type of orbit, astro-
metric error, time interval between tracklets and observation geometry. The latter
depends on the position of the object along its orbit and the location of the ob-
serving station. This covariance analysis aims to optimize the observation strategy
taking into account the influence of the orbit shape, of the relative object-observer
geometry and the interval between observations.

Keywords: Space debris, orbit determination, covariance, optical measurements,
GEO, GTO.

1. Introduction

At the moment there are more than 29000 objects with a diameter bigger than 10
cm, and more than 670000 objects with a diameter bigger than 1 cm in the space
around the Earth; furthermore, according to estimates there are more than 170
million objects bigger than 1 mm [1]. Among all these objects, only about 1400
are active satellites, all the rest is space debris. Space debris is any man made or-
biting object which is not operational with no reasonable expectation of assuming
or resuming its intended function [2]. The space debris population includes dis-
carded satellites, rocket bodies, mission-related objects, painting and insulation
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flakes, fragments created by collisions, and break up events [3].
Space debris constitutes a serious problem for space missions, both humans and
satellites. In fact, in the Low Earth Orbit region (LEO) for example, the average
speed for debris is about 8 km per second [4]; while in the Geostationary region
(GEO) the average speed for debris is more than 3 km. Because of the high ve-
locities of the debris particles, the present shields, including those used on-board
of the International Space Station (ISS), are able to protect spacecraft only from
the smaller debris (less than 1 cm in size [3]). For these reasons the space debris
is an important topic for the various space agencies and institutions, which are
conducting a lot of research to better understand this problem. The Astronomical
Institute of the University of Bern (AIUB) is also involved in this field of research.
The most common unanswered questions are: how many debris objects are there?
What are the most populated regions? What are they made of? And how will
this population evolve in the future? To answer these questions the most common
approach consists of three main steps: the first is the discovery of the objects [5],
the second is the orbit determination [6], [7] and the third is the characterization
of the objects [8], [9]. The AIUB performs all these activities using its telescopes.
As mentioned before, the first orbit determination and the orbit improvement are
fundamental steps for the study of space debris. The first one is performed by
scanning certain regions of the sky chosen in a way to ensure that an object is
observed several times during the same night [10]. The second is performed by
planning regular observations of the object of interest, these additional series of
observations are usually called follow-ups. Due to the huge amount of space de-
bris and to the limitations of the telescopes, which can operate only when the
weather conditions are good, it is necessary to optimize the time available for
follow-up observations.
This paper will describe a method, based on the analysis of the covariance ma-
trix, to understand how the follow-up observations should be distributed to obtain
the best orbit; in addition this method can also be applied to optimize the survey
strategies. This method will not provide a general rule on how to distribute ob-
servations but the idea is to suggest which observation strategy adopt having an a
priori knowledge of the orbit. Thus, in the case of follow-up one already knows,
even roughly, the orbit of the interested object and the method will tell where to
observe to improve certain parameters (according to the user needs). In the survey
case, the user already knows which kind of orbital class wants to investigate, thus
the proposed method will provide information about which orbital regions to ob-
serve in order to obtain the best initial orbit. In this paper we will focus mainly on
high altitude orbital regions because, especially the GEO regions, they have a high
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concentration of space debris and can be observed mainly using optical sensors.
We define the best orbit as the set of orbital elements with the lowest uncertainties,
that maximizes the accuracy of the predicted positions of the object. In the first
part of the paper we describe the reasons that brought us to use the covariance ma-
trix for this study and we will show the results of a theoretical study carried out to
identify the main parameters which influence the results and how the problem can
be simplified. Then the results obtained from a simplified scenario will be shown.
Afterwards the complexity of the scenario is increased step by step showing in
details the consequences on the results. Finally, this paper will present the results
obtained from the application of the covariance study to some typical observation
scenarios.

2. Theory

At the end of an observation night is not unusual to have an average of two track-
lets per observed objects. A tracklet is the result of a series of images acquired
during a survey campaign or during a follow-up of an already cataloged object.
We assume that a standard tracklet is consisting of e.g. 7 images, each one of
them contains a triplet of measurements, two angular, one in Right Ascension and
one in Declination (respectively RA and DE), and a time epoch. This means that
on average, from an observations night, one has 28 angular observations and 14
epochs for each object. Of course, these numbers can vary depending on factors
as: the number of objects to observe in the catalog, the survey strategy and also,
the performance of the software used to extract the measurements from the im-
ages. For this study we assumed to have two good tracklets per observed object.
These two series of observations are then used to determine/improve the orbit of
the object by mean of a Least SQuares adjustment (LSQ). The aim of this study is
to analyze the output covariance of a LSQ process to understand how the geom-
etry between observer and target object influences the accuracy of the estimated
parameters. This analysis is carried out in order to be able to optimize the param-
eter estimation and to find the best combination of tracklets which gives the best
orbit.

2.1. What is the covariance
The covariance matrix was chosen as the evaluation criterion because, as one can
see from Eq. (1), it contains the uncertainties of the estimated parameters only as
a function of the partial derivatives of the observations w.r.t. them; or rather it
contains the partial derivatives of RA and DE w.r.t. semi-major axis, eccentricity,
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inclination, right ascension of ascending node, argument of perigee and the 6th

parameter, see Eq. (2). These partial derivatives are functions of the geometric
relation between observer and observed object.

