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followed up for a mean period of about 3.9 ± 1.9 years. Clin-
ical outcome, levels of established biomarkers, and trypto-
phan degradation markers (assessed using tandem mass 
spectrometry) including estimated IDO activity were record-
ed. Cox proportional hazards regression models were per-
formed for the assessment of prognostic power.  Results:  We 
found that baseline tryptophan levels were significantly low-
er and IDO activity was significantly increased in non-survi-
vors. The risk for death inclined stepwise and was highest in 
patients in the upper tertile of IDO activity. Cox proportional 
regression models identified IDO activity as an independent 
predictor of death.  Conclusions:  In this retrospective analy-
sis, we observed that baseline activity of the immunoregula-
tory enzyme IDO was significantly increased in non-survi-
vors. IDO activity was identified as an independent predictor 
of death in this cohort of NEN patients. Whether IDO activity 
or tryptophan depletion serves to guide future therapeutic 
interventions in NEN remains to be established. 

 © 2016 S. Karger AG, Basel 
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 Abstract 

  Background/Aims:  Data from a considerable number of ma-
lignancies demonstrate that depletion of the essential ami-
no acid tryptophan via induction of the immunoregulatory 
enzyme indoleamine-2,3-dioxygenase (IDO) serves as an im-
portant tumour escape strategy and is of prognostic impor-
tance. Here we investigate the predictive value of the activ-
ity of IDO as well as levels of tryptophan and respective 
downstream catabolites in a large cohort of patients with 
neuroendocrine neoplasms (NEN).  Methods:  142 consecu-
tive Caucasian patients (62 male, aged 60.3 ± 11.9 years) with 
histologically confirmed NEN were systematically analysed 
in a retrospective blinded end point analysis. Patients were 
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 Introduction 

 Neuroendocrine neoplasms (NEN) are rare epithelial 
neoplasms most often located in the gastro-enteropan-
creatic system  [1] . Although the initial diagnosis is often 
established in advanced, i.e. metastatic, stages of the dis-
ease, most affected patients have increased survival times 
when compared to other solid malignancies  [2, 3] . This 
may at least partially be explained by the respective dis-
tinct tumour biology that is often characterized by re-
duced tumour growth  [4] . Nevertheless, although surviv-
al rates may generally be favourable, a considerable bio-
logical heterogeneity can be noted. From a clinical 
perspective, however, characterization of disease status 
and assessment of therapeutic efficacy seems pivotal. This 
underlines the need for novel prognostic markers.

  For the assessment of prognosis and guidance of NEN 
therapy, few prognostic indices were previously identi-
fied. Currently established prognostic indices include tu-
mour size and localization, AJCC/UICC TNM classifica-
tion (i.e. staging), grading based on the proliferative index 
(PI) via Ki-67 assessment (WHO classification), and, to a 
lesser extent, serum chromogranin A levels  [5, 6] . Never-
theless, the prognostic power of respective indices varies 
between studies, which may be due to heterogeneous 
study populations and differing baseline definitions or 
classifications. The PI is currently regarded as the gold 
standard for the assessment of prognosis, was shown to 
independently predict prognosis, and is used for thera-
peutic stratification. However, it is assessed by immuno-
histochemical staining of nuclear antigen Ki-67 and re-
quires invasive tumour tissue acquisition  [7] . In fact, as-
sessment of the PI (i.e. Ki-67) usually requires needle 
biopsy or surgical specimens. From a clinical perspective, 
this implies a major limitation to this gold standard, as 
most often it cannot be followed up on a routine repetitive 
pattern and thus allows only limited assessment of the 
underlying disease kinetics or response to therapy. There-
fore, due to the limited availability of prognostic markers 
and/or the need for invasive assessment, the identifica-
tion of non-invasive prognostic biomarkers constitutes a 
high priority. 

