
August 2016 | Volume 7 | Article 3281

OpiniOn
published: 26 August 2016

doi: 10.3389/fimmu.2016.00328

Frontiers in Immunology | www.frontiersin.org

Edited by: 
Martin Herrmann,  

Universitätsklinikum Erlangen, 
Germany

Reviewed by: 
Patrizia Rovere Querini,  

Vita-Salute San Raffaele University, 
Italy

*Correspondence:
Shida Yousefi  

shida.yousefi@pki.unibe.ch

Specialty section: 
This article was submitted to 

Molecular Innate Immunity,  
a section of the journal  

Frontiers in Immunology

Received: 29 April 2016
Accepted: 16 August 2016
Published: 26 August 2016

Citation: 
Yousefi S and Simon H-U (2016) 

NETosis – Does It Really Represent 
Nature’s “Suicide Bomber”? 

Front. Immunol. 7:328.  
doi: 10.3389/fimmu.2016.00328

nETosis – Does it Really Represent 
nature’s “Suicide Bomber”?
Shida Yousefi* and Hans-Uwe Simon

Institute of Pharmacology, University of Bern, Bern, Switzerland

Keywords: nETosis, neutrophil extracellular traps, innate immunity, adaptive immunity, cell death

NETosis is a term that evolved following publication of an original article supposedly describing a 
novel form of programed neutrophil death that resulted in the formation of neutrophil extracellular 
traps (NETs) (1). NETosis was subsequently added to the cell death classifications, almost joining 
the ranks of other, better documented pathways, such as apoptosis, necroptosis, and autophagic 
cell death (2). Fuchs et al.’s (1) article seems to NETosis converts to be so seminal that reviewers 
deny publication to manuscripts in this area, which fail to reference it [Ref. (3); see Supporting 
Information; Peer Review Correspondence: URL: Link 1].

We have been puzzled by the ready acceptance of a proposed programed cell death in this 
format. Let us examine the phenomenon of NETosis as it is cited in the recent literature and see 
why this concept seems inconsistent with the economy of nature. NETosis was described as a 
death process in which the plasma membrane ruptures, allowing chromatin release following 
the collapse of the nuclear membrane (1). This is supposed to happen in order to rescue and 
protect the affected environment, and this theory has been promoted by many reputable scientific 
journals, including Nature (videos: Link 2). However, thus far, no explanation has been offered 
as to how the remains of neutrophils that have undergone NETosis would be eliminated under 
in vivo conditions. This lack gives pause because such residue must be expected to be potentially 
harmful to the host. In fact, under physiological conditions in healthy individuals, nuclear DNA 
release following activation of neutrophils encountering microorganisms is still controversial and 
the question has, in fact, been raised whether a NETosis in this format would be at all beneficial 
to the host (4).

We argue that under physiological conditions, NETosis would be a destructive process. NETosis 
implies a waste of neutrophils, but more importantly, it would mean exacerbated inflammation. 
We consider that it is important for neutrophils to remain viable in order to exercise their useful 
skills, phagocytosis of invading microorganisms and extracellular killing of pathogens by the pro-
gramed release of (as we believe, mitochondrial) DNA together with granule proteins. Neutrophils 
can subsequently die through apoptosis (5) or, under inflammatory conditions, also by programed 
necrosis (6). In both cases, recognition of the dying cells by phagocytes would assure disposal without 
unnecessary inflammation.

