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Group B Streptococcus (GBS) is increasingly causing invasive infections in non-pregnant
adults. Elderly patients and those with comorbidities are at increased risk. On the
basis of previous studies focusing on neonatal infections, penicillin plus gentamicin is
recommended for infective endocarditis (IE) and periprosthetic joint infections (PJI) in
adults. The purpose of this study was to investigate whether a synergism with penicillin
and gentamicin is present in GBS isolates that caused IE and PJI. We used 5 GBS
isolates, two clinical strains and three control strains, including one displaying high-level
gentamicin resistance (HLGR). The results from the checkerboard and time-kill assays
(TKAs) were compared. For TKAs, antibiotic concentrations for penicillin were 0.048
and 0.2 mg/L, and for gentamicin 4 mg/L or 12.5 mg/L. In the checkerboard assay,
the median fractional inhibitory concentration indices (FICIs) of all isolates indicated
indifference. TKAs for all isolates failed to demonstrate synergism with penicillin 0.048
or 0.2 mg/L, irrespective of gentamicin concentrations used. Rapid killing was seen with
penicillin 0.048 mg/L plus either 4 mg/L or 12.5 mg/L gentamicin, from 2 h up to 8 h
hours after antibiotic exposure. TKAs with penicillin 0.2 mg/L decreased the starting
inoculum below the limit of quantification within 4–6 h, irrespective of the addition of
gentamicin. Fast killing was seen with penicillin 0.2 mg/L plus 12.5 mg/L gentamicin
within the first 2 h. Our in vitro results indicate that the addition of gentamicin to penicillin
contributes to faster killing at low penicillin concentrations, but only within the first few
hours. Twenty-four hours after antibiotic exposure, PEN alone was bactericidal and
synergism was not seen.
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INTRODUCTION

Streptococcus agalactiae (group B Streptococcus [GBS]) is considered a leading cause of morbidity
and mortality in neonates and pregnant women. Recommendations for diagnosing maternal GBS
colonization and administering intrapartum antimicrobial prophylaxis have led to a significant
decrease in these infections (Schrag et al., 2002). Nonetheless, the rate of invasive GBS disease
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in non-pregnant adults continues to climb (Phares et al., 2008).
Elderly persons and those with underlying diseases – two
expanding segments of the population – are at increased risk
(Skoff et al., 2009). This epidemiological shift is associated with
uncertainty in clinical management. Because treatment concepts
in adults are not established, those used for neonates – i.e., the
combination of β-lactams plus an aminoglycoside (Polin, 2012) –
are transferred to adults. For example, some experts advocate this
combination therapy for at least the first 2 weeks of treatment for
infective endocarditis (IE) (Baddour, 1998; Westling et al., 2007)
and periprosthetic joint infection (PJI) (Zimmerli et al., 2004).
These recommendations are based on a postulated synergistic
effect with penicillin (PEN) and gentamicin (GEN) observed in
in vitro studies (Cooper et al., 1979; Baker et al., 1981; Swingle
et al., 1985). However, adults, especially elderly persons, are more
prone to develop side effects caused by aminoglycosides (e.g.,
nephrotoxicity and ototoxicity) than are neonates (Gonzalez and
Spencer, 1998). Here, we evaluated the synergistic effect of PEN
and GEN, using contemporary clinical isolates obtained from
adults with IE and PJI, and the same antimicrobial products that
are administered in clinical practice.

MATERIALS AND METHODS

Bacterial Isolates
Five GBS isolates were used for this study. All isolates were
characterized by serotyping (by agglutination [Strep-B-Latex,
Statens Serum Institut, Copenhagen, Denmark] and PCR [Imperi
et al., 2010]) and multilocus sequence typing (Jones et al., 2003).
Two were obtained from patients with PJI and IE (designated as
GBS-PJI [BE07-1b] and GBS-IE [BE05-1]). Both were serotype
Ib, and sequence type 8. We used three control strains: NEM316
(serotype III, sequence type 23), a strain frequently used in
laboratory experiments (Glaser et al., 2002), a colonizing isolate
representing a non-virulent strain (designated as GBS-Col [BE12-
2], serotype III, sequence type 188), and a previously published
high-level GEN-resistant (designated as GBS-HLGR [BSU1203],
serotype V, sequence type 7) GBS (Sendi et al., 2016).