P = m2
[
AT WA

]−1
, (1)

in which:

A =
dobsi

dXo
, (2)

where:

- P is the covariance matrix,

- m2 is the a posteriori variance factor [11],

- A is the first design matrix,

- W is the weight matrix.

- obsi = [RAi; DEi] are the ith angular measurements, respectively Right As-
cension and Declination, where i = 1, ..., n and n is the number of observa-
tions,

- Xo =
[
a, e, i,Ω, ω, 6th

]
are the orbital parameters.

The a posteriori variance factor is function of the residuals of the observations
in RA and DE. In reality the residuals are function of the astrometric error on the
measurements and can be also due to deficiencies in the mathematical model used
in the LSQ. This quantity is not taken into account in this study because our aim
is not to solve the parameters estimation problem but is only to evaluate the influ-
ence of the object-observer relative geometry on their accuracy.
To carry out this study it was assumed that the observations are performed from
the same telescope system and then we don’t have to address the problem of mea-
surements with different qualities [11], [12]. This assumption allow us to make
a further simplification regarding the weight matrix (W) that in this case is a unit
matrix of size 2n. Another important information is contained within the correla-
tion indices which can be retrieved from the covariance matrix as shown in Eq. (3).
These indices are useful because they tell us how strong any two parameters are
correlated.
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ρi j =
σi j

σiσ j
, (3)

where:

- −1 ≤ ρ ≤ 1 is the correlation index,

- σi j is covariance of the elements i and j,

- σi and σ j are the standard deviations of the elements i and j.

2.2. Choice of parameters
As can be seen from Eq. (1) and (2), the output covariance of a LSQ adjustment
is a [6x6] matrix function of the observer position and the orbit of the object. To
simplify the problem, in order to isolate the contribution of each single compo-
nent, it was decided to eliminate the effects associated to the observer, so in a first
step an observer on the center of the Earth is used. The set of unknown parameters
consists of: two parameters which describe the shape of the orbit (i.e. semi-major
axis and eccentricity), two which describe the orientation of the orbital plane in
space (i.e. inclination and right ascension of ascending node), one parameter for
the orientation of the orbit in the plane (i.e. argument of perigee), and finally the
6th parameter which relates the position of the object along the orbit at a particular
time. Among them, the parameters describing the orientation of the plane in the
space are completely independent from the others, so negligible in first analysis.
The remaining parameters can not be excluded a priori because they depend on the
chosen parametrization. There are several variables which can be used to express
the 6th parameter: mean anomaly, eccentric anomaly, true anomaly, argument of
latitude and perigee passing time, respectively M, E, ν, u0 and T0. Among them,
the historical one is the perigee passing time; in fact, using T0, the dependencies
between parameters have the structure described by Eq. (4) [11].

M = M (a,T0)
E = E (σ, e) (4)
ν = ν (e, E)

Making use of this structure the partial derivatives of true anomaly are function
of a, e and T0. This parametrization has a big disadvantage for small eccentricity
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values; in fact if e = 0, the orbit is circular, which means that we do not have
any perigee and the T0 can not be defined anymore. To overcome this problem,
the most used solution is to define the argument of latitude at the time t0. For
circular orbit, exploiting the definition of osculating elements [11], the user can
set up arbitrarily an osculating time Tosc, with a certain ω and ν0, and solve the
LSQ adjustment at this epoch. The disadvantage is given by the fact that the min-
imum number of parameters that one can estimate increases. In fact, according to
the new parametrization shown by Eq. (5) and with the consequent dependencies
between parameters the minimum number of parameters to estimate rises from 3
(a, e and T0) to 4 (a, e, ω and u0). The analysis reported in this paper were carried
out using the parametrization with the argument of latitude because of the above
mentioned reasons.

ν0 = ν0 (u0, ω)
E0 = E0 (ν0, e) (5)
T0 = T0 (a, e, E0)

2.3. Study of derivatives
The study of the partial derivatives was carried out to have an idea of their influ-
ence on the results. Figure 1 shows the behavior of the partial derivatives of RA
and DE w.r.t. the orbital elements, obtained for an object whose orbit is charac-
terized by the following elements: a = 42164.173 km, e = 0.6, i = 30◦, Ω = 40◦,
ω = 60◦ and Tosc = 0 sec. The observer’s coordinate used are: latitude 40◦ North,
longitude 10◦ East and altitude 900 m.
As can be seen in Figure 1, all partial derivatives show periodic features over the
orbital period, which in this case is also coincident with the sidereal day. There
is only an exception for the derivatives w.r.t. the semi-major axis that show also
a time dependency which amplifies the periodic features. Looking at the analyt-
ical expression of these derivatives, it was noticed that these are the only ones
which are proportional to the difference between the actual epoch and the osculat-
ing time [see Eq. (6)]. During the analysis of the covariance matrix, the influence
of different Tosc was also studied; the variations caused by Tosc are seen only in
the uncertainties of the argument of latitude (u0) without influencing the other
parameters. (

dRA
da

,
dDE
da

)
∝ (t − Tosc) (6)
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Figure 1: Behavior of RA and DE partial derivatives w.r.t. orbital elements.

