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Abstract In the literature, various discrete-time and continuous-time mixed-
integer linear programming (MIP) formulations for project scheduling prob-
lems have been proposed. The performance of these formulations has been
analyzed based on generic test instances. The objective of this study is to an-
alyze the performance of discrete-time and continuous-time MIP formulations
for a real-life application of project scheduling in human resource management.
We consider the problem of scheduling assessment centers. In an assessment
center, candidates for job positions perform different tasks while being ob-
served and evaluated by assessors. Because these assessors are highly qualified
and expensive personnel, the duration of the assessment center should be min-
imized. Complex rules for assigning assessors to candidates distinguish this
problem from other scheduling problems discussed in the literature. We de-
velop two discrete-time and three continuous-time MIP formulations, and we
present problem-specific lower bounds. In a comparative study, we analyze
the performance of the five MIP formulations on four real-life instances and
a set of 240 instances derived from real-life data. The results indicate that
good or optimal solutions are obtained for all instances within short computa-
tional time. In particular, one of the real-life instances is solved to optimality.
Surprisingly, the continuous-time formulations outperform the discrete-time
formulations in terms of solution quality.
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1 Introduction

Over the past decades, mixed-integer linear programming (MIP) methods have
been significantly improved (cf., e.g., Koch et al 2011; Bixby 2012) and success-
fully applied to a large variety of real-life scheduling problems in manufacturing
and services. Two major advantages of MIP methods are the flexibility to ac-
count for changes in the problem setting and the possibility to obtain upper or
lower bounds on the solutions. In general, different formulations can be used
to model the same planning problem. Because the performance of MIP ap-
proaches is determined by the underlying formulation (cf., e.g., Vielma 2015),
alternative formulations should be considered for each planning problem.

In this paper, we investigate an assessment center planning problem (ACP).
This problem was reported to us by a human resource management service
provider that organizes assessment centers (AC) for firms. The goal of an
AC is to evaluate some candidates’ job-related skills and abilities for one or
several open positions (cf., e.g., Collins et al 2003). In an AC, each candidate
performs multiple tasks, and for each task, a prescribed number of assessors
(i.e., psychologists or managers) is required. Some tasks involve role play and
additionally require a prescribed number of actors. For example, the actors
might represent unhappy customers with whom the candidate must interact.
Tasks sometimes require a preparation time during which only the candidate
is present. During the execution of the task, the candidate is joined by the
assessors and the actor. Some tasks include a subsequent evaluation during
which the assessors and the actors discuss their observations. This evaluation
time can differ between assessors and actors. Each candidate takes a lunch
break within a prescribed time window. When assigning assessors to tasks,
the following rules must be considered: each candidate should be observed by
approximately half the number of assessors; if a candidate and an assessor
know each other personally, no observation is allowed, which is called a no-
go relationship. Assessors are expensive, and hence, their total waiting time
should be minimized. Because the assessors meet before the start and after
the completion of all tasks and lunch breaks, this objective corresponds to
minimizing the total duration of the AC (in what follows the AC duration for
short). The planning problem consists of (1) scheduling all tasks and a lunch
break for each candidate and (2) determining which assessors are assigned to
which candidate during which task such that the AC duration is minimized.

The ACP can be interpreted as an extension of the resource-constrained
project scheduling problem (RCPSP). The RCPSP consists of scheduling a
set of activities subject to completion-start precedence and renewable-resource
constraints such that the project duration is minimized. For the ACP, each
candidate’s tasks and lunch break correspond to project activities, and the
candidates, assessors, and actors represent renewable resources. However, the
ACP does not involve precedence relationships among the activities, but the
above-described additional constraints. In the literature, different MIP for-
mulations have been proposed for the RCPSP. In discrete-time (DT) formu-
lations, the planning horizon is divided into a set of time intervals of equal
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length, and the activities can only start or end at the endpoints of these in-
tervals. Conversely, in continuous-time (CT) formulations, the activities can
start at any point in time. The DT formulations usually involve binary time-
indexed variables. However, the meaning of these variables differ between the
formulations, e.g., so-called pulse variables indicate whether an activity starts
or ends at a specific point in time (cf. Pritsker et al 1969; Christofides et al
1987; Kopanos et al 2014), and on/off variables specify whether an activity is
in progress at a given time (cf. Kaplan 1988; Mingozzi et al 1998; Kopanos
et al 2014). The CT formulations differ with regard to the modeling of the re-
source constraints, e.g., Artigues et al (2003) use resource-flow variables, and
Kopanos et al (2014) use overlapping variables. For a comprehensive overview
of different MIP formulations for the RCPSP, we refer to Artigues et al (2015).

In this paper, we provide two DT formulations and three CT formulations
for the ACP. The two DT formulations are based on pulse variables (DT–
P) and on/off variables (DT–O), respectively. The three CT formulations use
assessor-assignment variables (CT–A), resource-flow variables (CT–F), and
overlapping variables (CT–O), respectively, to model the resource constraints.
Moreover, we provide problem-specific lower bounds. The different MIP for-
mulations are tested on four real-life instances and 240 test instances based
on real-life data. For all instances, good or optimal solutions are obtained
within short computational time. In detail, formulation CT–A consistently
outperforms the other four formulations in terms of solution quality. However,
using DT–P, the best MIP-based lower bounds are obtained. Furthermore,
only with DT–P, optimality is proven for one of the real-life instances within
the prescribed time limit. Nevertheless, in contrast to the RCPSP, the CT
formulations provide better solutions than the DT formulations.

The remainder of this paper is structured as follows. In Section 2, we
describe the ACP using an illustrative example and relate the ACP to the
RCPSP. In Section 3, we provide an overview of the related literature. In
Section 4, we present the MIP formulations for the ACP. In Section 5, we
derive the problem-specific lower bounds. In Section 6, we discuss the design
and the results of our comparative analysis. In Section 7, we provide some
concluding remarks and an outlook on future research.

2 Planning problem

In Section 2.1, we describe the problem features of the ACP in detail and
illustrate them through an example. In Section 2.2, we discuss the relation
between the ACP and the RCPSP.

2.1 Illustration of the planning problem

In our illustrative example, the participants of the AC are as follows: there are
three candidates, C1, C2 and C3; four assessors, A1, A2, A3 and A4; and an
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actor, P1. A no-go relationship exists between candidate C3 and assessor A2.
Each of the three candidates must perform the three tasks E1, E2, and E3,
and take a lunch break.

The tasks of the illustrative example are listed in Table 1. The durations
of the tasks are stated in 5-minute time units. Tasks E1 and E3 require two
assessors, and task E2 requires one assessor. Task E1 involves role play and
requires one actor. Tasks E1 and E2 include a preparation time, and tasks E1

and E3 include an evaluation time. Figure 1 shows at which time during the
execution of task E1 the candidate, the assessors, and the actor are required.
The evaluation time differs between the assessors and the actor. Due to fair-
ness and objectivity considerations, no waiting times are allowed between the
preparation, the execution, and the evaluation. A waiting time for a candidate
would increase the preparation time, whereas a waiting time for the assessors
and actors could bias their evaluations of the candidate.

The earliest and latest possible start times for the lunch break are 20 and
30, respectively. The duration of the lunch break is 6 time units. Because
each candidate has a lunch break and performs each of the three tasks exactly
once, a total of 12 activities are considered. Table 2 shows the indices of these
activities.

︷ ︸︸ ︷
.......................

preparation
︷ ︸︸ ︷
........................

execution
︷ ︸︸ ︷
............

evaluation

︷ ︸︸ ︷
.............................................................

duration of the task

time

Candidate
Assessors
Actor

Fig. 1 Varying requirements for candidate, assessors, and actor during task E1

Table 1 Tasks of illustrative example

Task E1 E2 E3

Required number of assessors 2 1 2
Required number of actors 1 - -
Duration 20 10 12
Duration of preparation time (candidates) 8 3 -
Duration of execution time 8 7 8
Duration of evaluation time (assessors) 4 - 4
Duration of evaluation time (actors) 2 - -

The rules for assigning assessors to candidates are as follows: each candidate
should be observed by at least half of the total number of assessors rounded
down and by at most half of the total number of assessors rounded up plus one.
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The lower limit ensures an objective overall evaluation for each candidate, and
the upper limit is motivated by fairness considerations. The difference between
the upper and lower limits facilitates the assessor assignment without affecting
fairness. The number of times that an assessor can observe the same candidate
is not limited. In the illustrative example, each candidate must be observed
by 2 to 3 different assessors. Additionally, because a no-go relationship exists,
candidate C3 can never be observed by assessor A2.