Antibiotics and Concentrations Used
PEN (benzylpenicillin-sodium, Grünenthal Pharma, Mitlödi,
Switzerland) and GEN (Hexal AG, Holzkirchen, Germany)
were supplied from the clinical pharmacy of the University
Hospital (Bern, Switzerland). In time-kill assays (TKAs), PEN
concentrations were 0.048 mg/L and 0.2 mg/L, and GEN
concentrations were 4 mg/L and 12.5 mg/L. The rationale to
use 0.048 mg/L and 0.2 mg/L PEN was based on (i) the
setting in previous studies using approximately 1 × MIC
(Baker et al., 1981) and (ii) a theoretical extrapolation of
PEN concentrations in extravascular compartments. Assuming
a penetration proportion of 10–20% (Landersdorfer et al.,
2009), and a serum trough level of 3 mg/L (Plaut et al.,
1969; Geddes and Gould, 2010), PEN bone concentration is
not expected to fall below 0.2 mg/L when intravenous (i.v.)
treatment for osteomyelitis or PJI is administered (Zimmerli
et al., 2004). The rational to use GEN concentrations of 4 mg/L

and 12.5 mg/L is based on GEN peak concentrations found in
adults when using i.v., 1 mg/kg or 3 mg/kg (Nicolau et al., 1995).
PEN concentrations were diluted from original vials (1 Mio
IU), and the concentrations were confirmed via measurements
with a UV high-performance liquid chromatography (HPLC)
method. GEN concentrations were diluted from original vials
(80 mg/2 mL), and the concentrations were confirmed via
measurements with a fluorescence polarization immunoassay
(COBAS INTEGRA Gentamicin, Roche Diagnostics, Mannheim,
Germany). A difference of up to 10% between calculated (i.e.,
diluted) and measured antimicrobial concentration was allowed
in order to proceed with the experiments.

MIC
Antibiotic susceptibilities for PEN were tested with Etest
(Biomérieux, Marcy l’Etoile, France) according to the
manufacturer’s protocol, and with microbroth dilution according
to protocol (Amsterdam, 2005; Hindler and Tamashiro, 2010).
Antibiotic susceptibilities for GEN were tested with microbroth
dilution according to protocol (Amsterdam, 2005; Hindler and
Tamashiro, 2010). All isolates were tested three or more times.

Checkerboard Assays
Checkerboard assays were performed as described previously
(Pillai et al., 2005; Moody, 2010). In brief, 96-well plates
were prepared by serially twofold diluting the first antibiotic
(PEN) along the horizontal axis (left [highest concentration;
0.16 mg/L] to right [lowest concertation; 0.0004 mg/L]), and
the second antibiotic (GEN) along the vertical axis (top [highest
concertation; 250 mg/L] to bottom [lowest concentration;
1.95 mg/L]) in cation-adjusted Mueller Hinton broth (Bacto,
Becton, Dickinson and Company, Sparks, MD, USA). Thus, the
highest concentration of both antibiotics was in top left well and
the lowest of both antibiotics in the bottom right well of the 96-
well plate. McFarland 0.5 suspension was prepared and diluted to
obtain a final GBS concentration of 3× 105 to 5× 105 CFU/mL in
each well (Hindler and Tamashiro, 2010). Plates were incubated
at 37◦C in 5% CO2 for 24 h and read out with a microplate reader
(Varioskan, Thermo Scientific, Reinach, Switzerland). All assays
were repeated at least three times.

Time-Kill Assays (TKAs)
Time-kill assays were performed according to a previous protocol
(Amsterdam, 2005; Moody and Knapp, 2010). Various test
conditions were evaluated to determine those that were most
stable for GBS (Ruppen and Sendi, 2015). In brief, 1 × 105 to
106 CFU/mL mid-log-phase GBS were incubated in Todd Hewitt
broth (Bacto, Becton, Dickinson and Company, Sparks, MD,
USA) with either PEN monotherapy, GEN monotherapy, or PEN
plus GEN in a total volume of 5 mL at 37◦C in 5% CO2. Samples
of 0.1 mL were obtained at multiple time points up to 24 h after
antibiotic exposure, and then plated on Columbia sheep blood
agar for colony counting. The lower limit of quantification (LOQ)
was defined as 200 CFU/mL and the upper as 3500 CFU/mL
[i.e., 20 and 350 CFU, respectively, per plate (Sutton, 2011)].
Assays were repeated multiple times and always performed with
triplicates.
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Synergism Assays and Definition
In killing assays, synergy was defined as a ≥100-fold (≥2 log)
increase in killing at 24 h (as measured by colony counts
[CFU/mL]) with the combination therapy in comparison with
the most active single drug (Pillai et al., 2005; Moody and Knapp,
2010). A bactericidal effect was defined as killing of ≥99.9%
[i.e., (≥3 log) of the organism within 24 h (Pankey and Sabath,
2004)]. In checkerboard assays, for each strain and for each
combination interaction the fractional inhibitory concentration
(FIC) of PEN or GEN was calculated (FIC of PEN=MIC of PEN
in combination/MIC of PEN alone; FIC of GEN =MIC of GEN
in combination/MIC of GEN alone). Then, the FICI (FIC index)
was calculated by the summation of both FIC [FICI = FIC of
PEN + FIC of GEN (Hindler and Tamashiro, 2010)]. Synergism
was defined when FICI resulted in ≤0.5. In the view that this
method is a mathematical restatement of an isobologram, “0.5”
theoretically reflects the point with one half of the MIC of
PEN and one half of the MIC of GEN (Pillai et al., 2005;
Moody, 2010). Indifference was defined when the summation
of FICI resulted between 0.5< and ≤4, and antagonism when
FICI was >4 (Hindler and Tamashiro, 2010)). We did not use
the categorization of ‘additive’ because of inherent variability in
results derived from the twofold dilution scheme, as described
previously (Pillai et al., 2005).