3. First Results

The main aim of this study is to understand how the relative object-observer ge-
ometry influences the accuracy of the estimated parameters. The results which
we are going to present are based on a limited number of observations, in partic-
ular only two tracklets are used, each one is made by 7 triplets of measurements
(i.e. RA, DE and time epoch), for a total number of 28 angular observations and
14 epochs. During all simulations the time interval between the measurements
within a tracklet is kept constant to 30 seconds. The simulations are performed in
order to cover all possible combinations of tracklets positions in the orbit. To do
so, the first LSQ adjustment is performed positioning the first tracklet on the orbit
perigee and the time interval between first and second tracklet is increased from
10 sec to two orbital revolutions; then, the same procedure is repeated positioning
in each run the first tracklet slightly forward along the orbit. For each couple of
tracklets the last iteration of a LSQ adjustment is simulated and from the relative
covariance matrix, without taking into account the a posteriori variance factor, the
square root of the terms in the main diagonal and the correlation coefficients are
considered. Since we are not interested in LSQ performances the correct orbital
elements are given as input to the LSQ. It is possible to do this simplification be-
cause being a non-linear LSQ, the only requirement to find a minimum is that the
initial value of the estimated parameters should be near to the global minimum
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values to converge to the correct solution [12].
In order to isolate the contribution of each parameter, the simulation are performed
first on a simplified scenario then its complexity is gradually increased. In the first
analysis the effect of an observer on the Earth’s surface is neglected, so a geocen-
tric observer is used. At the same time the number of parameters to estimate is re-
duced accordingly with the chosen parametrization. In this case only semi-major
axis, eccentricity, argument of perigee and the argument of latitude are estimated.
Figure 2 shows the results obtained for this simplified scenario for an orbit with:
a = 42164.173 km, e = 0.6, i = 30◦, Ω = 40◦, ω = 60◦ and Tosc = 1st observation.

Figure 2: Uncertainty maps estimating only a, e, ω and u0 with a geocentric observer.

Each point of Figure 2 shows the logarithm of the square root of the uncer-
tainty of the estimated parameter as a function of the tracklets position. In par-
ticular, the position of the 1st tracklet along the orbit can be read on the y-axis,
while the position of the 2nd is displayed on the x-axis. Both positions are ex-
pressed in terms of true anomaly. For completeness, we define uncertainty of the
estimated parameter the square root of the relative term on the main diagonal of
the covariance matrix divided by the a posteriori variance factor. Thus, to obtain
the real value of the standard deviation, with the real unit of measurement, one
has to multiply the value read in the map with the square root of the a posteriori
variance factor according to Eq. (1). This factor being function of the residuals is
expressed in square radians. Thus, the units of the semimajor axis map is km/rad,
the one of the eccentricity is 1/rad, while the ones for the angles (respectively i,
Ω, ω and u0) are dimensionless.
In Figure 2 is already possible to notice two important characteristics: the first is
given by the fact that the features in the maps are completely different between
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the first and the second orbital revolution, more precisely when the time interval
between the tracklets is smaller or bigger than the orbital period. The second is
the S -shaped feature appearing in the second revolution. The first effect is one of
the consequences of the time dependency of some partial derivatives, while the S -
shaped high uncertainty is occurring when the time interval between the tracklets
is half an orbital period; both effects will be later discussed in details. Looking at
the S -shaped high uncertainty it easy to see how for the eccentricity and the argu-
ment of perigee the features present some interruptions while for the semi-major
axis the S is continuous. Being this an elliptical orbit and the tracklets are ac-
quired with a constant time sampling between observations, it is obvious that the
arc of orbit covered by the tracklets is depending on the tracklet position. Further-
more, the length of the arc between the single observations is not constant. The
mentioned effects provide information regarding the eccentricity and the position
of the perigee. In fact if one pays attention to the interruptions of the S for the
eccentricity, these are occurring when the first tracklet is on the perigee and the
second is at the apogee (and vice versa). This tracklets combination maximizes
the difference between the lengths of the arcs covered by the tracklets. Regarding
the interruptions of the S for the argument of perigee, these are occurring when the
tracklets are symmetric w.r.t. the line of the apsides. In this case two symmetric
tracklets with the same length are used, but the distances between the observations
within the tracklet are first increasing then decreasing (or vice versa) in the same
way. This tells us if the apogee or the perigee is precisely in the middle of the arc
defined by the two tracklets. If we pay attention to the position of the S -region, it
is easy to see that is not precisely on the half period distance between the tracklets,
this is even more evident if we look at the interruptions for the eccentricity. As
we will see later, this is a second effect of the time dependency. For completeness
also the uncertainty map for the argument of latitude (u0) is reported in Figure 2,
this parameter will not be shown anymore on this paper because our interest is
mainly focused on the geometric parameters. Furthermore, the uncertainties of u0