An optimal schedule for the illustrative example is presented in Figure 2.
The dotted lines indicate the earliest and latest start times for the lunch
breaks, and the solid line indicates the AC duration. Whether an assessor has
been assigned to a candidate at least once is indicated by a checkmark (3).

Table 2 Activity indices of the illustrative example

Task Lunch
Candidate

E1 E2 E3 break

C1 1 4 7 10
C2 2 5 8 11
C3 3 6 9 12

time
0 10 20 30 40 46

C1

C2

C3

A1

A2

A3

A4

P1

1
2

3

4
5
6

7
8

9

10
11

12

1

1
2

2

3

34
5

6

7
7 8

8
9
9

12 3

Assignments

Candidate

Assessor C1 C2 C3

A1 ✓ ✓

A2 ✓ ✓

A3 ✓ ✓

A4 ✓ ✓

Fig. 2 Optimal schedule of the illustrative example (left) and corresponding assessor as-
signment (right)

2.2 Relation to the RCPSP

The ACP includes many problem features of the well-known RCPSP. Both
planning problems consider activities that require prescribed amounts of some
renewable resources during their execution. In the case of the ACP, the exe-
cution of each task and the lunch break for each candidate correspond to a
project activity, and the candidates, assessors, and actors can be interpreted
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as renewable resources. The ACP does not involve precedence relationships
among the activities.

In the RCPSP, only the capacities and not the individual units of the renew-
able resources are considered. However, in the ACP, the assessor-assignment
rules require that all activities that use a particular resource unit can be iden-
tified. Therefore, the assessor-assignment rules cannot be formulated in the
RCPSP.

If each assessor is interpreted as a renewable resource with unit capacity,
then alternative execution modes must be defined in order to represent the
alternative assessor assignments. This corresponds to the multi-mode exten-
sion of the RCPSP (MRCPSP). Because each candidate must be observed by
approximately half the number of the assessors, the assessor assignments in-
terdepend. Such interdependencies between modes are not considered in the
MRCPSP. Before assigning any assessors to a candidate, all modes are feasible.
However, selecting the modes for some activities causes several of the modes
of the other activities to be infeasible.

3 Literature review

In Section 3.1, we provide an overview of different MIP formulations for the
RCPSP which can be used as the basis for MIP formulations of the ACP. In
Section 3.2, we discuss recent works that focus on comparing MIP formulations
for extensions of the RCPSP and for specific real-life problems.

3.1 MIP formulations for the RCPSP

In DT formulations, binary time-indexed variables are used that indicate the
start, end, or the state (e.g., in progress) of an activity at a specific time.
For DT formulations, three types of binary variables can be distinguished (cf.
Artigues et al 2015). Beside the pulse and on/off variables described in the
Introduction, there are step variables that indicate whether an activity starts
at or before a specific point in time (cf. Klein 2000; Bianco and Caramia 2013).
Furthermore, Bianco and Caramia (2013) introduce continuous variables that
specify the percentage of completion of the activities at each point in time.

In CT formulations, the activities can start or finish at any time rather
than at predefined time points such as in DT. Artigues et al (2003) present
a CT formulation based on resource flows. Besides the continuous start-time
variables, this formulation requires two additional sets of variables. The first
set consists of binary sequencing variables that determine for each pair of
activities whether one precedes the other or whether both are executed in par-
allel. The second set consists of continuous resource-flow variables for modeling
the resource constraints. Kopanos et al (2014) present another CT formula-
tion with continuous start-time variables, binary sequencing variables, and
binary overlapping variables. In combination with the sequencing variables,
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the overlapping variables are used to model the resource constraints. Other
CT formulations are based on events (e.g. Koné et al 2011) or on minimal
forbidden sets (e.g. Alvarez-Valdes and Tamarit 1993).

For the RCPSP, the performances of these different MIP formulations are
compared in Bianco and Caramia (2013), Koné et al (2011), and Kopanos et al
(2014). They all use generic test instances, which are provided in, e.g., Kolisch
and Sprecher (1997) and Vanhoucke et al (2008). For these test instances, Koné
et al (2011) and Kopanos et al (2014) show that the performance is primarily
affected by the number of activities and the length of the planning horizon.
The performances of the DT formulations are negatively affected by the length
of the planning horizon because the numbers of variables and constraints de-
pend on the number of time points considered. In contrast, the performances
of the CT formulations are negatively affected by the number of activities
because the number of sequencing variables increases exponentially with the
number of activities. Typically, DT-based formulations are the most compet-
itive and yield the best LP relaxations. However, no formulation consistently
dominates the others, as different formulations perform better for different
problem settings.

In this study, we adapt different RCPSP formulations such that they can
be applied to the ACP. From the DT formulations, we select the RCPSP
formulations of Pritsker et al (1969) and Kopanos et al (2014). The basic
DT formulation of Pritsker et al (1969) still performs very well compared to
newer formulations (cf., e.g., Koné et al 2011). Kopanos et al (2014) show
that their two DT formulations outperform other DT formulations presented
in the literature. Their DT formulations differ with regard to the modeling of
the precedence constraints. For the ACP, these two formulations are identical
because there are no precedence constraints. From the CT formulations, we
adapt the formulations of Artigues et al (2003) and Kopanos et al (2014). The
CT formulation of Artigues et al (2003) performs well compared to other CT
formulations if there are specific problem characteristics such as long activity
durations (cf., e.g., Koné et al 2011). Kopanos et al (2014) show that their two
CT formulations outperform other CT formulations presented in the literature;
we adapted their best-performing CT formulation.

3.2 Comparative studies of MIP formulations

In addition to the aforementioned comparative studies of the RCPSP, the
performances of alternative MIP formulations have also been compared for
various other planning problems. In the following, we provide an overview of
such comparative studies for extensions of the RCPSP and for some real-life
problems.

Some extensions of the RCPSP for which alternative MIP formulations
have been compared are as follows. In Koné et al (2013), the performances
of alternative DT and CT formulations are compared for an extension of the
RCPSP with so-called storage resources. Storage resources are consumed and
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produced at the project activities’ start times and completion times, respec-
tively. As in Koné et al (2011), the authors conclude that no MIP formulation
consistently yields the best results. A comparative performance analysis of
alternative DT formulations for the RCPSP with flexible resource profiles is
provided in Naber and Kolisch (2014). With flexible resource profiles, the re-
source utilization of an activity is not constant but rather can be adjusted from
period to period. The results of the comparative study in Naber and Kolisch
(2014) indicate that an MIP formulation based on Bianco and Caramia (2013)
dominates all other DT formulations. In the study of Zapata et al (2008), al-
ternative DT and CT formulations for the MRCPSP with multiple projects
are compared. The authors conclude that the best MIP formulation depends
on the specific characteristics of each problem instance.

Comparative analyses have also been conducted for MIP formulations in
real-life applications. Stefansson et al (2011) develop DT and CT formulations
for a large-scale production scheduling problem originating from a pharma-
ceutical producer. In this problem, customers order specific products, which
need to be produced in a four-stage production process such that the requested
quantity and delivery date of the order are met. The results obtained for eight
test instances indicate that the CT formulation obtains better solutions within
shorter computational time than the DT formulation. Furthermore, in Chen
et al (2012), a comparative analysis of different mixed-integer nonlinear pro-
gramming formulations for the scheduling of crude-oil refinement operations
is presented. The planning problem includes several processing steps, from
unloading marine vessels to producing various crude-oil based products. In a
recent study, Ambrosino et al (2015) evaluated the performance of two alter-
native MIP formulations for the multi-port master bay plan problem. This
problem involves the placement of containers on a containership such that the
overall berthing costs of the ship’s multi-port journey are minimized.

4 MIP formulations for the ACP

In this section, we present our five MIP formulations for the ACP. The notation
of the MIP formulations is provided in Tables 3 and 4. In Section 4.1, we
present the CT formulation that uses the assessor-assignment decisions to
model the resource constraints (CT–A). In Section 4.2, we derive the CT
formulation with resource-flow variables (CT–F). In Section 4.3, we present
the CT formulation with overlapping variables (CT–O). In Sections 4.4 and
4.5, we present the DT formulation with pulse variables (DT–P) and the DT
formulation with on/off variables (DT–O), respectively.