RESULTS

MICs, Checkerboard Assays and FICI
Results
The results from MICs, checkerboard assays and FICIs for all
isolates are shown in Table 1. The MIC results are shown as
median and range. As expected, all isolates were susceptible to
PEN. The MICs were within the same result range when tested
with microbroth dilution and Etests. Considering the range of
all performed measurements, and a precision error associated
with measuring an MIC (i.e., plus or minus one 2-fold dilution)
(Turnidge and Paterson, 2007), we determined 0.048 mg/L as
concentration to use for these experiments. It was within the
range of 1 × MIC for all isolates. The MICs for gentamicin
cannot be interpreted (except for the presence of HLGR), because
no standard criteria for susceptibility testing are available. The
results from checkerboard assays indicated indifference for all

isolates, with the lowest FICI for NEM316, ranging from 0.7 to
1. The vast majority of FICI calculations for the other strains
resulted in >1 (Table 1).

Time-Kill Assays
PEN with 0.048 mg/L
In all isolates, bactericidal killing of GBS at 24 h was observed
with PEN monotherapy (Figure 1). In isolates obtained from
patients with PJI and IE, the killing was better with PEN plus
GEN 4 mg/L or PEN plus GEN 12.5 mg/L at 4, 6, and 8 h
(Figures 1A,B). In NEM316 and the colonizing isolate, killing
curves of PEN monotherapy and PEN plus GEN 4 mg/L were
similar. Though, the killing was better in NEM316 with PEN plus
GEN 12.5 mg/L at 4, 6, and 8 h (Figure 1C).

PEN with 0.2 mg/L
In all isolates but the GBS-Col, killing of GBS decreased the
starting inoculum below the LOQ within 4–6 h, irrespective of
the addition of GEN (Figure 2). In all but the GBS-HLGR isolate,
PEN plus 12.5 mg/L GEN showed this killing pattern within
2 h. TKAs with GEN monotherapy showed persistent bacterial
growth at 24 h (Supplementary Figure S1).

Synergism
At 24 h after antibiotic exposure, PEN monotherapy proved to
be bactericidal. When synergism was tested with checkerboard
assays, none of isolates revealed a FICI value indicating a
synergistic effect. Similarly, in TKAs no significant difference
was seen in colony counts at 24 h when PEN monotherapy
was compared with PEN plus GEN combination therapy.
Hence, the lack of synergism correlated in the two laboratory
methods.

DISCUSSION

Rates of invasive GBS disease in non-pregnant adults continue
to climb. Hence, clinicians are faced with the challenge of
transferring therapeutic knowledge from neonatal sepsis to
infections in adults. Other groups previously reported synergism
with PEN plus GEN toward GBS (Overturf et al., 1977; Cooper
et al., 1979; Baker et al., 1981; Swingle et al., 1985). We used two
different methods with isolates obtained from adults and could

TABLE 1 | Antimicrobial susceptibilities (mg/L) and FICIs.