  Besides the necessity of non-invasive prognostic (bio-)
markers, further investigations on the underlying molec-
ular mechanisms and pathways for the development of 
new therapeutic strategies in NEN are needed. When 
considering novel diagnostic or therapeutic approaches 
for NEN, it seems important to note that only few data are 
available on the immune response to NEN. This seems of 
particular interest as recent data indicate that immuno-

therapy for NEN, e.g. via targeting of cytotoxic T-lym-
phocyte antigen 4 or programmed death 1 signalling 
pathways, may hold promise and may open up novel 
therapeutic avenues  [8] .

  Tryptophan (Trp) is an essential amino acid in hu-
mans and is important for several reasons, including the 
fact that Trp is catabolized to key neuroendocrine media-
tors (e.g. serotonin). Moreover, Trp contributes to cellu-
lar energy metabolism and regulates local and systemic 
cell-mediated immunity  [9] . Data show that >95% of Trp 
is catabolized via the conserved ‘kynurenine (Kyn) path-
way’ by induction of the rate-limiting immunoregulatory 
enzyme indoleamine-2,3-dioxygenase (IDO) ( fig.  1 ). 
IDO induction leads to the generation of a group of ca-
tabolites collectively referred to as ‘kynurenines’  [9] . 
These catabolites are well known to suppress T-cell func-
tion and to induce apoptosis of T-cells  [10, 11] . In addi-
tion, Trp depletion activates stress mechanisms, e.g. via 
the kinase general control non-derepressible 2 kinase. 
This augments T-cell immunosuppressive signalling by 
induction of T-cell G1 cycle arrest and Fas-mediated 
apoptosis  [12, 13] . Overall, IDO-induced Trp depletion 
triggers an immunosuppressive environment via deple-
tion, anergy, and apoptosis of T-cells. Thus, IDO-induc-
tion plays an important role in the development of im-
munological tolerance and IDO-induced immunosup-
pression is used by solid malignancies to protect 
themselves from immune recognition and cytotoxicity – 
a fact that is recognized as a key tumour escape mecha-
nism  [9, 10, 13–20] . 

  In several solid malignancies and in severe infection, 
IDO induction serves as a biomarker in the monitoring 
of disease activity/response to therapy and is associated 
with an adverse prognosis  [15, 17, 19–23, 47] . Thus, in-
duced IDO expression was proposed a novel prognostic 
indicator in immunohistological studies  [21, 24, 25] . As 
studies on Trp catabolism in neuroendocrine tumours 
are currently unavailable, we embarked to investigate the 
role of Trp catabolism and IDO induction in a large co-
hort of patients with NEN. 

  Patients and Methods 

 Study Population and Assessment of Clinical Data 
 Patient charts of a total of 145 Caucasian patients [62 male, me-

dian age 63.5 years (range 23–83)] with histologically confirmed 
neuroendocrine malignancies consecutively treated between April 
2009 until June 2010 at a tertiary care academic centre (Charité, 
Universitätsmedizin Berlin, Berlin, Germany) were reviewed. Out-
come data from 3 (i.e. 2%) of the initial cohort were unavailable 
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and did thus not enter respective analyses. A retrospective blinded 
end point analysis design applied. Data recorded at baseline con-
tained, among others, demographic data, date of initial diagnosis, 
localization of the primary site of cancer, staging (i.e. AJCC/UICC 
TNM classifications), grading (i.e. proliferation index measured 
by Ki-67 staining), biomarkers (e.g. Trp catabolism and serum 
chromogranin A expression in a limited number of patients), tu-
mour functionality (based on clinical symptoms), results of imag-
ing studies and surgical procedures, as well as clinical outcomes. 
The study was performed in accordance with the Declaration of 
Helsinki and written informed consent was achieved.

  Primary tumour localizations were confirmed by endoscopy, 
surgery, and/or conclusive imaging studies including computed 
tomography (CT), magnetic resonance imaging (MRI) and soma-
tostatin receptor imaging. Respective histological diagnoses were 
based on conventional haematoxylin-eosin staining and immuno-
histochemistry for neuroendocrine markers. Histological typing of 
endocrine tumours was applied by using the 2010 WHO classifica-
tion of gastro-enteropancreatic NEN  [26, 27] . CT and MRI were 
available for all patients. Tumour response evaluation was per-
formed by an independent experienced radiologist. Response to 
treatment was measured according to the Response Evaluation 
Criteria in Solid Tumors (RECIST, version 1.0). 