4.1 Formulation CT–A

In this section, we present the continuous-time formulation that uses the
assessor-assignment decisions to model the resource constraints (CT–A). In
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Table 3 Sets and parameters of the MIP formulations

C Set of candidates

A Set of assessors

P Set of actors

N Set of candidate-assessor pairs (c, a) with a no-go relationship

I Set of activities i = 1, . . . , n (including lunch breaks)

Ic Set of activities that require candidate c ∈ C
IA, IP Set of activities that require assessors (IA) and actors (IP )

IL Set of lunch breaks

ESL, LSL Earliest (ESL) and latest (LSL) start time for the lunch breaks

pi Duration of activity i

pCi Preparation time of activity i for candidates

pAi , pPi Evaluation time of activity i for assessors (pAi ) and actors (pPi )

rAi , rPi Number of assessors (rAi ) and actors (rPi ) required by activity i

M Sufficiently large number

T Upper bound on the duration of the assessment center

a preliminary version of this MIP formulation (cf. Grüter et al 2014), each
activity is split into several sub-activities to model the preparation, the ex-
ecution, and the evaluation times. However, this results in an unnecessary
large number of variables and constraints. In the following, we model the ACP
without splitting the activities.

We distinguish between three types of resources: candidates, assessors, and
actors. Each candidate is modeled as a renewable resource with capacity 1.
The set of all assessors (actors) is modeled as one renewable resource with
a capacity that equals the number of assessors (actors). Due to the capacity
of 1, the resource constraints for the candidates are modeled using binary
sequencing variables, i.e., Y Cij = 1 (Y Cij = 0) if activity i (j) is completed some
time before the start of activity j (i) by the corresponding candidate. For
the assessors and actors, the resource constraints are modeled using binary
sequencing variables (Y Aij and Y Pij ), and binary assignment variables (ZAia and

ZPip). For the assessors, the sequencing variable Y Aij is equal to 1 if activity i

is completed some time before the start of activity j. Otherwise, Y Aij is 0, i.e.,
activities i and j are processed simultaneously or j finishes some time before i
begins. Because the ACP does not include precedence relationships, there are
no prescribed values for the sequencing variables. The assignment variable ZAia
is equal to 1 if assessor a is assigned to activity i; otherwise ZAia = 0. For the
actors, the sequencing and assignment variables (Y Pij and ZPip) are interpreted
in the same way. Finally, variable Vca is used to model the assessor-assignment
rule, i.e., Vca = 1 if assessor a is assigned to candidate c at least once.
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Table 4 Variables of the MIP formulations

D AC duration

Si Start time of activity i for the candidate

Xit

{
= 1, if activity i starts at time point t;

= 0, otherwise.

Y Cij

{
= 1, if activity i is performed before j > i by a candidate;

= 0, otherwise.

Y Aij

{
= 1, if activity i is performed before j 6= i by the assessors;

= 0, otherwise.

Y Pij

{
= 1, if activity i is performed before j 6= i by the actors;

= 0, otherwise.

ZAia

{
= 1, if assessor a is assigned to activity i;

= 0, otherwise.

ZPip

{
= 1, if actor p is assigned to activity i;

= 0, otherwise.

Vca

{
= 1, if assessor a is assigned to candidate c at least once;

= 0, otherwise.

FCij

{
= 1, if a candidate is sent from activity i to j;

= 0, otherwise.

FAij Number of assessors sent from activity i to j

FPij Number of actors sent from activity i to j

Ŷij

{
= 1, if activity i starts before or at the same time as j for assessors;

= 0, otherwise.

OAji

{
= 1, if activity j finishes after the start of activity i for assessors;

= 0 or 1, otherwise.

OPji

{
= 1, if activity j finishes after the start of activity i for actors;

= 0 or 1, otherwise.

Wit

{
= 1, if i is processed at time t by the candidates;

= 0, otherwise.

The objective is to minimize the AC duration D.

Min D

The duration corresponds to the latest completion time of an activity that is
defined by constraints (1).

D ≥ Si + pi (i ∈ I) (1)
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Candidate

Assessor

Si Sj

pi

pAi

i

i

j

j

Fig. 3 Minimum time lag between start times of activities i and j for candidates

Candidate 1
Candidate 2

Assessor

Si Sj

pi

pCj

i

i

j

j

Fig. 4 Minimum time lag between start times of activities i and j for assessors

Candidate 1
Candidate 2

Assessor 1
Assessor 2

Actor

Si Sj

pAi

pPi

pCj

pi

i

i

i

j

j

j

Fig. 5 Minimum time lag between start times of activities i and j for actors

Constraints (2)–(5) determine the resource-feasible start times of the activities.
Constraints (2) are binding if candidate c completes activity i before the start
of activity j. Otherwise, constraints (3) are binding. Because candidate c is
not required during the evaluation time, activity j can start at most pAi time
units before the completion of activity i (cf. Figure 3).

Sj ≥ Si −M + (pi − pAi +M)Y Cij (c ∈ C, i, j ∈ Ic : i < j) (2)

Si ≥ Sj −M + (pj − pAj +M)(1− Y Cij ) (c ∈ C, i, j ∈ Ic : i < j) (3)

Constraints (4) and (5) enforce a sequence of activities for the assessors
and actors, respectively. In the case that activity i is executed before activity
j by the assessors, constraints (4) are binding. Because the assessors are not
required during the preparation time, activity j can start at most pCj time units
before the completion of activity i (cf. Figure 4). Similarly, constraints (5) are
binding if activity i is executed before activity j by the actors. For the actors,
activity i is completed after pi − pAi + pPi time units. Activity j can start at
most pCj time units before that completion time (cf. Figure 5).

Sj ≥ Si −M + (pi − pCj +M)Y Aij (i, j ∈ IA : i 6= j) (4)
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Sj ≥ Si −M + (pi − pAi + pPi − pCj +M)Y Pij (i, j ∈ IP : i 6= j) (5)

Constraints (6) ensure that the lunch breaks are scheduled within the pre-
scribed time window.

ESL ≤ Si ≤ LSL (i ∈ IL) (6)

Constraints (7) and (8) imply that the required numbers of assessors and actors
are assigned to each activity.∑

a∈A
ZAia = rAi (i ∈ IA) (7)∑

p∈P
ZPip = rPi (i ∈ IP ) (8)

Constraints (9) and (10) link the assignment variables to the sequencing vari-
ables. If the same assessor a or the same actor p is assigned to two activities
i and j, then a sequence between these two activities is enforced.

Y Aij + Y Aji ≥ ZAia + ZAja − 1 (i, j ∈ IA, a ∈ A : i < j) (9)

Y Pij + Y Pji ≥ ZPip + ZPjp − 1 (i, j ∈ IP , p ∈ P : i < j) (10)

Constraints (11) and (12) ensure that either activity i precedes activity j, j
precedes i, or i and j are processed in parallel.

Y Aij + Y Aji ≤ 1 (i, j ∈ IA : i < j) (11)

Y Pij + Y Pji ≤ 1 (i, j ∈ IP : i < j) (12)

Constraints (13) enforce that the number of assessors assigned to each candi-
date lies within the bounds imposed by the assessor-assignment rule.⌊

|A|
2

⌋
≤
∑
a∈A

Vca ≤
⌈
|A|
2

⌉
+ 1 (c ∈ C) (13)

Constraints (14) determine whether an assessor a has been assigned to a can-
didate c at least once. Vca must be equal to 1 if assessor a is assigned to at
least one activity that requires candidate c. If assessor a is never assigned to
an activity that requires candidate c, then Vca must be equal to 0.

∑
i∈Ic\IL

ZAia
|Ic\IL|

≤ Vca ≤
∑

i∈Ic\IL
ZAia (c ∈ C, a ∈ A) (14)

Finally, constraints (15) model the no-go relationships.

Vca = 0 ((c, a) ∈ N) (15)
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In sum, formulation (CT–A) reads as follows:

(CT–A)



Min D

s.t. (1)–(15)

Si ≥ 0 (i ∈ I)

Y Cij ∈ {0, 1} (c ∈ C, i, j ∈ Ic : i < j)

Y Aij ∈ {0, 1} (i, j ∈ IA : i 6= j)

Y Pij ∈ {0, 1} (i, j ∈ IP : i 6= j)

Vca ∈ {0, 1} (c ∈ C, a ∈ A)

ZAia ∈ {0, 1} (i ∈ IA, a ∈ A)

ZPip ∈ {0, 1} (i ∈ IP , p ∈ P )

4.2 Formulation CT–F

In this section, we present the continuous-time formulation with resource-
flow variables (CT–F), which is based on the RCPSP formulation of Artigues
et al (2003). This MIP formulation was first proposed in Zimmermann and
Trautmann (2014). The following explanations closely follow that study.

