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Abstract

Square-lattice Heisenberg antiferromagnets with magnetic exchange couplings of the order of

a few Kelvin can be realized in metal-organic materials. Here, we report on high-precision sus-

ceptibility measurements of the quasi-two-dimensional square-lattice Heisenberg antiferromagnet

(CuF2(H2O)2)2-pyrazine in high magnetic fields and at high pressures using a tunnel diode os-

cillator. A continuous change of the magnetic exchange couplings by a factor of 3.3 is observed

upon application of external pressure. This change causes a dimensional crossover of the magnetic

properties from quasi-two dimensions via three dimensions to quasi-one dimension. The pressure-

dependence of the characteristic microscopic magnetic energy scales and magnetic response are

computed by combining first principle calculations using spin-polarized density functional theory

and Quantum Monte Carlo simulations. The giant pressure effect together with the computational

benchmarks enable the design and control of magnetic properties in a diverse class of metalorganic

materials over a large range of energy scales and dimensionalities.
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Designed quantum materials offer a fertile playground for the study of fundamental con-

cepts in condensed matter physics and for potential applications in quantum technologies.

Quantum effects are particularly strong in one and two dimensions, where intriguing new

phenomena can arise from quantum many-body physics1,2. Materials with such structures

can be created by chemical synthesis or nanotechnology.

Metal-organic materials based on coordination polymers with a metal-pyrazine network

exhibit magnetic exchange couplings of only a few Kelvin that are strongly anisotropic in

space3,4. Such insulating magnets are model systems for low-dimensional quantum mag-

netism because the magnetic exchange couplings can be determined with high accuracy and

measurements of spin excitations are possible with currently available experimental tech-

niques. Furthermore, the magnetic exchange couplings can be significantly modified by

chemical variation of ligands and counter ions, fine-tuned by isotopic substitution, and the

dimensionality of magnetic exchange can be chosen by preferential inhibition5–8. Applying

external pressure provides a further direct tool to control structural and, in turn, magnetic

properties9–11.

In this study, we compress a single crystal of deuterated (CuF2(H2O)2)2pyz – a model

quasi-two dimensionsional (Q2D) square-lattice antiferromagnet – and report on magnetic

susceptibility measurements using a Tunnel Diode Oscillator (TDO). The measured suscep-

tibilities are then confronted with results from Quantum Monte Carlo (QMC) simulations

and the pressure evolution of the electronic structure and magnetic couplings were investi-

gated by density functional theory (DFT). We show that the application of external pressure

continuously tunes the Heisenberg exchange couplings in (CuF2(H2O)2)2pyz by more than

a factor of three, thereby allowing for direct control of the dimensionality and enabling a

continuous dimensional crossover. The observed continuous change is very large in compari-

son to what is reported for organic and inorganic materials under application of comparable

external pressures10,12.

As with other coordination polymers of the (CuF2(H2O)2)nX family, the localized spins

are carried by Cu2+ ions. They have a distorted octahedral coordination with equatorial F-

and H2O ligands. OH· · ·F hydrogen bonds link the Cu2+ complexes to layers parallel to the

b-c plane, see Figure 1. The main magnetic exchange energy J arises from Cu-O-H· · ·F-Cu

super-exchange paths which build Q2D magnetic layers13. In (CuF2(H2O)2)2pyz two of these

CuF2(H2O)2 layers are linked by axial water ligands towards a double layer. Pyz ligands
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FIG. 1. View onto the crystallographic structure of (CuF2(H2O)2)2pyz (a) along the b-axis and

(b) onto the b-c plane. Cu2+ complexes with equatorial F- and H2O ligands are linked by OH· · ·F

hydrogen bond parallel to the b-c plane. The H2O ligands further connect two layers into a double

layer by axial coordination. Pyz molecules occupy the second axial position and link the double

layers into a 3D coordination network. The magnetic interaction J within the layer is mediated by

superexchange via Cu-O-H· · ·F-Cu paths, cf. (b). The weaker interactions J2 within the double

layer proceeds via Cu(equatorial-O-Cu(axial) bonds and J1 between the double layers over the long

Cu(axial)-pyz-Cu(axial) path. Copper atoms are magnified in (a) and (b) for better visualization.