are depending on the arbitrary time Tosc. Finally, it is important to highlight two
particular regions of the uncertainty maps: the first is constituted by the points
lying on the diagonal line whose extremes have coordinates [ν2 = 360, ν1 = 0],
[ν2 = 720, ν1 = 360] which defines all tracklets whose positions are separated
by one (or more) orbital period in time; while the second consists of points ly-
ing on the diagonal line whose extremes have coordinates [ν2 = 360, ν1 = 360],
[ν2 = 720, ν1 = 0] which defines all tracklets whose positions are symmetrical
to the line of the apsides. Of course all the lines which are parallel to the before
mentioned with a distance multiple of 360◦ have the same meaning.
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Figure 3 shows the correlation maps obtained for the above mentioned scenario.
The correlation index tells us how strong any two parameters are correlated. In
particular if |ρ| = 1 the two parameters are strongly correlated this means that any
modification of one parameter will influence the other.
From Figure 3 is evident how the estimated parameters are strongly correlated.
Some exceptions are present in these maps and coincide with the areas where the
single parameters have their minimum uncertainty. For example if we look at the
correlation between a and e or a and ω the low correlation area are coincident
with the "period" line. This result is clearly understandable because if we observe
an object twice in the same position with an interval between tracklets of one pe-
riod, the semi-major axis is well defined. Other areas with low correlation value
are occurring in the graph a vs e when the first tracklet is on the perigee and the
second on the apogee, while for the map a vs ω low correlations are occurring for
tracklets symmetric to the line of the nodes. It is also important to highlight that
the maps in Figure 3 show the maximum correlation value in the S -area with the
only exception given by the points where each parameter has its own uncertainty
minimum.

Figure 3: Correlation maps estimating only a, e, ω and u0 with a geocentric observer.
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3.1. The S-region
In Figure 2 it is possible to see an S -shaped area of high uncertainty values very
sharp for the semi-major axis, the eccentricity and the argument of perigee. As
anticipated in the previous paragraph this area is occurring when the distance in
time between the tracklets is half of an orbital period. Looking now at Figure 3 it
is evident that in the S -area the LSQ is not able to distinguish among these three
parameters, so in order to understand the cause of this S -shaped high-uncertainty
area a simulation was performed fixing the argument of perigee at the level of the
first design matrix (A).

Figure 4: Uncertainty maps estimating only a, e, ω and u0 with a geocentric observer but fixing ω.

It is important to note that these results are not relevant for this study but at
least they are helpful to find a possible explanation to the S -area. Looking at these
results it is easy to see that from the S -region only two points are remaining, which
coincide to the case where the position of the two tracklets is symmetric w.r.t. the
line of the apsides with half a period distance. We think that the uncertainty on
a and e is related to ∆t/∆θ and this ratio is maximum for these particular points.
We take a limit to ∆t = T/2 because each symmetric positions w.r.t. the line of
the apsides with ∆t > T/2 is geometrically equivalent to the same positions after
applying the mod(∆t,T ), where T is the orbital period.
As seen before, if one estimates a, e, ω, u0 without fixing ω, the above mentioned
points disappear and instead of them we have the S -line containing all positions
which are distant half a period in time. This is due to the fact that by varying a, e
and ω we can relate the generic situation of half a period distance between track-
lets to the case of tracklets symmetric to the line of the apsides, just mentioned
above.

3.2. Influence of time interval
As expected from the analysis of the partial derivatives and then confirmed by
previous results, the time interval between the tracklets has a big influence on the
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uncertainties of the estimated parameters. This effect can be highlighted com-
paring the results in Figure 3 with those in Figure 5, which are obtained with a
distance in time between tracklets contained within 49 and 50 orbital revolutions.

Figure 5: Uncertainty maps for a and e estimating only a, e, ω and u0 with a geocentric observer
with a maximum distance between tracklets of 50 orbital periods.

From this comparison it easy to see three main effects of the time distance be-
tween tracklets. Firstly, the S -shaped high uncertainty for a, e and ω is clearly vis-
ible from the 2nd period on. This does not mean that it is appearing only after one
orbital revolution, but it is also present within the 1st period; the only difference is
that in this case, this feature is hidden under higher uncertainty values. Secondly,
the average values of the uncertainties tend to decrease while the time interval
between tracklets increases (specially for the semi-major axis). Thirdly, the S -
shaped high uncertainty is now precisely passing on the area where the tracklets
are separated, in time, by half of an orbital period. In Figure 6 it is possible to see
how, specially for a, the average uncertainties are diminishing with time; and it
is also clear how the half-period feature is hidden within high uncertainty values
when the time interval between tracklets is less than one orbital revolution. A pos-
sible explanation for these phenomena is in the behavior of the partial derivatives.
In fact, as seen before, the partial derivatives of position w.r.t. the semi-major
axis contains a direct dependency from the time, in particular d~r/da ∝ (t − Tosc),
while the others derivatives are periodic over the orbital period. Despite the fact
that the time is increasing linearly, we think that these effects are due to the order
of magnitude of the time difference between the tracklets, which is growing from
0 up to 104 seconds within the 1st orbital period, then from 104 to 105 in the 2nd,
and it will reach 106 only after the 11th revolution.