Mature neutrophils are terminally differentiated white blood cells that depend on glycolysis 
for ATP production; hence, they can afford to lose mitochondrial DNA (mtDNA) in response to 
invading microorganisms. In addition, mitochondria are evolutionary endosymbionts derived from 
bacteria, which carry bacterial molecular motifs (7), and are considered to be master regulators of 
danger signaling (8). Unmethylated mtDNA, such as bacterial DNA, is the most potent activator 
of plasmacytoid dendritic cells (pDCs) and the type I interferon (IFN) pathway [Ref. (9–11), and 
our own unpublished data]. In our view, the innate immune system attempts to overcome an infec-
tion primarily with a combination of mtDNA-containing NET formation and phagocytosis. This 
offers the advantage that, in case of persisting infection, the mtDNA will have boosted the adaptive 
immune response. Furthermore, no exaggerated inflammation caused by local cell lysis occurs. In 
fact, the clearance of NETs occurs in an immunologically silent manner (12).
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In the literature, the terms NETs and NETosis are often used 
indiscriminately, which is problematic. NET formation was first 
described by Brinkmann et al. (13). These authors observed the 
formation of extracellular traps consisting of DNA together with 
granule proteins of neutrophils, which were released upon brief 
stimulation with physiological agonists, such as interleukin-8 
(IL-8) or lipopolysaccharide (LPS), Gram-positive and Gram-
negative bacteria, and unphysiological stimuli, such as phorbol 
myristate acetate (PMA) that cause increases in cellular ROS 
levels. PMA at concentrations between 5 and 50 nM for 30 min 
(dose–response) and with 10 nM PMA for 10, 20, and 30 min 
(time course) were able to induce NET formation [Ref. (13), see 
Supporting Online Material]. The same was true for co-culture 
with bacteria, i.e., a 30-min incubation was sufficient to form 
NETs and kill bacteria extracellularly. The neutrophils were 
reported to remain viable, but the source of the released DNA 
was not identified at that time (13).

Owing to the apparent presence of histone reactivity in 
NETs, many investigators have assumed that NETs contain 
chromosomal DNA. This idea that NETs consist of chromosomal 
DNA, granule proteins, and histones has become cemented in 
the literature because it had already been shown that histones 
exhibit antibacterial activity. Thus, it just seemed to make sense. 
However, it is important to realize that the antibodies used to 
support this conclusion, i.e., that histones are present in NETs, 
are also known to detect DNA as well (14), especially at the high 
concentrations employed. In addition, the existence of extranu-
clear histones, namely pools of H1 and H3 in the cytoplasm, has 
also been reported (15).

Moreover, one has argued that the presence of citrulline-
containing proteins in extracellular proteins, and presumably 
in NETs, is an argument in favor of NETosis. Human primary 
neutrophils express not only protein arginine deiminase 4 
(PAD4) but also PAD2 enzymes that catalyze citrulline modi-
fication of number of proteins, most importantly fibrinogen, 
collagen, vimentin, and platelet actin, as well as histones (16, 
17). Current evidence suggests that protein citrullination may 
occur extracellularly and, therefore, substrate selection by the 
PADs would not be limited to their subcellular localizations 
(e.g., not just to histones in nucleus) (16). PAD2 lacks a nuclear 
localization signal (18) and is highly expressed in the cytoplasm 
of human neutrophils (17). Interestingly, the cytoplasmic con-
centration of PAD2 was dramatically reduced within 30  min 
after stimulation with PMA and, furthermore, enzymatically 
active PADs were detected in supernatants of cultured, acti-
vated neutrophils (17). This observation might explain the 
presence of citrullinated proteins in NETs upon physiological 
stimulation of neutrophils (e.g., activation by platelets) in vitro 
(19) and in vivo (20), considering that PAD2’s main substrates 
are fibrin and platelets’ actin, which would be present within 
entangled NET structures following platelet activation in the 
absence of cell death. PAD2 could also citrullinate extracellular 
histone H3 released owing to secondary necrosis (which might 
occur under in vitro as well as in vivo conditions), though with 
lower efficiency than with PAD4 (16). It is surprising, that so far 
no one has investigated the potential role of PAD2 for NET for-
mation and the protein content of NETs, respectively. Perhaps 

some of the discrepancies in the PAD4 knockout mouse model 
could be explained if we take into account the possible role of 
the PAD2 enzyme in extracellular protein citrullination. It was 
easy to pick PAD4 as the culprit owing to its nuclear localization, 
ignoring the fact that all PADs, including PAD4, can function 
extracellularly. Another reason researchers preferred PAD4 as a 
candidate is perhaps its specific expression in the myeloid line-
age as compared to PAD2, which is ubiquitously expressed (21). 
This would make PAD2 less attractive as a potential commercial 
drug target.