To model the resource flows, formulation CT–F requires the dummy ac-
tivities 0 and n + 1; both have a duration of zero, and rA0 = rAn+1 = |A|
(rP0 = rPn+1 = |P |) is equal to the total number of available assessors (actors).
Variable FCij (FAij , F

P
ij ) denotes the quantity of candidates (assessors, actors)

sent from activity i (upon completion) to activity j (at the beginning). This
resource flow prevents the corresponding activities from being executed simul-
taneously. For the assessors (actors), the sequencing variable Y Aij (Y Pij ) is equal
to 1 if some assessors (actors) are sent from activity i to activity j. Because
each activity requires exactly one candidate, any flow of candidates between
two activities will be either 0 or 1. Since the resource-flow variable FCij is de-
fined as binary, this variable is used simultaneously as a resource-flow and as
a sequencing variable. As a sequencing variable, FCij equals 1 if and only if
activity j is executed after activity i.

The following constraints have to be considered. Constraints (16) determine
resource-feasible start times of the activities for the candidates. The feasible
start times of the activities for the assessors and actors are determined as in
formulation CT–A. Constraints (16) are binding if a candidate is sent from
activity i to activity j (FCij = 1).

Sj ≥ Si −M + (pi − pAi +M)FCij (c ∈ C; i, j ∈ Ic : i 6= j) (16)

Constraints (17)–(22) are the resource-flow conservation constraints. Con-
straints (17) ensure that each activity i sends 1 unit of resource c ∈ C to
either an activity j 6= i or the dummy activity n + 1 (if activity i is the last
activity performed by candidate c). Constraints (18) ensure that each activity
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j receives 1 unit of resource c ∈ C from either an activity i 6= j or the dummy
activity 0 (if activity j is the first activity performed by candidate c).

∑
j∈Ic∪{n+1}: j 6=i

FCij = 1 (c ∈ C; i ∈ Ic ∪ {0}) (17)

∑
i∈Ic∪{0}: i 6=j

FCij = 1 (c ∈ C; j ∈ Ic ∪ {n+ 1}) (18)

Constraints (19)–(22) conserve the resource flow of assessors and actors, re-
spectively. The number of assessors rAi (actors rPi ) required by activity i must
be sent to and received from other activities that require the same resource.

∑
j∈IA∪{n+1}: j 6=i

FAij = rAi (i ∈ IA ∪ {0}) (19)

∑
j∈IP∪{n+1}: j 6=i

FPij = rPi (i ∈ IP ∪ {0}) (20)

∑
i∈IA∪{0}: i 6=j

FAij = rAj (j ∈ IA ∪ {n+ 1}) (21)

∑
i∈IP∪{0}: i 6=j

FPij = rPj (j ∈ IP ∪ {n+ 1}) (22)

Constraints (23) and (24) link the resource-flow variables to the sequencing
variables for assessors and actors, respectively.

FAij ≤ min(rAi , r
A
j )Y Aij (i, j ∈ IA : i 6= j) (23)

FPij ≤ min(rPi , r
P
j )Y Pij (i, j ∈ IP : i 6= j) (24)

The sequencing variables Y Aij and Y Pij are only used to link the flow variables

FAij and FPij to the start times of the activities. The flow variables FAij and

FPij can be greater than 1. For this reason, they cannot be used as sequencing
variables.

Constraints (1), which determine the AC duration D, and the sequencing
constraints for the assessors (4) and actors (5), and constraints (6), which
specify the time window for the lunch breaks, are also included. The same
applies to the assessor-assignment constraints (7), (9), and (11)–(15).
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In sum, formulation (CT–F) reads as follows:

(CT–F)



Min D

s.t. (16)–(24)

(1), (4)–(7), (9)

(11)–(15)

Si ≥ 0 (i ∈ I)

FCij ∈ {0, 1} (c ∈ C; i, j ∈ Ic ∪ {0, n+ 1} : i 6= j)

FAij ≥ 0 (i, j ∈ IA ∪ {0, n+ 1} : i 6= j)

FPij ≥ 0 (i, j ∈ IP ∪ {0, n+ 1} : i 6= j)

Y Aij ∈ {0, 1} (i, j ∈ IA : i 6= j)

Y Pij ∈ {0, 1} (i, j ∈ IP : i 6= j)

Vca ∈ {0, 1} (c ∈ C, a ∈ A)

ZAia ∈ {0, 1} (i ∈ IA, a ∈ A)

4.3 Formulation CT–O

In this section, we present the continuous-time formulation with overlapping
variables (CT–O), which is based on the RCPSP formulation of Kopanos et al
(2014).

For activities that cannot be processed in parallel (i.e., two activities which
require the same candidate), we use the sequencing variables Y Cij . For activities
that can be processed in parallel, the resource constraints are modeled with
the following binary variables.

– For the assessors and the actors, we introduce the sequencing variables Ŷij .

Specifically, Ŷij = 1 if activity i starts before or at the same time as activity
j for the assessors. These sequencing variables are not defined separately
for assessors and actors, because the activities start at the same time for
them.

– For the assessors, we introduce the overlapping variables OAji. Specifically,

OAji = 1 if activity j finishes after the start of activity i for the assessors. If

activity j finishes before or at the same time as activity i starts, then OAji
is equal to 0 or 1. The overlapping variables for the actors OPji are defined
in the same way.

To illustrate how these variables jointly determine whether two activities
i, j ∈ IA are processed in parallel by the assessors, several possible cases are
depicted in Figure 6. For case (ii), the variable OAji can be equal to zero or
one, but for cases (iv) and (v), the variable must be equal to one.

Constraints (25) determine the resource-feasible start times of the activi-
ties for the candidates. Constraints (26) ensure that either activity i precedes
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Candidate 1
Candidate 2

Assessor 1
Assessor 2

i

i

j

j

(i) OA
ji −

̂Yij = 0

i

i

j

j

(ii) OA
ji −

̂Yij = 0 or 1

Candidate 1
Candidate 2

Assessor 1
Assessor 2

i

i

j

j

(iii) OA
ji −

̂Yij = 0

i

i

j

j

(iv) OA
ji −

̂Yij = 1

i

i

j

j

(v) OA
ji −

̂Yij = 1

Fig. 6 Five possible cases (i)–(v) that illustrate the values of the sequencing and overlapping
variables

activity j, or j precedes i. In contrast to constraints (2) and (3), the sequencing
variables Y Cij are used for any pair of activities involving the same candidate.

Si + pi − pAi ≤ Sj +MY Cji (c ∈ C, i, j ∈ Ic : i 6= j) (25)

Y Cij + Y Cji = 1 (c ∈ C, i, j ∈ Ic : i > j) (26)

Constraints (27)–(29) determine the resource-feasible start times of the ac-
tivities which can be processed in parallel. Thereby, parameter λ is used to
exclude some symmetric solutions, i.e., for two activities i > j which start at
the same time, it is specified that Ŷji = 1 and Ŷij = 0. As proposed in Kopanos
et al (2014), we set λ = 0.1.

Sj + pCj ≤ Si + pCi +MŶij (i, j ∈ IA : i > j) (27)

Si + pCi + λ ≤ Sj + pCj + (M + λ)Ŷji (i, j ∈ IA : i > j) (28)

Ŷij + Ŷji = 1 (i, j ∈ IA : i > j) (29)

Constraints (30) and (31) link the overlapping variables to the start times of
the activities.

(Sj + pj)− (Si + pCi ) ≤MOAji (i, j ∈ IA : i 6= j) (30)

(Sj + pj − pAj + pPj )− (Si + pCi ) ≤MOPji (i, j ∈ IP : i 6= j) (31)

Constraints (32) and (33) ensure that all activities that are executed in par-
allel do not require more than the available number of assessors and actors,
respectively. Thereby, the term OAji − Ŷij = 1 if activity j starts before activ-
ity i and if both activities overlap for the assessors. The same applies to the
actors.

rAi +
∑

j∈IA:j 6=i

rAj (OAji − Ŷij) ≤ |A| (i ∈ IA) (32)
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rPi +
∑

j∈IP :j 6=i

rPj (OPji − Ŷij) ≤ |P | (i ∈ IP ) (33)

Constraints (34) and (35) ensure that the terms OAji − Ŷij and OPji − Ŷij are
greater than or equal to zero.

Ŷij ≤ OAji (i, j ∈ IA : i 6= j) (34)

Ŷij ≤ OPji (i, j ∈ IP : i 6= j) (35)

Constraints (36) link the sequencing and overlapping variables to the assign-
ment variables. If the same assessor a is assigned to two activities i and j,
then both activities cannot overlap for the assessors.