3.3. Estimating also i and Ω

Once we understood the main features characterizing a, e, ω and u0, the simulation
was repeated including in the estimation process also the parameters which de-
scribe the orientation of the orbital plane in the space (i and Ω). Figure 7 shows the
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Figure 6: Behavior of the uncertainty of a, e and ω obtained with the 1st tracklet on the perigee
with a varying time interval of the 2nd up to 25 orbital revolutions.

uncertainty maps obtained for the same orbit analyzed before (a = 42164.173 km,
e = 0.6, i = 30◦, Ω = 40◦, ω = 60◦ and Tosc = 1st obs.) with a geocentric observer.

Figure 7: Uncertainty maps for i and Ω estimating all 6 parameters with a geocentric observer.

Figure 7 shows how the uncertainty maps of i and Ω are characterized only by
one main feature of high uncertainty values which includes all the positions with
a difference in time of one (or more) orbital period and which are separated by
180◦ in true anomaly. These high uncertainty areas can be explained considering
the fact that the orientation of the orbital plane in the space is described by the
direction of the angular momentum. At the same time this direction is also defined
by the cross product of the directions of two position vectors. The cross product is
undefined if the unit vectors involved are parallel or aligned which is precisely the
case described just before. Each of these features present two interruptions. To
explain them it is necessary to have a look at the orbital parameters, in particular
to ω, which in this case is equal to 60◦. In this case the line of the nodes intersects
the orbit when the true anomaly is equal to 120◦ and 300◦. Being the observer
always within the orbital plane, the information regarding Ω is maximized if both
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observations are performed on the line of the nodes. The information about the
inclination is maximized if the observations are performed at 90◦ of distance from
the line of the nodes, in this case when ν of the 1st tracklet is equal to 30◦ and for
the second tracklet ν = 210◦, or vice versa.

4. Results with a real observer

Until now, the results shown were obtained using an unreal observer located in
the center of the Earth. In the next section, the influence of a real observer on the
Earth’s surface is analyzed. The Figure 8 shows the scenarios used to isolate the
contributions given by a topocentric observer. Two "standard" orbits are used to
carry out this study and the results obtained using different observer displaced in
longitude or in latitude are compared. The used orbits have the following orbital
elements: a = 42164.173 km, e = 0.6, i = 1◦ or 60◦, Ω = 0◦, ω = 0◦ and Tosc coin-
cides with the time of first observation. As for the case of the geocentric observer,
the simulations are performed analyzing all possible combinations between track-
lets positions. The only difference is the observer position. In particular, the initial
position of the observer is kept constant for the different 1st tracklet postions while
for the second tracklet, the position of the observer is rotated accordingly with the
time interval between tracklets and the Earth’s angular velocity. The initial posi-
tions chosen for these simulations are shown in Table 1. It is important to note
that being a geometrical study the real orientation of the Earth in the space is ne-
glected. To better understand the results we set up the orbits so that their line of
nodes and their line of the apsides are coincident with the x-axis of the generic
inertial system; and the Greenwich meridian is also aligned with the same axis at
time t = 0.

Long. [deg] Lat. [deg] Alt. [m]
Reference Observer 0 0 0
Longitude-displaced observer 60◦ East 0 0
Latitude-displaced observer 0 50◦ North 0

Table 1: Observer geodetic coordinates.

4.1. Influence of longitude
On the first attempt, to isolate the contribution given only by the position of the
observer, the simulation are performed using an almost equatorial orbit, to avoid
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(a) Different observer positions with an
equatorial orbit

(b) Different observer positions with an in-
clined orbit

Figure 8: Scenarios used to evaluate the influence of a real observer.