Isolate MIC (PEN)MB MIC (PEN)E MIC (GEN)MB FICIsMB

GBS-PJI 0.03 (0.016–0.04) 0.064 (0.047–0.064) 23.4 (15.6–31.25) 1.4 (0.9–1.5)

GBS-IE 0.04 (0.016–0.04) 0.064 (0.032–0.064) 15.6 (7.8–15.6) 1.4 (0.8–2.3)

NEM316 0.04 (0.032–0.04) 0.064 (0.047–0.064) 15.6 (7.8–15.6) 0.8 (0.7–1)

GBS-Col 0.02 (0.016–0.04) 0.064 (0.047–0.064) 7.8 (7.8–15.6) 2 (1.5–2)

GBS-HLGR 0.04 (0.016–0.04) 0.047 (0.047–0.047) >1024 2 (2–2)

All measurements were repeated three or more times. MIC results are presented as median and range of results in parenthesis. E, Etest; MB, microbroth dilution; PEN,
penicillin; GEN, gentamicin; FICI, fractional inhibitory concentration index; GBS-PJI, group B Streptococcus isolated from a periprosthetic joint infection; GBS-IE, group
B Streptococcus isolated from infective endocarditis; GBS-Col, group B Streptococcus isolated from colonized women; GBS-HLGR, group B Streptococcus displaying
high level gentamicin resistance.
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FIGURE 1 | Time-kill assays with penicillin 0.048 mg/L. Results are displayed as mean ± standard error of the mean (SEM). PEN 0.048 mg/L monotherapy ( ),
PEN 0.048 mg/L plus GEN 4 mg/L (�) and PEN 0.048 mg/L plus GEN 12.5 mg/L (N). Isolates: GBS-PJI, periprosthetic joint infection (A); GBS-IE, infective
endocarditis (B); NEM316, neonatal sepsis (C); GBS-Col, colonization isolate (D); GBS-HLGR, high-level gentamicin resistance (E). Growth controls of all isolates
(F). LOQ: lower limit of quantification.

not confirm these results. The following arguments may explain
the differences between the results of previous studies and those
provided in the present study.

The definitions and methods used for synergism vary and
all have limitations. This again points toward the difficulty to
transfer synergy assay results from the laboratory to patient
treatment concepts. The two commonly used laboratory methods
to evaluate synergism are checkerboard assays and TKAs over
a predetermined time interval, as used in the present study.
Although the checkerboard method has been reported to have
reproducibility problems (Rand et al., 1993), the range of results
in our multiple repeated assays was small (Table 1). Because
the effect of the antibiotic combination in the checkerboard
method can be observed at only a single time point, in the

TKAs, we used the advantage of measuring the colony counts
at various time points up to 24 h after antibiotic exposure. With
the last time point, we were able to show a parallel in the results
of both methods. In contrast to previous analyses showing a
lack of correlation between FICIs and killing curves (Hallander
et al., 1982; Bayer and Morrison, 1984; Swingle et al., 1985), our
results for both methods were congruent in that they showed no
synergistic response.

Some investigators use the first 4–8 h after exposure to an
antimicrobial agent or a combination of agents to compare
differences in colony counts (Cooper et al., 1979). In our view,
this method reflects rapid killing, as shown in our experiments
with PEN 0.048 mg/L plus GEN 4 mg/L or 12.5 mg/L (Figure 1),
or PEN 0.2 m/L plus GEN 12.5 mg/L (Figure 2). These
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FIGURE 2 | Time-kill assays with penicillin 0.2 mg/L. Results are displayed as mean ± standard error of the mean (SEM). PEN 0.2 mg/L monotherapy ( ), PEN
0.2 mg/L plus GEN 4 mg/L (�), PEN 0.2 mg/L plus GEN 12.5 mg/L (N). Isolates: GBS-PJI, periprosthetic joint infection (A); GBS-IE, infective endocarditis (B);
NEM316, neonatal sepsis (C); GBS-Col, colonization isolate (D); GBS-HLGR, high-level gentamicin resistance (E). Growth controls of all isolates (F). LOQ: lower
limit of quantification.

results may be helpful to describe potentially beneficial clinical
interactions in the very early stage of treatment. Though, they
are difficult to standardize (e.g., dynamic of bacterial replication
can be variable at different time points). Therefore, differences
in colony count measurements at 4 h to 8 h are commonly not
used for the definition of synergism (Pillai et al., 2005; Moody
and Knapp, 2010). Other means to determine synergy may be
more accurate from today’s perspective (e.g., molecular synergy)
(McCafferty et al., 1999).