(c) The calculated spin-density distribution of the ground state is shown for various pressures,

positive in red and negative in blue.

occupy the other axial position and connect along the a-axis to a 3D coordination network.

The weaker magnetic exchange couplings J1 and J2 are located along these Cu(axial)-pyz-

Cu(axial) and Cu(equatorial)-O-Cu(axial) pathways, respectively11.

RESULTS

Single crystal magnetic susceptibility measurements in fields up to 35 T were performed

at the National High Magnetic Field Laboratory (Tallahassee, Florida, USA) using a Tun-
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nel Diode Oscillator (TDO) as a susceptometer, as described in the Methods. In or-

der to probe the influence of external pressure, we compress isotropically a deuterated

(CuF2(H2O)2)2pyz single crystal aligned with the crystallographic axis a parallel to the mag-

netic field. We have performed two independent experiments, where we used (i) a piston

cylinder cell for pressures up to 17.9 kbar in fields up to 35 T and a minimum temperature

of 1.5 K and (ii) a specially designed Moissanite anvil cell for pressures up to 37.1 kbar in

fields up to 18 T and a minimum temperature of 0.4 K.

The pressure-dependence of the TDO resonance frequency as function of magnetic field

and a constant temperature of 1.5 K are shown in Figure 2a. The magnetic susceptibility

χ = ∂M
∂H

is obtained by subtracting the magnetoresistive background of the resonator coil

from the resonance frequency and is presented in Figure 2b. A spin-flop transition is observed

at low fields, see insert of Figure 2b. The transition appears at 1.2 T at a pressure of

1.5 kbar and shifts to slightly lower fields for increased pressure (1.0 T at 17.9 kbar). The

susceptibility increases with growing external field and shows a pronounced peak prior to

saturation. The shape of the susceptibility including the spin-flop transition is compared

to QMC simulations and discussed further below. The magnetization is derived from the

susceptibility by numerical integration and shown in Figure 2c. For fields below the spin-

flop transition, the magnetization increases very little with increasing field. Beyond the first

transition the spins gradually align with increasing magnetic field up to saturation. The

saturation field Bc changes significantly upon pressure whereas the shape of magnetization

remains similar, see Figure 2c and 3a. The Néel temperatures TN were determined for

each pressure point by a temperature dependent measurement of the resonance frequency

at the spin-flop field and are reported in Figure 3b. The choice of applying this particular

external field allows a precise measurement of the Néel temperature because the change of

the resonance frequency as a function of temperature is well pronounced. The change upon

pressure is also drastic. The saturation field is proportional to the arithmetic average of the

exchange couplings per spin,

J +
1

2
J⊥ = BcgµB/4, (1)

were µB is the Bohr magneton, g = 2.42 the experimentally determined g-factor along the

applied field11 and J⊥ the arithmetic sum of J1 and J2. A linear fit to the experimental

values results in J + 1
2
J⊥ = 11.48 K - 0.34 K/kbar·p for pressures up to 18 kbar and J + 1

2
J⊥

= 7.14 K - 0.09 K/kbar·p for higher pressures. Such a strong pressure dependence is highly
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FIG. 2. (a) Measured resonance frequencies of the tunnel diode oscillator (TDO) at selected

pressures and a temperature of 1.5 K (full lines) together with the corresponding magnetoresistive

background of the resonator coil (dashed lines). The pressures are 17.9, 13.6, 10.5, 6.0 and 1.5 kbar

from top to bottom. (b) Magnetic susceptibility for the same pressures and temperature. The insert

shows a magnification of the spin-flop transition. (c) Magnetization at 37.1, 31.9 and 25.8 kbar