  Histological Assessment of Tumour Characteristics and Ki-67 
Expression 
 The initial histopathological diagnosis of NEN was established 

in our tertiary care academic centre in 127 (i.e. 89%) patients. In the 
remaining 15 patients, the histopathological diagnosis was estab-
lished in external referring institutions. Histological differentiation 
grade, immunohistochemistry, mitotic index, and the Ki-67 label-
ling index were examined, as described previously  [6, 27, 28] .

  Assessment of Blood Samples and Biomarkers for NEN 
 Blood samples were obtained at baseline using a standard phle-

botomy protocol following informed consent. Samples were cen-
trifuged (20,000  g  for 5 min), and aliquots were stored at –80   °   C 
until assessment. 

  Assessment of Serum Chromogranin A Levels 
 Chromogranin A serum levels were assessed using a standard-

ized and validated technique in the accredited lab of the Charité, 
Universitätsmedizin Berlin, Berlin, Germany. A commercially 
available radioimmunoassay was used for assessment (CisBio, 
Codolet, France). Limits of normal for this essay were 19–150 μg/l. 
Serum levels of chromogranin A were available only in 74% of 
study patients within 90 days from baseline.
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  Fig. 1.  Overview on Trp catabolism via the serotonin and Kyn pathways. QPRT = Quinolinatephosphoribosyl-
transferase; NAD +  = nicotinamide adenosine dinucleotide. 
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  Assessment of Trp Catabolism and Estimated IDO Activity 
 In addition to the assessment of established (bio-)markers for 

NEN, the assessment of Trp and Trp catabolites (an overview on 
Trp catabolism is provided in  fig. 1 ) was performed from aliquots 
of plasma samples drawn at baseline. Respective samples were an-
alysed for Trp and major Trp breakdown products in a quantita-
tive fashion using a tandem mass spectrometry technique. The 
general approach used here was in accordance to the procedure 
proposed by Zhu et al.  [29] . Estimated IDO activity was calculated 
as Kyn × 100/Trp ratio, as demonstrated earlier  [30] .

  In detail, for performing mass spectrometry measurements, 
commercially available Trp, Kyn, Kyn acid (KynA), quinolinic 
acid (QuinA), 5-hydroxy Trp (OH-Trp), 3-hydroxy anthranilic 

acid (3-OH ANA), serotonin, phenylalanine (Phe) (all Sigma-Al-
drich, St. Louis, Mo., USA) deuterium-labelled compounds Kyn-
d 6 , KynA-d 5 , Phe-d 5 , Trp-d 5  (all Cambridge Isotope Laboratories, 
Andover, Mass., USA), water (Optima MS grade; Fisher Scientific, 
Waltham, Mass., USA) and acetonitrile (Optima grade; Fisher Sci-
entific) were used. Frozen samples were thawed prior to analysis. 
One hundred microlitres of heparinized plasma was added to a 
deuterated internal standard mixture (50 μl) of equal volumes of 
Kyn-d 6 , KynA-d 5 , Phe-d 5 , and Trp-d 5.  After shaking the solution 
for 2 min, 500 μl acetonitrile was added and left over night at 
–20   °   C to precipitate the protein. Samples were centrifuged (20,000 
 g , 10 min), and the supernatant was dried under vacuum centrifu-
gation (Savant SpeedVac Plus SC210A and Savant Refrigerated 

 Table 1.  Patient demographics and prognosis-relevant indices

Total cohort Survivors Non-survivors Between-subgroup
p value

Total number of subjects 142 (100%) 85 (59%) 57 (39%) –
Male 61 (43%) 35 (25%) 26 (18%) 0.43
Age, years 60.3 ± 11.9 58.3 ± 11.4 63.4 ± 12.0 0.01
Mean follow-up time, days 1,457.1 ± 717.4 1,844.0 ± 479.1 880.1 ± 620.8 <0.0001
Primary origin of malignancy 0.03