As a consequence of lack of synergism, these results
theoretically argue against prolonged combination therapy. The
clinical relevance of the laboratory phenomenon “synergism”
is difficult to estimate. The bacterial inoculum in time-kill

experiments is up to 100,000 times higher than that found in
human sepsis (Yagupsky and Nolte, 1990; Puttaswamy et al.,
2011). Also, the antibiotic concentrations found in humans
treated for bacteremia are significantly higher than the ones used
in TKAs. Ten minutes after completion of i.v., administration of 5
million U PEN, the mean serum concentration is 273 mg/L (Plaut
et al., 1969; Geddes and Gould, 2010). This corresponds to more
than 5,500 times the PEN concentration used in this study. In
addition, in severe GBS disease (e.g., IE, PJI), PEN is commonly
administered i.v., every 4–6 h (e.g., 18–24 million U/day i.v., in
six doses) (Zimmerli et al., 2004; Habib et al., 2009). In vivo PEN
concentrations decrease in human serum over time. Nonetheless,
prior to administration of the next dose, they rarely fall to those
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levels used in experimental settings. For example, 4 hours after
completion of i.v., administration of 5 million IU PEN, the mean
serum concentration is 3 mg/L (i.e., >60 times higher than the
concentration used in this study) (Plaut et al., 1969; Geddes and
Gould, 2010).

In our study, we saw rapid killing of GBS with 0.2 mg/L
PEN monotherapy. The killing rate was fastened by 2–4 h
when GEN 12.5 mg/L was added. There are no standard
concentrations at which antibiotics are tested for synergism. The
results with PEN concentrations in the range of 1 × MIC have
to be interpreted with caution because of the following reasons.
Experiments depend on the precise inoculum (Brook, 1989), the
exact determination of MIC, and the antibiotic concentration.
In our isolates, PEN MICs were determined by using two
different methods and multiple measurements. Moreover, the
antibiotic concentrations used were based on calculated dilutions,
but confirmed with measurements via fluorescence polarization
immunoassay and HPLC.

Various GEN concentrations and products have been used in
previous in vitro experiments, ranging from 0.5 mg/L to 13 mg/L
(Overturf et al., 1977; Cooper et al., 1979; Baker et al., 1981; Kim
and Anthony, 1981; Kim, 1987). Since GEN alone in non-toxic
systemic concentrations has little or no effect on GBS, the optimal
setting for testing synergism in TKAs is unknown. The antibiotic
concentrations of combinations used in in vitro settings are often
not physiological, because PEN is far below achievable serum
concentrations, although GEN is within the expected range. On
the other hand, higher in vitro PEN concentrations diminish
the visible GEN effect, and lower GEN concentrations have no
effect. The benefit of rapid killing within the first few hours when
adding GEN is difficult to interpret for clinical practice, because
of the low PEN concentrations used in this study (0.048 mg/L
and 0.2 mg/L). Considering the high PEN concentrations and the
low inoculum during bacteremia found in humans [e.g., ≤102

cfu/mL; (Yagupsky and Nolte, 1990; Puttaswamy et al., 2011)],
we hypothesize no beneficial clinical effect for planktonic bacteria
when GEN is added. A clinical trial is required to confirm or
reject this hypothesis.

The stability of our results is supported by the small variation
seen in multiple assays, comparing TKA results under various
conditions (Ruppen and Sendi, 2015) and the use of a HLGR GBS
isolate (Sendi et al., 2016).

Another reason for the differences in results found in our
study in comparison to previous investigations might be the PEN
product. The efficacy of a drug depends largely on the purity of
the active ingredient. It is conceivable that the manufacturing
process has improved over the decades (van der Beek and Roels,
1984; Penalva et al., 1998). Here, we used PEN products that are
administered to patients. However, because we cannot compare
older products with the ones used in this study, this statement
remains speculative.

We cannot uncritically extrapolate our findings for five isolates
to other GBS isolates. Nonetheless, the isolates were obtained
from two patients with invasive diseases in which the addition of

gentamicin is recommended (IE and PJI). In addition, we used
3 control isolates [two of them previously investigated (Glaser
et al., 2002; Sendi et al., 2016)]. The number of isolates used in
our study is small. Though, analyzes were performed at multiple
time points within the first 8 h for every single isolates. In our
view, this information is important in the light that – in clinical
practice – PEN is administered every 4–6 h.

CONCLUSION

Our study reinvestigated the synergism of PEN plus GEN with
two common laboratory methods, clinical isolates in mid-log
growth phase and antimicrobial products administered in clinical
practice. Synergism according to definition was not observed
with either of the methods. In view of the potential nephrotoxicity
of aminoglycosides and the increasing elderly population at risk
for invasive GBS disease, our findings may have implications for
the decision to administer or withhold aminoglycosides.