(dashed lines from left to right) and for the pressures shown in panel (a) and (b) (full lines).
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Q2D         3D

FIG. 3. Measured saturation field Bc (a) and Néel temperatures TN (b) as function of external

pressure. The blue circles were obtained form measurements using the piston cell and the green

squares result from the experiment employing the Moissanite cell. Linear fits to Bc are shown as

black lines. (c) Ratio TN/Bc versus external pressure. The dimensional crossover is illustrated by

colors: the system continuously transforms from Q2D (blue) to 3D (yellow) with closest isotropic

realization at the maximum around p=18 kbar.

unusual and much stronger than what is usually observed in materials.

For the lowest pressures we assume the Heisenberg interlayer exchange couplings J1 and

J2 to be much smaller than the in-plane exchange coupling. This assumption is justified

by inelastic neutron scattering performed at SINQ, Paul Scherrer Institute, Switzerland

and the first principle calculations discussed further below. This allows the simple relation

J ≈ BcgµB/n (n = 4 is the number of nearest neighbors) and results in J = 11.45 K at

0.5 kbar and 11.13 K at 1.5 kbar. We note that the deuterated single crystal samples used

for both neutron scattering and magnetic susceptibility measurements may have marginally

different exchange couplings compared to protonated samples. However, such an isotope

effect is small6 and not investigated within this study. Given J and TN , we can estimate

the Heisenberg interlayer exchange coupling. Random Phase Approximation (RPA) was

employed to relate the in-plane Heisenberg exchange coupling and the Néel temperature

to the interlayer coupling. By assuming a uniform Heisenberg exchange coupling along the

stacking direction we evaluate the dynamic susceptibility by a mean-field treatment14, see the

Methods. For an isotropic square-lattice Heisenberg antiferromagnet with weak inter-plane
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coupling, we find

|J⊥| =
J2

2c2TN
e−4πρs/TN (2)

where c2 is a non-universal constant and ρs is the spin stiffness. We use the numerical value

c2 = 0.044 estimated by QMC simulations for a spin 1/2 system15 and ρs = J/4. At a

pressure of 1.5 kbar we obtain |J⊥| = 0.095 ± 0.015 K.

Experimental evidence for the dimensional crossover is illustrated in Figure 3c, where

we plot the ratio TN/Bc versus pressure. Simple mean-field arguments would predict both

TN and Bc to be proportional to the sum of coupling constants and hence their ratio to be

constant. With reduced dimensionality, however, fluctuations become more important and

suppress TN in the 2D and 1D limits.

For intermediate situations with finite TN the ratio TN/Bc takes also finite values with

a maximum for the 3D isotropic case (J⊥/J = 1). At zero pressure our system is Q2D

and the observed increase of TN/Bc with pressure until 18 kbar thus implies an increase of

J⊥/J . Assuming a further increase of J⊥/J beyond the maximum in TN/Bc together with

the observed decrease of TN/Bc requires that the system becomes more anisotropic towards

a Q1D system. The pressure dependence of the Heisenberg exchange couplings is further

investigated by ab inito calculations, as discussed below. They confirm the assumption that

J⊥/J increases further for pressures beyond the one at which the maximum of TN/Bc is

observed.

QMC simulations were performed using stochastic series expansion with generalized di-

rected loop updates, as provided by the ALPS open-source codes16–21. A nearest-neigbour

anisotropic XXZ Hamiltonian with spin-1/2 localized on the sites of a simple cubic lattice

was assumed. Nearest-neigbour pairs of spin-1/2 within any layer perpendicular to the stack-

ing direction are coupled antiferromagnetically with isotropic Heisenberg exchange coupling

J . Consecutive layers are coupled alternatively with ferromagnetic and antiferromagnetic

Heisenberg exchange couplings of magnitude |J⊥|. The spin SU(2) symmetry was broken to

U(1) by an easy axis anisotropy in the inter-layer couplings |Jz⊥| > |J⊥|, see the Methods.