Small intestine 58 (41%) 40 (28%) 18 (13%) –
Pancreatic 37 (26%) 14 (10%) 23 (16%) –
Duodenal 10 (7%) 10 (7%) 0 (%) –
Cancer of unknown primary 9 (6%) 4 (3%) 5 (3%) –
Others 28 (20%) 17 (12%) 11 (8%) –

Tumor-related symptoms (diarrhoea, flushing, or both) 45 (32%) 25 (18%) 20 (14%) 0.67
Grading based on WHO 2010 0.0007

G1 56 (39%) 43 (30%) 13 (9%) –
G2 72 (51%) 40 (28%) 32 (23%) –
G3 14 (10%) 2 (1%) 12 (9%) –

UICC staging (2009) 0.0006
Stage I 15 (11%) 15 (11%) 0 (0%) –
Stage II 3 (2%) 2 (1%) 1 (1%) –
Stage III 20 (14%) 18 (13%) 2 (1%) –
Stage IV 104 (73%) 50 (35%) 54 (38%) –

Baseline chromogranin A serum levels
(missing data in 25.5% of cases) 1,312.0 ± 5,838.7 1,319.9 ± 7,522.4 1,352.5 ± 2,382.6 0.98

Therapy 0.0001
Complete resection 30 (21%) 28 (20%) 2 (1%) –
‘Wait and watch’ 36 (25%) 26 (18%) 10 (7%) –
Somatostatin analogue 44 (30%) 22 (15%) 22 (15%) –
Chemotherapy 20 (14%) 3 (2%) 17 (12%) –
Targeted therapy 6 (4%) 2 (1%) 4 (3%) –
Other 5 (4%) 4 (3%) 1 (1%) –
Unknown 1 (1%) 0 (0%) 1 (1%) –

Disease progression during observational period 77 (54%) 38 (27%) 39 (27%) 0.96
Progression-free survival time, days 1,699.4 ± 585.5 1,749.9 ± 551.5 975.7 ± 696.8
Survival time/time until death, primary site of cancer, days

Small intestine 1,655.6 ± 620.4 1,970.8 ± 251.5 955.3 ± 626.3 <0.0001
Pancreas 1,285.8 ± 729.7 1,755.5 ± 608.1 998.3 ± 652.6 0.0013
Others 1,347.7 ± 773.5 1,720.4 ± 599.5 625.5 ± 521.8 <0.0001

 Means ± SD, independent-samples t test and χ2 test, as appropriate.
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Vapor Trap RVT 4104). Dried samples were reconstituted with 
100 μl H 2 O/acetonitrile (95%/5%). A Waters Acquity UPLC-TQD 
system (Milford, Mass., USA) was equipped with an electrospray 
ion source using MRM detection in a positive ion mode. The fol-
lowing transitions of mass-to-charge ratios ( m/z ) of 205/188 for 
Trp, 210/193 for Trp-d 5 , 209/192 for Kyn, 215/198 for Kyn-d 6 , 
168/150 for QuinA, 190/144 for KynA, 195/149 for KynA-d 5 , 
154/136 for 3HAA, 177/160 for serotonin, 221/204 for OH-Trp, 
166/120 for Phe, and 171/125 for Phe-d 5  were detected using argon 
as a collision gas. For separation of analytes, an Acquity UPLC 
BEH C18 column (1.7 μm, 100 mm) was used. A gradient of water/
acetonitrile was utilized starting at a ratio of 97/3 and ramping up 
to a ratio of 70/30 in 5 min using a flow rate of 0.35 ml/min. For 
quantification, calibration curves were performed referring the 
analytes to appropriate deuterated standards. Calibration curves 
were fitted by linear least-square regression. Serum (ClinChek ®  
Control, Recipe, Germany) with known Phe and Trp concentra-
tions was used as quality control to ensure the accuracy and preci-
sion of both the sample preparation and the measurements pro-
duced by the UPLC-MS/MS. 