Thus, considering these uncertainties, the argument that NETs 
contain chromosomal DNA is actually still unsubstantiated today. 
In fact, subsequent studies using DNA sequencing methods have 
established that NETs are generally composed of mtDNA [Yousefi 
et al. (22), McIlroy et al. (23), Wang et al. (9), and recently Lood 
et al. (10)]. We recognize that under certain conditions, neutro-
phils do release nuclear DNA. For instance, neutrophils can release 
nuclear DNA upon encountering bacteria capable of secreting 
pore-forming enzymes/toxins. This type of nuclear DNA release 
can occur as early as 5 min after bacterial contact (24–26). We 
also do not exclude the possibility that nuclear DNA originating 
from cells dying in the neighborhood of NETs, as a consequence 
of immunopathology, could subsequently bind to NETs in vivo. 
Moreover, under in vitro conditions, neutrophils stimulated with 
PMA may first form mtDNA-containing NETs before undergoing 
a subsequent necrotic cell death. As a consequence of necrotic cell 
death, nuclear DNA and histones could bind to already existing 
NETs. Furthermore, it should be noted that nuclear DNA released 
from dying neutrophils following PMA stimulation has been 
shown to generate a DNA cloud, rather than DNA fibers [Ref. 
(27); video: Link 3] (Figure 1).

Since the discovery of NETs, many groups have focused 
on finding the molecular mechanism and origin of the DNA 
released. For instance, elastase-deficient mouse neutrophils 
were reported to be unable to form NETs (28). By contrast, NET 
formation has recently been reported to occur in these mice in 
a model of deep vein thrombosis (29). We also have not found 
any defect in NET formation by elastase-deficient bone marrow-
derived primary mouse neutrophils activated either physiologi-
cally or with brief stimulation using low concentrations of PMA 
(unpublished observation). Moreover, it has been reported that 
NETosis could actually represent a necroptosis (30). However, 
on the contrary, we obtained no evidence for the involvement 
of the RIPK3–MLKL pathway, as would be required for genuine 
necroptosis (3). The conditions for forming NETs have gradually 
evolved from 10 to 30 min of stimulation to 3–4 h, while PMA 
concentrations have skyrocketed from 10–25 to 100–800  nM 
(31). With mouse neutrophils, NET formation after 16  h of 
100  nM PMA stimulation has been reported (32). It is worth 
noting that even low concentrations of PMA (25 nM) are known 
to induce cell death due to excessive intracellular ROS levels 
within 2–3 h (33).

Meanwhile, our group has reported that with physiological 
activation or low doses of PMA (25 nM), eosinophils (34), neu-
trophils (22), and basophils (35) all release mtDNA combined 
with granule proteins within <1  h, in every case without cell 
death (Figure 1).

http://www.frontiersin.org/Immunology/
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FiGURE 1 | Outline of nET formation as contrasted to “nETosis.” (A) Neutrophils are activated by bacteria or cytokines and inflammatory mediators generated 
by surrounding cells. A programed release of mitochondrial DNA (mtDNA) forms a net-like structure (blue) that contains granule proteins (green), the so-called NET. 
(B) Neutrophils rupture with nuclear collapse leading to chromosomal DNA release as a DNA cloud (blue). Therefore, no real NET formation is observed as a 
consequence of “NETosis.” Furthermore, such a necrotic-like cell death carries the risk of releasing danger-associated molecular patterns (DAMPs), possibly 
resulting in excessive inflammation and autoimmunity. Illustration by Aldona von Gunten.
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The aim of this opinion article with our inflammatory title is 
to raise the awareness for this problem. For more honest scientific 
behavior, the reviewing process is ultimately where changes will 
have to be made to allow opposing ideas, as long as scientifically 
solid, to reach the overall scientific community and to receive 
critical scrutiny. An established opinion is not always correct; 
de-construction and re-construction of theories is a part of the 
scientific process. As an option for defusing such long-lasting 
scientific controversies, it would also be appropriate to deliber-
ately arrange that proponents of opposing viewpoints present 
their work at international meetings. Furthermore, there should 

be guidelines for the stimulation and the detection of NETs both 
in vivo and in vitro.
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