Calculated susceptibility and magnetization are compared to experiment at a pressure of

1.5 kbar in Figure 4. The QMC simulations help understanding the shape of the suscep-

tibility. The spin-flop transition could be reproduced using the value |Jz⊥| = 0.19 K. Both

susceptibility and magnetization are in excellent agreement with the experimental data.

The microscopic mechanism behind the giant pressure dependence is investigated by
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FIG. 4. Magnetic susceptibility (a) and magnetization (b) at a pressure of 1.5 kbar and a tem-

perature of 1.5 K as obtained from experiment (full line) and QMC simulations (dashed line).

The stochastic error (one standard deviation) on the QMC susceptibility is 5 % at the spin-flop

transition and < 0.3 % elsewhere.

electronic structure calculations from first principle. We used spin polarized DFT as imple-

mented in the CASTEP code22,23. The generalized gradient approximation was employed

using the exchange correlation functional of Perdew, Burke and Ernzerhof (PBE) within the

plane-wave formalism and norm-conserving pseudo-potentials of the optimized form24,25, see

the Methods for further details. Heisenberg exchange couplings were estimated by total en-

ergy calculations for different spin configurations. The calculated spin density distribution

for the optimized geometries at different pressures and the magnetic exchange paths are

depicted in Fig. 1. The calculation confirms that the in-plane Heisenberg exchange coupling

is governed by the hydrogen bonded Cu-O-H· · ·F-Cu super-exchange path, estimated to

43.8 K at 1.5 kbar. The Q2D layers are coupled through nearest-neigbour Heisenberg ex-

change couplings that are alternatively antiferromagnetic and ferromagnetic. The inter-layer
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FIG. 5. Ab initio calculated magnetic and structural parameters of (CuF2(H2O)2)2pyz as function

of isotropic external pressure: (a) J , (b) J⊥/J , (c) bond lengths of Cu-F (connected blue dots)

and Cu-O (connected red squares), (d) bond angle of the water bridged Cu-O-Cu path, and (e)

cell volume.

Heisenberg exchange coupling within a double layer, connected as it is via the water bridges,

is governed by the Cu-O-Cu path. This coupling is found to be ferromagnetic in the calcu-

lations performed at a pressure of 1.5 kbar and below and turns out to be antiferromagnetic

at all higher pressures. The Heisenberg exchange coupling between two consecutive double
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layers is realized via the pyrazine building block connecting two Cu atoms, see Figure 1a.

It is antiferromagnetic up to a pressure of 1.5 kbar, becomes ferromagnetic for higher pres-

sures up to 80 kbar, and is again antiferromagnetic for pressures beyond 100 kbar. Applying

isotropic external pressure leads to a continuous deformation of the spin density distribu-

tion, see Figure 1c. The spin density along the Cu-F bond is redistributed orthogonal to

it along the Cu-N bonds. The shape of the spin density around the Cu atoms resembles

a squeezed torus at 5 kbar, while it forms a more uniform torus at 20 kbar. At 100 kbar

there is very little spin density left along the Cu-F bonds and both inter-layer Heisenberg

exchange couplings become antiferromagnetic.

The estimated pressure dependence of J and the ratio J⊥/J are presented in Figure 5a and

b. The pressure dependence of J is in good agreement with the experiment: J decreases upon

application of isotropic external pressure by more than a factor of three within the measured

pressure range and continues to decrease all the way up to 100 kbar. Both the ferromagnetic

and antiferromagnetic inter-layer Heisenberg exchange couplings increase significantly with

pressure. At around 10 kbar J⊥ increases to a strength comparable to J . The systematic

error of J⊥ is different from the error of J , absolute values of the plotted ratio J⊥/J are thus

not reliable. However, the first principle calculations identify a clear trend. J⊥/J increases

rapidly for low pressures and the system becomes 3D and finally Q1D.