(OAji − Ŷij) + ZAia + ZAja ≤ 2 (a ∈ A, i, j ∈ IA : i 6= j) (36)

Constraints (1), which determine the AC duration D, and constraints (6),
which specify the time window for the lunch breaks, are also included. The
same applies to the assessor-assignment constraints (13)–(15).

In sum, formulation (CT–O) reads as follows:

(CT–O)



Min D

s.t. (25)–(36)

(1), (6), (7), (13)–(15)

Si ≥ 0 (i ∈ I)

Y Cij ∈ {0, 1} (c ∈ C, i, j ∈ Ic : i 6= j)

Ŷij ∈ {0, 1} (i, j ∈ IA : i 6= j)

OAji ∈ {0, 1} (i, j ∈ IA : i 6= j)

OPji ∈ {0, 1} (i, j ∈ IP : i 6= j)

Vca ∈ {0, 1} (c ∈ C, a ∈ A)

ZAia ∈ {0, 1} (i ∈ IA, a ∈ A)

4.4 Formulation DT–P

In this section, we present the discrete-time formulation with pulse variables
(DT–P), which is based on the RCPSP formulation of Pritsker et al (1969).
This formulation involves the discretization of the planning horizon into uni-
form time intervals. The endpoints of a time interval are denoted by the time
points t and t + 1, respectively (t = 0, . . . , T − 1). Binary pulse variables Xit

state if activity i starts at time t. For each time point t, resource constraints are
formulated that ensure that the resource capacities are not violated. We extend
the resource constraints of the RCPSP formulation such that the preparation
and evaluation times of the AC activities are considered.
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For the ACP, the following constraints have to be taken into consideration.
The AC duration corresponds to the latest completion time of an activity,
which is defined by constraints (37).

D ≥
T−pi∑
t=0

(t+ pi)Xit (i ∈ I) (37)

Constraints (38) and (39) ensure that each activity starts once. Furthermore,
constraints (39) state that the lunch breaks are scheduled within the prescribed
time window.

T−pi∑
t=0

Xit = 1 (i ∈ I\IL) (38)

LSL∑
t=ESL

Xit = 1 (i ∈ IL) (39)

Constraints (40) to (42) ensure that the resource capacities are not violated.
Constraints (40) ensure that each candidate performs at most one activity
at the same time t. Candidate c performs activity i at time t if the activity
started between time t− (pi− pAi ) + 1 and t. Constraints (41) and (42) ensure
that all activities that are scheduled in parallel do not require more than the
maximum available numbers of assessors and actors, respectively. An assessor
performs activity i at time t if the activity started between time t−pi+ 1 and
t − pCi . An actor performs activity i at time t if the activity started between
time t− (pi − pAi + pPi ) + 1 and t− pCi .

∑
i∈Ic

t∑
τ=max(0,t−pi+pAi +1)

Xiτ ≤ 1 (c ∈ C, t = 0, . . . , T ) (40)

∑
i∈IA

t−pCi∑
τ=max(0,t−pi+1)

rAi Xiτ ≤ |A| (t = 0, . . . , T ) (41)

∑
i∈IP

t−pCi∑
τ=max(0,t−pi+pAi −pPi +1)

rPi Xiτ ≤ |P | (t = 0, . . . , T ) (42)

Additionally, the assessor-assignment constraints (7), (9), (11), and (13)–(15)
are also included. Constraints (43) link the variables Xit to the sequencing
variables Y Aij .

T−pj∑
t=0

tXjt ≥
T−pi∑
t=0

tXit −M + (pi − pCj +M)Y Aij (i, j ∈ IA : i 6= j) (43)
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In sum, formulation (DT–P) reads as follows:

(DT–P)



Min D

s.t. (37)–(43)

(7), (9), (11), (13)–(15)

Xit ∈ {0, 1} (i ∈ I, t = 0, . . . , T )

Y Aij ∈ {0, 1} (i, j ∈ IA : i 6= j)

Vca ∈ {0, 1} (c ∈ C, a ∈ A)

ZAia ∈ {0, 1} (i ∈ IA, a ∈ A)

4.5 Formulation DT–O

In this section, we present the discrete-time formulation with on/off variables
(DT–O), which is based on the RCPSP formulation of Kopanos et al (2014).
For the RCPSP, Kopanos et al (2014) extend the formulation of Pritsker et al
(1969) with binary on/off variables Wit, which specify if activity i is in progress
at time t. With these variables, the resource constraints can be modeled in a
different manner than in Pritsker et al (1969).

For the ACP, we extend the formulation DT–P (cf. Section 4.4) with binary
on/off variables. Due to the preparation and the evaluation time, these on/off
variables must be defined individually for candidates, assessors, and actors.
However, this results in a large number of additional variables, which has
a negative impact on the performance. For this reason, we only define the
on/off variables for the candidates, and take the resource constraints of DT–P
for the assessors and the actors. Hence, the resource constraints (40) for the
candidates are replaced by constraints (44)–(46).

Constraints (44) ensure that each candidate performs at most one activity
at a time.∑

i∈Ic:t≤T−pAi −1

Wit ≤ 1 (c ∈ C, t = 0, . . . , T ) (44)

Constraints (45) link the pulse variables Xit to the on/off variables Wit.

Wit =

t∑
τ=max(0,t−pi+pAi +1)

Xiτ (i ∈ I, t = 0, . . . , T − pAi − 1) (45)

Constraints (46) are valid equalities that tighten the formulation.

T−pAi −1∑
t=0

Wit = pi − pAi (i ∈ I) (46)
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In sum, formulation (DT–O) reads as follows:

(DT–O)



Min D

s.t. (44)–(46)

(37)–(39), (41)–(43)

(7), (9), (11), (13)–(15)

Xit ∈ {0, 1} (i ∈ I, t = 0, . . . , T )

Wit ∈ {0, 1} (i ∈ I, t = 0, . . . , T − pAi − 1)

Y Aij ∈ {0, 1} (i, j ∈ IA : i 6= j)

Vca ∈ {0, 1} (c ∈ C, a ∈ A)

ZAia ∈ {0, 1} (i ∈ IA, a ∈ A)

5 Lower bounds

In this section, we derive some lower bounds for the AC duration. In Sec-
tion 5.1, we present four lower bounds based on the assessors’ workload. In
Section 5.2, we present two lower bounds based on the candidates’ workload.

5.1 Lower bounds based on the assessors’ workload

In this section, we present four different lower bounds (LB1, . . . , LB4) that are
based on the assessors’ workload. In contrast to lower bounds LB1 and LB2,
lower bounds LB3 and LB4 consider the no-go relationships.

Lower bound LB1 corresponds to the average workload of the assessors
increased by the shortest preparation time of an activity. This preparation
time is included because the assessors are never required before that time.
The lower bound LB1 reads as follows.

LB1 =

⌈∑
i∈IA

rAi (pi − pCi )

|A|

⌉
+ min
i∈IA

pCi

Lower bound LB2 is obtained by considering only the activities that require
two assessors. The total workload of these activities must be completed by an
even number of assessors. Hence, if the number of assessors |A| is odd, then
the following lower bound LB2 is valid.

LB2 =


∑

i∈IA:rAi =2

2(pi − pCi )

|A| − 1

+ min
i∈IA

pCi

Lower bound LB3 takes the no-go relationships of each assessor into consid-
eration. The workload of all activities to which assessor a cannot be assigned
due to no-go relationships is evenly distributed among the remaining |A| − 1
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assessors and increased by the shortest preparation time. For each assessor
a ∈ A, this corresponds to a lower bound.

LB3 = max
a∈A


∑

c∈C:(c,a)∈N

∑
i∈Ic

rAi (pi − pCi )

|A| − 1

+ min
i∈IA

pCi

Lower bound LB4 combines the underlying ideas of LB2 and LB3. We only
consider activities that require two assessors and for which the corresponding
candidates have a no-go relationship with assessor a. For these activities, an
even number of assessors is required at any time. However, if the number of
assessors is even and assessor a cannot be assigned to these activities due to the
no-go relationships, it follows that one assessor a∗ 6= a is not needed. Hence,
the workload of all activities that require two assessors and to which assessor a
cannot be assigned is evenly distributed among the remaining |A|−2 assessors.
Again, the shortest preparation time of an activity is added to increase the
lower bound. Hence, if the number of assessors |A| is even, then lower bound
LB4 is valid.