AUTHOR CONTRIBUTIONS

All authors significantly contributed to the generation of this
manuscript und fulfilled the criteria for authorship. CR and
AL performed the experiments, interpreted the results and co-
wrote the manuscript. LD contributed to the acquisition and
analyses of the results, co-drafted the work. PS contributed to the
conception and design of and interpretation of data for the work,
and co-wrote the manuscript.

FUNDING

This work was supported by Velux Foundation (Grant No. 724
to PS).

ACKNOWLEDGMENTS

We thank Prof. Andrea Endimiani for critical review of the
manuscript and valuable comments and Jacqueline Müller from
the Clinical Chemistry at Inselspital Bern, Bern, Switzerland,
and Thomas Mercier from the Division and Laboratory of
Clinical Pharmacology, Service of Biomedicine, Department of
Laboratories, Lausanne University Hospital (Centre Hospitalier
Universitaire Vaudois, CHUV), Lausanne, Switzerland, for
determining antibiotic concentrations used in our experiments.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fmicb.
2016.01680

Frontiers in Microbiology | www.frontiersin.org 6 October 2016 | Volume 7 | Article 1680

http://journal.frontiersin.org/article/10.3389/fmicb.2016.01680
http://journal.frontiersin.org/article/10.3389/fmicb.2016.01680
http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-07-01680 October 21, 2016 Time: 12:30 # 7

Ruppen et al. PEN-GEN Synergism for GBS?

REFERENCES
Amsterdam, D. (2005). “Susceptibility testing of antimicrobials in liquid media,” in

Antibiotics in Laboratory Medicine, ed. V. Lorian (Philadelphia, PA: Lippincott
Williams and Wilkins), 61–143.

Baddour, L. M. (1998). Infective endocarditis caused by beta-hemolytic
streptococci. The infectious diseases society of America’s emerging
infections network. Clin. Infect. Dis. 26, 66–71. doi: 10.1086/
516266

Baker, C. N., Thornsberry, C., and Facklam, R. R. (1981). Synergism, killing
kinetics, and antimicrobial susceptibility of group A and B streptococci.
Antimicrob. Agents Chemother. 19, 716–725. doi: 10.1128/AAC.19.
5.716

Bayer, A. S., and Morrison, J. O. (1984). Disparity between timed-kill and
checkerboard methods for determination of in vitro bactericidal interactions
of vancomycin plus rifampin versus methicillin-susceptible and -resistant
Staphylococcus aureus. Antimicrob. Agents Chemother. 26, 220–223. doi:
10.1128/AAC.26.2.220

Brook, I. (1989). Inoculum effect. Rev. Infect. Dis. 11, 361–368. doi:
10.1093/clinids/11.3.361

Cooper, M. D., Keeney, R. E., Lyons, S. F., and Cheatle, E. L. (1979). Synergistic
effects of ampicillin-aminoglycoside combinations on group B Streptococci.
Antimicrob. Agents Chemother. 15, 484–486. doi: 10.1128/AAC.15.3.484

Geddes, A. M., and Gould, I. M. (2010). “Benylpenicillin (Penicillin G),” in Kucers’
the Use of Antibiotics, ed. H. Arnold (London: Edward Arnold Publishers Ltd.),
5–58.

Glaser, P., Rusniok, C., Buchrieser, C., Chevalier, F., Frangeul, L., Msadek, T.,
et al. (2002). Genome sequence of Streptococcus agalactiae, a pathogen causing
invasive neonatal disease. Mol. Microbiol. 45, 1499–1513. doi: 10.1046/j.1365-
2958.2002.03126.x

Gonzalez, L. S. III, and Spencer, J. P. (1998). Aminoglycosides: a practical review.
Am. Fam. Physician 58, 1811–1820.

Habib, G., Hoen, B., Tornos, P., Thuny, F., Prendergast, B., Vilacosta, I., et al.
(2009). Guidelines on the prevention, diagnosis, and treatment of infective
endocarditis (new version 2009): the Task Force on the Prevention, Diagnosis,
and Treatment of Infective Endocarditis of the European Society of Cardiology
(ESC). Endorsed by the European Society of Clinical Microbiology and
Infectious Diseases (ESCMID) and the International Society of Chemotherapy
(ISC) for Infection and Cancer. Eur. Heart J. 30, 2369–2413.

Hallander, H. O., Dornbusch, K., Gezelius, L., Jacobson, K., and Karlsson, I. (1982).
Synergism between aminoglycosides and cephalosporins with antipseudomonal
activity: interaction index and killing curve method. Antimicrob. Agents
Chemother. 22, 743–752. doi: 10.1128/AAC.22.5.743

Hindler, J. S., and Tamashiro, L. (2010). “Broth microdilution MIC test,” in Clinical
Microbiology Procedures Handbook, ed. L. S. Garcia (Washington, DC: ASM
Press), 5.2.1–5.2.17.