The deformation of the spin density is accompanied by an increase of the Cu-F bond

length with pressure while the Cu-O bond length undergoes very little change, see Figure

5c. The angle of the water bridged exchange becomes smaller, as the layers are pushed to-

gether with pressure, see Figure 5d. We identify discontinuities in the pressure dependence

of structural parameters indicating electronic phase transitions, see Figure 5c-e. The ob-

served transitions lead to discontinuities in the exchange parameters, of which one at 40 kbar

is well pronounced. It corresponds to a first-order phase transition of the orbital orientation.

At this pressure J is of the same order of magnitude as the calculated values for J1 (water

bridged) and J2 (pyz connection) and the model is 3D below and above the transition. At

100 kbar both interlayer couplings exceed J . The resulting magnetic properties are those

of weakly antiferromagnetic coupled quantum spin-1/2 chains. The transitions of the inter-

layer couplings from ferromagnetic-antiferromagnetic to antiferromagnetic-ferromagnetic at

around 1.5 kbar and finally to antiferromagnetic-antiferromagnetic at 100 kbar are also dis-

continuous, but this is not resolved by the current calculation.
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DISCUSSION

The results unequivocally point to a continuous evolution of the dimensionality of mag-

netic properties in (CuF2(H2O)2)2pyz under application of isotropic external pressure. The

direct evidence for the dimensional crossover can be seen from the pressure dependence of

TN/Bc, see Figure 3c. The assumption made to transcend these data – the further increase

of J⊥/J beyond the maximum – is confirmed by the ab initio calculation, see Figure 5b.

The magnitude of the nearest-neighbor inter-layer Heisenberg exchange coupling |J⊥| was

extracted from the experimental data with help of a formula derived from a mean field

treatment assuming J � J⊥. The obtained ratio J⊥/J compares reasonably well with the

estimation from the ab initio calculation at ambient pressure. There is no symmetry ar-

gument which requires the magnitudes of the two exchange couplings along the stacking

direction J1 and J2 to be identical. However, the DFT calculations indicate values of the

same order of magnitude. Assuming J1 = −J2 allows us to extract an average value from

the available experimental data and to reduce the number of free parameters. For increasing

pressures, the DFT calculations show a rapid increase of J⊥/J and the approximations used

in the RPA are less justified when the system becomes more 3D. In fact, Equation 2 would

require an increase of TN for increasing J⊥/J , contradicting the experimental observation.

We thus conclude that the assumption J � J⊥ used in the mean field treatment is valid

for ambient pressure only. The susceptibility can be well reproduced by QMC simulations.

This confirms that the system can be described by a Heisenberg antiferromagnet with XXZ

symmetry in spin space and anisotropic Heisenberg exchange couplings along the nearest-

neighbor bonds of a cubic lattice. The shape of the susceptibility and magnetization is

rather insensitive to changes from Q2D to 3D but would differ significantly when changed

to Q1D7.

The electronic structure calculations explain the drastic evolution of the exchange param-

eters upon application of isotropic external pressure by a continuous deformation of the spin

density distribution around the Cu atoms accompanied by an anomalous increase of the Cu-

F bond length. At even higher pressures the magnetic exchange coupling is dominated by

the Cu-O-Cu and Cu-pyz-Cu exchange path. The system is thus expected to become Q1D

by realizing weakly coupled antiferromagnetic spin chains. Susceptibility measurements at

pressures up to 100 kbar and more are accesible to future experiments using non-magnetic
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diamond anvil cells.

The magnitudes of the Heisenberg exchange couplings are significantly overestimated by

our ab initio calculations but the relative pressure dependence is correctly described. The

overestimation can be attributed in large part to the limitations in the employed exchange-

correlation-term within PBE. In fact, the Copper d orbitals are rather well localized which

leads to strong on-site correlations. An appropriate correction could be envisaged by extend-

ing the ab initio calculation by a Hubbard U model (DFT+U) or by including dynamical

mean-field correlations (DFT+DMFT methods). Due to these limitations in the exchange-

correlation functional there is also a systematic uncertainty in the calculated pressure. An

experimental investigation of the structural parameters, such as cell volume and atomic po-

sition, as function of pressure would thus provide very important information to calibrate

the calculated results, see Figure 5.