  Statistical Analysis 
 For statistical analysis, StatView 5.0 (SAS Institute, Cary, N.C., 

USA) and MedCalc 12.0 Software were used (MedCalc Software, 
Mariakerke, Belgium). For between-group comparisons, either the 
unpaired t test or the Mann-Whitney U test was used, as appropri-
ate. Data are reported as means ± standard deviations or medians 
and interquartile range, if not indicated otherwise. All data were 
checked for normal distribution using the Kolmogorov-Smirnov 
test. In case of non-normally distributed data, log transformation 
was performed. Sensitivity/specificity analyses were performed 
and ROC curves calculated. Between-ROC p values are given. For 
the assessment of prediction of non-survival, Cox proportional 

hazards regression models were calculated. Kaplan-Meier cumula-
tive survival estimate curves were calculated for illustrative pur-
poses (Mantel Haenszel log rank p values are given). A p value 
<0.05 was considered statistically significant. 

  Results 

 Characterization of the Study Cohort and Patient 
Demographics 
 Data from 142 Caucasian patients (mean age 60.3 

years, interquartile range 50–70, range 23–83) with histo-
logically confirmed NEN treated at our institution were 
analysed in a systematic fashion. In the overall cohort, the 
gender distribution was comparable (61 male, 43%). 
Main primary tumour localizations were small intestine 
(41%) and pancreas (26%). Full details are given in  ta-
ble 1 . Metastases were observed in 73% of cases. Forty-
five patients (i.e. 32%) were clinically considered to have 
functional tumours defined as patients with the following 
symptoms: diarrhoea not otherwise explained, skin flush-
ing, or both. Primary localization of functional tumours 
was 62.2% ileum and 15.6% pancreas. The most frequent 
treatment strategies were complete surgical resection, 
‘wait and watch’, or treatment with somatostatin receptor 
analogues ( table 1 ).

  Patients were followed up for a mean period of about 
3.9 ± 1.9 years ( table 1 ). The rate of all-cause mortality 
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  Fig. 2.  Kaplan Meier survival estimates of 
NEN patients grouped for grading (Ki-67 
expression) at baseline. Follow-up time 
and respective numbers at risk are given. 
Overall model: χ 2  = 39.5, p < 0.0001 (log 
rank). 
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during the observational interval was 39%. Importantly, 
the cause of death was considered to be associated with 
NEN disease (i.e. liver or respiratory failure due to NEN 
metastases, tumour-induced cachexia or infection) in all 
patients. We observed that the overall time of survival was 
dependent on the primary tumour site ( table 1 ), as previ-
ously demonstrated  [3] . Grading (G1, G2, G3) based on 
PI Ki-67 (ENETS guidelines, WHO classification 2010) 
was significantly correlated to the risk of death from NEN 
( table 1 ). After grouping of patients in upper, middle, and 
lower tertiles of Ki-67 levels (i.e. grouping for grading), 
the following hazard ratios (HR) for non-survival applied 
( fig. 2 ): (1) subgroup of patients with G2 tumours: HR 
1.98 (95% CI 1.16–3.38), and (2) subgroup of patients 
with G3 tumours: HR 8.57 (95% CI 2.39–30.73). 

  Progressive disease was identified in 17 patients; 12 pa-
tients (8%) died within the mean follow-up time. During 
follow-up, progressive disease was noted in 54% of pa-
tients (n = 77). At censor date, 27% (n = 39) of patients 
within the subgroup of patients with progressive disease 
died. Progression-free survival times are given in  table 1 .

  Baseline Levels of Trp, Trp Catabolites Including 
Serotonin, and Estimated IDO Activity in Surviving 
versus Non-Surviving Patients 
 Levels of Trp were significantly lower (p = 0.008), 

whereas Kyn and KynA levels were significantly increased 
in non-surviving patients (p = 0.049 and 0.007, respec-
tively,  table 2 ). Estimated IDO activity was significantly 
higher in non-survivors when compared to surviving pa-
tients (6.23 ± 4.38 vs. 4.34 ± 1.85, respectively; p = 0.0005). 
Serotonin levels and levels of 3-OH ANA did not statisti-
cally differ between survivors and non-survivors. Full de-
tails are given in  table 2 . 