LB4 = max
a∈A


∑

c∈C:(c,a)∈N

∑
i∈Ic:rAi =2

2(pi − pCi )

|A| − 2

+ min
i∈IA

pCi

5.2 Lower bounds based on the candidates’ workload

In this section, we present two lower bounds for the AC duration based on
the candidates’ workload. The first lower bound (LB5) is valid in general, and
the second lower bound (LB6) is only valid under certain conditions. Because
each candidate must perform the same tasks, we do not need to differentiate
between different candidates. Hence, in the following, we consider the tasks to
be executed by each candidate and the lunch break rather than activities for
individual candidates. The set of tasks and the lunch break are denoted by Q
and l, respectively. It should be noted that the lunch break is not included in
Q. Let pq, p

C
q , and pAq be the duration, the preparation time, and the assessors’

evaluation time of task q ∈ Q, respectively. The duration of the lunch break
is pl, and its preparation time (pCl ) and evaluation time (pAl ) are zero.

Because the tasks and the lunch break must be performed sequentially,
lower bound LB5 is valid.

LB5 =
∑

q∈Q∪{l}

(
pq − pAq

)
The term minq∈Q∪{l} p

A
q could be added to LB5 because the AC cannot end

before all tasks and the lunch break are completed. However, the evaluation
time of the lunch break is always equal to zero and, thus, this term is always
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zero. The lunch break cannot be excluded from this term, because each can-
didate can have the lunch break at the end if the latest possible start time is
not violated.

To motivate lower bound LB6, we first consider an illustrative example
with two candidates and three assessors. Each candidate has to perform a task
(activities k1 and k2) that requires two assessors and a lunch break (activities
l1 and l2); activities k1 and k2 cannot be scheduled in parallel due to the
limited number of assessors. Figure 7 depicts two feasible schedules for this
example. In the schedule on the left, both candidates have the lunch break at
the end. Due to the limited number of assessors, candidate C2 has a waiting
time. In this case, the AC duration D corresponds to the lower bound LB5

plus the waiting time. In the schedule on the right, candidate C2 performs
the lunch break first. In this case, the AC duration D correspond to the lower
bound LB5 plus the evaluation time of the task.

time
LB5 D0

C1

C2

A1

A2

A3

k1 l1

k2 l2

k1

k1

k2

k2

time
LB5 D0

C1

C2

A1

A2

A3

k1 l1

k2l2

k1

k1

k2

k2

Fig. 7 Schedules of an example with (left) and without (right) waiting time for the candi-
dates

In this example, either a candidate has a waiting time, or the last activity
of a candidate does not correspond to the lunch break. With this in mind, we
propose lower bound LB6, which is valid under certain conditions. According
to our industry partner, these conditions are fulfilled by a considerable number
of real-life instances.

Theorem 1 Let r be a task with the shortest evaluation time. If (i) b|A|/2c <
|C| and (ii) all tasks except task r require two or more assessors, then the
following lower bound is valid.

LB6 = δ0 + min (δ1, δ2)

whereas: δ0 =
∑

q∈Q∪{l}

(
pq − pAq

)
δ1 = min

q∈Q\{r}
pAq

δ2 = min
q∈Q\{r}

(pq − pCq − pAq ) + min
q∈Q\{r}

pAq −max(pl, pr − pAr )

Proof. If the conditions (i) and (ii) hold for a given problem instance, any
feasible solution belongs either to case 1 or to case 2.
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– Case 1: The last activity of at least one candidate does not correspond to
a lunch break or an activity of task r. It results that after the candidate
completes this last activity, the assessors have an evaluation time of at
least δ1. Hence, δ0 + δ1 is a lower bound if the solution belongs to case 1.

– Case 2: The last activity of each candidate either corresponds to a lunch
break or an activity of task r. We show that in this case, at least one can-
didate has a waiting time of at least δ2 because condition (i) implies that
not all candidates can perform an activity that requires two assessors at
the same time. δ2 corresponds to the length of the minimum time inter-
val during which the required number of assessors exceeds the number of
available assessors.
Let k denote an arbitrary task that requires two assessors. To determine δ2,
we first consider the four possibilities for ordering the last activities such
that the lunch break or task r are performed at the end by each candidate
(cf. Figure 8).

a) The lunch break is performed at the end and preceded by task r. Task
r is preceded by task k.

b) Task r is performed at the end and preceded by the lunch break. The
lunch break is preceded by task k.

c) Task r is performed at the end and preceded by task k. The lunch break
ends some time before task k.

d) The lunch break is performed at the end and preceded by task k. Task
r ends some time before task k.

time

Dδ0t1 t2 t3 t4

a) C

A1

A2

Task k Task r Lunch

Task k

Task k

Task r

b) C

A1

A2

Task k Task rLunch

Task k

Task k

Task r

c) C

A1

A2

Task k Task r

Task k

Task k

Task r

d) C

A1

A2

Task k Lunch

Task k

Task k

Fig. 8 All possible orders of the last activities and corresponding assessor requirements

In Figure 8, the time point t4 in a) and b) corresponds to the earliest
possible finish time of task k for the assessors. The time points t1, t2, and
t3 correspond to the possible start times of task k for the assessors if no
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candidate has a waiting time. The values of these time points are as follows.

t1 = δ0 − pl − (pr − pAr )− (pk − pCk − pAk )

t2 = δ0 − (pr − pAr )− (pk − pCk − pAk )

t3 = δ0 − pl − (pk − pCk − pAk )

t4 = δ0 − pl − (pr − pAr ) + pAk

Overall, the latest possible start time of task k for the assessors corresponds
to

max(t1, t2, t3) = δ0 −min(pl, pr − pAr )− (pk − pCk − pAk ).

If t4 > max(t1, t2, t3) and no candidate has a waiting time, then there
is a time interval with a minimum length of t4 − max(t1, t2, t3) during
which every candidate performs a task that requires two assessors. Because
b|A|/2c < |C|, the required number of assessors exceeds the available num-
ber of assessors in this interval. To resolve this conflict, at least one task k
must be delayed, which leads to a minimum waiting time for at least one
candidate of t4 −max(t1, t2, t3).
To derive a lower bound for the AC duration, we determine the small-
est possible value of t4 and the largest possible value of max(t1, t2, t3) as
follows.

t4 ≥ δ0 − pl − (pr − pAr ) + min
q∈Q\{r}

pAq

max(t1, t2, t3) ≤ δ0 −min(pl, pr − pAr )− min
q∈Q\{r}

(pq − pCq − pAq )

Hence, the minimum waiting time corresponds to

t4 −max(t1, t2, t3) ≥ min
q∈Q\{r}

(pq − pCq − pAq ) + min
q∈Q\{r}

pAq −max(pl, pr − pAr )

= δ2.

Thereby, we used α + β − min(α, β) = max(α, β), where α, β are two
arbitrary numbers. Hence, δ0 + δ2 is a lower bound if the solution belongs
to case 2.

Overall, LB6 = δ0 + min (δ1, δ2) is a lower bound for the AC duration if
conditions (i) and (ii) hold.

In the performance analysis, we use the maximum of these problem-specific
lower bounds. If for an instance the necessary conditions for any of the lower
bounds are not fulfilled, we set their respective value to 0.

LB+ = max(LB1, LB2, . . . , LB6)



MIP formulations for an application of project scheduling 25

6 Comparative analysis

We implemented the MIP formulations presented in Section 4 in AMPL, and
we used the Gurobi Optimizer 6.0.5 as solver. All calculations were performed
on an HP workstation with an Intel Xeon 2.67 GHz CPU and 24 GB RAM.
The computational experiment was performed using four real-life instances and
240 test instances derived from real-life data. We limited the CPU time of the
solver to 3,600 seconds for the real-life instances and to 600 seconds for the test
instances. We used Gurobi with its default settings. Additionally, we applied
Gurobi with the parameter MIPFocus set to 1. The parameter MIPFocus
determines the MIP solution strategy of the solver. When this parameter is set
to 1, Gurobi focuses on quickly generating good feasible solutions rather than
increasing the lower bound. The default setting is 0, which aims to balance
between finding good feasible solutions and proving optimality. For the DT
formulations, the upper bound of the AC duration was set to T = 200 for all
instances; this value is prescribed by the human resource provider.

In Section 6.1, we describe the instances that we used in our computational
study. In Section 6.2, we discuss our computational results for the real-life
instances. In Section 6.3, we provide the results for the test instances. In
Section 6.4, we compare our problem-specific lower bounds.

6.1 Instances

The number of candidates |C|, assessors |A|, actors |P |, tasks |E| and activities
|I| of the four real-life instances are listed in Table 5. The last column indicates
whether at least one no-go relationship exists. We denote the real-life instances
with RL1, . . . , RL4.