(CuF2(H2O)2)2pyz will be a very important model system to benchmark the limitations

of new theoretical approaches describing the spin dynamics across dimensional crossovers.

Magnetic excitations can be measured, for example, using neutron spectroscopy where exper-

iments can be conducted at relevant pressure-temperature conditions and applied magnetic

field. Neutron scattering experiments under pressure will allow for accurate determination

of the full set of exchange parameters with high accuracy. (CuF2(H2O)2)2pyz comprises an

excellent model system to study correlated electron physics and superconductivity when

doped with holes or electrons. The chemical flexibility is particularly high in this metal-

organic compounds and it will thus be possible and very promising to realize a charge doped

quantum magnet with extraordinary pressure dependence. From a material science per-

spective such materials are very interesting. In fact, they not only provide the possibility

to engineer tuneable quantum materials with desired properties exploiting state-of-the-art

chemistry, but also provide indispensable benchmarks for testing the most recent advances

in the quantum many-body physics of low-dimensional systems and calculating magnetic

properties from first principle.

In summary, we have shown that the Heisenberg exchange couplings in the model square-

lattice antiferromagnet (CuF2(H2O)2)2pyz can efficiently be tuned by external pressure. The

system is well described by a spin-1/2 Heisenberg XXZ Hamiltonian with exchange couplings

in the range of a few Kelvin in magnitude. The effective dimensionality with regard to mag-

netic properties can be changed continuously through the great sensitivity of the Heisenberg
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exchange couplings to pressure. At ambient pressure the Heisenberg exchange couplings are

dominated by the antiferromagnetic hydrogen bonded Cu-O-H· · ·F-Cu super-exchange path

in two dimensions. The Q2D layers are weekly coupled along the third (stacking) dimen-

sion with alternating ferro- and antiferromagnetic Heisenberg exchange couplings. Upon

application of external pressure, the spin density is continuously deformed. This effect is

accompanied by an increase of the Cu-F distance. The inter-layer Heisenberg exchange cou-

pling increases relative to the intra-layer one. Magnetic properties become increasingly 3D.

At more elevated pressures the Heisenberg exchange couplings are predicted to continuously

transform so as to effectively realize weakly coupled antiferromagnetic spin-1/2 chains. The

accurate control of the crossover regime between different dimensionalities offers new oppor-

tunities in materials design and allows for the study of exotic quantum phenomena realized

in such situations. The employed approach combining modern materials chemistry with

recently developed quantum many body simulation tools provides a promising strategy for

designing quantum materials with remarkable properties.

METHODS

Sample

Deuterated (CuF2(H2O)2)2pyz single crystals were grown similar to the method described

in Reference11: Two equivalents of ammonium fluoride (7.122 g, 92 mmol) and one equiv-

alent of pyrazine (7.689 g, 96 mmol) were dissolved in 96 ml water. A filtered solution

of copper(II) nitrate made from one equivalent copper(II) chloride (12.907 g, 96 mmol)

and two equivalents silver(I) chloride (32.616 g, 192 mmol) in 96 ml water was added at

5◦C. Upon slow evaporation at first place CuF2(H2O)2pyz crystals form and after sev-

eral months (CuF2(H2O)2)2pyz grew epitactic on the first compound. Single crystals of

(CuF2(H2O)2)2pyz were separated and checked by powder x-ray diffraction for phase purity.

The samples were stored in the mother liquor.