Imperi, M., Pataracchia, M., Alfarone, G., Baldassarri, L., Orefici, G., and Creti, R.
(2010). A multiplex PCR assay for the direct identification of the capsular type
(Ia to IX) of Streptococcus agalactiae. J. Microbiol. Methods 80, 212–214. doi:
10.1016/j.mimet.2009.11.010

Jones, N., Bohnsack, J. F., Takahashi, S., Oliver, K. A., Chan, M.-S., Kunst, F., et al.
(2003). Multilocus sequence typing system for group B Streptococcus.
J. Clin. Microbiol. 41, 2530–2536. doi: 10.1128/JCM.41.6.2530-2536.
2003

Kim, K. S. (1987). Effect of antimicrobial therapy for experimental infections due
to group B Streptococcus on mortality and clearance of bacteria. J. Infect. Dis.
155, 1233–1241. doi: 10.1093/infdis/155.6.1233

Kim, K. S., and Anthony, B. F. (1981). Penicillin tolerance in group B
streptococci isolated from infected neonates. J. Infect. Dis. 144, 411–419. doi:
10.1093/infdis/144.5.411

Landersdorfer, C. B., Bulitta, J. B., Kinzig, M., Holzgrabe, U., and Sorgel, F. (2009).
Penetration of antibacterials into bone: pharmacokinetic, pharmacodynamic
and bioanalytical considerations. Clin. Pharmacokinet. 48, 89–124. doi:
10.2165/0003088-200948020-00002

McCafferty, D. G., Cudic, P., Yu, M. K., Behenna, D. C., and Kruger, R. (1999).
Synergy and duality in peptide antibiotic mechanisms. Curr. Opin. Chem. Biol.
3, 672–680. doi: 10.1016/S1367-5931(99)00025-3

Moody, J. (2010). “Synergism testing: broth microdilution checkerboard and broth
macrodilution methods,” in Clinical Microbiology Procedures Handbook, ed.
L. S. Garcia (Washington, DC: ASM Press), 5.12.11–15.12.23.

Moody, J., and Knapp, C. (2010). “Tests to assess bactericidal activity,” in Clinical
Microbiology Procedures Handbook, ed. L. S. Garcia (Washington, DC: ASM
Press), 5.10.11.11–15.10.13.16.

Nicolau, D. P., Freeman, C. D., Belliveau, P. P., Nightingale, C. H., Ross, J. W., and
Quintiliani, R. (1995). Experience with a once-daily aminoglycoside program
administered to 2,184 adult patients. Antimicrob. Agents Chemother. 39,
650–655. doi: 10.1128/AAC.39.3.650

Overturf, G. D., Horowitz, M., Wilkins, J., Leedom, J., and Steinberg, E.
(1977). Bactericidal studies of penicillin-gentamicin combinations against
group B streptococci. J. Antibiot. (Tokyo) 30, 513–518. doi: 10.7164/antibiotics.
30.513

Pankey, G. A., and Sabath, L. D. (2004). Clinical relevance of bacteriostatic
versus bactericidal mechanisms of action in the treatment of Gram-
positive bacterial infections. Clin. Infect. Dis. 38, 864–870. doi: 10.1086/
381972

Penalva, M. A., Rowlands, R. T., and Turner, G. (1998). The optimization
of penicillin biosynthesis in fungi. Trends Biotechnol. 16, 483–489. doi:
10.1016/S0167-7799(98)01229-3

Phares, C. R., Lynfield, R., Farley, M. M., Mohle-Boetani, J., Harrison, L. H.,
Petit, S., et al. (2008). Epidemiology of invasive group B streptococcal
disease in the United States, 1999-2005. JAMA 299, 2056–2065. doi:
10.1001/jama.299.17.2056

Pillai, S. K., Moellering, R. C. Jr., and Eliopoulos, G. M. (2005). “Antimicrobial
combinations,” in Antibiotics in Laboratory Medicine, ed. V. Lorian
(Philadelphia, PA: Lippincott Williams & Wilklins), 365–440.

Plaut, M. E., O’connell, C. J., Pabico, R. C., and Davidson, D. (1969). Penicillin
handling in normal and azotemic patients. J. Lab. Clin. Med. 74, 12–18.