  Moreover, we analysed the subgroup of patients with 
(n = 45) versus without (n = 100) functional tumour syn-
drome (defined as diarrhoea not otherwise explained, 
skin flushing, or both). When compared to patients with-
out functional syndrome, higher mean serotonin levels 
were observed in patients with tumour-related (i.e. ‘func-
tional’) symptoms such as e.g. diarrhoea or flushing (4.05 
± 3.76 vs. 2.18 ± 2.61 μmol/l, p = 0.0007; please also com-
pare to the total cohort data presented in  table 2 ). In the 

 Table 2. Trp degradation products and IDO activity at baseline (means ± SD)

Total cohort Survivors Non-survivors Between-subgroup
p value

Trp, μmol/l 56.7 ± 15.4 59.9 ± 13.8 52.5 ± 16.7 0.008
Kyn, μmol/l 2.69 ± 1.21 2.53 ± 1.02 2.93 ± 1.42 0.049
KynA, μmol/l 0.043 ± 0.029 0.038 ± 0.016 0.051 ± 0.039 0.007
3-OH ANA, μmol/l 0.03 ± 0.017 0.03 ± 0.015 0.04 ± 0.02 0.16
Serotonin, μmol/l 2.77 ± 3.13 2.78 ± 3.31 2.77 ± 2.87 0.96
IDO activity 5.10 ± 3.24 4.34 ± 1.85 6.23 ± 4.38 0.0005

 Table 3. Univariate and multivariate survival models in patients with NEN

Variable HR 95% CI p value χ2

Single-predictor model for non-survival
Age (per 1-year increase) 1.026 1.002 – 1.051 0.031 4.65
Gender (male) 1.045 0.620 – 1.760 0.87 0.03
UICC stadium (per 1 increase) 3.639 1.486 – 8.912 0.005 7.98
Ki-67 expression (per 1 SD increase) 2.055 1.574 – 2.685 <0.0001 27.96
IDO activity (per 1 SD increase) 1.704 1.363 – 2.132 <0.0001 21.81
Trp levels (per 1 SD increase) 0.660 0.529 – 0.824 0.0002 13.521
Chromogranin A levels (per 1 SD increase) 1.487 1.184 – 1.867 0.0006 11.68

Multivariable model for non-survival
IDO activity (per 1 SD increase)1 1.591 1.250 – 2.025 0.0002 14.240

1 After adjustment for age, gender, UICC stadium, and Ki-67 expression.
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subgroup of patients with functional syndrome, statisti-
cally significant differences were not noted with regard to 
Trp, Kyn, KynA, 3-OH ANA, or IDO activity (all p > 
0.19). In addition, IDO activity was investigated in pa-
tients with metastatic NEN disease (UICC stage IV). In 
this subgroup of patients, IDO activity was significantly 
increased when non-surviving patients were compared to 
survivors (6.31 ± 4.46 vs. 4.55 ± 2.09, respectively, p = 
0.01). 

  Outcome Prognostication in the NEN Cohort under 
Investigation 
 In an effort to investigate a potential association of Trp 

catabolites with clinical outcome, univariate and multi-
variate outcome models were performed. After adjusting 
for disease severity and demographics, Cox proportional 
hazards regression models identified IDO activity as an 
independent predictor of death in the cohort under inves-
tigation ( table  3 ). In detail, the HR for non-survival of 
IDO activity was 1.59 (95% CI 1.25–2.03; p = 0.0002, χ 2  = 
14.2). Grouping of patients into upper, middle, and lower 
tertiles of IDO activity showed the following HRs for 
non-survival ( fig. 3 ): for patients in the middle tertile, the 
respective HR was 2.05 (95% CI 1.11–3.81), and for pa-
tients in the upper tertile, the HR was 3.27 (95% CI 1.73–
6.19). Thus, after grouping for tertiles of IDO activity, a 
stepwise increase in the risk of death was observed ( fig. 3 ).