Tunnel diode oscillator measurements

The TDO susceptometer consists of an oscillator circuit with a tunnel diode and a reso-

nant LC circuit with the sample inside the inductor. Neglecting small parasitic components
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and lengths, oscillation frequency is proportional to ω = 1/
√
LC, where L is modified by

the susceptibility of the sample inside it26–28. Measurements using the piston cell were per-

formed at the National High Magnetic Field Laboratorys 35 T, 32 mm bore resistive magnet

in cell 12. The inductor was a single layer coil, 800µm in diameter, 25 turns, wound with

28µm wire. The piston cell was cooled by a He4 cryostat with variable temperature insert

where the flow of He gas entering the sample area from a valve at the base of the instrument

controls the temperature. The measurements were performed at a temperature of 1.5 K

and pressures 0.5, 1.5, 6.0, 13.6, and 17.9 kbar. The experiments at higher pressures were

performed using a Moissanite anvil cell with 800µm culets, see29 for similar design. Here,

the resonator coil was 150µm in outer diameter, 3 turns, with 14µm diameter copper wire

(with insulation). The measurements were performed in the NHMFL superconducting mag-

net system SCM 2 in a He3 system where the base temperature is reached by condensing

He3 gas to liquid by using a 1 K pot. These measurements were performed at a temperature

of 0.4 K and pressures 16.1, 25.8, 31.9 and 37.1 kbar. Daphne 7474 was used as pressure

transmitting medium and the pressure was determined in situ from the fluorescence of a

ruby crystal.

Monte Carlo simulations

For the QMC simulations, the material is modeled as a spin-1/2 system on a simple cubic

lattice with a two-site unit cell

Ĥspin :=
∑
n

∑
a=x,y,z

(
J
∑
m

2∑
µ=1

Ŝan,mŜ
a
n+δµ,m

+
∑
m odd

Ja1 Ŝ
a
n,mŜ

a
n,m+1

+
∑
m even

Ja2 Ŝ
a
n,mŜ

a
n,m+1 −

∑
m

han,mŜ
a
n,m

)
. (3)

Here n is a two-dimensional vector associated to a site in a layer, while m is the index along

the stacking direction of the layers. The label a (= x, y, z) enumerates the spin components.

We choose the z-direction to correspond to the crystallographic a-axis, which is aligned

with the magnetic field, i.e. hzn,m = h and hxn,m = hyn,m = 0. The intra-layer coupling

constant J=11.13 K, inter-layer coupling Jx,y1 = −Jx,y2 = J⊥ = 0.09 K and the g-factor

g=2.42 have been set to the values deduced from the saturation field, the Néel temperature,

and the reported value for g11, respectively, at 1.5 kbar. Finally, the easy-axis anisotropy
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Jz1 = −Jz2 = Jz⊥ has been chosen such that the observed spin-flop field Bsf ≈ 1.2 T is

reproduced. For each field value shown in Fig. 4, 10 000 Monte Carlo sweeps were performed

for thermalization and 800 000 sweeps after thermalization. The spin-flop transition is

sensitive to finite size effects and a rather large number of spins are required for a correct

description. We thus computed the susceptibility, magnetization, binder cumulant, energy

and their auto-correlation times for various system sizes at the transition and verified that

the value of the transition field Bsf is converged with system size to within 0.05 T for the

chosen system containing 32× 32× 32 spins.

Ab initio calculations

The pseudopotentials used in this study were generated using the Vanderbilt scheme

with single projectors. Valence configuration, core radii and cut-off wave vectors for the

different species were taken from the pseudopotential data base of the Rappe Group25,30. A

plane wave cut-off of 1500 eV and an electronic grid sampling on a 2 × 2 × 3 Monkhorst-

Pack grid ensured convergence of forces to < 1.0 meV/Å. The total energy was converged

to 0.1 meV for each spin configuration. The cell geometry was optimized employing the

Broyden-Fletcher-Goldfarb-Shannon method by varying lattice and internal parameters31.

Random Phase Approximation for Quasi-Two-Dimentional Susceptibilities

Following the section of Monte Carlo simulations, we consider the Hamiltonian Eq. 3

Ĥ(3d)
source := Ĥspin, (4)

where the exchange coupling Ja1 and Ja2 can be either positive or negative. The real-valued

numbers han,m are sources that allow to compute any spin-spin correlation function. If chosen

independent of n and m, they are proportional to an applied external uniform magnetic field.