the singularity of the used parametrization an inclination of 1◦ is used. In fact for
i = 0◦ it is not possible to distinguish anymore between Ω and ω. The results ob-
tained with a longitude displacement of the observer with an equatorial orbit are
analyzed and no significant effects can be seen. A "more" complicated scenario
in which i = 60◦ is used to evaluate the effects of a longitude-displaced observer.
The simulation are then repeated using the scenario described in Figure 8b, where
the "Reference" observer, at the time of 1st tracklet, is within the orbital plane pre-
cisely on the line of the nodes, which in this case coincides also with the line of
the apsides. Being a geosynchronous orbit, the observer will be again within the
orbital plane every half of a revolution. For the observer displaced in longitude
the 1st tracklet is acquired always outside of the orbital plane. The observer will
be in the orbital plane only if the distance in time between the tracklets is equal
to 1/3 or 5/6 of the orbital period. Figure 9 shows the results of this simulation
and shows the comparison between only two parameters a and i. The just men-
tioned figure (Figure 9) shows the comparison of the uncertainties obtained for a
time distance between tracklets included from 4 and 5 orbital revolutions; it was
decided to show these results to take into account the shift of the main features
due to the time dependency of the derivatives (see paragraph 3.2). Comparing the
latter results with those obtained in the case of an equatorial orbit we can already
conclude that the relative position of the observer w.r.t. the orbital plane has a huge
influence on the results, in particular it is important to distinguish if the observer
is always, systematically or just occasionally within the orbital plane. Figure 9
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shows the comparison between results obtained with an observer systematically
inside the orbital plane w.r.t. that obtained by an observer just occasionally inside.
The Figures 9a and 9b show some common features as: the minimum uncertainty
area on the period line for a, the S -area with high uncertainties, the high uncer-
tainties for tracklets whose angular distance is 180◦ for i. Focusing now on the
uncertainty maps for a, it is possible to see few differences and one new feature.
The main difference is in the uncertainty values in the S -area which are smaller
if the observer is just occasionally within the orbital plane. The new feature that
is not so sharp in this case, but will be more evident in the next paragraph, is
constituted by a minimum value line for a in the case where the tracklets have an
angular distance of 180◦. These two effects are due to the fact that observing from
outside the orbital plane one is able to estimate the distance to the object.
Comparing the two inclination maps, it is easy to see that they are pretty different,
in particular the one in Figure 9a shows two horizontal lines with low uncertainty
values and an S -shaped low uncertainty area. The reason for this is that the two
horizontal lines are occurring precisely when the true anomaly of the 1st tracklet
is 90◦ or 270◦; remembering that ω = 0◦ these two are the points of the orbit with
the maximum angular distance from the line of the nodes. In the figure only the
horizontal lines are present because they are relative to the 1st tracklet which is al-
ways acquired with the observer within the orbital plane; while if the 2nd tracklet
is in the same positions the observer is outside the plane reducing the strength of
this information. Regarding the S -area, it contains all the observations performed
by the observer within the orbital plane.
Looking now at the inclination map of Figure 9b, the just mentioned features are
not present anymore but only some minimum point-like areas can be observed.
These areas are given by a compromise between distance of the observation from
the line of the nodes and position of the observer w.r.t. the orbital plane. These
higher average uncertainty values of this figure also mean that to determine i and
Ω is better to have an observer within the orbital plane. It was decided not to show
the maps relative to e, ω and Ω because we can extract the same conclusions just
reported for a and i.
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(a) Observer every half a period within the
orbital plane

(b) Observer occasionally within the orbital
plane

Figure 9: Comparison between uncertainty maps obtained for an inclined orbit with longitude-
displaced observer.

4.2. Influence of Latitude
To confirm the importance of the position of the observer w.r.t. the orbital plane,
the results obtained in the case where the observer is always inside the orbital
plane with the case where it is always outside are compared. The geosynchronous
equatorial orbit is again used with an equatorial observer and the results are com-
pared with those obtained with the same orbit but the observer was displaced by
50◦ in latitude (see Figure 8a). Figure 10 shows the uncertainty maps for a, i and
ω obtained with the equatorial observer and the ones obtained with a latitude-
displaced observer (respectively in Figure 10a and 10b). As for Figure 9, also in
this case, due to the effects of the time dependency, it was decided to show the
results obtained from a time distance between tracklets of 4, 5 orbital revolutions.
Comparing the uncertainty maps for a it is clearly visible how the intensity of the
S -area is strongly reduced by an observer outside the orbital plane; on the map of
e the same effect is noticeable. As for the previous paragraph a diagonal line with
low uncertainty values is appearing when the ν2 − ν1 = 180◦; this effect can be
explained by the fact that an orbit is a section of a cone. If one is observing the
orbit from the apex of the cone (or from a circular section of the cone) and one is
able to estimate the distances, exploiting the information within the tracklets, it is
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easier to determine the semi-major axis and the eccentricity.
Comparing now the maps for the inclination we can see how the main features are
kept. There is only a small reduction of the diagonal line with tracklets separated
by 180◦. The most important difference is that the average uncertainty values in
the Figure 10b remarkably increased. This is well understandable because the
inclination can be understood measuring the distance of the object from the equa-
torial plane. Having a relatively small distance, given by 1◦ of inclination, this
can be better measured if the observer is inside the orbital plane. One interesting
result is the differences between the maps relative to the argument of perigee. In
the case in Figure 10a the classical S -shaped area is present, it is then important
to notice that also a high uncertainty diagonal line is present for tracklets with an-
gular distance of 180◦. This feature is characteristic of Ω but is present also on ω
because of the small inclination value. For i→ 0 it is difficult to define the line of
the nodes and being the argument of perigee defined w.r.t. this line all the uncer-
tainties of Ω are transferred also to ω. The most interesting feature for the map of
ω in Figure 10b is given by the fact that the S -area contains minimum uncertainty
values. This can be explained by the fact that looking from outside the orbital
plane we have an improvement given by the capabilities to estimate the distances.
This is followed by an improvement also for the eccentricity estimation, and be-
ing able to estimate these two quantities, one is also able to decorrelate them from
ω. Finally, the increase of the average uncertainty values can be explained by the
fact that looking from outside the orbital plane it is more difficult to determine
precisely the distance between observations within a tracklet.
In conclusion, is it better to observe within or outside the orbital plane? There is
not a unique answer to this question as we have just seen: the observer inside the
orbital plane is gaining more information about the orientation of the orbital plane
in the space, amplifying the effect given by the distance of the observations from
the line of the nodes and reducing the average uncertainty values. Vice versa, ob-
serving from outside the orbital plane gives us information about distances that
reduce the average error on a, strongly reduce the S -area for a, e and ω, and helps
us to decorrelate ω from a and e.