Table 5 Real-life instances

Instance |C| |A| |P | |E| |I| No-go relationships

RL1 7 10 2 5 42 no
RL2 11 11 3 5 66 no
RL3 9 11 3 5 54 yes
RL4 6 9 3 5 36 no

To test the different MIP formulations, we additionally devised a test set
with 240 test instances based on real-life data. For the RCPSP, the well-known
test instances of Kolisch and Sprecher (1997) were generated by systematically
varying the complexity factors resource strength (RS), resource factor (RF ),
and network complexity (NC). These factors are only partially applicable to
generate the ACP instances. The factor NC corresponds to the average num-
ber of precedence relationships per activity. Because there are no precedence
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relationships among the activities of the AC, we do not require such a factor.
The factors RF and RS correspond to the average portion of the resources
used by an activity and the scarcity of the resources, respectively. The fac-
tor RF can be interpreted as the average number of assessors required by an
activity. To ensure that the instances are as close to reality as possible, we se-
lected real-life tasks with given requirements for assessors and actors. Hence,
we do not require a factor such as RF . The factor RS can be interpreted as
the scarcity of the assessors. We use a similar factor to determine the number
of available assessors. In total, we generated the 240 test instances by vary-
ing five complexity factors. Thereby, the employed experimental levels of each
complexity factor were based on real-life data provided by the human resource
management service provider. The complexity factors are as follows.

The complexity factors nC and nE correspond to the number of candi-
dates and tasks, respectively, and determine the number of activities of an
instance. The tasks were randomly selected from a set of 15 real-life tasks.
The experimental levels nC ∈ {4, 5, . . . , 10, 11} and nE ∈ {4, 5} were used.

The complexity factor aS corresponds to the average number of assign-
ments per assessor. This factor is used to determine the number of assessors
nA of an instance. The number of assessors is equal to the nearest integer to∑
i∈IA r

A
i /a

S ; thus, the numerator corresponds to the total number of assessor
assignments. The experimental levels aS ∈ {6.0, 8.5, 10.4} correspond to the
observed real-life minimum, average, and maximum.

The complexity factor aN corresponds to the proportion of assessors who
have one or more no-go relationships (no-go assessors). The number of no-
go assessors is given by the nearest integer to aNnA. The no-go assessors
were randomly selected from the set of all assessors. The experimental levels
aN ∈ { 16 ,

1
3} were used.

The complexity factor aR corresponds to the average number of no-go
relationships per no-go assessor. The number of no-go relationships is equal to
the product of aR and the number of no-go assessors. The no-go relationships
were randomly assigned to pairs of candidates and no-go assessors such that (1)
each no-go assessor has at least one no-go relationship and (2) at least b|A| /2c
different assessors can be assigned to each candidate. The experimental levels
aR ∈ {2, 3} were used.

Because the actors are paid for each role play in which they actually per-
form, they are not considered to be a critical resource. Hence, the number of
actors was set to 3 for all instances, which corresponds to the observed real-life
maximum.

For each combination of complexity factor levels, an instance was gener-
ated; this leads to 8 · 2 · 3 · 2 · 2 = 192 test instances. Additionally, 8 · 2 · 3 = 48
test instances without no-go relationships (i.e., aN = aR = 0) were generated.
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6.2 Computational results: real-life instances

For the real-life instances RL1, . . . , RL4, the results obtained by the solver
using the MIP formulations CT–A, CT–F, CT–O, DT–P, and DT–O with
MIPFocus set to 0 are reported in Table 6. We compare the objective func-
tion values (D) with the lower bounds obtained by the solver (LB) and the
maximum value over all problem-specific lower bounds (LB+). For each in-
stance, the best objective function values obtained are highlighted in boldface.
Using the default solver settings, the solver obtains on average the best ob-
jective function values with CT–O and the highest lower bounds with DT–P.
For all real-life instances, these lower bounds are smaller than or equal to the
problem-specific lower bound. The problem-specific lower bound of instance
RL4 corresponds to the objective function value obtained with CT–O, i.e., this
solution is optimal.

Table 6 Results for real-life instances with MIPFocus set to 0

CT–A CT–F CT–O DT–P DT–O
Instance

D LB D LB D LB D LB D LB
LB+

RL1 89 67 90 37 88 74 128 81 95 71 82
RL2 136 59 158 36 132 49 149 103 173 72 110
RL3 106 62 121 36 107 49 125 80 118 63 90
RL4 83 70 86 36 82 74 87 81 86 80 82

Table 7 Results for real-life instances with MIPFocus set to 1

CT–A CT–F CT–O DT–P DT–O
Instance

D LB D LB D LB D LB D LB
LB+

RL1 86 49 86 36 88 49 98 76 88 70 82
RL2 124 49 128 36 129 54 159 70 150 69 110
RL3 102 49 100 36 108 49 118 59 114 63 90
RL4 82 56 84 36 84 55 82 82 82 76 82

Table 7 lists the results obtained by the solver with MIPFocus set to 1. For
each instance, the best objective function values obtained are highlighted in
boldface. Except for CT–O, the average AC duration is improved. However, on
average, the lower bounds are worse. CT–A devises the best solutions for three
instances, CT–F for two instances, and DT–P and DT–O for one instance. The
smallest instance (RL4) is even solved to optimality using formulation DT–P.
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Both, CT–A and DT–O, also find a solution with an optimal objective function
value, but they do not prove optimality within the prescribed CPU time.

6.3 Computational results: test instances

Based on the number of activities |I|, we divide the 240 test instances into
small-sized (20–34 activities, 75 instances), medium-sized (35–49 activities, 90
instances), and large-sized (50–66 activities, 75 instances) instances. For these
three ranges of |I|, the average number of variables and constraints for the
different formulations are presented in Figure 9. Regardless of the number of
activities, DT–O has the highest number of variables. For small- and medium-
sized instances, DT–O has also the highest number of constraints. However,
with an increasing number of activities, the number of constraints increases
less for the DT formulations than for the CT formulations. For the large-sized
instances, CT–O has the highest number of constraints.
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Fig. 9 Average number of variables (left) and constraints (right)

Table 8 reports the average relative gaps between the obtained solutions
and the problem-specific lower bound (gap+ = (D − LB+)/D), as well as the
average relative gaps between the obtained solutions and the lower bounds
obtained by the solver (gap = (D − LB)/D). To evaluate the quality of the
solutions, we use gap+. To evaluate the quality of the lower bounds provided
by the solver, we use gap. For each solver setting used, the best results are
highlighted in boldface.

Regardless of the solver settings employed, the best gap+ is obtained with
CT–A (10.3% for MIPFocus set to 0 and 9.3% for MIPFocus set to 1), and the
worst gap+ is obtained with DT–P. In contrast, the smallest gap is obtained
with DT–O. Similarly to the results of Kopanos et al (2014), better solutions
are obtained with DT–O than with DT–P. We conclude that the CT formu-
lations provide better solutions, and that the DT formulations provide better
lower bounds. For all formulations, gap considerably exceeds gap+. We deduce
that the problem-specific lower bounds are considerably higher than the lower
bounds obtained by the solver within the prescribed CPU time limit.

With CT–A, CT–O, and DT–P, feasible solutions are obtained for all 240
test instances within the prescribed CPU time limit. With CT–F and MIP-
Focus set to 0, feasible solutions are obtained only for 216 instances (i.e.,
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Table 8 Aggregated results for all 240 test instances

Formulation
MIP-

CT–A CT–F CT–O DT–P DT–O
Focus

Average gap+ [in %]
0 10.3 15.1 12.5 27.7 19.4
1 9.3 11.1 11.2 26.8 18.5

Average gap [in %]
0 44.7 59.8 50.4 37.5 36.6
1 56.7 65.0 55.1 44.6 37.8

Number of feasible solutions
0 240 216 240 240 234
1 240 235 240 240 238

Number of optimal solutions
0 36 29 32 22 19
1 27 24 30 22 27

Number of best solutions
0 170 51 80 22 60
1 161 69 81 27 57

90% of the instances). With MIPFocus set to 1, this number increases to 235
(i.e., 97.9%); feasible solutions could not be obtained for five of the large-sized
instances.

To determine the number of optimal solutions, we compare the objective
function value obtained with the maximum value over all problem-specific
lower bounds and the lower bound obtained by the solver. With 36 instances,
CT–A obtains the highest number of optimal solutions.

The number of best solutions corresponds to the number of times that a
formulation generates a best solution. With MIPFocus set to 0, CT–A provides
a best solution for 170 instances. This means that the other formulations
generate better solutions for 70 instances only.