We may ignore the quantum character of the spin operators implied by the symbol hat

in Ŝan,m in the mean-field (classical) approximation. For simplicity, we assume that the

exchange couplings are isotropic, namely Ja1 ≡ J1 and Ja2 ≡ J are independent of the index

a . If

|J | � |J1| , |J2| ≥ 0 , (5)
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we may then perform a mean-field approximation by which the full three-dimensional prob-

lem is truncated down to an effective (eff) two-dimensional problem

H(3d)
source →

∑
m odd

H
(2d)
eff-source,m odd +

∑
m even

H
(2d)
eff-source,m even . (6)

By choosing the external source to be of the plane-wave type and by employing linear-

response theory, the three-dimensional susceptibility χ3d
q‖ ,q⊥

is approximated by

χ3d
q‖ ,q⊥

≈ χ3d,RPA
q‖ ,q⊥

:=
χ2d
q‖

[
1− (J1 + J2) cos q⊥ χ

2d
q‖

]
1−

(
J2

1 + J2
2 + 2J1J2 cos 2q⊥

)(
χ2d
q‖

)2 , (7)

where q ≡ (q‖, q⊥) is the wave vector, ⊥ indicates the direction perpendicular to the two-

dimensional layer, namely along the stacking direction. With the explicit form of the two-

dimensional antiferromagnetic susceptibility χ2d(T ) as a function of temperature T 15,32

χ2d(T ) ≈ c2

T

J2
e4πρs/T , (8)

we can solve the pole equation for J1 = −J2 = J⊥ and obtain

TN =
4πρs

− ln 2c2 − ln |J⊥|
J
− ln

TN
J

, (9)

which can be reformulated to Eq. 2. Solving the pole equation for J1 = J2 = J⊥ also leads

to Eq. 9 and agrees with previously published results15.
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10 S. Ghannadzadeh, J. S. Möller, P. A. Goddard, T. Lancaster, F. Xiao, S. J. Blundell,

A. Maisuradze, R. Khasanov, J. L. Manson, S. W. Tozer, D. Graf, and J. A. Schlueter, Evolu-

tion of magnetic interactions in a pressure-induced Jahn-Teller driven magnetic dimensionality

switch, Phys. Rev. B 87, 241102 (2013).

11 A. Lanza, C. Fiolka, M. Fisch, N. Casati, M. Skoulatos, C. Ruegg, K. W. Kramer, and P. Mac-

chi, New magnetic frameworks of [(CuF2(H2O)2)x(pyz)], Chem. Commun. 50, 14504 (2014).

12 P. Merchant, B. Normand, K. W. Kramer, M. Boehm, D. F. McMorrow, and C. Ruegg,

Quantum and classical criticality in a dimerized quantum antiferromagnet, Nature Physics 10,

373 (2014).

13 J. L. Manson, M. M. Conner, J. A. Schlueter, A. C. McConnell, H. I. Southerland, I. Malfant,

T. Lancaster, S. J. Blundell, M. L. Brooks, F. L. Pratt, J. Singleton, R. D. McDonald, C. Lee,

and M.-H. Whangbo, Experimental and theoretical characterization of the magnetic properties

of CuF2(H2O)2(pyz) (pyz = pyrazine): A two-dimensional quantum magnet arising from super-

superexchange interactions through hydrogen bonded paths, Chemistry of Materials 20, 7408

(2008).

14 D. J. Scalapino, Y. Imry, and P. Pincus, Generalized Ginzburg-Landau theory of pseudo-one-

dimensional systems, Phys. Rev. B 11, 2042 (1975).

15 C. Yasuda, S. Todo, K. Hukushima, F. Alet, M. Keller, M. Troyer, and H. Takayama, Néel
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