provided by Bern Open Repository and Information System (BORIS)

30th European Crystallographic Meeting, 28th August - 1st [September 2016, Congress Center Basel, Switzerland](http://ecm30.ecanews.org)

MS23-O2 Charge Density Studies of Switchable Molecular Materials at Extreme Conditions: What; How & Why?

Helena J. Shepherd¹

1. University of Kent

email: H.J.Shepherd@kent.ac.uk

Spin crossover (SCO) is the phenomenon of switching between high-spin (HS) and low-spin (LS) states shown by certain complexes of first row (d4 - d7) transition metals. It is accompanied by changes in colour, magnetism, optical and mechanical properties of the material, and may be induced by some perturbation such as a change in temperature, light irradiation, pressure, the presence of guest molecules etc. [1]. These characteristics present interesting opportunities for applications in sensing, display and actuating technologies [2]. The subtle electronic redistribution of electron density within
these materials results in substantial structural results in substantial reorganisation of the material, driven by changes in volume of the metal coordination sphere in excess of 25%.

In-situ high pressure and/or light-irradiation during structural studies of SCO materials have created new understanding of this fascinating class of switchable molecular materials, and although by no means routine, incorporation of such extreme conditions into the X-ray diffraction experiment is now reasonably common [3,4]. Charge density studies provide an opportunity to study the coupling between electronic and structural effects in these out-of-equilibrium processes, providing
complimentary insights. Combining charge-density charge-density studies with extreme conditions, while experimentally very demanding, will allow development of the next generation of materials with improved switchable functionality. This presentation will evaluate the benefits, as well as the challenges, to be encountered in performing these kinds of cutting-edge experiments.

References:

[1] A. Bousseksou et al. Chem. Soc. Rev., 2011,40, 3313-3335

[2] G. Molnar et al. J. Mater. Chem. C, 2014,2, 1360-1366

[3] Helena J. Shepherd et al. Phys. Rev. B 84, 144107

[4] Sébastien Pillet, Helena J. Shepherd et al. Phys. Rev. B 86, 064106

Keywords: Extreme Conditions, Charge Density, Functional Molecular Materials

MS23-O3 Copper-pyrazine magnetic polymers under high pressure

Arianna Lanza^{1,2}, Rebecca Scatena², Leonardo H.R. Dos Santos², Mariusz Kubus³, Karl W. Krämer², Lukas Keller³, Tom Fennell³, Björn Wehinger³, Alun Biffin³, Christian Rüegg³, Nicola Casati¹, Piero Macchi²

1. Laboratory of Synchrotron Radiation, Paul Scherrer Institute, Switzerland

2. Department of Chemistry and Biochemistry, University of Bern, Switzerland

3. Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, Switzerland

email: arianna.lanza@dcb.unibe.ch

Coordination polymers based on copper ions linked by pyrazine (pyz) and halide bridges are easy to synthesize and crystallize. Depending on the stoichiometry, the counter ions and the reaction conditions, a wide variety of polymers has been obtained, showing different topologies and magnetic properties.[1]

Their characteristics and chemical simplicity make them suitable models for a systematic investigation of the variation of the material properties as a function of composition or pressure-induced structural modifications. Pressure may trigger phase transitions or even chemical reactions in these species. The most commonly observed phenomena are: a) orientational changes of the pyz
spacers: b) orbital reordering and consequent spacers; b) orbital reordering and consequent re-orientation of the Jahn-Teller distortion; c) attachment/detachment of ancillary ligands. These phenomena (especially orbital reordering) have important consequences for the dimensionality of the magnetic exchange network.[1,2]

Recently, the magnetic properties of some Cu-pyz based materials have been examined and correlated with the topological and integrated properties of their electron and spin density distribution.[3]

In this talk, we will focus on $[(\text{CuF}_2(H_2O)_2)(\text{pyz})]$
(x=1,2) and $[(\text{Cu(pyz})_2X]Y$ (X=halide; Y=BF_4),
investigated up to 15 GPa with single crystal and powder X-ray diffraction and theoretical charge and spin density calculations. The role of the ligands in the super exchange mechanisms and the experimental coupling constants will be rationalized by systematic electron density analysis on the room pressure and high pressure phases.