4.3. Influence of orbital parameters
The influence of u0 was studied: modifying u0 means that at Tosc the object is at
a different place of the orbit. This analysis showed that this parameter is affecting
only the map of the argument of latitude while is not influencing at all the other
geometric parameters.
The ω parameter describes the orientation of the orbit within the orbital plane,
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(a) Equatorial observer (b) Latitude-displaced observer

Figure 10: Comparisons between uncertainty maps obtained for an equatorial orbit with latitude-
displaced observer.
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changing it, means changing the intersection points of the orbit with the equato-
rial plane producing only a translations of the minimum horizontal lines seen in
Figure 7.
Repeating the simulations changing the position of the line of the nodes in the
space (Ω) produces the same effect of a displacement in longitude of the observer
changing the relative position of the observer w.r.t. the orbital plane. In particular
the observer will be inside or outside the orbital plane for different time distances
between the tracklets.
One of the most interesting parameter is the inclination (i), as anticipated before,
the main effects are given when i tends to 0. If i = 0 =⇒ Ω is not defined, the
main effects of this problem are shown in the map for ω in Figure 10a. Being ω
defined w.r.t. the line of the nodes, it will show some characteristic features of Ω.
Additionally the closer is i to 0 the fainter will be the characteristic S -area of ω. It
must be taken into account also that u0 = ω+ ν0, for this reason, the main features
of Ω will be transferred as well to the argument of latitude.
The eccentricity is the main responsible for the S -area, in particular if e grows the
S tends to have the shape of two hyperbolas, while if e → 0 (for circular orbit)
the S becomes a diagonal line for tracklets whose angular distance is 180◦.
The last important effect is given by the variations of the semi-major axis which
is related to two parameters: the parallax due to the Earth and the length of the
arc covered by a tracklet. Increasing the distance of the object from the Earth, that
means increasing a of the orbit, the beneficial effect of the Earth parallax and of
the information within the tracklet are strongly reduced. If the object is enough
distant from the Earth the effect given by the Earth’s parallax and the fact that the
observer is inside or outside the orbital plane is strongly reduced and the features
of the maps become similar to those obtained for a geocentric observer. During all
simulations the time interval between the measurements within a tracklet is kept
constant; this leads to a decrease of the arc covered by the tracklet if the semi-
major axis increase. The main consequence of a shorter arc of a tracklet is an
increase of the average uncertainty values especially for a, e and ω which exploit
the information given by the relative distance between the measurements.

4.4. Influence of Earth’s rotation
Another aspect that should be taken into account during the maps analysis is the
rotation period of the Earth. In particular the ratio between the orbital period
and the Earth rotation is important because it will determine when an observer
is within or outside the orbital plane. Figure 11 shows the results obtained for
the uncertainty maps of a for two orbits which have the same values of e, i,Ω, ω
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and u0, but different a values; in particular in Figure 11a a = 20270.404 km and
in Figure 11b a = 42164.173 km. These two values of a were chosen in order
to have, in the first case, three complete revolution of the satellite and, in the
second case, one within the Earth’s rotation period. This choice allowed us to
have an observer within the orbital plane respectively every 1.5 and 0.5 orbital
periods. This experiments confirms the fact that the S -area is characteristic of
observations performed within the orbital plane; as shown in Figure 11a, the S
appears only when the distance between tracklets is 1.5 or 4.5 orbit revolutions.

(a) a = 20270.404 km, 3 rev/day

(b) a = 42164.173 km, 1 rev/day

Figure 11: Influence of Earth’s rotation for the semi-major axis uncertainty map.

4.5. Visibility conditions
The current maps show also some impossible combinations of observations due to
the visibility limits; for example if we consider the scenario described at the begin-
ning of Chapter 4 where the perigee of the orbit is just at the zenith of the observer
at time t = 0, it is obvious that all the 1st tracklet positions which are around the
apogee are impossible to see because one should be able to look through the Earth.
Are there some "forbidden" regions that is not possible to see in any case? How
will the daylight time influence our maps? In fact it is always possible to find an
orbit whose parameters fulfill my visibility criteria. For example, the results of
two simulations were compared: in the first the orbital parameters described in
Chapter 4 were used, and in the second the same orbital elements were kept but
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ω was set to 180◦, so that the apogee of the orbit was at the zenith at time t = 0.
This comparison showed that the features presents in the maps are precisely the
same, the only difference are the uncertainty values which are slightly different
due to the different distances of the object from the observer. Then, it is possible
to conclude that the maps do not have forbidden regions but to apply them it is
necessary to use a mask for the elevation limits and another one for the nighttime.

5. Real cases

Until now only a theoretical study was performed to highlight the influence of each
single parameter on the accuracy of an orbit determination/improvement process.
The main features are now known and it is also known the effect of the observer
position. The next natural step is to apply this method to a real scenario char-
acterized by a real orbit with a real observer. For simplicity the simulation are
carried out using a generic inertial system of reference. The following paragraph
will show the results obtained for two orbits which are largely populated by satel-
lite and then by space debris: the geostationary orbit (GEO) and the geostationary
transfer orbit (GTO).