With MIPFocus set to 1, the average solution quality for all formulations is
improved. This is indicated by a reduction of gap+. For CT–F, this reduction
is quite considerable (from 15.1% to 11.1%). This might indicate that the MIP
solution strategy used by the solver exploits the resource-flow information in
an efficient manner. However, the average gap is larger with MIPFocus set to
1 because this solver setting focuses less on improving the lower bounds but
gives priority to the quick generation of good feasible solutions. Therefore,
the number of feasible solutions is increased for CT–F. Surprisingly, for the
CT formulations CT–A, CT–F and CT–O, the number of optimal solutions
obtained is lower with MIPFocus set to 1.

Table 9 reports the average results for all instances with the same problem
characteristics. For each solver setting used, the best results are highlighted
in boldface. The overall results show that with MIPFocus set to 1 the best
solutions are obtained. However, for CT–A and small-sized instances, the solver
performs better with MIPFocus set to 0.
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The number of activities |I| and the level of complexity factor aS , which
defines the number of available assessors, have a significant impact on both
relative gaps. In contrast, the levels of complexity factors aN and aR, which
define the no-go relationships, have no systematic impact on the relative gaps.
Parameter f corresponds to the average duration of the activities. The perfor-
mance of DT–O is affected most by the value of f . For instances with short
activities (11 ≤ f ≤ 13), the performance of DT–O is almost as good as the
performance of CT–A. However, for the instances with longer activities, the
average gaps are much higher. Surprisingly, such an effect is not observed with
DT–P.

According to the results obtained by Koné et al (2011) for the RCPSP, DT
formulations are better for instances with activities that have a short dura-
tion. Although the durations of the AC activities are quite short, we do not
observe similar results for the ACP. Overall, the CT formulations provide the
best solutions. A drawback of the DT formulations may be the large number of
variables (cf. Figure 9) which depend on the number of time points considered.
In the RCPSP, the number of variables is reduced considerably with a simple
preprocessing like the definition of earliest and latest start times for the activ-
ities. However, this preprocessing is based on precedence relationships, which
do not exist in the ACP. Considering the CT formulations, CT–A performs
best, and CT–O performs better than CT–F.

6.4 Computational results: problem-specific lower bounds

Table 10 compares the six problem-specific lower bounds presented in Sec-
tion 5. The last row shows the number of instances for which the different
lower bounds obtained the highest values. LB1 and LB2 each provide the
highest lower bounds for more than 90 instances. However, lower bounds that
consider no-go relationships (LB3 and LB4) only provide the highest values
for a few instances. If the conditions for LB6 hold, this lower bound provides
the highest values for 22 instances.

Table 10 Comparison of problem-specific lower bounds

Lower bound LB1 LB2 LB3 LB4 LB5 LB6

Number of instances with
93 90 0 8 32 22

best lower bound

7 Conclusions

Comparisons of alternative MIP formulations in the literature for project
scheduling problems are primarily based on generic test instances. In this
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study, we analyzed the performance of two discrete-time and three continuous-
time MIP formulations in a real-life application of project scheduling. We con-
sidered the problem of planning assessment centers. For this problem, we devel-
oped new MIP formulations, and we provided problem-specific lower bounds.
In contrast to the results generally obtained for the RCPSP, our comparative
study indicates that the CT formulations outperform the DT formulations
in terms of solution quality. However, using the DT formulations, the best
MIP-based lower bounds are obtained.

The assessment center planning problem is an interesting and challenging
optimization problem for future research. An important area is the develop-
ment of heuristic solution procedures. Preliminary versions of an MIP-based
heuristic and a list-scheduling heuristic are presented in Rihm and Trautmann
(2016) and Zimmermann and Trautmann (2015). In the MIP-based heuris-
tic, first, the activities are scheduled without assessor assignments; second,
the assessors are assigned to the activities using the CT formulation with
resource-flow variables presented in this study. In the list-scheduling heuris-
tic, the activities are scheduled sequentially based on problem-specific priority
rules. The MIP formulations and the problem-specific lower bounds presented
in this paper can be used to analyze the performance of such heuristic ap-
proaches.
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Koné O, Artigues C, Lopez P, Mongeau M (2013) Comparison of mixed integer
linear programming models for the resource-constrained project scheduling
problem with consumption and production of resources. Flex Serv Manuf J
25(1–2):25–47

Kopanos GM, Kyriakidis TS, Georgiadis MC (2014) New continuous-time and
discrete-time mathematical formulations for resource-constrained project
scheduling problems. Comput Chem Eng 68:96–106

Mingozzi A, Maniezzo V, Ricciardelli S, Bianco L (1998) An exact algorithm
for the resource-constrained project scheduling problem based on a new
mathematical formulation. Manage Sci 44(5):714–729

Naber A, Kolisch R (2014) MIP models for resource-constrained project
scheduling with flexible resource profiles. Eur J Oper Res 239(2):335–348

Pritsker AAB, Waiters LJ, Wolfe PM (1969) Multiproject scheduling with
limited resources: a zero-one programming approach. Manage Sci 16(1):93–
108

Rihm T, Trautmann N (2016) A decomposition approach for an assessment
center planning problem. In: Ruiz R, Alvarez-Valdes R (eds) Proceedings of
the 15th International Conference on Project Management and Scheduling,
Valencia, pp 206–209

Stefansson H, Sigmarsdottir S, Jensson P, Shah N (2011) Discrete and con-
tinuous time representations and mathematical models for large production
scheduling problems: a case study from the pharmaceutical industry. Eur J
Oper Res 215(2):383–392

Vanhoucke M, Coelho J, Debels D, Maenhout B, Tavares LV (2008) An eval-
uation of the adequacy of project network generators with systematically
sampled networks. Eur J Oper Res 187(2):511–524



MIP formulations for an application of project scheduling 33

Vielma JP (2015) Mixed integer linear programming formulation techniques.
SIAM Rev 57(1):3–57

Zapata JC, Hodge BM, Reklaitis GV (2008) The multimode resource con-
strained multiproject scheduling problem: alternative formulations. AIChE
J 54(8):2101–2119

Zimmermann A, Trautmann N (2014) Scheduling of assessment centers: an ap-
plication of resource-constrained project scheduling. In: Fliedner T, Kolisch
R, Naber A (eds) Proceedings of the 14th International Conference on
Project Management and Scheduling, Munich, pp 263–266

Zimmermann A, Trautmann N (2015) A list-scheduling approach for the plan-
ning of assessment centers. In: Hanzálek Z, Kendall G, McCollum B, Š̊ucha
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Table 9 Average gap+ for different instance characteristics

Instance MIP- Average gap+

characteristics Focus
CT–A CT–F CT–O DT–P DT–O

|I|

20–34
0 1.8 3.1 2.6 10.7 11.0
1 2.4 3.0 2.6 6.8 6.0

35–49
0 8.3 14.9 11.4 28.0 12.7
1 7.8 9.3 9.5 28.0 13.8

50–66
0 21.2 31.8 23.6 44.4 36.5
1 18.1 22.0 21.8 45.4 37.3

aS

6
0 10.1 15.2 12.8 29.3 22.4
1 9.6 11.3 11.9 23.4 20.3

8
0 12.1 17.8 14.3 31.0 20.4
1 11.2 12.9 12.5 32.2 19.4

10.4
0 8.8 11.9 10.4 22.9 15.3
1 7.1 9.0 9.1 24.8 15.8

aN

0
0 10.7 16.9 12.5 25.9 18.8
1 9.2 10.6 11.0 24.9 17.5

0.17
0 10.3 14.9 12.8 27.4 19.4
1 9.4 11.3 11.2 26.9 17.5

0.33
0 10.2 14.5 12.2 29.0 19.6
1 9.3 11.2 11.2 27.6 20.0

aR

0
0 10.7 16.9 12.5 25.9 18.8
1 9.2 10.6 11.0 24.9 17.5

2
0 10.3 15.9 12.4 26.8 18.0
1 9.4 11.3 10.8 27.0 17.8

3
0 10.2 13.5 12.6 29.6 21.1
1 9.3 11.2 11.7 27.6 19.8

f

11–13
0 9.3 13.0 12.2 25.6 10.6
1 8.6 10.0 10.5 26.8 11.2

13–15
0 8.9 13.5 10.7 24.4 18.8
1 7.3 9.4 9.8 22.9 17.5

15–17
0 11.5 17.0 13.5 30.3 23.2
1 10.7 12.4 12.2 28.8 21.9
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