[1] Lanza, A.; Fiolka, C.; Fisch, M.; Casati, N.; Skoulatos, M.; Rüegg, C.; Krämer, K. W.; Macchi, P. *Chem. Comm.* **2014**, *50*, 14504.

[2] Halder, G. J.; Chapman, K. W.; Schlueter J. A.; Manson, J. L. *Angew. Chem.-Int. Ed.*, **2011**, *50*, 419.

[3] Dos Santos L.H.R.; Lanza A.; Barton A.M.; Brambleby J.; Blackmore W.J.A.; Goddard P.A.; Xiao F.; Williams R.C.; Lancaster T.; Pratt F.L.; Blundell S.J.; Singleton J.; Manson, J.L.; Macchi, P. *J. Am. Chem. Soc.*, **2015**, *187* (7), 2280.

 \triangleright

Figure 1. High pressure can alter the dimensionality of the magnetic exchange in Cu-pyz based quantum magnets. Thick lines represent magnetic exchange pathways and different colours indicate H-bonds-, pyz- or X - mediated interactions, (in red, blue and green, respectively).

Keywords: high-pressure, quantum magnets, spin density

MS23-O4 Hydrogen maleate salts: Precise and accurate determination of the hydrogen atom position in short hydrogen bonds using X-ray diffraction at extremely low temperatures

Simon Grabowsky¹, Lorraine Andrade Malaspina¹, Magdalena Woinska², Eiji Nishibori³, Kunihisa Sugimoto⁴, Alison J. Edwards⁵, Dylan Jayatilaka⁶

- 1. The University of Bremen
- 2. University of Warsaw
- 3. University of Tsukuba
- 4. Japan Synchrotron Radiation Research Institute
- 5. Australian Nuclear Science and Technology Organization

6. The University of Western Australia

email: simon.grabowsky@uni-bremen.de

Hydrogen maleate salts offer the unique opportunity to follow a pseudo-reaction pathway of a proton transfer not only in theoretical simulations but also experimentally because the hydrogen position in the strong and short intramolecular O-H-O hydrogen bond is highly flexible dependent on the cation. There are numerous crystal structures of hydrogen maleate salts in the literature showing that the O-O distance is constant around 2.45 A, but the O-H distances vary from 0.83 A/1.63 A in highly asymmetric hydrogen bonds to 1.22A in symmetric hydrogen bonds with a large variety of intermediate distances. This means that snapshots along a pseudo-reaction pathway can be measured and with the symmetric hydrogen bonds, even a model for a possible
transition state is accessible. Experimental is accessible. Experimental
modelling of high-resolution electron-density low-temperature (20K) synchrotron X-ray data of nine (4-aminopyridinium, 8-hydroxyquinolinium, barium, calcium, potassium, lithium, magnesium, sodium and phenylalaninium hydrogen maleates) measured at SPring-8, Japan, will give electronic information on the pseudo-reaction mechanism.

For these detailed electron-density analyses, it is crucial to obtain accurate positional and displacement parameters of the hydrogen atoms. It is a widespread notion that this can only be achieved using neutron-diffraction techniques. Therefore we have collected Laue-diffraction neutron data at the Bragg institute of ANSTO, Australia. Using those data as a reference, we will show that we can obtain hydrogen atom positions and bond lengths involving hydrogen atoms with the same accuracy and precision from \bar{X} -ray data as from neutron data - even from X-ray data of routinely achievable resolution - if an advanced X-ray refinement technique is used. This new technique is called Hirshfeld Atom Refinement (HAR) [1].

[1] S. C. Capelli, H.-B. Bürgi, B. Dittrich, S. Grabowsky, D. Jayatilaka: Hirshfeld atom refinement. IUCrJ 2014, 1, 361-379.

Keywords: hydrogen maleate salts, Hirshfeld atom refinement, hydrogen atom parameters from X-ray diffraction