  Moreover, sensitivity/specificity analyses for non-sur-
vival were performed in order to calculate respective 
AUCs for IDO and Ki-67. ROC analyses demonstrated 
that the sensitivity/specificity for non-survival were com-
parable between the two indices. In detail, the following 
AUCs applied: IDO activity 0.69 (0.61–0.77) and Ki-67 
0.72 (0.63–0.79); p = 0.71 (between ROCs). 

  Discussion 

 Identification of an effective biomarker set and dem-
onstration of a potential novel therapeutically relevant 
pathway constitutes a high priority in NEN disease. In 
this study, we investigated the Trp catabolic pathway in-
cluding IDO activity with regard to its prognostic power 
in a large cohort of patients with neuroendocrine neo-
plasms. After inclusion and analysis of 142 patients, we 
found that estimated IDO activity was significantly high-
er in non-surviving patients. Cox proportional hazard re-
gression models identified IDO activity as an indepen-
dent predictor for non-survival in a general population of 
NEN patients. The power of IDO activity to predict death 
was comparable to the established (invasive) prognostic 
marker of histological Ki-67 expression. From a clinical 
perspective, the subgroup of metastatic NEN disease 
(UICC stage IV) might benefit most from assessment of 
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  Fig. 3.  Kaplan Meier survival estimates of 
NEN patients grouped for baseline IDO ac-
tivity (tertiles). Follow-up time and respec-
tive numbers at risk are given. Overall 
model: χ 2  = 12.2, p = 0.0022 (log rank). 
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IDO activity, because a change in the treatment regimen 
often goes along with a need for new PI assessment and 
thus with an invasive biopsy. In conclusion, assessment 
of estimated IDO activity may serve as a novel non-inva-
sive biomarker in NEN disease. Nevertheless, whether or 
not estimated IDO activity serves to guide therapeutic in-
terventions in NEN remains to be established.

  Malignant cells often express tumour-specific antigens 
that trigger immune recognition and consecutive T-cell-
mediated destruction  [31–33] . This ‘tumour surveillance’ 
is a host-protective measure, but it is well known that ma-
lignant cells developed escape strategies  [31, 34] . The un-
derlying molecular mechanisms are currently under in-
tense research, and mounting data show that IDO plays a 
key role in tumour escape via T-cell modulation and in-
duction of immunosuppression  [19, 20, 25, 35] . Interest-
ingly, early data from animal models suggest that treat-
ment with IDO inhibitors enhances anti-tumour immune 
response and acts synergistically with major currently 
used therapeutic interventions  [36] . However, to the best 
of our knowledge, Trp catabolism and systemic IDO ac-
tivity was not investigated in neuroendocrine malignan-
cies. Our data confirm previous studies of Trp catabolism 
in that IDO activity may be chronically induced in malig-
nancies and that increased IDO activity is associated with 
more extensive disease  [21, 37–39] . Nevertheless, al-
though we are unable to conclude from our data that NEN 
may indeed employ tumour escape mechanisms involving 
IDO, it seems tempting to speculate that IDO induction 
and respective Trp depletion may indeed have a specific 
role in NEN progression. Further longitudinal clinical and 
experimental studies are thus warranted.

  Our finding that higher IDO activity is associated with 
increased mortality is supported by the fact that, when 
compared to survivors, levels of downstream catabolites 
such as Kyn and KynA were significantly increased in 
non-survivors. These catabolites are well known to sup-
press T-cell proliferation, induce T-cell apoptosis, and 
negatively affect natural killer cell function  [40–42] . 