Polin, R. A. (2012). Management of neonates with suspected or proven early-onset
bacterial sepsis. Pediatrics 129, 1006–1015. doi: 10.1542/peds.2012-0541

Puttaswamy, S., Lee, B. D., and Sengupta, S. (2011). Novel electrical method
for early detection of viable bacteria in blood cultures. J. Clin. Microbiol. 49,
2286–2289. doi: 10.1128/JCM.00369-11

Rand, K. H., Houck, H. J., Brown, P., and Bennett, D. (1993). Reproducibility of the
microdilution checkerboard method for antibiotic synergy. Antimicrob. Agents
Chemother. 37, 613–615. doi: 10.1128/AAC.37.3.613

Ruppen, C., and Sendi, P. (2015). Time Kill Assays for Streptococcus agalactiae and
Synergy Testing. Protocol Exchange [Online]. Available: http://www.nature.com
/protocolexchange/protocols/4505#/close [Accessed September 21, 2016].

Schrag, S. J., Zell, E. R., Lynfield, R., Roome, A., Arnold, K. E., Craig, A. S., et al.
(2002). A population-based comparison of strategies to prevent early-onset
group B streptococcal disease in neonates. N. Engl. J. Med. 347, 233–239. doi:
10.1056/NEJMoa020205

Sendi, P., Furitsch, M., Mauerer, S., Florindo, C., Kahl, B. C., Shabayek, S.,
et al. (2016). Chromosomally and extrachromosomally mediated high-
level gentamicin resistance in Streptococcus agalactiae. Antimicrob. Agents
Chemother. 60, 1702–1707. doi: 10.1128/AAC.01933-15

Skoff, T. H., Farley, M. M., Petit, S., Craig, A. S., Schaffner, W., Gershman, K.,
et al. (2009). Increasing burden of invasive group B streptococcal disease in
nonpregnant adults, 1990-2007. Clin. Infect. Dis. 49, 85–92. doi: 10.1086/599369

Sutton, S. (2011). Accuracy of plate counts. J. Validation Tecnhol. 17, 42–46.
Swingle, H. M., Bucciarelli, R. L., and Ayoub, E. M. (1985). Synergy between

penicillins and low concentrations of gentamicin in the killing of group B
streptococci. J. Infect. Dis. 152, 515–520. doi: 10.1093/infdis/152.3.515

Turnidge, J., and Paterson, D. L. (2007). Setting and revising antibacterial
susceptibility breakpoints. Clin. Microbiol. Rev. 20, 391–408. doi:
10.1128/CMR.00047-06

van der Beek, C. P., and Roels, J. A. (1984). Penicillin production: biotechnology at
its best. Antonie Van Leeuwenhoek 50, 625–639. doi: 10.1007/BF02386230

Westling, K., Aufwerber, E., Ekdahl, C., Friman, G., Gardlund, B., Julander, I.,
et al. (2007). Swedish guidelines for diagnosis and treatment of infective
endocarditis. Scand. J. Infect. Dis. 39, 929–946. doi: 10.1080/003655407015
34517

Yagupsky, P., and Nolte, F. S. (1990). Quantitative aspects of septicemia. Clin.
Microbiol. Rev. 3, 269–279. doi: 10.1128/CMR.3.3.269

Frontiers in Microbiology | www.frontiersin.org 7 October 2016 | Volume 7 | Article 1680

http://www.nature.com/protocolexchange/protocols/4505#/close
http://www.nature.com/protocolexchange/protocols/4505#/close
http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-07-01680 October 21, 2016 Time: 12:30 # 8

Ruppen et al. PEN-GEN Synergism for GBS?

Zimmerli, W., Trampuz, A., and Ochsner, P. E. (2004). Prosthetic-joint infections.
N. Engl. J. Med. 351, 1645–1654. doi: 10.1056/NEJMra040181

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2016 Ruppen, Lupo, Decosterd and Sendi. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

Frontiers in Microbiology | www.frontiersin.org 8 October 2016 | Volume 7 | Article 1680

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive

	Is Penicillin Plus Gentamicin Synergistic against Clinical Group B Streptococcus isolates?: An In vitro Study
	Introduction
	Materials And Methods
	Bacterial Isolates
	Antibiotics and Concentrations Used
	MIC
	Checkerboard Assays
	Time-Kill Assays (TKAs)
	Synergism Assays and Definition

	Results
	MICs, Checkerboard Assays and FICI Results
	Time-Kill Assays
	PEN with 0.048 mg/L
	PEN with 0.2 mg/L

	Synergism

	Discussion
	Conclusion
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