5.1. GEO
The orbital parameters used for this simulations are: a = 42164.173 km, e =

0.0005, i = 0.1◦, Ω = 270◦, ω = 0◦ and Tosc = 1st observation. For the ob-
server’s position the Zimmerwald observatory is used whose geodetic coordinates
are: 46.8772◦ North, 7.4652◦ East and 951.2 m altitude. A maximum distance of
2 orbital revolutions between the two tracklets is allowed in this simulation.

Figure 12 shows that, being an almost circular orbit, the S -area for a, e and
ω is now a diagonal line that is not yet precisely coincident with that of 180◦ an-
gular distance between tracklets because of the time dependency shown in para-
graph 3.2. In these maps is also present the diagonal line for tracklets whose
distance is 180◦ given by the fact that the observer is always outside the orbital
plane. Looking at the uncertainty maps for i and Ω, the high-uncertainty diagonal
lines for tracklets separated by 180◦ and one orbital revolution are clearly visible.
It is interesting to notice that the fact that the 180◦ tracklets separation is not the
best configuration of observation, it is in any case better than observing twice on
the same place (for i and Ω). Finally, other consequences of the small eccentricity
values can be seen in the average high uncertainties for ω. In this case, despite the
small inclination value, the argument of perigee keeps its main features while the
uncertainties of Ω are influencing u0 which is completely correlated with it.
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Figure 12: Uncertainty maps for GEO orbit observed from Zimmerwald.

5.2. GTO
The orbital parameters used for this simulations are: a = 24409.4 km, e = 0.7287,
i = 6◦, Ω = 0◦, ω = 226◦ and Tosc = 1st observation; for the observer the
Zimmerwald observatory is selected and a maximum distance of 2 orbital rev-
olutions between the two tracklets is allowed. Figure 13 shows the uncertainty
maps obtained for the GTO case. Although the results are difficult to interpret, it
is still possible to see some main features as: the decrease of the values for the
semi-major axis when the distance in time between tracklets increases, the S -area
almost disappeared for e and ω while for a it is strongly reduced, and the presence
of the minimum uncertainty diagonal line for tracklets separated by 180◦. The
latter two effects are both caused by the fact that the observer is always outside
the orbital plane. Looking at the uncertainty maps for i and Ω it is possible to see
how the diagonal lines for tracklets separated by 180◦, even if still present, are
strongly reduced. The high uncertainty area remains when the two tracklets are
both close to the apogee. In these two maps it is also possible to see two horizon-
tal lines of low uncertainty values, respectively when the 1st tracklet is between
30◦ and 60◦ for i and between 300◦ and 330◦ for Ω. Knowing that ω = 226◦ these
regions coincide with the maximum distance from the line of the nodes, and the
position of the line of the nodes, respectively. Finally it is important to notice how,
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due to small inclination value, the feature of Ω are contaminating the maps of the
argument of perigee and the argument of latitude.

Figure 13: Uncertainty maps for GTO orbit observed from Zimmerwald.

6. Conclusions and future works

A fundamental step in space debris research consists in improving the knowledge
of the orbit of observed objects. Since this activity is usually performed with tele-
scopes, which are weather dependent, and due to the high number of objects that
have to be observed, it is necessary to optimize the time available for observa-
tions, being it for surveys or follow-ups. In this work, a study was presented to
highlight the dependency of the accuracy of the results achievable from an orbit
determination on the object-observer relative geometry. This study was performed
analyzing the covariance matrix obtained from the simulation of a LSQ adjustment
process. In particular, we simulated an orbit determination/improvement problem,
in which we evaluate the consequences given by two series of observations on the
accuracies of the estimated parameters. The relative position of the two series of
observations were chosen in order to cover all possible combinations of tracklets
positions. The results of the simulations allowed us to create an uncertainty map
for each estimated parameter, which shows the uncertainties as a function of the
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position of the first series of observations and the separation in time between the
series. At the beginning, this analysis was performed for a simplified scenario
without estimating the complete set of parameters using an observer on the center
of the Earth. Such simplification of the problem allowed us to better understand
what kind of results are achievable, the influence of the time interval between
tracklets and what the limitations of the parametrization are. First, we introduced
the parameters which describe the orientation of the orbital plane in the space.
Subsequently an observer on the Earth’s surface was introduced in the LSQ pro-
cess. This study was repeated for different observer positions and different kinds
of orbit. This study allowed us to understand the main factors which are influ-
encing the accuracies of the estimated parameters as: the time interval between
tracklets, the inclination of the orbit, the distance from the line of the nodes, the
angular distance between tracklets, the influence of the position of the observer
w.r.t. the orbital plane, the distance of the object in terms of Earth’s parallax and
arc-length of the tracklets, and finally the difference between orbital period and
sidereal day. It is important to notice that it is not possible to obtain a unique
conclusion from the uncertainty maps, but these can be useful depending on the
needs of the users. In fact, having an a priori knowledge of the orbit or of the
orbital region that one wants to scan (respectively in the case of follow-up and
survey), the maps show where to observe in order to minimize the uncertainty on
certain parameters or to obtain the best initial orbit.
The proposed method can be used to study what kind of improvement can be ob-
tained introducing a second observer or a different observable, like ranges, in an
orbit determination problem. Finally the study can be applied to more general
situations, where more than two series of observations are available in order to
optimize the survey/follow-up strategy.
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