  Thus, when speculating on the underlying reasons for 
increased mortality in the cohort under investigation, the 
increased mortality in patients with higher IDO activity 
may theoretically also be due to downstream, rather than 
direct IDO-induced effects. In general, however, IDO lev-
els in malignant cells correlate with increased metastasis 
and poor patient outcome, and IDO induction was previ-
ously linked to tumour cell resistance with regard to im-
munotherapy, radiation therapy, and chemotherapy  [20] . 
Importantly, the molecular mechanisms by which these 
compounds exert their immunological effects are only 

partly understood. In general, IDO can be expressed di-
rectly by malignant cells or it can be induced via activa-
tion of tumour recognition pathways, e.g. in antigen-pre-
senting cells. However, IDO expression itself induces an 
immunosuppressive milieu that prevents key anti-tu-
mour cytotoxic immune mechanisms. Interestingly, IDO 
overexpression may mediate resistance to cancer immu-
notherapies including e.g. therapeutic approaches using 
immunomodulatory antibodies targeting cytotoxic T-
lymphocyte-associated protein 4 or programmed cell 
death protein 1, compounds which could play key roles 
in future NEN therapeutic approaches  [8, 43, 44] . More-
over, in a transgenic mouse model of breast cancer, IDO 
inhibition with 1-methyl Trp was combined with pacli-
taxel and resulted in tumour regression  [45] . Currently, 
we associate circulating PlGF levels with increased IDO 
activity in a subset of NEN patients (data not shown). 
PlGF is a cytokine which modulates immune responses in 
tumours and is strongly correlated with disease progres-
sion in NENs  [46] . Awaiting further evaluation, these 
data suggest interdependence between changes in Try 
metabolism and expression of growth factors, such as 
PlGF. 

  Importantly, our investigation has some limitations 
that require discussion. First, as mentioned before, the 
presented data demonstrate associations rather than 
causal relationships or mechanistic insights. Second, the 
sample size of our investigation is rather limited. This is 
due to the fact that NEN per se is a rather rare tumour 
entity and assessment of large NEN cohorts may be re-
garded difficult. Limitations in sample size, however, re-
stricts the analysis of the present data to the overall study 
cohort and prevents meaningful investigations on surviv-
al effects in subgroups including analyses in patients with 
progression of NEN disease. Thus, further studies in larg-
er cohorts are needed to evaluate the prognostic power 
with regard to clinical disease progression. Nevertheless, 
we are convinced that our observations derive from a typ-
ical cohort of NEN patients as indicated by primary tu-
mour distribution, grading distribution, outcome data, 
and serotonin levels in carcinoid syndrome patients. 
Third, in the current analysis, the assessment of the activ-
ity and influence of IDO II or the hepatic enzyme Trp-2,3-
dioxygenase (TDO) was beyond the scope of this analysis. 
Fourth, other metabolic pathways and drugs may theo-
retically interfere with the conversion of Trp to Kyn (e.g. 
steroids) in the clinical setting of NEN, and this may po-
tentially influence our data. Although we believe that our 
cohort represents a typical cohort of NEN patients, fur-
ther investigations should take effects induced by co-
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medication and nutritional state into account. Fifth, co-
existing medical conditions such as chronic kidney dis-
ease are associated with increased IDO activity and 
production of downstream catabolites  [30] . As this was a 
retrospective investigation, we are by definition unable to 
clearly exclude a potential bias induced by co-existing 
morbidities. Sixth, baseline chromogranin A serum levels 
were not included in the multivariate model as a consid-
erable amount of data was missing due to the retrospec-
tive nature of the analysis. Seventh, all-cause mortality 
was investigated in the present investigation only. We are 
thus technically unable to exclude that patients may have 
died e.g. from cardiovascular events, a fact that should be 
kept in mind when interpreting our data.

  In conclusion, our data point to an important role of 
IDO and respective downstream products in advanced 
NEN. We speculate from our data that induction of IDO 
may serve as a tumour escape mechanism in NEN. More-
over, the assessment of IDO activity may hold promise in 

several ways in that it may serve as a prognostic marker, 
potential biomarker for specific assessment of respective 
tumour biology/tumour behaviour, as a biomarker to 
guide systemic therapies, or even as a potential therapeu-
tic target. Thus, our data may provide the basis for more 
extensive prospective evaluations of Trp catabolism and 
IDO activity in NEN and we propose to consider includ-
ing IDO activity into the portfolio of biomarkers in NEN 
trials.
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